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Abstract

The electroweak chiral Lagrangian for the topcolor assisted technicolor model proposed by K.

Lane, which uses nontrivial patterns of techniquark condensation and walking, was investigated in

this study. We found that the features of the model are qualitatively similar to those of Lane’s

previous natural TC2 prototype model, but there is no limit on the upper bound of the Z ′ mass.

We discuss the phase structure and possible walking behavior of the model. We obtained the values

of all coefficients of the electroweak chiral Lagrangian up to an order of p4. We show that although

the walking effect reduces the S parameter to half its original value, it maintains an order of 2.

Moreover, a special hyper-charge arrangement is needed to achieve further reductions in its value.
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I. INTRODUCTION

Modern technicolor (TC) models of dynamical electroweak symmetry breaking require

assistance for top-color interactions that are strong in the TeV energy region to provide the

large mass of the top quark, and a walking technicolor (WTC) gauge coupling to aid in

the avoidance of large flavor-changing neutral current (FCNC) effects. The first addition

consists of a class of topcolor-assisted technicolor (TC2) models made through the care-

ful arrangement of TC, topcolor, extended hypercharge groups, and relevant techniquark

and Standard Model (SM) fermion representations. With the help of extended technicolor

(ETC), we expect that technicolor condensates will form and provide the mass for the weak

vector bosons. ETC provides the mass for the light quarks and leptons and a bottom-

quark-sized mass to the top. The largest contribution to the top-quark mass is from the

formation of a top-quark condensate through the dynamics of the topcolor gauge sector.

The second addition is based on the phase diagram of strongly coupled TC gauge theories

involving fermions in arbitrary representations of the gauge group. With suitable choices for

the TC group and techniquark representations, WTC is a natural option for situations with

asymptotic freedom that are nearly conformal. In this case, the TC gauge coupling has an

approximate infrared-stable fixed point (the zero of the beta function) α∗ which is slightly

larger than the critical value αc necessary for techniquark condensate formation. In such a

theory, for values of α above α∗, as the energy scale decreases α increases. However, its rate

of increase decreases to zero as α approaches α∗. Hence, over an extended energy interval,

α is order O(1), and it is slowly varying which leads a large anomalous dimension γ ≃ 1 for

the bilinear local techniquark operator. This results in the enhancement of the SM fermion

and those undiscovered pseudo goldstone boson masses, which achieve realistic scales while

maintaining sufficient suppression of FCNC effects.

The typical gauge group of the TC2 models is

SU(N)TC ⊗ SU(3)1 ⊗ SU(3)2 ⊗ SU(2)L ⊗ U(1)Y1 ⊗ U(1)Y2 (1)

in which the topcolor and extended hypercharge groups SU(3)1⊗SU(3)2⊗U(1)Y1 ⊗U(1)Y2

spontaneously break into their diagonal subgroups SU(3)C ⊗ U(1)Y at an energy of a few

TeV. The remaining electroweak groups SU(2)L⊗U(1)Y spontaneously break into their elec-

tromagnetic subgroup U(1)em at electroweak scale because of a combination of a top-quark

condensate and techniquark condensate. In the simplest example of Hill’s TC2 model [1],
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there are separate color and weak hypercharge gauge groups for the heavy third generation

quarks and leptons and for the two lighter generations. The third generation transforms

under a strongly coupled SU(3)1 ⊗ U(1)1 and maintains its usual charges. However, the

light generations transform conventionally under a weakly coupled SU(3)2 ⊗ U(1)2. Near 1

TeV, these four groups break into a diagonal subgroup of ordinary color and hypercharge,

SU(3)C ⊗U(1)Y . The desired condensation pattern occurs because the U(1)1 couplings are

such that the spontaneously broken SU(3)1 ⊗ U(1)1 interactions are supercritical only for

the top quark.

After Hill’s proposal was made, Chivukula, Dobrescu, and Terning [2] claimed that the

techniquarks required to break the top and bottom quark chiral symmetries are likely to

have custodial-isospin violating couplings to the strong U(1)1. To maintain a ρ ≃ 1, the

U(1)1 interaction must be so weak that it is necessary to fine-tune the SU(3)1 coupling. This

results in the implementation of the theory being unnatural. To remedy this isospin violation

and improve the suitability of the model, K. Lane proposed a natural prototype TC2 model

in Ref.[3]. In that model, the different techniquark isodoublets, T t and T b, provide ETC

mass to the top and bottom quarks. These doublets then could have different U(1)1 charges,

which are isospin conserving for the right and left handed parts of each doublet. The U(1)

symmetries presented in the model automatically avoid the problem of Bd−B̄d mixing raised

by Kominis[4]. To achieve the mixing of the magnitude observed between the heavy and

light generations while breaking the strong top-color interactions near 1 TeV, K. Lane also

proposed an alternative model based on the nontrivial patterns of techniquark condensation

and discussed its phenomenology[5]. In this new model, to break the extended hypercharge

groups into U(1)Y , a set of electrically neutral SU(2) singlet techniquarks belonging to the

antisymmetric tensor representation of the TC group were added into the model. This, in

combination with other techniquarks, further ensures the technicolor coupling walks. With

so many techniquarks, one may wonder whether the S parameter of the model can be small.

Although qualitatively the large number of techniquarks will increase the value of S, walking

effects and certain arrangements of the hypercharges of the techniquarks may compensate

for this increase, and result in a small overall S parameter. One aim of this paper is to

examine this possibility.

In fact, our interests are not limited to the S parameter, which is one of the low en-

ergy constants (LECs) of the bosonic part of the standard electroweak chiral Lagrangian
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(EWCL)[6]. Rather, our interests include all EWCL LECs. In our previous studies, we

compiled a formulation for computing the bosonic part of the EWCL LECs for orders up

to p4 for the one-doublet TC model discussed in Ref.[7], Hill’s schematic TC2 model [1] in

Ref.[8], K. Lane’s natural prototype TC2 model [3] in Ref.[9] and a hypercharge-universal

TC2 model [10] in Ref.[11]. Here, the bosonic part of the EWCL is the part that only in-

volves SM electroweak gauge fields and corresponding Goldstone fields. This part describes

the electroweak symmetry breaking effects on the electroweak gauge fields, but the parts of

the EWCL dealing with matter also include SM fermions which describe the electroweak

symmetry breaking effects on the SM fermion fields. In the literature, these two parts are

proposed in Refs.[6] and [12] separately because they have independent characteristics. The

reason that we choose to compute the bosonic part of the EWCL in isolation is that the

matter part is more complex than the bosonic part. Moreover, some of the three-dimensional

fermion mass terms and six-dimensional FCNC terms were already discussed in Lane’s orig-

inal paper [5]. In this paper, we only discuss the bosonic part of the EWCL for the first

stage of computing the LECs that are generalized from the S parameter, and leave the part

dealing with matter for future discussion. The EWCL is an universal platform which en-

ables us to compare different underlying models with experimental data and extract the true

physical theory that guides our world. To achieve this comparison, we compute the EWCL

coefficients model by model. This study is the fourth paper in a series, starting with Ref.[8],

in which we compute these strongly coupled physics models. Here, we focus on K. Lane’s

alternative TC2 model with nontrivial TC fermion condensation and walking[5], which was

mentioned previously. Corresponding to recent advances in the understanding of the phase

diagram of the SU(N) gauge theories and the new possibilities for model building[13], this

work offers a modern way to investigate walking effects in a realistic strongly-coupled theory

with complex structures.

In this paper, except for some conventional calculations that are similar to those in our

previous papers, we focus on the effects of walking that have not been discussed before. We

will compare the different situations of walking, ideal walking, and running; and examine

their effects on the S parameter. In the next section, we first review K. Lane’s alternative

TC2 model with nontrivial condensation and walking[5] and discuss its phase structure. In

section III, we apply our formulation developed in Ref.[8] to Lane’s model [5]. We perform

these dynamical calculations through several steps: first we integrate in the Goldstone field,
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U. Then, we integrate out the technigluons and techniquarks by solving the Schwinger-Dyson

equation (SDE) for techniquarks. Next, we integrate out the colorons and Z ′, perform a

low energy expansion, and compute the effective action. Finally, we obtain the EWCL

coefficients. For simplicity, some details of the derivation and computation in this section

are placed in the appendices. Section IV. contains numerical results and discussions. Section

V. is a short summary and discussion.

II. REVIEW OF THE MODEL AND ITS PHASE STRUCTURE

Consider K. Lane’s TC2 model [5] with nontrivial TC fermion condensation and walking,

in which the group is given by (1). Because we are only interested in the bosonic part of

EWCL, which is independent of the SM fermions, we do not list their representations and

U(1) charge arrangements here. The left gauge charges for the techniquarks are shown in

Table I. There are three sets of techniquarks. The first set includes T 1 and T 2. These are

the specific techniquarks of the model and are expected to have twisted condensates that

generate SU(3)1 ⊗ SU(3)2 → SU(3)c and electroweak breaking, and a sufficient level of

generation mixing. The second set includes T l, T t and T b, which are the standard TC2

techniquarks from Lane’s first natural prototype TC2 model [3]. They supply the ETC

mass to the SM fermions, including the top and bottom. The third set consists of the high-

dimensional representation field ψ, which is responsible for generating U(1)1 ⊗ U(1)2 →
U(1)Y and ensuring theory walking.

The details of the ETC interaction are not specified in Lane’s original paper[5]; this pro-

hibits quantitative computations. The effects on the EWCL LECs from these ETC operators

can be ignored in our calculation because the relevant operators are small. Unfortunately,

although we know from Ref. [9] that its contribution to the EWCL LECs is small, the effec-

tive four-fermion coupling may become strong enough to change the results of the current

walking theory[14]. When the effective four-fermion coupling exceeds its critical value, the

position of the infrared fixed point changes significantly. For the first step of the investiga-

tion, we ignore this case by assuming that the four-fermion coupling does not exceed the

critical value and leave discussion of more general effects for future studies.

A number of constraints were given in Lane’s original paper[5] to limit and simplify the

charges:
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TABLE I. Gauge charge assignments of the techniquarks in Lane’s TC2 model.

field\group SU(N)TC SU(3)1 SU(3)2 SU(2)L U(1)1 U(1)2

field,coupling Gαµ , gTC AA1µ, h1 A
A
2µ, h2 W a

µ , g2 B1µ, q1 B2µ, q2

T 1
L N 3 1 2 u1 u2

U1
R N 3 1 1 v1 v2 +

1
2

D1
R N 3 1 1 v1 v2 − 1

2

T 2
L N 1 3 2 v1 v2

U2
R N 1 3 1 u1 u2 +

1
2

D2
R N 1 3 1 u1 u2 − 1

2

T lL N 1 1 2 x1 x2

U lR N 1 1 1 x′1 x′2 +
1
2

Dl
R N 1 1 1 x′1 x′2 − 1

2

T tL N 1 1 2 y1 y2

U tR N 1 1 1 y′1 y′2 +
1
2

Dt
R N 1 1 1 y′1 y′2 − 1

2

T bL N 1 1 2 z1 z2

U bR N 1 1 1 z′1 z′2 +
1
2

Db
R N 1 1 1 z′1 z′2 − 1

2

ψL
1
2N(N − 1) 1 1 1 ξ −ξ

ψR
1
2N(N − 1) 1 1 1 ξ′ −ξ′

• To ensure that the techniquark condensates conserve electric charge, u1+u2 = v1+v2,

x1 + x2 = x′1 + x′2, y1 + y2 = y′1 + y′2, and z1 + z2 = z′1 + z′2.

• The U(1)1 charges of the techniquarks respect custodial isospin.

• For the U(1)1 charges of T 1 and T 2: while u1 6= v1, the broken U(1)1 interactions

favor the condensation of T 1 with T 2. If this interaction is stronger than the SU(3)1

attraction of T 1 to itself and we neglect the other vacuum-aligning ETC interactions,

then 〈T̄ iLT jR〉 ∝ (iτ 2)ij in each charge sector.

• u1 6= v1 implies Y1i 6= Y ′
1i for the fermions.
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• For the SU(N)TC antisymmetric tensor ψ, ξ′ 6= ξ guarantees U(1)1 ⊗ U(1)2 → U(1)Y

when 〈ψLψR〉 forms.

The Lagrangian of the model is

S[G,A1, A2,W,B1, B2, T̄ , T, ψ̄, ψ] =

∫

d4x[Lgauge kinetic + Ltechniquark + LSM fermion] , (2)

with

Lgauge kinetic = −1

4

[

Gα
µνG

α,µν + AA1µνA
A,1µν + AA2µνA

A,2µν +W a
µνW

a,µν +B1µνB
1,µν +B2µνB

2,µν

]

and

Ltechniquark =

+T̄ 1[i/∂−gTCt
α /G

α−h1
λA

2
/A
A

1−g2
τa

2
/W
a
PL−q1u1 /B1PL−q2u2 /B2PL−q1v1 /B1PR−q2(v2+

τ 3

2
) /B2PR]T

1

+T̄ 2[i/∂−gTCt
α /G

α−h2
λA

2
/A
A

2−g2
τa

2
/W
a
PL−q1v1 /B1PL−q2v2 /B2PL−q1u1 /B1PR−q2(u2+

τ 3

2
) /B2PR]T

2

+T̄ l[i/∂ − gTCt
α /G

α− g2
τa

2
/W
a
PL− q1x1 /B1PL− q2x2 /B2PL− q1x

′
1 /B1PR− q2(x

′
2+

τ 3

2
) /B2PR]T

l

+T̄ t[i/∂ − gTCt
α /G

α− g2
τa

2
/W
a
PL− q1y1 /B1PL− q2y2 /B2PL− q1y

′
1 /B1PR− q2(y

′
2+

τ 3

2
) /B2PR]T

t

+T̄ b[i/∂ − gTCt
α /G

α− g2
τa

2
/W
a
PL− q1z1 /B1PL− q2z2 /B2PL− q1z

′
1 /B1PR− q2(z

′
2+

τ 3

2
) /B2PR]T

b

+ψ̄[i/∂ − gTCt̃
α /G

α− q1ξ /B1PL+ q2ξ /B2PL − q1ξ
′
1 /B1PR+ q2ξ

′ /B2PR]ψ . (3)

Where λA is the three-dimensional Gellman matrix for topcolor interaction, τa is the Pauli

matrix for the electroweak interaction, tα is the SU(N)TC fundamental representation ma-

trix, t̃α is the SU(N)TC antisymmetric tensor representation matrix. We do not specify

LSM fermion which is not relevant to our discussions for the present approximation.

Now we will discuss the phase structure of the model. The two-loop β function of the

SU(N)TC coupling, gTC, is
1

β(α) = −β0
g3TC

(4π)2
− β1

g5TC

(4π)4
α ≡ g2TC

4π
. (4)

1 The reason that we chose the two-loop β function instead of the one-loop version is that it can generate

the walking effects needed for the model. Otherwise, the model setting must be rearranged. Physically,

we expect that the most significant contribution should come from the TC interaction. The SM particle

mass does not reach the TC scale, and the masses of the colorons and Z ′ slightly exceed this scale, all of

their contributions are expected to be smaller than those of the TC interactions. For simplicity in the first

stage approximation, we ignore the possible effects from SM particles, colorons, and Z ′. We also ignore

the high-dimension ETC interactions. We will investigate the accuracy of this approximation in a future

study of all of these effects.
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In this case, the two coefficients β0 and β1
2 are

2Nβ0 =
11

3
C2(SU(N)TC)−

4

3
[T (R1) + T (R2) + T (R3)] (5)

(2N)2β1 =
34

3
C2

2(SU(N)TC)−
3

∑

i=1

[
20

3
C2(SU(N)TC)T (Ri) + 4C2(Ri)T (Ri)] . (6)

The representations of the three sets of techniquarks mentioned above are labeled R1, R2

and R3. Their corresponding parameters are given in Table II.

TABLE II. The representation parameters of this model. d(R) is the dimension of the

representation, and d(SU(N)TC) is the number of group generators. C2(Ri) and C2(SU(N)TC)

are the quadratic Casimir operators of the representation Ri and the adjoint representation,

respectively. Nf is the number of techniquarks in the same representation,

NfC2(R)d(R) = T (R)d(G)

i d(Ri) C2(Ri) C2(SU(N)TC) T (Ri) d(SU(N)TC) Nf

1 N N2 − 1 2N2 NfN N2 − 1 12

2 N N2 − 1 2N2 NfN N2 − 1 6

3 N(N − 1)/2 2(N + 1)(N − 2) 2N2 NfN(N − 2) N2 − 1 1

The reason that we only use the two-loop β function is that the three-loop term of the

β function is scheme dependent. Usually, it is only used for error estimates. The behavior

of the TC coupling, α, is guided by the renormalization group equation µ∂α
∂µ

= β. From

the equation, we know that β0 > 0 corresponds to the case in which the TC interaction

allows asymptotic freedom. However, β0 < 0 corresponds to the loss of asymptotic freedom,

or non-asymptotic freedom. From (5) and Table II, we find that the critical value dividing

asymptotic freedom and non-asymptotic freedom is determined by β0 = 0 and leads N =

32/9. If further (β0 > 0 and β1 < 0), TC interaction creates a Banks-Zaks infrared fixed

point α∗ = −4πβ0
β1

[16], which corresponds to the zero of the β function. In the more general

case, an infrared fixed point may not exist , which often happens in the situation in which

the number of fermions is small. This is the case for QCD. In this model, because there

are already too many technifermions, we have checked that the infrared fixed point always

exists. The existence of an infrared fixed point requires that the coupling remains nearly

2 Here we apply the convention of Ref.[15].
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constant over a given range of infrared energy scales, i.e., it walks. This is the modern

realization of the walking mechanism. When an infrared fixed point exists, the two-loop β

function dictates the following energy scale dependence of the TC coupling:

1

α(x)
=
β0
2π

ln x+
1

α∗

ln
α(x)

α∗ − α(x)
x =

q2

Λ2
w

. (7)

Where the parameter Λw is roughly the length of the interval of constant coupling in the

infrared region. At this scale, the coupling constant completes the walk and begins a fast

run in which it exhibits typical asymptotic freedom behavior. In Section IV, we show that in

the ideal walking situation, Λw can be interpreted as the ETC scale. It is often referred to as

ΛETC in the literature[17]. Moreover, in the standard running situation, Λw can be treated

as the TC scale (or ΛTC). Realistically, in our model, the system is somewhere between the

cases of running and ideal walking, which suggests that ΛTC < Λw < ΛETC. This change from

ΛETC to Λw also reflects the fact that α(x) in the presence of some walking effects does not

depend on the value of ΛETC too much. However, in the ideal walking theory they are very

much correlated. Furthermore, the existence of both asymptotic freedom and an infrared

fixed point will divide the theory into two different phases. One phase is the asymptotic

freedom phase in which α ≤ α∗. In this case, the coupling α increases from zero to α∗

monotonically while the energy scale decreases from the ultraviolet region to the infrared

region. The other phase is the non-asymptotic freedom phase, where α ≥ α∗. In this case,

the coupling α decreases from infinity to α∗ monotonically while the energy scale decreases

from the ultraviolet region to the infrared region. Furthermore, the ladder approximation

Schwinger-Dyson equation (SDE) for techniquark self-energy predicts a critical coupling:

αc =
2πN

3C2(R)
(8)

for techniquarks that belong to the techni-gauge group representation, R. While the infrared

fixed point α∗ exceeds its critical coupling αc, spontaneous chiral symmetry breaking occurs,

and the SDE automatically develops nonzero techniquark self-energies and condensates.

However, when α∗ is less than αc, there is no spontaneous chiral symmetry breaking, and

the techniquark self-energy vanishes. Later, we will see that to ensure the correctness of

our β function, the nonzero values of the techniquark self-energy and condensate must be

small enough compare to Λw. This dictates that α∗ can only be larger than αc by a small

amount. In practice, α∗ may not be so close in value to αc, this will cause inaccuracy in
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FIG. 1: Phases of Lane’s alternative TC2 model with nontrivial TC fermion condensation

and walking. The blue solid line represents the infrared fixed point α∗. The red dashed line

denotes the critical coupling of the first and second techniquark sets(fundamental

representation of SU(N)TC)). The black dashed-dotted line denotes the critical coupling of

the third techniquark set(antisymmetric representation of SU(N)TC)). The magenta

dotted line shows the value N = 32/9 from β0 = 0.
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our computations. We will estimate this error in later calculations. For the cases discussed

above for different values of TC coupling and different choices of N , our model may exhibit

different behaviors and then form different phases. We present3 a phase diagram of our

model in Fig.1.

From Fig.1, we can see that the blue line (infrared fixed point) divides the phase space

into two parts: the region above the blue line represents the non-asymptotic freedom phase

and that below the blue line represents the asymptotic freedom phase.

In the asymptotic freedom phase, α runs from α∗ (blue line) to zero, as the energy scale

3 Because Nf is fixed in the model, we depict the phase diagram in terms of N and α, instead of N and

Nf , which is more commonly done in the literature. Comparing our Fig.1 to the phase diagram depicted

by Fig.1 in Ref.[15], our phase diagram corresponds to a horizontal line with a fixed Nf in their diagram.

Their phase diagram only provides information about Nf and N . Our phase diagram does not provide

information about Nf , but does provide more information about the running coupling constant.
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increases. The blue line crosses the red dashed line (critical coupling of the first and second

techniquark sets) and the black dashed-dotted line (critical coupling of the third techniquark

set) at two points, which divide the blue line into three segments. The trapezoids (and

triangle) under these segments form the three sub-regions of the asymptotic freedom phase.

From left to right, the blue region is the conformal region, where α is always below its

critical value and no techniquark condensation forms. Therefore, there is no spontaneous

chiral symmetry breaking. The second red region is the intermediate mixture region, where

α is always below the critical value αc,1 = αc,2, but will cross αc,3 as the energy scale

decreases. This means the third set of techniquarks forms condensates, but the first and

second sets do not. The yellow and green regions are the ones that we mainly focus on in

this paper. In these regions, α will cross all its critical values as the energy scale decreases.

Thus, all techniquarks have nonzero self-energies and condensates. Therefore, this is the

model required for spontaneous chiral symmetry breaking.

In the yellow region, the unique TC coupling in the infrared energy region approaches

that of the infrared fixed point, critical values αc of the first and second techniquark sets

(within a magnitude of 0.2 ), and that of the third techniquark set (within a magnitude of

0.4 ), as the energy scale decreases. This causes a near conformal behavior in which the value

of the techniquark self-energy is very small (corresponding to a tiny mass). For at least two

reasons, this region is the most important to the investigation of the walking effect. First,

the lower the techniquark self-energy, the more accurate and reliable our estimate of the β

function over the energy region will be. This is because we have used the MS scheme, which

assumes massless techniquarks, to obtain the coefficients of the β function in (5) and (6).

Second, if a techniquark has a significant mass, it will decouple and not contribute to the

β function in the low energy region. Therefore, in the extreme infrared region, because of

spontaneous chiral symmetry breaking, we cannot treat techniquarks as massless. Therefore,

we need to ignore techniquark contributions if they have mass. The coupling without these

techniquark contributions will run (rather than walk) to a very large value and will not

reach its original infrared fixed point. We show this special running behavior in the infrared

energy region for N = 6 using a dashed magenta line near the vertical axis in Fig.2. A

techniquark self-energy on the order of FTC leads to an infrared interval of the same order

size, which is small in comparison to the typical scale for Λw. The smaller the FTC is, the

more accurately (7) describes the coupling walking behavior. Therefore, we expect that
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replacing the running behavior in this region with an infrared fixed point will only cause

errors of order FTC/Λw in the solution of the SDE for the techniquark self-energy. In this

model, because our techniquarks belong to different representations of the TC group, which

leads to different critical couplings, there is not a unique point where the α∗ is equal to

all the critical coupling values. Usually this is a necessary component of modern walking

theory.

Furthermore, the minimum integer N closest to the conformal region is N = 6, but

the value N = 4 was chosen in Lane’s original paper[5] and does not satisfy the walking

requirements of this study. Although we do not have an unique α∗ that is equal to all

the critical coupling values and N = 6 is perhaps too far from the conformal region, our

numerical results given in section IV show that walking effects are present. Therefore, we

do achieve the situation where the infrared fixed point is not enough but sufficiently close

to the critical coupling. In fact, even if we found a unique infrared fixed point α∗ meets all

the critical couplings and an integer N very near the conformal region, the walking results

would not be significantly more reliable. This is because of the large number of assumptions

made in our calculations. These assumptions include: ignoring higher-order loops (error of

1/16π2), SM particles of mass m (error of m2/F 2
TC), and gauge fields such as coloron and Z ′

(error of F 2
TC/M

2
coloron and F 2

TC/M
2
Z′ in the β function). The precision in the critical value

is now only at the two-loop level. As we mentioned before, the ETC effects may also play a

role. One known effect from the ETC interaction[14] is that while the coupling of the ETC-

induced effective four-fermion interaction exceeds its critical value, the area of the conformal

window will be substantially reduced. In this sense, we must include all the above-mentioned

corrections before we can quantitatively improve the precision of the present calculation of

the possible walking effects of the model. In the asymptotic freedom phase, we show the scale

dependence of the TC coupling according to formula (7) for different values of N in Fig.2.

From Fig.2, it can be seen that in the asymptotic freedom phase, the smaller the value of

N , the flatter the curve. In other words, the smaller the slope of the curve or corresponding

value of the β , the larger the impact on the walking effect. From Fig.1, we know that when

N ≤ 5, there is no overall spontaneous chiral symmetry breaking. Therefore, the minimum

value of N at which spontaneous chiral symmetry breaking occurs and results in the largest

walking effect is N = 6. Throughout this paper, we will use N = 6 in our quantitative

computations.
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FIG. 2: Energy scale dependence of the TC coupling, α, determined using (7).
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III. DERIVATION OF THE EWCL FROM LANE’S MODEL

Our goal is to obtain

exp

(

iSEW[W a
µ , Bµ]

)

=

∫

Dψ̄DψDT̄ 1DT 1DT̄ 2DT 2DT̄ lDT lDT̄ tDT tDT̄ bDT bDGα
µDBA

µDZ ′
µ

× exp

(

iS[Gα
µ, A

A
1µ, A

A
2µ,W

a
µ , B1µ, B2µ, T̄ , T, ψ̄, ψ]

)∣

∣

∣

∣

AA
µ=0

(9)

= N [W a
µ , Bµ]

∫

Dµ(U) exp
(

iSeff [U,W
a
µ , Bµ]

)

, (10)

where Seff [U,W
a
µ , Bµ] ≡

∫

d4x
∑

i

Li is the action of the EWCL. Bµ is the gauge field of

U(1)Y and Z ′
µ is the gauge field of U(1)′ ≡ U(1)Y1 ⊗U(1)Y2/U(1)Y . They are related to B1µ

and B2µ through the mixing angle θ by

(

B1µ B2µ

)

=
(

Z ′
µ Bµ

)





cos θ − sin θ

sin θ cos θ



 g1 ≡ q1 sin θ = q2 cos θ . (11)

In (9) AAµ is the gluon field of SU(3)c and B
A
µ is the gauge field of SU(3)1⊗SU(3)2/SU(3)c.

They are related to AA1µ and AA2µ through the mixing angle θ′ by

(

AA1µ AA2µ

)

=
(

BA
µ AAµ

)





cos θ′ − sin θ′

sin θ′ cos θ′



 g3 ≡ h1 sin θ
′ = h2 cos θ

′ . (12)
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In the next section, we will use Schwinger-Dyson analysis that the SU(N)TC interaction

induces techniquark condensates 〈ψLψR〉 6= 0 and 〈TLiT jR〉 6= 0 for i, j = 1, 2. They trigger

the extended hypercharge symmetry breaking, U(1)Y1 ⊗ U(1)Y2 → U(1)Y , and the topcolor

symmetry breaking, SU(3)1 ⊗ SU(3)2 → SU(3)c, at a TeV energy scale. These processes

leave a singlet heavy state Z ′
µ in broken U(1)′ and colorons BA

µ in the broken SU(3)1 ⊗
SU(3)2/SU(3)c, respectively. Because this work is only concerned with the EWCL, we

ignored the gluon field by taking AAµ = 0.

In (10), U is the standard electroweak Goldstone boson, which can be expressed in terms

of a dimensionless unitary unimodular 2× 2 matrix field, Dµ denotes the normalized func-

tional integration measure on U . The normalization factorN [W a
µ , Bµ] is determined through

the requirement that when the TC interaction is switched off, Seff [U,W
a
µ , Bµ] must vanish.

This fixes it at:

N [W a
µ , Bµ] =

∫

Dψ̄DψDT̄ 1DT 1DT̄ 2DT 2DT̄ lDT lDT̄ tDT tDT̄ bDT bDGα
µDBA

µDZ ′
µ

× exp

(

iS[Gα
µ, A

A
1µ, A

A
2µ,W

a
µ , B1µ, B2µ, T̄ , T, ψ̄, ψ]

)∣

∣

∣

∣

AA
µ=0,ignore TC interation

.(13)

In Ref.[6], the EWCL was constructed with building blocks which are SU(2)L covariant

and U(1)Y invariant as T ≡ Uτ 3U †, Vµ ≡ (DµU)U
†, g1Bµν , g2Wµν ≡ g2

τa

2
W a
µν . Where

Bµν and Wµν are the field strengths of the U(1)Y and SU(2)L gauge fields, respectively.

Alternatively, in Ref.[8], we reformulated the EWCL equivalently using SU(2)L invariant

and U(1)Y covariant building blocks as τ 3, Xµ ≡ U †(DµU), g1Bµν , W µν ≡ U †g2WµνU . In

which, τ 3 and g1Bµν are both SU(2)L and U(1)Y invariant, but Xµ and W µν are bilinearly

U(1)Y covariant. The second formulation was used throughout this paper. In Table III, we

detail the relationship between the two formalisms.

From (9) and (10), it can be seen that to obtain the EWCL, we must integrate in the

electroweak Goldstone boson field, U . We also need to integrate out the series of fields which

include the three sets of techniquarks, ψ, T 1, T 2, T l, T t, T b and the technigluon Gα
µ, and

the colorons BA
µ and Z ′

µ. In the following subsections, we divide this work into five steps.

A. Integrating in the electroweak Goldstone boson field U

We introduce a local 2× 2 operator

O(x) ≡ tr[T 1
LT̄

1
R + T 2

LT̄
2
R + T lLT̄

l
R + T tLT̄

t
R + T bLT̄

b
R](x) (14)
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TABLE III. Symmetry breaking sector of the EWCL Seff [U,W
a
µ , Bµ] =

∫

d4x
∑

i

Li

Formulation in Ref.[6] Formulation in Ref.[8]

L(2) 1
4f

2tr[(DµU
†)(DµU)] = −1

4f
2tr(VµV

µ) −1
4f

2tr(XµX
µ)

L(2)′ 1
4β1f

2[tr(TVµ)]
2 1

4β1f
2[tr(τ3Xµ)]

2

L1
1
2α1g2g1Bµνtr(TW

µν) 1
2α1g1Bµνtr(τ

3W
µν
)

L2
1
2 iα2g1Bµνtr(T [V

µ, V ν ]) iα2g1Bµνtr(τ
3XµXν)

L3 iα3g2tr(Wµν [V
µ, V ν ]) 2iα3tr(W µνX

µXν)

L4 α4[tr(VµVν)]
2 α4[tr(XµXν)]

2

L5 α5[tr(VµV
µ)]2 α5[tr(XµX

µ)]2

L6 α6tr(VµVν)tr(TV
µ)tr(TV ν) α6tr(XµXν)tr(τ

3Xµ)tr(τ3Xν)

L7 α7tr(VµV
µ)tr(TVν)tr(TV

ν) α7tr(XµX
µ)tr(τ3Xν)tr(τ

3Xν)

L8
1
4α8g

2
2 [tr(TWµν)]

2 1
4α8[tr(τ

3Wµν)]
2

L9
1
2 iα9g2tr(TWµν)tr(T [V

µ, V ν ]) iα9tr(τ
3Wµν)tr(τ

3XµXν)

L10
1
2α10[tr(TVµ)tr(TVν)]

2 1
2α10[tr(τ

3Xµ)tr(τ
3Xν)]

2

L11 α11g2ǫ
µνρλtr(TVµ)tr(VνWρλ) α11ǫ

µνρλtr(τ3Xµ)tr(XνW ρλ)

L12 α12g2tr(TVµ)tr(VνW
µν) α12tr(τ

3Xµ)tr(XνW
µν
)

L13 α13g2g1ǫ
µνρσBµνtr(TWρσ) α13ǫ

µνρσg1Bµνtr(τ
3W ρσ)

L14 α14g
2
2ǫ
µνρσtr(TWµν)tr(TWρσ) α14ǫ

µνρσtr(τ3Wµν)tr(τ
3W ρσ)

In this case, tr are the traces with respect to the Lorentz, SU(N)TC, SU(3)1 and SU(3)2

indices. The transformation of O(x) under SU(2)L × U(1)Y is

O(x) → VL(x)O(x)V
†
R(x) VL(x) = ei

τa

2
θa(x) VR(x) = e−i

τ3

2
θ0(x) . (15)

Then we decompose O(x) as

O(x) = ξ†L(x)σ(x)ξR(x) (16)

Where σ(x) which is represented using a Hermitian matrix, describes the modular degree of

freedom; and ξL(x) and ξR(x), which are represented using unitary matrices, describe the

phase degrees of freedom of SU(2)L and U(1)Y respectively. Their transformations under

SU(2)L ⊗ U(1)Y are

σ(x) → h(x)σ(x)h†(x) ξL(x) → h(x)ξL(x)V
†
L(x) ξR(x) → h(x)ξR(x)V

†
R(x) (17)
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where

h(x) = eiθh(x)
τ3

2 (18)

belongs to an induced hidden local U(1) symmetry group. Next, we define a new field

U(x) ≡ ξ†L(x)ξR(x) , (19)

which is the nonlinear realization of the Goldstone boson field in the EWCL. Subtracting the

σ(x) field, we find that the present decomposition results in a constraint ξL(x)O(x)ξ
†
R(x)−

ξR(x)O
†(x)ξ†L(x) = 0 and its functional expression is

∫

Dµ(U)F [O]δ(ξLOξ
†
R − ξRO

†ξ†L) = const , (20)

where Dµ(U) is an effective invariant integration measure; and F [O] only depends on O and

is invariant under SU(2)L⊗U(1)Y transformations. This causes the value of the integrated

quantity to be a constant. Inserting the above identity into (9), we have

eiSEW[W a
µ ,Bµ] =

∫

Dψ̄DψDT̄ 1DT 1DT̄ 2DT 2DT̄ lDT lDT̄ tDT tDT̄ bDT bDGα
µDBA

µDZ ′
µ

×
∫

Dµ(U)F [O]δ(ξLOξ
†
R − ξRO

†ξ†L)e
iS[Gα

µ,A
A
1µ,A

A
2µ,W

a
µ ,B1µ,B2µ,T̄ ,T,ψ̄,ψ]

∣

∣

∣

∣

AA
µ=0

.(21)

Using a special SU(2)L⊗U(1)Y rotation for VL(x) = ξL(x) and VR(x) = ξR(x) and labeling

the fields after rotation with the subscript, ξ, the above path integral becomes:

eiSEW[W a
µ ,Bµ] =

∫

Dψ̄DψDT̄ 1
ξDT 1

ξDT̄ 2
ξDT 2

ξDT̄ lξDT lξDT̄ tξDT tξDT̄ bξDT bξDGα
µDBA

µDZ ′
µ

×
∫

Dµ(U)F [Oξ]δ(Oξ −O†
ξ)e

iS[Gα
µ ,A

A
1µ,A

A
2µ,W

a
ξ,µ,B1ξ,µ,B2ξ,µ,T̄ξ,Tξ,ψ̄,ψ]

∣

∣

∣

∣

AA
µ=0

. (22)

where we have used the result that the functional integration measure, F [O] and the action

on the exponential of the integrand are invariant under SU(2)L ⊗ U(1)Y transformations.

From Table I, it can be seen that:

T 1
ξL = e−i(u1+u2)θ0PLξLT

1
L T 1

ξR = e−i(v1+v2)θ0PRξRT
1
R

T 2
ξL = e−i(v1+v2)θ0PLξLT

2
L T 2

ξR = e−i(u1+u2)θ0PRξRT
2
R

T lξL = e−i(x1+x2)θ0PLξLT
l
L T lξR = e−i(x

′

1+x
′

2)θ0PRξRT
l
R (23)

T tξL = e−i(y1+y2)θ0PLξLT
t
L T tξR = e−i(y

′

1+y
′

2)θ0PRξRT
t
R

T bξL = e−i(z1+z2)θ0PLξLT
b
L T bξR = e−i(z

′

1+z
′

2)θ0PRξRT
b
R ,
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Furthermore,

g2
τa

2
W a
ξ,µ = ξL[g2

τa

2
W a
µ − i∂µ]ξ

†
L (24)

g1
τ 3

2
Bξ,µ = ξR[g1

τ 3

2
Bµ − i∂µ]ξ

†
R

(

B1ξ,µ B2ξ,µ

)

=
(

Z ′
µ Bξ,µ

)





cos θ − sin θ

sin θ cos θ



 . (25)

Note the fields without the subscript ξ in (22) are the fields that are invariant under SU(2)L⊗
U(1)Y rotation.

B. Integrating out the technigluons

As a second step,we integrate out the technigluon in (22) using:
∫

DGα
µe

iS[Gα
µ ,A

A
1µ,A

A
2µ,W

a
ξ,µ,B1ξ,µ,B2ξ,µ,T̄ξ,Tξ,ψ̄,ψ] = eiSTC[T̄ξ,Tξ,ψ̄,ψ]+iSTC1[A

A
1µ,A

A
2µ,W

a
ξ,µ,B1ξ,µ,B2ξ,µ,T̄ξ,Tξ,ψ̄,ψ] , (26)

where we choose

eiSTC[T̄ξ,Tξ,ψ̄,ψ] =

∫

DGα
µ e

i
∫
d4x(− 1

4
Gα

µνG
α,µν−gTCG

α
µJ

µα) (27)

STC1[A
A
1µ, A

A
2µ,W

a
ξ,µ, B1ξ,µ, B2ξ,µ, T̄ξ, Tξ, ψ̄, ψ] = S[Gα

µ, A
A
1µ, A

A
2µ,W

a
ξ,µ, B1ξ,µ, B2ξ,µ, T̄ξ, Tξ, ψ̄, ψ]

∣

∣

∣

∣

Gα
µ=0

(28)

and

Jµα = ψ̄t̃αγµψ + J̃µα (29)

J̃µα = T̄ 1
ξ t
αγµT 1

ξ + T̄ 2
ξ t
αγµT 2

ξ + T̄ lξt
αγµT lξ + T̄ tξ t

αγµT tξ + T̄ bξ t
αγµT bξ . (30)

Integrating out the technigluon fields in (27), we get

iSTC[T̄ξ, Tξ, ψ̄, ψ] =
∞
∑

n=2

∫

d4x1 . . . d
4xn

(−igTC)
n

n!
Gα1...αn

µ1...µn
(x1, . . . , xn)J

µ1
α1
(x1) . . . J

µn
αn
(xn) , (31)

where Gα1...αn
µ1...µn

(x1, . . . , xn) is a n-point Green’s function for the technigluons.

C. Integrating out the techniquarks

Combining (22) and (26), our starting SEW[W a
µ , Bµ], after integrating in the electroweak

Goldstone boson field U and integrating out the technigluons, becomes

eiSEW[W a
µ ,Bµ] =

∫

Dψ̄DψDT̄ 1
ξDT 1

ξDT̄ 2
ξDT 2

ξDT̄ lξDT lξDT̄ tξDT tξDT̄ bξDT bξDBA
µDZ ′

µ (32)

×
∫

Dµ(U)F [Oξ]δ(Oξ − O†
ξ)e

iSTC[T̄ξ,Tξ,ψ̄,ψ]+iSTC1[A
A
1µ,A

A
2µ,W

a
ξ,µ,B1ξ,µ,B2ξ,µ,T̄ξ,Tξ,ψ̄,ψ]

∣

∣

∣

∣

AA
µ=0

.
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After some detailed derivations and approximations which can be found in Appendix A, we

get:

eiSEW[W a
µ ,Bµ] =

∫

Dµ(U)F [Oξ]δ(Oξ −O†
ξ)

∫

DBA
µDZ ′

µ exp

[

i

∫

d4x[−1

4
(AA1µνA

A,1µν

+AA2µνA
A,2µν +W a

µνW
a,µν +B1,µνB

1,µν +B2,µνB
2,µν)]

+Trln[i/∂ + g1(cot θ+ tan θ)ξ /Z
′
γ5 − Σ̃(∂2)] + Tr”ln[i/∂ + /V 2ξ+ /A2ξγ

5− Σ̂(∇2
)]

+Tr′ln[i/∂ + /V 1ξ+ /A1ξγ
5− Σ̄(∇̂2)− iγ5τ

2Σ̄5(∇̂2)]

]

AA
µ=0

, (33)

The various quantities appearing in (33) are defined at the end of Appendix A. Furthermore,

in Appendix B, we have shown that the techniquark self energies Σ̃, Σ̂, Σ̄ and Σ̄5 satisfy the

following SDEs,

Σ̃(p2E) =
3(N + 1)(N − 2)

4π3N

∫

d4qE
α[(pE − qE)

2]

(pE − qE)2
Σ̃(q2E)

q2E + Σ̃2(q2E)
(34)

Σ̂(p2E) =
3(N2 − 1)

8π3N

∫

d4qE
α[(pE − qE)

2]

(pE − qE)2
Σ̂(q2E)

q2E + Σ̂2(q2E)
(35)

Σ̄(p2E) =
3(N2 − 1)

8π3N

∫

d4qE
α[(pE − qE)

2]

(pE − qE)2
Σ̄(q2E)

q2E + Σ̄2(q2E) + Σ̄2
5(q

2
E)

(36)

Σ̄5(p
2
E) =

3(N2 − 1)

8π3N

∫

d4qE
α[(pE − qE)

2]

(pE − qE)2
Σ̄5(q

2
E)

q2E + Σ̄2(q2E) + Σ̄2
5(q

2
E)

, (37)

where the technigluon propagator is parameterized though the TC running coupling constant

α as

Gαβ
µν (x, y) =

∫

d4p

(2π)4
e−ip(x−y)

−iδαβ
p2[1+Π(−p2)]

(

gµν−
pµpν
p2

)

α(p2E) ≡
g2TC

4π[1+Π(p2E)]
. (38)

D. Integrating out the colorons and the low energy expansion

Before integrating out the coloron field, we first discuss its mass which is determined by

the kinetic and mass terms. From the exponential of the integrand in (33), it can be seen

that there is already a standard coloron kinetic term from −1
4
(AA1µνA

A,1µν + AA2µνA
A,2µν).

The first set of techniquarks contributes to the quantum loop corrections to the coloron

kinetic and mass terms through the term Tr′ln[i/∂ + /V 1ξ+ /A1ξγ
5− Σ̄(∇̂2)− iγ5τ

2Σ̄5(∇̂2)] in
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(33). Through detailed computations, we find that these corrections are

Tr′ln[i/∂ + /V 1ξ+ /A1ξγ
5− Σ̄(∇̂2)− iγ5τ

2Σ̄5(∇̂2)]

∣

∣

∣

∣

coloron kinetic and mass terms

=
i

4

∫

d4x

[

Cg23(tan θ
′+tan θ′)2BA

µB
µ
A − (∂µBA

ν − ∂νBA
µ )

2[Kg23(cot2 θ′+tan2 θ′)

+K̂Σ 6=0
13 g23(tan θ

′−cot θ′)2 +
1

2
Êg23(tan θ

′ + cot θ′)2]

]

, (39)

In this case, the coefficients are given at the beginning of Appendix C. Combining the

standard coloron kinetic term in (33) and the techniquark quantum loop correction given

by (39), we find the formula for the coloron mass to be:

M2
coloron =

C

Ê + 2(K + K̂Σ 6=0
13 ) + (2/g23 − 8K̂Σ 6=0

13 )/(cot θ′ + tan θ′)2
. (40)

In Appendix C, we integrate out the coloron fields and perform the low energy expansion.

Finally we obtain,

eiSEW[W a
µ ,Bµ] = ei

∫
d4x[− 1

4
W a

µνW
a,µν− 1

4
BµνB

µν ]

∫

Dµ(U)F [Oξ]δ(Oξ − O†
ξ)

∫

DZ ′
µ e

iS0+iSZ′ . (41)

Where detailed expressions of S0 and SZ′ are given in (C18) and (C22) respectively in

Appendix C.

E. Integrating out Z ′

We denote the resulting action after the integration over Z ′ as
∫

DZ ′
µ e

iSZ′ = eiS̄Z′ . (42)

We can use the loop expansion to calculate the above integral:

S̄Z′ = SZ′

∣

∣

∣

∣

Z′=Z′

c

+ loop corrections (43)

where the classical field Z ′
c satisfies:

∂

∂Z ′
c,µ(x)

[

SZ′ + loop corrections

]

= 0 . (44)

Using this method, we integrate out the Z ′ field in Appendix D and simplify the result S̄Z′

given in (D4) into the form of EWCL. Furthermore, combining (42) and (41) together, we

find

eiSEW[W a
µ ,Bµ] = ei

∫
d4x[− 1

4
W a

µνW
a,µν− 1

4
BµνB

µν ]

∫

Dµ(U)F [Oξ]δ(Oξ − O†
ξ) e

iS0+iS̄Z′ . (45)
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Comparing this with (10) and Table.III, we obtain all the EWCL LECs. Our final analytical

results for the EWCL LECs (up to an order of p4) are

f 2 = 5F̂ 2
0 β1 =

10a23F̂
2
0

M̄2
Z′

α1 =
5

2
(1− 2β1)(K̂Σ 6=0

2 − K̂Σ 6=0
13 ) +

β1f
2

2M2
Z′

− γβ1
2a3

α2 = (β1 −
1

2
)(
5

2
K̂Σ 6=0

13 − 5

8
K̂Σ 6=0

14 ) +
β1f

2

2M2
Z′

− γβ1
2a3

α3 = (β1 −
1

2
)(
5

2
K̂Σ 6=0

13 − 5

8
K̂Σ 6=0

14 )

α4 = (2β1 +
1

4
)(
5

2
K̂Σ 6=0

13 − 5

8
K̂Σ 6=0

14 ) + (
5

16
K̂Σ 6=0

4 − 5

32
K̂Σ 6=0

14 ) +
β1f

2

2M2
Z′

α5 = −5

2
(4β1 +

1

4
)K̂Σ 6=0

13 +
5

4
(3β1 +

1

4
)K̂Σ 6=0

14 +
5

32
(K̂Σ 6=0

3 − K̂Σ 6=0
4 )− β1f

2

2M2
Z′

α6 = − β1f
2

2M2
Z′

− β2
1

4a23
[−(2a20 + â20)K̂Σ 6=0

3 − (2a20 + â20 + 5a23)K̂Σ 6=0
4 − 10a23K̂Σ 6=0

13 + 5a23K̂Σ 6=0
14

+2a20D̂4]−
β1
2
(
5

2
K̂Σ 6=0

4 + 15K̂Σ 6=0
13 − 5K̂Σ 6=0

14 )

α7 =
β1f

2

2M2
Z′

− β2
1

4a23
[(
5

2
a23 + a20 +

1

2
â20)K̂Σ 6=0

3 + (a20 +
1

2
â20 −

5

2
a23)K̂Σ 6=0

4 − 10a23K̂Σ 6=0
13 + 5a23K̂Σ 6=0

14 + a20D̂3]

−β1
2
(
5

4
K̂Σ 6=0

3 − 5

4
K̂Σ 6=0

4 − 15K̂Σ 6=0
13 + 5K̂Σ 6=0

14 )

α8 = − β1f
2

2M2
Z′

+ 10β1(K̂Σ 6=0
2 − K̂Σ 6=0

13 ) α9 = − β1f
2

2M2
Z′

+ β1(5K̂Σ 6=0
2 − 10K̂Σ 6=0

13 +
5

4
K̂Σ 6=0

14 )

α10 =
5β2

1

4
(K̂Σ 6=0

3 + K̂Σ 6=0
4 ) +

β4
1

8a43
g4Z − β3

1

2a33
[(2a33 + 6a20a3 + 3â20a3)(K̂Σ 6=0

3 + K̂Σ 6=0
4 ) + 2a20a3D̂2]

α11 = α12 = α13 = α14 = 0 . (46)

IV. NUMERICAL RESULTS AND DISCUSSION

We first analyze the general features of the EWCL LECs obtained in the previous section,

which are similar to those in Lane’s first natural prototype TC2 model[9]:

• The contributions of the p4-order coefficients are divided into two parts: the contribu-

tion from the three sets of techniquarks and the Z ′ contribution

• All correction terms from the Z ′ particle to the EWCL LECs are proportional to

powers of β1 which vanish if the mixing disappear (θ = 0). This can be seen from (46)

and (C34) which show that: β1 =
10g21 F̂

2
0 tan2 θ

16M̄2
Z′

. By using the relation αemT = 2β1, we

can express all LECs in terms of the T parameter. Later in the paper, we show the T

dependence of the LECs.
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• From (46) (for f 2 and β1), combined with (C34), (C27) , the relation αemT = 2β1 and

the relationships of the hyper-charges from Ref.[5], we have

αemT =

[

1 +
2

5
[
81F̃ 2

0

4F̂ 2
0

+ 716 + 4(1− F ′2
0

F̂ 2
0

)](u1 − v1)
2(1 + cot2 θ)2

]−1

.

If we include the numerical result that F ′2
0 < F̂ 2

0 , the above result implies that T must

be positive and has an upper bound. The upper bound is:

αemTMax =
1

1 + 2
5
[
81F̃ 2

0

4F̂ 2
0

+ 716 + 4(1− F ′2
0

F̂ 2
0

)](u1 − v1)2
. (47)

• Because numerical calculation shows that K̂Σ 6=0
2 − K̂Σ 6=0

13 < 0 and β1 is positive, α8 is

negative based on (46). Then U = −16πα8 which is a coefficient given in Ref.[6] , is

always positive in the present model.

Combining (C27), (C28) and (C42), we find,

2
F̃ 2
0

M2
Z′

g21(cot θ + tan θ)2ξ2 + 4
F̂ 2
0

M2
Z′

(2a20 + â20 + 5a23)− 8
F ′2
0

M2
Z′

a20 (48)

= 1 + [4(cot θ + tan θ)2ξ2 + 2 tan2 θ + 8v̂ + 3 tan2 θ + ŷ]Kg21 + 4(cot θ + tan θ)2ξ2K̃Σ 6=0
2 g21

+8(2a20 + â20 + 5a23)K̂Σ 6=0
2 + [40a23 + 2(t̂+ ŝ)g21]K̂Σ 6=0

13 − 15D̂0a
2
0 .

We treat the above equation as a constraint onK. This is done as following: A suitable choice

is made for the hypercharges (this will be discussed later), electroweak gauge coupling, T

and MZ′. We already know most of the parameters in (48), except F̃0, F̂0, F
′2
0 , K̃Σ 6=0

2 , K̂Σ 6=0
2 ,

K̂Σ 6=0
13 and D̂0. By solving the SDEs, (34), (35), (36), (37), we can obtain the techniquark

self-energies, Σ̃, Σ̂, Σ̄, Σ̄5. Furthermore, substituting the resulting techniquark self-energies

into the formulae given in Appendix E and (C13), we can obtain F̃0, F̂0, F
′2
0 , K̃Σ 6=0

2 , K̂Σ 6=0
2 ,

K̂Σ 6=0
13 and D̂0 from (48). Now, aside from K all the parameters in (48) are known. Then we

can use (48) to fix the value of K. Once K is fixed, with the help of (C2), we can determine

the ratio of the infrared cutoff κ and ultraviolet cutoff Λ. Numerical calculations show that

this is unlike the results in Refs.[9, 11], where the condition Λ > κ occurs through the

definitions used for the calculations and offers stringent constraints on the allowed region

for T and the upper bound forMZ′ . In our model, Λ > κ is naturally satisfied for real values

of MZ′. For example, we find that ln κ/Λ is about −7.6 and −9.0 for MZ′ values of 0.5TeV

and 1TeV, respectively.
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FIG. 3: Coloron mass for Lane’s model.
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With the above qualitative features, we now can generate numerical results. First, we

take N = 6 which yields an infrared fixed point of αw = 88π/523. Then, we take f =

250GeV. This completely fixes the two-loop value at Λw = 5.5TeV through the running

behavior of (7), SDE (35), f 2 = 5F̂ 2
0 and (E1) which sets up the relationship between F̂ 2

0

techniquark self-energy. This value of Λw is smaller than the expected conventional ETC

scale. Therefore, we cannot interpret it as ΛETC. Later, we will see that this is because the

walking effect is not large enough, and more ideal walking can lead to a larger Λw. The

current result with Λw ≪ ΛETC shows that our running coupling constant cannot always

walk from extreme infrared energy regions to the ETC scale, ΛETC. Instead, it can only

walk a shorter distance to the scale, Λw. Beyond Λw, it will run and fall quickly exhibiting

conventional asymptotic freedom behavior. Another theoretical parameter is the coloron

mass given by (40), which theoretically depends on the values θ′, introduced in (12) and

Θ, introduced in (B15). We find the largest coloron mass occurs for Θ = π/2, i.e., the

self-energies for the first set of techniquarks are completely contributed by the twisted part

of the set, Σ̄5 = Σ̂ sinΘ and Σ̄ = 0. Using this value of Θ = π/2, in Fig.3, we plot the

coloron mass in terms of the T parameter. We used four values of MZ′ = 0.5, 1, 2, 5TeV

(corresponding to ln κ/Λ ∼ -7.6,-9.0,-9.4 and -9.5). We found that that the coloron mass

is not sensitive to θ′. From Fig.3, it can be seen that the coloron mass is roughly half the
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1 TeV expected in Lane’s original paper[5]. The reason is that we included a techniquark

loop correction in the coloron kinetic term, which appeared in (40) with the coefficients Ê,

K and K̂Σ 6=0
13 . If we denote the coloron mass without this correction as Mbare coloron which

was the notation used in Lane’s original work[5], then our numerical calculation shows that:

Mbare coloron/Mcoloron ∼ 2
3
(tan θ′+cot θ′). This leads to a larger value forMbare coloron. In fact,

if we carefully examine the denominator of (40), the structure of this kinetic term correction

can be divided into three parts: the tree order term 2/g23(cot θ
′ + tan θ′)2, the techniquark

self-energy dependent part Ê + 2K̂Σ 6=0
13 − 8K̂Σ 6=0

13 /(cot θ′ + tan θ′)2, and the techniquark self-

energy independent part 2K. The numerical calculation shows that the main contribution

comes from the techniquark self-energy dependent part, which is an order of magnitude

larger than the contributions from the other two parts. Because the coloron mass is small4,

we will use Θ = π/2 to give the largest coloron mass for all the following computations.

To provide numerical values for all the EWCL LECs, we need to choose the various

hyper-charges for the model. Note that the arrangement of the hyper-charges given in

Lane’s original paper[5] is not suitable here because that result used N = 4. We showed in

Section II that for the modern interpretation of our two-loop based phase structure model,

we use N = 6, and recalculate the hyper-charges. According to a series of relations among

different hyper-charges given by K. Lane in Ref.[5], we need to use three hyper-charges x1,

y1 and y1 + y2. We use a treatment similar to the one used by K. Lane in Ref.[5]. Namely,

we use x1 = y1, y1 + y2 = 0. Furthermore, this requires that u = (u1 − v1)/2 ∼ 1. These

fully fix the typical values of all the hyper-charges. By ”typical” we mean that the value of

the hyper-charges must satisfy all 23 constraint equations given in Ref. [5] and two more

constraints: x1 = y1, y1 + y2 = 0. The last two constraints were not explicitly mentioned

in Ref.[5], but the detailed example used them. These typical hyper-charges are: a = −39,

a′ = −46, b = 14, b′ = 8.2, c = −39, c′ = −46, d = −12, d′ = −14, ξ = 4.6, ξ′ = −4.6,

x1 = 25, x′1 = 19, x2 = −26, x′2 = −19, y1 = 25, y′1 = 23, y2 = −25, y′2 = −23, z1 = −7.7,

4 The small coloron mass forces us to switch the order of integration over the coloron and Z’, i.e., instead

of integrating out the coloron before the Z’ boson, we need to integrate out Z’ and then the coloron.

We have performed the computation using this new procedure and found the same result as that of the

present paper, i.e. switching the order of integration yields no correction. We found that the possible

correction from switching this order of integration depends on the classical field Bµ
A,c caused by the

coloron integration. These classical coloron fields are determined by stationary equations. In both cases,

the stationary equations offer the null solution, Bµ
A,c = 0 , which was used in our results.
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FIG. 4: S parameter for Lane’s model.
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FIG. 5: U parameter for Lane’s model.
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z′1 = 19, z2 = 7.7, z′2 = −19, u1 = −4.1, v1 = −6.1, u2 = 4.2, v2 = 6.2.Using this set of

typical hyper-charges, combined with the other necessary inputs for the model, which were

discussed in the previous paragraph, (47) yields an upper bound, Tmax = 0.035. We show

S = −16πα1 in Fig.4, and U = −16πα8 in Fig.5. From Fig.4, it can be seen that the value

of S is generally larger than 2, which is not in agreement with experimental data. This value

of the S parameter already includes the walking effects in the model, which we will discuss
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FIG. 6: S parameter for various choices of the hyper-charges: x1 = −50, y1 = 36, y2 = −12.
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later. To examine the possibility of reducing the value of the S parameter through the choice

of hyper-charges, we found that when the input hyper-charges x1, y1 are not constrained by

the requirement x1 = y1 and are much larger than 1, S may achieve small values. Fig.6

shows the case with: x1 = −50, y1 = 36, y2 = −12 which leads a = −19, a′ = −22, b = 7,

b′ = 4, c = −19, c′ = −22, d = −6, d′ = −7, ξ = 2.3, ξ′ = −2.3, x1 = −50, x′1 = −53,

x2 = 2.7, x′2 = 5.7,y1 = 36,y′1 = 35,y2 = −12, y′2 = −11, z1 = 20, z′1 = 33, z2 = 3.6,

z′2 = −9.4, u1 = 0.41, v1 = −0.59, u2 = −0.41, v2 = 0.59. The S parameter can achieve

negative values with larger values of T . There may be other sets of hyper-charges which

can also yield small or even negative values of S, but typically these hyper-charges have

large values. Excluding the S and U parameters, the leftmost eight non-zero parameters

α2, α3, α4, α5, α6, α7, α9, α10 are shown in Fig.7 to Fig.13. α3 and α10 are independent ofMZ′

and are shown in the same figure.

We found that α2, α3, α4, α5, are on the order of 10−2, α6, α7, α9 are on the order of 10−5

and α10 is on the order of 10−10.

Previously, we discussed the three other TC2 models[1, 3, 10]. In Table IV., we list the

different features and the orders of magnitude for all the LECs of these TC2 models. In

Fig.14, Fig.15, Fig.16,Fig.17 and Fig.18, we show the ten nonzero LECs from these four

TC2 models for comparison. This comparison may be useful to other researchers as they

consider the needs of future models.

25



FIG. 7: α2 parameter for Lane’s model.
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FIG. 8: α3 and α10 parameters for Lane’s model.
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Finally, we estimate the magnitude of the walking effect in the present model. Because

the primary contribution to the walking effect is from the running coupling constant, which

appears in the kernel of the SDE, we can measure the walking effect by comparing two other

running behaviors:
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FIG. 9: α4 parameter for Lane’s model.
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FIG. 10: α5 parameter for Lane’s model.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

−5

T

α 5−
α 5| T

=
0,α

5| T
=

0=
−

0.
01

12
25

 

 
M

Z
’=0.5TeV

M
Z
’=1TeV

M
Z
’=2TeV

M
Z
’=5TeV

• Running α: Rather than using a two-loop running coupling constant (7) which exhibits

an approximation of walking behavior in N = 6 and spontaneous chiral symmetry

breaking, we used the one-loop running coupling constant used in our previous work[8,
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FIG. 11: α6 parameter for Lane’s model.
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FIG. 12: α7 parameter for Lane’s model.
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9, 11] as

α(x) =
4π

β0
×



















7 lnx ≤ −2

7− 4
5
(2 + ln x)2 −2 ≤ ln x ≤ 0.5

1
lnx

lnx ≥ 0.5

x =
p2

Λ2
TC

. (49)
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FIG. 13: α9 parameter for Lane’s model.
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FIG. 14: α1 and α2 of the TC2 model [1]-Hill, [3]-Lane(I), [10]-Chiv and [5]-Lane(II). The

numbers on each curve are the masses of the Z ′ boson in TeV.
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Eq.(49) was originally introduced in Ref.[18]. The general principle of the technique is

to use a plateau in the low energy region to normalize the possibly infinite value in the

infrared region that is predicted using the perturbative result and smoothly connect

this infrared plateau with the ultraviolet asymptotic freedom running behavior. Note

that if we ignore the two-loop term in the β function in this model and normalize the

infrared coupling constant such that it has a finite value, we can qualitatively obtain
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TABLE IV. Features and LECs of the TC2 models [1], [3], [10] and [5]

Property or LEC Schematic TC2[1] Natural TC2[3] Hypercharge Universal[10] Present[5]

Upper bound of MZ′

√ √ √ ×

Negative S MZ′<0.44TeV or T >0.17 × T ≥ 10−1 choose hypercharges

Typical S=−16πα1 ∼ 0.3 ∼ 0.8 ∼ 1 ∼ 2

α2 −10−3 −10−3 −10−3 −10−2

α3 −10−3 3× result of [1] −10−3 −10−2

α4 10−3 3× result of [1] 10−3 10−2

α5 −10−3 3× result of [1] −10−3 −10−2

α6 ∼ −10−4 ∼ −10−3 ∼ −10−4 ∼ −10−5

α7 ∼ 10−4 ∼ 10−3 ∼ 10−4 ∼ 10−5

α8 = − U
16π ∼ −10−4 3× result of [1] ∼ −10−4 ∼ −10−5

α9 ∼ −10−4 3× result of [1] ∼ −10−4 ∼ −10−5

α10 ∼ −10−8 ∼ −10−8 ∼ −10−7 ∼ 10−10

FIG. 15: α3 and α4 of the TC2 model [1]-Hill, [3]-Lane(I), [10]-Chiv and [5]-Lane(II). The

numbers on each curve are the masses of the Z ′ boson in TeV.
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the above form of the running coupling constant. Furthermore, this approximation at

the one-loop level suggests that Λw must be treated as ΛTC in this running situation.

The change from one-loop running to two-loop walking reflects the evolution of our

understanding of the gauge-coupling running behavior in non-abelian gauge theory.

In addition, the decision to use the latter model in this study is important because it
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FIG. 16: α5 and α6 of the TC2 model [1]-Hill, [3]-Lane(I), [10]-Chiv and [5]-Lane(II). The

numbers on each curve are the masses of the Z ′ boson in TeV.
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FIG. 17: α7 and α8 of the TC2 model [1]-Hill, [3]-Lane(I), [10]-Chiv and [5]-Lane(II). The

numbers on each curve are the masses of the Z ′ boson in TeV.
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confirms the existence of the infrared fixed point[19] which qualitatively supports the

modern two-loop-based explanation of walking.

• Ideal walking α: Rather than using a two-loop running coupling constant (7) and a

value of α∗ = 88π/523 that is not close in value to the critical coupling αc = 4π/35 for

the first and second set of techniquarks, we use the same running coupling constant but

change the value of α∗ in (7) by artificially requiring that α∗ = 1.02αc = 1.02 ∗ 4π/35.
Although this is not a realistic case for the model, it is closer to the conformal situation,

and therefore, ideal walking.
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FIG. 18: α9 and α10 of the TC2 model [1]-Hill, [3]-Lane(I), [10]-Chiv and [5]-Lane(II). The

numbers on each curve are the masses of the Z ′ boson in TeV.
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The reason we must consider the above cases is because our analytical estimation using the

β may cause some error. Therefore, we can use these two extremes to investigate the effect

of changes in the situation on our results. We show three different behaviors of α in Fig.20.

It can be seen that αr is much bigger than αw only in the extreme infrared region, and that

the running behavior corresponding to 1.02αc is smaller than that corresponding to αw over

most of the energy region. From a comparison of Fig.20 with Fig.2, it can be seen that

the running effect increases the height of the infrared plateau and narrows its length. To

contrast other differences resulting from these different couplings, in Fig.21, we show the

techniquark self-energies, Σ̃ and Σ̂, which are determined by the SDEs (34) and (35). We

found that the closer the system came to walking, the lower and wider the techniquark self-

energy plateau was. By contrast, during running, the plateau was higher and narrower. For

fixed f = 250GeV, we found that the running situation produces a value of ΛTC = 0.21TeV

(ΛETC in the running case cannot be determined solely by the running behavior and requires

some other physical parameters to be known). This result is consistent with the estimate of

ΛTC ≃ 2f
√

3/N given in Ref.[20]. Our walking and ideal walking situations yield:

Λw =







5.5TeV walking

958TeV ideal walking

From this, it can be seen that Λw is very sensitive to the walking effect. The closer the system

is to ideal walking, the bigger the value of Λw. This was further checked by calculating Λw

for several values of α∗/αc = 1.04, 1.06, 1.08, 1.1, 1.12, 1.14, 1.16, 1.18, 1.2. These points were
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FIG. 19: Dependence of the Λw (TeV) on the degree of walking.
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then plotted as a curve in Fig.19 to quantitatively show the sensitivity of Λw to the degree

of walking. The small value of Λw in our walking situation suggests that the walking effect

in the present model is not large enough. In an ideal walking situation, Λw is large and can

be treated as ΛETC.

To show the effect of walking on the S parameter, in Fig.22, we show the value of S for

couplings corresponding to running and ideal walking. It can be seen that for ideal walking

(the upper bound on T is reduced to 0.012 in this case), S is only slightly smaller than 2.

Therefore, our prediction that S is about 2 is not significantly altered, even as one approaches

the walking region. However, Fig.22 shows that for running, S is doubled by reaching a value

of 4. This implies that because of the existence of the infrared fixed point, the walking only

reduces the S parameter by a factor of 2. Furthermore, comparing the values of the S

parameters at different couplings with their perturbative values Spert = ND ∗N/6π = 9/π,

we found that the perturbative value of S lies just between our realistic value and that of

the running case.

For the effect of walking on the other EWCL LECs, our numerical calculation shows

that for α2, α3, α4 walking reduces these LECs to roughly 65% of their original values in the

running case. α5, similar to the S parameter, is reduced by the walking effect to half of

its original value in the running case. α6, α7, α9 are reduced by one order of magnitude by
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FIG. 20: Three different couplings. αw is the coupling used in our calculation. αr is the

running coupling, which is given in (49). Here, we show αr/5 to facilitate comparison

between the couplings. 1.02αc is the ideal walking coupling, where α∗ = 1.02αc.

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

0

0.5

1

1.5

2

2.5

p2/Λ2
w

α(
p2 /Λ

2 w
)

 

 
α

w

1.02α
c

α
r
 /5

the walking effect, but their signs are preserved. α10 is reduced by two orders of magnitude

and changes in sign. Using the expression for α10 given by (46), the numerical computation

shows that some cancellations occur here. It is these cancellations that result in α10being the

smallest among the EWCL LECs. Because of this cancellation, if the techniquark self-energy

is changed, more sign changes may occur. This cancellation may reduce the reliability of

our estimate of α10 and α10 may be seen as one of the limitations of the calculation for the

approximations used. We found that not all LECs are sensitive to how close to ideal walking

the theory is. The only major exception is α10. Finally, we found that walking has almost no

effect on the coloron mass. We interpret this to mean that the techniquark self-energy will

change the value of the coloron mass significantly, but walking, which changes the form of

the techniquark self-energy, does not have a large effect on the coloron mass. In fact, some

quantities, such as Λw are sensitive to this detailed form of the techniquark self-energy, but

some other quantities, such as the coloron mass, are not.
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FIG. 21: Techniquark self-energies for three different couplings: Σ̂w and Σ̃w the

self-energies for the second and third sets of techniquarks for the coupling that we used in

our calculation. Σ̂r and Σ̃r are the self-energies for the second and third sets of

techniquarks for the running coupling, which is given in (49). Here, we show Σ̂r/5 and

Σ̃r/5 to facilitate comparison between the self-energies. Σ̂1.02αc and Σ̃1.02αc are the

self-energies for the second and third sets of techniquarks for the ideal walking coupling,

where α∗ = 1.02αc.
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V. SUMMARY

In this paper, we discuss K. Lane’s TC2 Model in the presence of nontrivial TC fermion

condensation and walking. We focus on the walking effects in the model, which has not

been discussed before. We also discuss the phase structure of the model in terms of the

two-loop β function of the TC coupling of the model. We found that to have both an

infrared fixed point and spontaneous chiral symmetry breaking, the minimum N for the

TC group SU(N) is N = 6. This is the optimal choice because it is the value that is the

most conformal that can be used in our model. Although this choice differs from the critical

values, N c
1,2 = 5.42 for the first and second sets of techniquarks and N c

3 = 4.93 for the third

set of techniquarks (Fig.1), walking effects occur in the computed EWCL LECs. We can

understand this explicit walking effect qualitatively through the relation, N − N c
i ≪ N c

i
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FIG. 22: S parameters for the running and walking cases.
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for i = 1, 2, 3. For N = 6, using the technique used in our previous studies[8, 9, 11],we

derive the EWCL from Lane’s model and calculate the EWCL LECs up to an order of p4.

We found that the primary contributions to the p4 order coefficients arise from the three

sets of techniquarks and Z ′. There is no limit on the upper bound of the Z ′ mass which

differs from the TC2 models[1, 3, 10] that we discussed previously. Moreover, all corrections

from the Z ′ particle are at least proportional to β1 and vanish for a mixing of θ = 0. It is

especially important that the scale parameter, Λw, appears in the solution of the two-loop

β. This signifies that the scale of walking cannot be assumed to be ΛETC in this model

because, generally, ΛTC ≤ Λw ≤ ΛETC. We found that Λw = 5.5TeV. The value of Λw is

small because it is sensitive to the walking effect. However, our choice of N differs from its

critical value, and does not exhibit a sufficient walking effect. We verified that in a more

ideal walking case, Λw can be increased by at least two orders of magnitude. The ratio

(ΛETC − Λw)/ΛETC can be used as a measurement of the deviation of our theory from ideal

walking. We also found that the coloron mass is roughly half of its expected value of 1

TeV and is independent of the walking effect. The small coloron mass occurs as the result

of including a correction from the coloron kinetic term for which the main contribution is

from the techniquark self-energy. The T and U parameters are positive, and there is an

upper bound for the T parameter. For our choice of typical hyper-charges, the upper bound

of the T parameter is 0.035, which is well below the experimentally measured bound from
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PDG. The S parameter is about 2 for our choice of typical hyper-charges, which already

exceeds the experimentally verified constraint that it be half of the value from the running

case, but similar to that of the ideal walking case. To reduce the value of the S parameter,

one can change hyper-charges. This can result in S being negative for slightly larger values

of T . This allows for a case in which both S and T are within the bound from PDG.

The leftmost nine nonzero LECs, α2, α3, α4, α5 are on the order of 10−2 which matches the

estimate obtained from naive dimensional analysis. α6, α7, α9 are on the order of 10−5 and

α10 is on order of 10−10. This is because α6, α7, α9,and especially α10, are sensitive to walking

effects. Comparing these results with the constraints imposed by the precision data[22], we

find that the results are consistent with the constraints from the precision data. However,

α3 has the correct order of magnitude, but the wrong sign.

Previously, we investigated bosonic contribution to the EWCL LECs for most of the TC2

models. In the future, we will focus on calculating the EWCL LECs in four areas: The

first will be to explore new physics models, including the non-TC2-type models. The second

will be to investigate the part of the EWCL dealing with matter. In particular, we will

focus on the top quark. The third will be to deepen our understanding of the structure

of the model we are currently discussing in areas such as phase diagrams and the infrared

behavior of the gauge coupling constant. The fourth will be to improve the precision of

the computation and reduce the number of approximations necessary. With an increasing

number of models in our EWCL platform, it will be effective for future investigations of the

electroweak symmetry breaking mechanisms.
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Appendix A: Process of integrating out the techniquarks

To integrate out the techniquarks, which we have done in previous studies[8, 9, 11], we

assume only four fermion interactions in (31), because a naive dimensional analysis indicates

that the contributions from higher dimensional operators are usually suppressed in the low
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energy region. Also, this approximation leads to the conventional ladder approximation,

which is often used in discussions of the SDE. This yields:

iSTC[T̄ξ, Tξ, ψ̄, ψ] ≈
∫

d4x1d
4x2

(−igTC)
2

2
Gα1α2
µ1µ2

(x1, x2)J
µ1
α1
(x1)J

µ2
α2
(x2)

= −g
2
TC

2

∫

d4x1d
4x2G

α1α2
µ1µ2

(x1, x2)

[

ψ̄(x1)t̃
α1γµ1ψ(x1)ψ̄(x2)t̃

α2γµ2ψ(x2)

+
∑

i,j=1,2,l,t,b

T̄ iξ(x1)t
α1γµ1T iξ(x1)T̄

j
ξ (x2)t

α2γµ2T jξ (x2) + 2
∑

i=1,2,l,t,b

ψ̄(x1)t̃
α1γµ1ψ(x1)T̄

i
ξ(x2)t

α2γµ2T iξ(x2)

]

≈
∫

d4x1d
4x2

[

ψ̄σ(x1)Π̃σρ(x1, x2)ψ
ρ(x2) +

∑

i,j=1,2,l,t,b

T̄ iσξ (x1)Π
ij
σρ(x1, x2)T̄

jρ
ξ (x2)

]

, (A1)

where we have used (29) and (30). And

Π̃σρ(x1, x2) ≡ −g2TCG
α1α2
µ1µ2

(x1, x2)t̃
α1γµ1σσ1〈ψσ1(x1)ψ̄ρ2(x2)〉t̃α2γµ2ρ2ρ (A2)

Πij
σρ(x1, x2) ≡ −g2TCG

α1α2
µ1µ2

(x1, x2)t
α1γµ1σσ1〈T iσ1(x1)T̄ jρ2(x2)〉tα2γµ2ρ2ρ . (A3)

To obtain (A1), we have used the average field approximation and approximated the four-

fermion interactions using their vacuum expectation values (VEVs). Furthermore, we used

the result: 〈ψ̄(x)γµψ(x)〉 = 〈T̄ i(x)γµT j(x)〉 = 0, which can be obtained from the Lorentz

invariance; 〈ψ̄(x)T i(x)〉 = 〈T̄ i(x)ψ(x)〉 = 0, which was assumed in Lane’s original paper [5]

and can be verified as a solution to the SDE. In fact, one can confirm that the VEVs between

the different sets of techniquarks vanish and VEVs among the different techniquarks of the

second set also vanish. For (A1), this yields:

iSTC[T̄ξ, Tξ, ψ̄, ψ] ≈
∫

d4x1d
4x2

[

ψ̄σ(x1)Π̃σρ(x1, x2)ψ
ρ(x2) +

∑

i,j=1,2

T̄ iσξ (x1)Π̄
ij
σρ(x1, x2)T

jρ
ξ (x2)

+
∑

i=l,t,b

T̄ iσξ (x1)Π̂σρ(x1, x2)T
iρ
ξ (x2)

]

(A4)

with

Πij
σρ(x1, x2) =



















Π̄ij
σρ(x1, x2) i, j = 1, 2

Π̂σρ(x1, x2) i, j = l, t, b

. (A5)

Therefore Π̄, Π̂ and Π̃ represent the fermion self-energies for the first, second, and third sets

of techniquarks, respectively. Following the treatment in our previous studies[8, 9, 11], these
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techniquark self-energies can be approximated as:

Π̂ij
σρ(x, y) ≈ −δσρ[Σ̂(∇2

x)δ
4(x−y)]ij Π̃σρ(x, y) ≈ −δσρΣ̃(∂2x)δ4(x−y) ∇µ

=∂µ−iV µ
2ξ (A6)

Π̄ij
σρ(x, y) ≈ −[δσρΣ̄(∇̂2

x) + iγ5σρτ
2Σ̄5(∇̂2

x)]ijδ
4(x− y) ∇̂µ = ∂µ − iV µ

1ξ

∣

∣

∣

∣

v1=0

,(A7)

where V µ
2ξ, V

µ
1ξ and v

µ
1 will be discussed later in the appendices. The above approximation

is the lowest order of a dynamical perturbation originally proposed by Pagels and Stokar

in Ref.[21]. In this perturbation, all source dependent parts are expressed in terms of the

techniquark self-energy and the detailed dependence is determined by including the minimal

contribution that is covariant with the local chiral symmetry. An important result of this

dynamical perturbation is that the lowest order, which includes the fermion loop terms,

yields spontaneous chiral symmetry breaking and is dominated by the fermion self-energy.

In our previous studies[8, 9, 11], the Π functions are diagonal in the spinor space, but in

this model, Π̄σρ(x, y) in (A7) differs from the conventional expression. In this case, there

is an extra term (Σ̄5) that is proportional to γ5 and τ 2 (in isospin space) because of the

special model arrangement that generates nontrivial twisted TC fermion condensation. This

condensation will stimulate topcolor symmetry breaking: SU(3)1 ⊗ SU(3)2 → SU(3)c and

generate the coloron mass. Later, we will discuss the appearance of this term and determine

the functions corresponding to Σ̂, Σ̃, Σ̄ and Σ̄5 .

With the results from (A4)-(A7), the techniquark interactions in (32) become bilinear,

and we can complete the integration over the techniquarks and obtain (33), which is given

in the text. Where:

V1ξ =





v1+ v2 − g3
λA

2
BA cot θ′ 0

0 v1+ v2 + g3
λA

2
BA tan θ′



 A1ξ =





a1+ a2

a1− a2



(A8)

V2ξ =











vl 0 0

0 vt 0

0 0 vb











A2ξ =











al 0 0

0 at 0

0 0 ab











. (A9)

The prime in Tr′ denotes the trace of the extra 2 × 2 space for the first two sets of techni-

quarks, and the double prime in Tr” denotes the trace of the extra 3× 3 space for the third
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set of techniquarks with:

v1 = −1

2
g2
τa

2
W a
ξ − 1

2
g1
τ 3

2
(Bξ − Z ′ tan θ)

v2 = −1

2
g1(u2 + v2)(Bξ − Z ′ tan θ)− 1

2
g1(u1 + v1)(Bξ + Z ′ cot θ) (A10)

a1 =
1

2
g2
τa

2
W a
ξ − 1

2
g1
τ 3

2
(Bξ − Z ′ tan θ) a2 =

1

2
g1(u1 − v1)(cot θ + tan θ)Z ′(A11)

vi = −1

2
g2
τa

2
W a
ξ − g1

2

τ 3

2
(Bξ−Z ′ tan θ)− g1

2
(xi2+ xi′2 )(Bξ−Z ′ tan θ)− g1

2
(xi1+ xi′1 )(Bξ+Z

′ cot θ)

ai =
1

2
g2
τa

2
W a
ξ − 1

2
g1
τ 3

2
(Bξ − Z ′ tan θ) +

1

2
g1(x

i
1 − xi′1 )(cot θ + tan θ)Z ′ i = l, t, b .(A12)

We have used the relation

iq1ξB1ξ,µPL − iq2ξB2ξ,µPL + iq1ξ
′
1B1ξ,µPR − iq2ξ

′B2ξ,µPR = −ig1(cot θ + tan θ)ξZ ′
µγ

5(A13)

−h1
λA

2
/A
A

1−g2
τa

2
/W
a

ξPL−q1u1 /B1ξPL−q2u2 /B2ξPL−q1v1 /B1ξPR−q2(v2+
τ 3

2
) /B2ξPR

= /v1+ /v2 − g3
λA

2
/B
A
cot θ′ + (/a1 + /a2)γ

5 (A14)

−h2
λA

2
/A
A

2−g2
τa

2
/W
a

ξPL−q1v1 /B1ξPL−q2v2 /B2ξPL−q1u1 /B1ξPR−q2(u2+
τ 3

2
) /B2ξPR

= /v1+ /v2 + g3
λA

2
/B
A
tan θ′ + (/a1 − /a2)γ

5 (A15)

−g2
τa

2
/W
a

ξPL− q1x1 /B1ξPL− q2x2 /B2ξPL− q1x
′
1
/B1ξPR− q2(x

′
2+

τ 3

2
) /B2ξPR = /vl + /alγ

5(A16)

−g2
τa

2
/W
a

ξPL− q1y1 /B1ξPL− q2y2 /B2ξPL− q1y
′
1
/B1ξPR− q2(y

′
2+

τ 3

2
) /B2ξPR = /vt + /atγ

5(A17)

−g2
τa

2
/W
a

ξPL− q1z1 /B1ξPL− q2z2 /B2ξPL− q1z
′
1
/B1ξPR− q2(z

′
2+

τ 3

2
) /B2ξPR = /vt + /atγ

5 .(A18)

Appendix B: Derivation of the Schwinger-Dyson equations for the techniquark self-

energies

In this appendix, we derive the SDE for the techniquark self-energies. We start from the

path integral given in (32), and fix the functional integration over the U , BA
µ and Z ′

µ fields.

The total functional derivative of the integrand with respect to ψ̄ and T̄ iξ is zero, which
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yields:

0 =

∫

Dµ(ψ, T ) δ

δψ̄σ(x)
eiSTC+iSTC1+iSsource

∣

∣

∣

∣

AA
µ=0

(B1)

0 =

∫

Dµ(ψ, T ) δ

δT̄ i,σξ (x)
eiSTC+iSTC1+iSsource

∣

∣

∣

∣

AA
µ=0

(B2)

Dµ(ψ, T ) ≡ Dψ̄DψDT̄ 1
ξDT 1

ξDT̄ 2
ξDT 2

ξDT̄ lξDT lξDT̄ tξDT tξDT̄ bξDT bξ , (B3)

In this case, we have introduced source terms with external sources Ī and J̄ to help to derive

the SDEs:

iSsource =

∫

d4x

[

ψ̄(x)I(x) +
∑

i=1,2,l,t,b

T̄ i(x)J i(x)

]

. (B4)

We derive Iρ(y) for both sides of (B1) and remove all external sources. We obtain:

0 = S−1
ψσρ(x, y) + i[i/∂x+ g1(cot θ+tan θ)ξ /Z

′
γ5]σρδ(x−y)− g2TCG

α1α2
µ1µ2

(x, y)[t̃α1γµ1S(x, y)t̃α2γµ2 ]σρ

(B5)

Sψσρ(x, y) ≡ 〈ψσ(x)ψ̄ρ(y)〉 =
∫

Dµ(ψ, T ) ψσ(x)ψ̄ρ(y) eiSTC+iSTC1

∫

Dµ(ψ, T ) eiSTC+iSTC1

∣

∣

∣

∣

AA
µ=0

. (B6)

(B5) is the SDE in coordinate space for the third set of techniquarks. Combining (A2)

and (B5), we find that Sψσρ(x, y), which is determined by the SDE, relates to Π̃σρ(x, y),

introduced in (A2), through:

0 = S−1
ψσρ(x, y) + i[i/∂x+ g1(cot θ+tan θ)ξ /Z

′
γ5]σρδ(x−y) + Π̃σρ(x, y) = 0 . (B7)

Similarly we derive J jρ(y) for both sides of (B2), and remove all external sources, We obtain:

0 = Sij,−1
Tσρ (x, y) + i[i/∂x+ /V 1ξ+ /A1ξγ

5]ijσρδ(x−y)− g2TCG
α1α2
µ1µ2

(x, y)[tα1γµ1S(x, y)tα2γµ2 ]ijσρ

i, j = 1, 2 (B8)

0 = Sij,−1
Tσρ (x, y) + i[i/∂x+ /V 2ξ+ /A2ξγ

5]ijσρδ(x−y)− g2TCG
α1α2
µ1µ2

(x, y)[tα1γµ1S(x, y)tα2γµ2 ]ijσρ

i, j = l, t, b , (B9)

where

SijTσρ(x, y) ≡ 〈T iσ(x)T̄ jρ(y)〉 =
∫

Dµ(ψ, T ) T iσ(x)T̄ jρ(y) eiSTC+iSTC1

∫

Dµ(ψ, T ) eiSTC+iSTC1

∣

∣

∣

∣

AA
µ=0

. (B10)
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(B8) and (B9) are the SDEs in the coordinate space of the first and second sets of techni-

quarks. Combining (A3), (A5), (B8) and (B9), we find that SijTσρ(x, y) which is determined

by the SDE, relates to Π̄ij
σρ(x, y) and Π̂ij

σρ(x, y), introduced in (A3) and (A5), through:

0 = Sij,−1
Tσρ (x, y) + i[i/∂x+ /V 1ξ+ /A1ξγ

5]ijσρδ(x−y) + Π̄ij
σρ(x, y) i, j = 1, 2 (B11)

0 = Sij,−1
Tσρ (x, y) + i[i/∂x+ /V 2ξ+ /A2ξγ

5]ijσρδ(x−y) + Π̂ij
σρ(x, y) i, j = l, t, b . (B12)

Following the treatment in our previous works [8, 9, 11], the techniquark self-energies Σ̂ and

Σ̃ in (A6) and Σ̄, Σ̄5 in (A7) are determined by removing the gauge fields in the SDEs.

Using this approximation, we find the three sets of techniquarks:

Sψσρ(x, y) =

∫

d4p

(2π)4
e−ip(x−y)

[

i

/p−Σ̃(−p2)

]

σρ

SijTσρ(x, y) =

∫

d4p

(2π)4
e−ip(x−y)

[

iδij

/p−Σ̂(−p2)

]

σρ

i, j = l, t, b (B13)

SijTσρ(x, y) =

∫

d4p

(2π)4
e−ip(x−y)

[

i

/p− Σ̄(−p2)− iγ5τ 2Σ̄5(−p2)

]ij

σρ

i, j = 1, 2 , (B14)

In Euclidean space, we obtain(34), (35), (36) and (37)in the main text.

In terms of Σ̂, comparing(35) with (36) and (37),we can construct Σ̄ and Σ̄5 as follows:

Σ̄(p2E) = Σ̂(p2E) cosΘ Σ̄5(p
2
E) = Σ̂(p2E) sinΘ . (B15)

Θ at the present stage in the computation is an arbitrary constant, and we have verified

that the vacuum energy generated by Σ̄ and Σ̄5 only depends on Σ̄2 + Σ̄2
5 = Σ̂2, which is

independent of Θ. Later we show that the coloron mass is dependent on Θ and the present

model gives a relatively small coloron mass (several hundred GeV). In practice, we use the

value of Θ which offers the largest coloron mass. Once nonzero techniquark self-energies are

present, we will have nonzero techniquark condensates:

〈T̄ iL(x)T jR(x)〉 = −2N

∫

d4pE
(2π)4

[

δijΣ̄(p
2
E)

p2E+Σ̄2(p2E)+Σ̄2
5(p

2
E)

− iτ 2ijΣ̄5(p
2
E)

p2E+Σ̄2(p2E)+Σ̄2
5(p

2
E)

p2E−Σ̄2(p2E)

p2E+Σ̄2(p2E)

]

i, j = 1, 2, (B16)

〈T̄ iL(x)T jR(x)〉 = −2Nδij

∫

d4pE
(2π)4

Σ̂(p2E)

p2E + Σ̂2(p2E)
i, j = l, t, b,(B17)

〈ψ̄L(x)ψR(x)〉 = −N(N − 1)

∫

d4pE
(2π)4

Σ̃(p2E)

p2E + Σ̃2(p2E)
. (B18)

Note that the first techniquark set has a nontrivial twisted condensation: 〈T̄ 1
L(x)T

2
R(x)〉 =

−〈T̄ 2
L(x)T

1
R(x)〉 6= 0 resulting from the nonzero self-energies.
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Appendix C: Integrating out the colorons and the low energy expansion

The coefficients in (39) are,

C =

∫

d4k̃[−2τ + τ 2k2E + 16τ 2Σ̄2
5] (C1)

K = − 1

48π2
[ln

κ2

Λ2
+ γ] κ,Λ : infrared and ultraviolet cutoffs (C2)

Ê =

∫

d4k̃[τ 2 + 16τ 2Σ̄5Σ̄
′
5 + 4τ 2k2EΣ̄

′2 + 8τ 2k2EΣ̄5Σ̄
′′
5 + 4τ 2k2EΣ̄

′2
5 − 1

3
τ 3k2E − 16

3
τ 3Σ̄2

5

−2

3
τ 3k2EΣ̄Σ̄

′ − 6τ 3k2EΣ̄5Σ̄
′
5 −

32

3
τ 3Σ̄Σ̄′Σ̄2

5 −
32

3
τ 3Σ̄3

5Σ̄
′
5 −

2

9
τ 3k4EΣ̄Σ̄

′′ − 2

9
τ 3k4EΣ̄

′2

−2

9
τ 3k4EΣ̄5Σ̄

′′
5 −

2

9
τ 3k4EΣ̄

′2
5 − 32

3
τ 3k2EΣ̄Σ̄

′Σ̄5Σ̄
′
5 −

16

3
τ 3k2EΣ̄Σ̄

′′Σ̄2
5 −

16

3
τ 3k2EΣ̄

′2Σ̄2
5

−16τ 3k2EΣ̄
2
5Σ̄

′2
5 +

1

18
τ 4k4E +

4

3
τ 4k2EΣ̄

2
5 +

2

9
τ 4k4EΣ̄Σ̄

′ +
2

9
τ 4k4EΣ̄5Σ̄

′
5 +

16

3
τ 4k2EΣ̄Σ̄

′Σ̄2
5

+
16

3
τ 4k2EΣ̄

3
5Σ̄

′ +
2

9
τ 4k4EΣ̄

2Σ̄′2 + τ 4k4EΣ̄Σ̄
′Σ̄5Σ̄

′
5 + τ 4k4EΣ̄

2
5Σ̄

′2
5

+
16

3
τ 4k2EΣ̄

2Σ̄′2Σ̄2
5 +

32

3
τ 4k2EΣ̄Σ̄

′Σ̄3
5Σ̄

′
5 +

16

3
τ 4k2EΣ̄

4
5Σ̄

′2
5 ] (C3)

∫

d4k̃ = N

∫ ∞

1
Λ2

dτ

τ

∫

d4kE
(2π)4

e−τ [k
2
E+Σ̄2(k2E)], Σ̄ = Σ̄(k2E), Σ̄5 = Σ̄5(k

2
E) , (C4)

Where K̂Σ 6=0
13 are the coefficients that are introduced later in (C8), Λ is a cutoff that is not

sensitive to changes for values between 10 TeV and 100 TeV for our walking theory. In our

practical calculation, we set it to 40 TeV. Combining the standard coloron kinetic term in

(33) and the techniquark quantum loop correction given by (39), we obtain the formula for

the coloron mass (40) given in the text. With the coloron mass from (40), we can discuss

coloron field integration in (40), we then discuss coloron field integration in (33). This can

be achieved using the standard loop expansion:

∫

DBA
µ exp

[

i

∫

d4x[−1

4
(AA1µνA

A,1µν + AA2µνA
A,2µν +W a

µνW
a,µν +B1,µνB

1,µν +B2,µνB
2,µν)]

+Trln[i/∂ + g1(cot θ+ tan θ)ξ /Z
′
γ5 − Σ̃(∂2)] + Tr”ln[i/∂ + /V 2ξ+ /A2ξγ

5− Σ̂(∇2
)]

+Tr′ln[i/∂ + /V 1ξ+ /A1ξγ
5− Σ̄(∇̂2)− iγ5τ

2Σ̄5(∇̂2)]

]

AA
µ=0

= exp

[

i

∫

d4x[−1

4
(AA1µνA

A,1µν + AA2µνA
A,2µν +W a

µνW
a,µν +B1,µνB

1,µν +B2,µνB
2,µν)]

+Trln[i/∂ + g1(cot θ+ tan θ)ξ /Z
′
γ5 − Σ̃(∂2)] + Tr”ln[i/∂ + /V 2ξ+ /A2ξγ

5− Σ̂(∇2
)]

+Tr′ln[i/∂ + /V 1ξ+ /A1ξγ
5− Σ̄(∇̂2)− iγ5τ

2Σ̄5(∇̂2)] + loop corrections

]

AA
µ=0,BA

µ =BA
µ,c

. (C5)
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And BA
µ,c is determined by requiring that the result reach its extremum at BA

µ = BA
µ,c. One

can show that BA
µ,c = 0 is one solution. Consequently, (33) becomes:

eiSEW[W a
µ ,Bµ] = ei

∫
d4x[− 1

4
W a

µνW
a,µν− 1

4
BµνB

µν ]

∫

Dµ(U)F [Oξ]δ(Oξ −O†
ξ)

∫

DZ ′
µ

exp

[

i

∫

d4x[−1

4
Z ′
µνZ

′µν ] + Trln[i/∂ + g1(cot θ+ tan θ)ξ /Z
′
γ5 − Σ̃(∂2)]

+Tr′ln[i/∂ + /V 1ξ+ /A1ξγ
5− Σ̄(∇̂2)− iγ5τ

2Σ̄5(∇̂2)]

+Tr”ln[i/∂ + /V 2ξ+ /A2ξγ
5− Σ̂(∇2

)] + loop corrections

]

AA
µ=BA

µ =0

. (C6)

Note that we are interested in the bosonic part of the EWCL, those operators involve explicit

top quark fields, which belong to the part of the EWCL dealing with matter, are beyond

the scope of this paper. The top quark loop term (especially the top quark condensate)

is expected to essentially contribute only to the top quark mass and not to the W and Z

masses in TC2 models. This suggests that the contribution from top quark condensation

to the bosonic part of the EWCL may also be small (we will show this in the future in a

separate paper). Consequently, colorons, which are important in the formation of top-quark

condensates and contribute the majority of the top-quark mass, only play a passive role in

our present calculations. From (12),the requirement, AAµ = BA
µ = 0 in (C6) is equivalent to

the requirement, AA1µ = AA2µ = 0.

Now, with the help of a technique used in our previous studies[8, 9, 11], we take low

energy expansion for the three TrLn terms in (C6):

Trln[i/∂ + g1(cot θ+ tan θ)ξ /Z
′
γ5 − Σ̃(∂2)]

∣

∣

∣

∣

normal part

(C7)

= i

∫

d4x(cot θ+tan θ)2
[

F̃ 2
0 g

2
1ξ

2Z ′2 − (K + K̃Σ 6=0
2 )g21ξ

2Z ′
µνZ

′µν − K̃Σ 6=0
1 g21ξ

2(∂µZ ′
µ)

2

+(K̃Σ 6=0
3 + K̃Σ 6=0

4 )g41(cot θ + tan θ)2ξ4Z ′4

]

+O(p6)
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Tr′ln[i/∂ + /V 1ξ+ /A1ξγ
5− Σ̄(∇̂2)− iγ5τ

2Σ̄5(∇̂2)]

∣

∣

∣

∣

normal part

(C8)

= i

∫

d4x

{

F̂ 2
0A

2
1ξ − 8F ′2

0 g
2
1u

2(cot θ + tan θ)2Z ′2 − 1

2
K
[

g22W
a
µνW

aµν + g21[1 + 4(u1 + u2)
2

+4(v1 + v2)
2]BµνB

µν + g21[4(u2 tan θ − u1 cot θ)
2 + 4(v2 tan θ − v1 cot θ)

2 + tan2 θ

+4D̂0u
2(cot θ + tan θ)2]Z ′

µνZ
′µν − 2g21[4(u1 + u2)(u2 tan θ − u1 cot θ)

+4(v1 + v2)(v2 tan θ − v1 cot θ) + tan θ]BµνZ
′µν

]

+ tr

[

− K̂Σ 6=0
1 (dµA

µ
1ξ)

2 + K̂Σ 6=0
3 (A2

1ξ)
2

−K̂Σ 6=0
2 (dµA1ξν − dνA1ξµ)

2 + K̂Σ 6=0
4 (A1ξµA1ξν)

2 − K̂Σ 6=0
13 V1ξµνV

µν
1ξ + iK̂Σ 6=0

14 V1ξµνA
µ
1ξA

ν
1ξ

]

−8[D̂1a
4
0 + D̂2a

2
0a

2
3]Z

′4 + D̂3a
2
0Z

′2tr(XµXµ) + 2D̂4a
2
0Z

′
µZ

′
νtr(X

µXν)

+4iD̂2a
2
0a3Z

′2Z ′
µtr(X

µτ 3)

}

+O(p6)

Tr”ln[i/∂ + /V 2ξ+ /A2ξγ
5− Σ̂(∇2

)]

∣

∣

∣

∣

normal part

(C9)

= i

∫

d4x
∑

η=l,t,b

trf

[

F̂ 2
0 a

η2 − K̂Σ 6=0
1 (dµa

ηµ)2 − K̂Σ 6=0
2 (dµa

η
ν − dνa

η
µ)

2 + K̂Σ 6=0
3 (aη2)2 + K̂Σ 6=0

4 (aηµa
η
ν)

2

−K̂Σ 6=0
13 vηµνv

ηµν + iK̂Σ 6=0
14 aηµa

η
νv

ηµν

]

+O(p6) ,

where

dµA1ξν = ∂µA1ξν − i[V1ξµ, A1ξν ] V1ξµν = ∂µV1ξν − ∂νV1ξµ − i[V1ξµ, V1ξν] (C10)

dµa
η
ν = ∂µa

η
ν − i[vηµ, a

η
ν ] vηµν = ∂µv

η
ν − ∂νv

η
µ − i[vηµ, v

η
ν ] (C11)

F ′2
0 =

∫

d4k̃ 2τ Σ̄2
5 (C12)

D̂0 =

∫

d4k̃ [2τ 2Σ̄5Σ̄
′
5 + τ 2k2EΣ̄5Σ̄

′′
5 −

2

3
τ 3Σ̄2

5 −
2

3
τ 3k2EΣ̄5Σ̄

′
5 −

4

3
τ 3Σ̄Σ̄′Σ̄2

5 −
4

3
τ 3Σ̄3

5Σ̄
′
5

−4

3
τ 3k2EΣ̄Σ̄

′Σ̄5Σ̄
′
5 −

2

3
τ 3k2EΣ̄Σ̄

′′Σ̄2
5 −

2

3
τ 3k2EΣ̄

′2Σ̄2
5 −

2

3
τ 3k2EΣ̄

3
5Σ̄

′′
5 −

10

3
τ 3k2EΣ̄

2
5Σ̄

′2
5 +

1

6
τ 4k2EΣ̄

2
5

+
2

3
τ 4k2EΣ̄Σ̄

′Σ̄2
5 +

2

3
τ 4k2EΣ̄

3
5Σ̄

′
5 +

2

3
τ 4k2EΣ̄

2Σ̄′2Σ̄2
5 +

4

3
τ 4k2EΣ̄Σ̄

′Σ̄3
5Σ̄

′
5 +

2

3
τ 4k2EΣ̄

4
5Σ̄

′2
5 ] (C13)

D̂1 =

∫

d4k̃ [2τ 3Σ̄2
5 −

1

3
τ 4k2EΣ̄

2
5 −

4

3
τ 4Σ̄2Σ̄2

5 −
2

3
τ 4Σ̄4

5] (C14)

D̂2 =

∫

d4k̃ [2τ 3Σ̄2
5 +

1

3
τ 4k2EΣ̄

2
5 − 4τ 4Σ̄2Σ̄2

5] (C15)

D̂3 =

∫

d4k̃ [
1

3
τ 4k2EΣ̄

2
5 −

4

3
τ 4Σ̄2Σ̄2

5] (C16)

D̂4 =

∫

d4k̃ [τ 3Σ̄2
5 − τ 4Σ̄2Σ̄2

5 −
1

3
τ 4Σ̄4

5] . (C17)
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F̂ 2
0 and K̂Σ 6=0

i are functions of the techniquark self-energy Σ̂(p2E) which is determined by (35).

Detailed expressions for these quantities are given in (E1) and (E2) of Appendix.E. Similarly,

F̃ 2
0 and K̃Σ 6=0

i are functions of the techniquark self-energy Σ̃(p2E) , which is determined by

(34). Detailed expressions for these quantities are given in (E1) and (E2) of Appendix.E.

In this case, the substitution, Σ̂ → Σ̃ is used.

With expansions (C7),(C8) and (C9) and (A8)-(A12), and by ignoring loop corrections,

we can express (C6) as (41) in the text. In this case, S0 and SZ′ are Z ′ independent and

dependent parts of the actions:

S0 =

∫

d4x

{

− (
5

4
K +

1

4
K̂Σ 6=0

2 +
5

8
K̂Σ 6=0

2 +
3

8
K̂Σ 6=0

13 )g22W
a
µνW

a,µν − [(
5

4
+ 2û+ 2x̂)K +

5

8
K̂Σ 6=0

2

+(
5

8
+ 2û+ 2x̂)K̂Σ 6=0

13 ]g21BµνB
µν + (

5

8
K̂Σ 6=0

1 +
5

32
K̂Σ 6=0

3 − 5

32
K̂Σ 6=0

4 − 5

8
K̂Σ 6=0

13 +
5

16
K̂Σ 6=0

14 )(tr[XµX
µ])2

+(
5

16
K̂Σ 6=0

4 +
5

8
K̂Σ 6=0

13 − 5

16
K̂Σ 6=0

14 )tr[XµXν ]tr[XµX
ν ] + (

5

4
K̂Σ 6=0

2 − 5

4
K̂Σ 6=0

13 )g1tr[W
µν
τ 3]Bµν

+(−5

2
K̂Σ 6=0

13 +
5

8
K̂Σ 6=0

14 )itr[W µνX
µXν ] + (−5

4
K̂Σ 6=0

13 +
5

16
K̂Σ 6=0

14 )ig1Bµνtr[τ
3XµXν ]

+
1

2
K̂Σ 6=0

1 tr[U †(DµDµU)U
†(DνDνU) + 2U †(DµDµU)(D

νU †)(DνU)]

+
3

4
K̂Σ 6=0

1 tr[U †(DµDµU)U
†(DνDνU) + 2U †(DµDµU)(D

νU †)(DνU)]

}

, (C18)

where

U(x) = ξ†L(x)ξR(x) Xµ = U †(DµU) W µν = U †g2
τa

2
W a
µνU (C19)

DµU = ∂µU + ig2
τa

2
W a
µU − ig1U

τ 3

2
Bµ DµU

† = ∂µU
† − ig2U

† τ
a

2
W a
µ + ig1

τ 3

2
BµU

†(C20)

x̂ = (x1 + x2)
2 + (y1 + y2)

2 + (z1 + z2)
2 û = (u1 + u2)

2 + (v1 + v2)
2 . (C21)

While

SZ′ =

∫

d4x

[

1

2
Z ′
µD

−1,µν
Z Z ′

ν + Z ′,µJZ,µ + Z ′2Z ′
µJ

µ
3Z + g4ZZ

′4

]

, (C22)

with

D−1,µν
Z = gµν(c2Z′∂2 + M̄2

Z′)− (1 + λZ)∂
µ∂ν +∆µν

Z (X) (C23)

JµZ = JµZ0 + g1γ∂
νBµν + J̃µZ (C24)

g4Z = [10a43 + 12a23(2a
2
0 + â20) + 4a40 + 2â40](K̂Σ 6=0

3 + K̂Σ 6=0
4 )

+g41(tan θ + cot θ)4ξ4(K̃Σ 6=0
3 +K̃Σ 6=0

4 )− 8D̂1a
4
0 − 8D̂2a

2
0a

2
3 (C25)

Jµ3Z = −i[(10a33 + 12a20a
2
3 + 6â20a3)(K̂Σ 6=0

3 + K̂Σ 6=0
4 ) + 4a20a3D̂2]tr[X

µτ 3] , (C26)
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where

M̄2
Z′ = 2F̃ 2

0 g
2
1(cot θ + tan θ)2ξ2 + 4F̂ 2

0 (2a
2
0 + â20 + 5a23)− 8F ′2

0 a
2
0 (C27)

c2Z′ = 1 + [4(cot θ + tan θ)2ξ2 + 2 tan2 θ + 8v̂ + 3 tan2 θ + ŷ]Kg21 + 4(cot θ + tan θ)2ξ2K̃Σ 6=0
2 g21

+8(2a20 + â20 + 5a23)K̂Σ 6=0
2 + [40a23 + 2(t̂+ ŝ)g21]K̂Σ 6=0

13 − 16D̂0a
2
0 (C28)

λZ = −2g21(tan θ + cot θ)2K̃Σ 6=0
1 − 4(2a20 + â20 + 5a23)K̂Σ 6=0

1 (C29)

∆µν
Z (X) = [40a23K̂Σ 6=0

1 − (4a20 + 2â20)K̂Σ 6=0
3 − (4a20 + 2â20 + 10a23)K̂Σ 6=0

4 − 20a23K̂Σ 6=0
13 + 10a23K̂Σ 6=0

14

+2a20D̂4]tr[X
µXν ]− (20K̂Σ 6=0

1 + 5K̂Σ 6=0
3 − 10K̂Σ 6=0

13 + 5K̂Σ 6=0
14 )a23tr[X

µτ 3]tr[Xντ 3]

+gµν [(5a23 + 2a20 + â20)K̂Σ 6=0
3 + (2a20 + 2â20 − 5a23)K̂Σ 6=0

4 − 20a23K̂Σ 6=0
13 + 10a23K̂Σ 6=0

14

+a20D̂3]tr[X
λXλ]− gµν(5K̂Σ 6=0

4 + 10K̂Σ 6=0
13 − 5K̂Σ 6=0

14 )a23tr[Xλτ
3]tr[Xλτ 3] (C30)

JµZ0 = −5ia3F̂
2
0 tr[X

µτ 3] (C31)

γ = 2[5a3K̂Σ 6=0
2 + (5a3 + 4g1ŵ + 2g1ẑ)K̂Σ 6=0

13 + (4ŵ +
5

2
tan θ + 2ẑ)g1K] (C32)

J̃µZ = 10(−K̂Σ 6=0
2 + K̂Σ 6=0

13 )a3∂νtr[W
µν
τ 3] + 10(K̂Σ 6=0

13 − 1

4
K̂Σ 6=0

14 )ia3∂νtr[X
µXντ 3]

+5(
1

4
K̂Σ 6=0

3 − 1

4
K̂Σ 6=0

4 − K̂Σ 6=0
13 +

1

2
K̂Σ 6=0

14 )ia3tr[X
νXν ]tr[X

µτ 3]

+5(
1

2
K̂Σ 6=0

4 + K̂Σ 6=0
13 − 1

2
K̂Σ 6=0

14 )ia3tr[X
µXν ]tr[X

ντ 3]

+(−5K̂Σ 6=0
13 +

5

4
K̂Σ 6=0

14 )a3tr[W
µν
(Xντ

3 − τ 3Xν)]

+5ia3K̂Σ 6=0
1 tr

[

U †(DνDνU)U
†DµUτ 3 − U †(DνDνU)τ

3U †DµU − ∂µ[U †(DνDνU)τ
3]

]

+iâ0KΣ 6=0
1 ∂µtr[XνXν − U †(DνDνU)] (C33)

in which

a0 =
1

2
g1(u1 − v1)(cot θ − tan θ) a3 =

1

4
g1 tan θ (C34)

â20 =
1

4
g21(tan θ + cot θ)2[(x1 − x′1)

2 + (y1 − y′1)
2 + (z1 − z′1)

2] (C35)

â40 =
1

16
g41(tan θ + cot θ)4[(x1 − x′1)

4 + (y1 − y′1)
4 + (z1 − z′1)

4] (C36)
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v̂ = (u2 tan θ − u1 cot θ)
2 + (v2 tan θ − v1 cot θ)

2

ŵ = (u1 + u2)(u2 tan θ − u1 cot θ) + (v1 + v2)(v2 tan θ − v1 cot θ) (C37)

t̂ = 2[(u2 + v2) tan θ − (u1 + v1) cot θ]
2 (C38)

ŷ = (x′2 tan θ − x′1 cot θ)
2 + (x2 tan θ − x1 cot θ)

2 + (y′2 tan θ − y′1 cot θ)
2

+(y2 tan θ − y1 cot θ)
2 + (z′2 tan θ − z′1 cot θ)

2 + (z2 tan θ − z1 cot θ)
2 (C39)

ẑ = (x1 + x2)[(x
′
2 + x2) tan θ − (x′1 + x1) cot θ] + (y1 + y2)[(y

′
2 + y2) tan θ − (y′1 + y1) cot θ]

+(z1 + z2)[(z
′
2 + z2) tan θ − (z′1 + z1) cot θ] (C40)

ŝ = [(x′2 + x2) tan θ − (x′1 + x1) cot θ]
2 + [(y′2 + y2) tan θ − (y′1 + y1) cot θ]

2

+[(z′2 + z2) tan θ − (z′1 + z1) cot θ]
2 (C41)

From (C22) and (C23), it can be seen that the Z ′ mass squared, M2
Z′ , is determined by:

M2
Z′ =

M̄2
Z′

c2Z′

. (C42)

Appendix D: Process of integrating out Z ′

From (C22), the solution of Eq.(44) is

Z ′µ
c (x) = −Dµν

Z JZ,ν(x) +O(p3) + loop corrections , (D1)

then

S̄Z′ =

∫

d4x

[

− 1

2
JZ,µD

µν
Z JZ,ν − J3Z,µ′(D

µ′ν′

Z JZ,ν′)(D
µν
Z JZ,ν)

2 + g4Z(D
µν
Z JZ,ν)

4

]

+loop corrections , (D2)

where

D−1,µν
Z DZ,νλ = Dµν

Z D
−1
Z,νλ = gµλ , (D3)

It can be shown that if our accuracy is on the order of p4, then p1 order Z ′
c solution is

sufficient because all contributions from p3 order Z ′
c are at least on the order of p6.

Combining (D2), (C23) and (C24)and ignoring loop corrections, we obtain:

S̄Z′ =

∫

d4x

[

− 1

2
JZ0,µD

µν
Z JZ0,ν −

1

M̄2
Z′

JZ0,µ(J̃
µ
Z+g1γ∂νB

µν)− 1

M̄6
Z′

J3Z,µJ
µ
Z0J

2
Z0 +

g4Z
M̄8

Z′

J4
Z0

]

. (D4)
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With the help of the following algebraic relations,

∂µtr[τ
3Xµ] = 0

tr[τ 3(∂µXν − ∂νXµ)] = −2tr(τ 3XµXν) + itr(τ 3W µν)− ig1Bµν

tr(τ 3XµXν)tr(τ
3XµXν) (D5)

= [tr(XµXν)]
2 − [tr(XµX

µ)]2 − tr(XµXν)tr(τ
3Xµ)tr(τ 3Xν) + tr(XµX

µ)[tr(τ 3Xν)]
2

tr(TA)tr(TBC) + tr(TB)tr(TCA) + tr(TC)tr(TAB) = 2tr(ABC) ,

where trA = trB = trC = 0 and T 2 = 1. We can simplify (D4) into the form of the EWCL.
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Appendix E: K coefficients

In Minkowski space,

F̂ 2
0 = 2

∫

dp̃

[

(−2Σ2
p − p2ΣpΣ

′
p)X

2
p + (2Σ2

p + p2ΣpΣ
′
p)
Xp

Λ2

]

, (E1)

K1 = 2

∫

dp̃

[

− 2ApX
3
p + 2Ap

X2
p

Λ2
−Ap

Xp

Λ4
+
p2

2
Σ′2
p

Xp

Λ2
− p2

2
Σ′2
pX

2
p ,

]

,

K2 =

∫

dp̃

[

− 2BpX
3
p + 2Bp

X2
p

Λ2
− Bp

Xp

Λ4
+
p2

2
Σ′2
p

Xp

Λ2
,−p

2

2
Σ′2
pX

2
p

]

,

K3 = 2

∫

dp̃

[

(
4Σ4

p

3
− 2p2Σ2

p

3
+
p4

18
)(6X4

p −
6X3

p

Λ2
+

3X2
p

Λ4
− Xp

Λ6
),

+(−4Σ2
p +

p2

2
)(−2X3

p +
2X2

p

Λ2
− Xp

Λ4
)− Xp

Λ2
+X2

p

]

,

K4 =

∫

dp̃

[

(
−4Σ4

p

3
+

2p2Σ2
p

3
+
p4

18
)(6X4

p −
6X3

p

Λ2
+

3X2
p

Λ4
− Xp

Λ6
) + 4Σ2

p(−2X3
p +

2X2
p

Λ2

−Xp

Λ4
) +

Xp

Λ2
−X2

p

]

,

K5 = K6 = 0,

K7 = 2

∫

dp̃

[

(3Σ2
p + 2p2ΣpΣ

′
p)X

2
p + [−2Σ2

p − p2(1 + 2ΣpΣ
′
p)]
Xp

Λ2

]

,

K8 = 0,

K9 = 2

∫

dp̃

[

(Σ2
p + 2p2ΣpΣ

′
p)X

2
p − p2(1 + 2ΣpΣ

′
p)
Xp

Λ2

]

,

K10 = 0,

K11 = 4

∫

dp̃

[

(−4Σ3
p + p2Σp)X

3
p + (4Σ3

p − p2Σp)
Xp

Λ2
− (2Σ3

p −
1

2
p2Σp)

Xp

Λ4
+ 3Σp

Xp

Λ2

−3ΣpX
2
p

]

,

K12 = 0,

K13 =

∫

dp̃

[

(
1

2
p2Σ′

pΣ
′′
p +

1

6
p2ΣpΣ

′′′
p )Xp + (Cp −Dp)

Xp

Λ2
− (Cp −Dp)X

2
p − 2EpX

3
p

+2Ep
X2
p

Λ2
− Ep

X2
p

Λ4

]

,

K14 = −4

∫

dp̃

[

− 2FpX
3
p + 2Fp

X2
p

Λ2
− Fp

Xp

Λ4
+
p2

2
Σ′2
p

Xp

Λ2
− p2

2
Σ′2
pX

2
p

]

,

K15 = −4

∫

dp̃

[

− (Σp +
1

2
p2Σ′

p)
Xp

Λ2
+ (Σp +

1

2
p2Σ′

p)X
2
p

]

,

KΣ 6=0
i = Ki −Ki

∣

∣

∣

∣

Σ̂=0

i = 1, 2, . . . , 15 (E2)
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in which the short notations are

∫

dp̃ ≡ iN

∫

d4p

(2π)4
e

p2−Σ̂2(p2)

Λ2 , (E3)

Σp ≡ Σ̂(p2),

Xp ≡ 1

p2 − Σ̂2(p2)
,

Ap = −2

3
p2ΣpΣ

′
p(−1− 2ΣpΣ

′
p)−

1

3
Σ2
p(−1− 2ΣpΣ

′
p) +

1

3
p2Σ2

p(−Σ′2
p − ΣpΣ

′′
p)

−1

6
p4(−Σ′2

p − ΣpΣ
′′
p),

Bp = −2

3
p2ΣpΣ

′
p(−1− 2ΣpΣ

′
p)−

1

3
Σ2
p(−1− 2ΣpΣ

′
p) +

1

3
p2Σ2

p(−Σ′2
p − ΣpΣ

′′
p)

− 1

18
p4(−Σ′2

p − ΣpΣ
′′
p)−

1

6
p2(−1 − 2ΣpΣ

′
p),

Cp =
1

3
− 1

3
ΣpΣ

′
p −

1

2
p2Σ′2

p ,

Dp =
1

2
p2Σ′2

p − 1

3
p2ΣpΣ

′′
p(−1− 2ΣpΣ

′
p)−

2

9
p4Σ′

pΣ
′′
p(−1− 2ΣpΣ

′
p)]−

2

9
p4Σ′2

( p− Σ′2
p − ΣpΣ

′′
p)

−1

3
p2ΣpΣ

′
p(−Σ′2

p − ΣpΣ
′′
p),

Ep = −1

6
p2ΣpΣ

′
p(−1− 2ΣpΣ

′
p)

2 − 1

9
kp4Σ′2

p (−1− 2ΣpΣ
′
p)

2,

Fp = −4

3
p2ΣpΣ

′
p +

4

3
p2(ΣpΣ

′
p)

2 − 2

3
Σ2
p +

2

3
Σ3
pΣ

′
p +

1

3
p2Σ2

p(−Σ′2
p − ΣpΣ

′′
p)

−1

9
p4(−Σ′2

p − ΣpΣ
′′
p)−

1

3
p2(−1 − 2ΣpΣ

′
p)−

1

2
p2. (E4)
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