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I. INTRODUCTION

Modern technicolor (TC) models of dynamical electroweak symmetry breaking require
assistance for top-color interactions that are strong in the TeV energy region to provide the
large mass of the top quark, and a walking technicolor (WTC) gauge coupling to aid in
the avoidance of large flavor-changing neutral current (FCNC) effects. The first addition
consists of a class of topcolor-assisted technicolor (TC2) models made through the care-
ful arrangement of TC, topcolor, extended hypercharge groups, and relevant techniquark
and Standard Model (SM) fermion representations. With the help of extended technicolor
(ETC), we expect that technicolor condensates will form and provide the mass for the weak
vector bosons. ETC provides the mass for the light quarks and leptons and a bottom-
quark-sized mass to the top. The largest contribution to the top-quark mass is from the
formation of a top-quark condensate through the dynamics of the topcolor gauge sector.
The second addition is based on the phase diagram of strongly coupled TC gauge theories
involving fermions in arbitrary representations of the gauge group. With suitable choices for
the TC group and techniquark representations, WTC is a natural option for situations with
asymptotic freedom that are nearly conformal. In this case, the TC gauge coupling has an
approximate infrared-stable fixed point (the zero of the beta function) a, which is slightly
larger than the critical value a, necessary for techniquark condensate formation. In such a
theory, for values of o above a, as the energy scale decreases « increases. However, its rate
of increase decreases to zero as a approaches «,. Hence, over an extended energy interval,
a is order O(1), and it is slowly varying which leads a large anomalous dimension y ~ 1 for
the bilinear local techniquark operator. This results in the enhancement of the SM fermion
and those undiscovered pseudo goldstone boson masses, which achieve realistic scales while
maintaining sufficient suppression of FCNC effects.

The typical gauge group of the TC2 models is
SU(N)1c ® SU(3)1 @ SU(3)2 @ SU(2)r @ U(1)y; ® U(1)y, (1)

in which the topcolor and extended hypercharge groups SU(3); @ SU(3): @ U(1)y, @ U(1)y,
spontaneously break into their diagonal subgroups SU(3)c ® U(1)y at an energy of a few
TeV. The remaining electroweak groups SU(2),®@U(1)y spontaneously break into their elec-
tromagnetic subgroup U(1)en, at electroweak scale because of a combination of a top-quark

condensate and techniquark condensate. In the simplest example of Hill’s TC2 model [1],
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there are separate color and weak hypercharge gauge groups for the heavy third generation
quarks and leptons and for the two lighter generations. The third generation transforms
under a strongly coupled SU(3); ® U(1); and maintains its usual charges. However, the
light generations transform conventionally under a weakly coupled SU(3), ® U(1)y. Near 1
TeV, these four groups break into a diagonal subgroup of ordinary color and hypercharge,
SU(3)c @ U(1)y. The desired condensation pattern occurs because the U(1); couplings are
such that the spontaneously broken SU(3); ® U(1); interactions are supercritical only for
the top quark.

After Hill’s proposal was made, Chivukula, Dobrescu, and Terning E] claimed that the
techniquarks required to break the top and bottom quark chiral symmetries are likely to
have custodial-isospin violating couplings to the strong U(1);. To maintain a p ~ 1, the
U(1); interaction must be so weak that it is necessary to fine-tune the SU(3); coupling. This
results in the implementation of the theory being unnatural. To remedy this isospin violation
and improve the suitability of the model, K. Lane proposed a natural prototype TC2 model
in Ref.@]. In that model, the different techniquark isodoublets, 7% and T, provide ETC
mass to the top and bottom quarks. These doublets then could have different U(1); charges,
which are isospin conserving for the right and left handed parts of each doublet. The U(1)
symmetries presented in the model automatically avoid the problem of B;— By mixing raised
by Kominisﬁ]. To achieve the mixing of the magnitude observed between the heavy and
light generations while breaking the strong top-color interactions near 1 TeV, K. Lane also
proposed an alternative model based on the nontrivial patterns of techniquark condensation
and discussed its phenomenology[5]. In this new model, to break the extended hypercharge
groups into U(1)y, a set of electrically neutral SU(2) singlet techniquarks belonging to the
antisymmetric tensor representation of the TC group were added into the model. This, in
combination with other techniquarks, further ensures the technicolor coupling walks. With
so many techniquarks, one may wonder whether the S parameter of the model can be small.
Although qualitatively the large number of techniquarks will increase the value of S, walking
effects and certain arrangements of the hypercharges of the techniquarks may compensate
for this increase, and result in a small overall S parameter. One aim of this paper is to
examine this possibility.

In fact, our interests are not limited to the S parameter, which is one of the low en-

ergy constants (LECs) of the bosonic part of the standard electroweak chiral Lagrangian



(EWCL)E]. Rather, our interests include all EWCL LECs. In our previous studies, we
compiled a formulation for computing the bosonic part of the EWCL LECs for orders up
to p* for the one-doublet TC model discussed in Ref. H], Hill’s schematic TC2 model B] in
Ref.|8], K. Lane’s natural prototype TC2 model B] in Ref.[9] and a hypercharge-universal
TC2 model @] in Ref. ] Here, the bosonic part of the EWCL is the part that only in-
volves SM electroweak gauge fields and corresponding Goldstone fields. This part describes
the electroweak symmetry breaking effects on the electroweak gauge fields, but the parts of
the EWCL dealing with matter also include SM fermions which describe the electroweak
symmetry breaking effects on the SM fermion fields. In the literature, these two parts are
proposed in Refs.é] and ] separately because they have independent characteristics. The
reason that we choose to compute the bosonic part of the EWCL in isolation is that the
matter part is more complex than the bosonic part. Moreover, some of the three-dimensional
fermion mass terms and six-dimensional FCNC terms were already discussed in Lane’s orig-
inal paper B] In this paper, we only discuss the bosonic part of the EWCL for the first
stage of computing the LECs that are generalized from the S parameter, and leave the part
dealing with matter for future discussion. The EWCL is an universal platform which en-
ables us to compare different underlying models with experimental data and extract the true
physical theory that guides our world. To achieve this comparison, we compute the EWCL
coefficients model by model. This study is the fourth paper in a series, starting with Ref.[§],
in which we compute these strongly coupled physics models. Here, we focus on K. Lane’s
alternative TC2 model with nontrivial TC fermion condensation and walking@], which was
mentioned previously. Corresponding to recent advances in the understanding of the phase
diagram of the SU(N) gauge theories and the new possibilities for model building@], this
work offers a modern way to investigate walking effects in a realistic strongly-coupled theory
with complex structures.

In this paper, except for some conventional calculations that are similar to those in our
previous papers, we focus on the effects of walking that have not been discussed before. We
will compare the different situations of walking, ideal walking, and running; and examine
their effects on the S parameter. In the next section, we first review K. Lane’s alternative
TC2 model with nontrivial condensation and walking|5] and discuss its phase structure. In
section III, we apply our formulation developed in Ref.E] to Lane’s model [5]. We perform

these dynamical calculations through several steps: first we integrate in the Goldstone field,



U. Then, we integrate out the technigluons and techniquarks by solving the Schwinger-Dyson
equation (SDE) for techniquarks. Next, we integrate out the colorons and Z’, perform a
low energy expansion, and compute the effective action. Finally, we obtain the EWCL
coefficients. For simplicity, some details of the derivation and computation in this section
are placed in the appendices. Section IV. contains numerical results and discussions. Section

V. is a short summary and discussion.

II. REVIEW OF THE MODEL AND ITS PHASE STRUCTURE

Consider K. Lane’s TC2 model B] with nontrivial TC fermion condensation and walking,
in which the group is given by (d). Because we are only interested in the bosonic part of
EWCL, which is independent of the SM fermions, we do not list their representations and
U(1) charge arrangements here. The left gauge charges for the techniquarks are shown in
Table 1. There are three sets of techniquarks. The first set includes 7" and T?. These are
the specific techniquarks of the model and are expected to have twisted condensates that
generate SU(3); ® SU(3)y — SU(3). and electroweak breaking, and a sufficient level of
generation mixing. The second set includes 7', T* and T°, which are the standard TC2
techniquarks from Lane’s first natural prototype TC2 model [3]. They supply the ETC
mass to the SM fermions, including the top and bottom. The third set consists of the high-
dimensional representation field 1, which is responsible for generating U(1); ® U(1)y; —
U(1)y and ensuring theory walking.

The details of the ETC interaction are not specified in Lane’s original paperB]; this pro-
hibits quantitative computations. The effects on the EWCL LECs from these ETC operators
can be ignored in our calculation because the relevant operators are small. Unfortunately,
although we know from Ref. H] that its contribution to the EWCL LECs is small, the effec-
tive four-fermion coupling may become strong enough to change the results of the current
walking theory[14]. When the effective four-fermion coupling exceeds its critical value, the
position of the infrared fixed point changes significantly. For the first step of the investiga-
tion, we ignore this case by assuming that the four-fermion coupling does not exceed the
critical value and leave discussion of more general effects for future studies.

A number of constraints were given in Lane’s original paper[5] to limit and simplify the

charges:



TABLE 1. Gauge charge assignments of the techniquarks in Lane’s TC2 model.

field\group | SU(N)rc SU(3)y SU(3)e SU(2), U(1); U(1)s

field,coupling ij,ch Af‘u,ih A?M,hg W;},gg Biy,qi Bou, g2
T} N 3 1 2 Uy s
Uk N 3 1 1 vy va+i
Dj, N 3 1 1 v v — 1
T? N 1 3 2 vy s
U N 1 3 1 ur o ust 3
D% N 1 3 1 ur o us—3
T! N 1 1 2 T T2
Uk, N 1 1 1 y ah+3
Db, N 1 1 1 y ah—3
T! N 1 1 2 Y1 Yo
Ut N 1 1 1 v b3
Db, N 1 1 1 v vh— 3
T N 1 1 2 21 2
ub, N 1 1 1 2 h+3
Db, N 1 1 1 2 Zh— 1
Ui INN-1) 1 1 1 ¢ —¢
VR INN-1) 1 1 1 ¢ —¢

To ensure that the techniquark condensates conserve electric charge, uy +us = vy 4 vs,

T4 xo =2 2, Y1+ Y2 =Y T Y5, and 2 4+ 20 = 2] + 2.
The U(1); charges of the techniquarks respect custodial isospin.

For the U(1); charges of T and T?: while u; # vy, the broken U(1); interactions
favor the condensation of 7" with T2, If this interaction is stronger than the SU(3),
attraction of T to itself and we neglect the other vacuum-aligning ETC interactions,

then (TiT3) o (i1%);; in each charge sector.

uy # vy implies Yy; # Y], for the fermions.



e For the SU(N)t¢ antisymmetric tensor v, £’ # & guarantees U(1); @ U(1)y — U(1)y
when (Yrg) forms.

The Lagrangian of the model is

S[Ga Ah A27 VVa Bh B27 Tv T7 1;7 ¢] - / d4x[£gaugo kinetic + Etechniquark + »CSM formion] ) (2)

with
Lgaugo kinctic = — GM?W+&Wﬁwu4%ﬁ“W+mmww+&WEW+&WWW
and

'Ctechniquark -

+T1[ia—chtQ$a—h1)\—AAf—g2 W PL_Q1U1B1PL_Q2U2B2PL_Q1U1B1PR_Q2('U2+ )B2PR]
+T2[id—gret ¢ h2 Az 92 W Pr—q1v1 By Pr—qav2 By Pr— Q1U1B1PR—Q2(U2+ )B2PR]
+T'id) — grot* @& — 927WGPL_ Q1B PL— qra By P — iy By Pr— qg(x’g—l—?)BQPR]Tl
+T'id — grct® @ — 92T—aWaPL— Q1B Pr— qoya By Pr— qiyy B, Pr— Q2(y§+%3)szR]Tt

3
+Tb[la cht $ - 92 W Pr,— Q121B1PL— Q2Z2B2PL_ Q121B1PR Q2(Zg %)BzPR]T
+Y[id — grot® @ — Q1§B1PL+ @EBLPL — i€ By Pr+ @26’ By PRl (3)

Where A\ is the three-dimensional Gellman matrix for topcolor interaction, 7¢ is the Pauli
matrix for the electroweak interaction, t* is the SU(N)rc fundamental representation ma-
trix, t* is the SU(N)pc antisymmetric tensor representation matrix. We do not specify
LM fermion Which is not relevant to our discussions for the present approximation.

Now we will discuss the phase structure of the model. The two-loop [ function of the

SU(N)rc coupling, gre, is!

- 930 950 _ 920
M®—~%%£P—&M%4 a=0 (4)

! The reason that we chose the two-loop 3 function instead of the one-loop version is that it can generate
the walking effects needed for the model. Otherwise, the model setting must be rearranged. Physically,
we expect that the most significant contribution should come from the TC interaction. The SM particle
mass does not reach the TC scale, and the masses of the colorons and Z’ slightly exceed this scale, all of
their contributions are expected to be smaller than those of the TC interactions. For simplicity in the first
stage approximation, we ignore the possible effects from SM particles, colorons, and Z’. We also ignore
the high-dimension ETC interactions. We will investigate the accuracy of this approximation in a future
study of all of these effects.



In this case, the two coefficients 3, and /3,2 are

2By = 5 Ca(SU(N)rc) - %[T(R1)+T(Rz)+T(R3)] (5)
(2N)28, — —C2<SU Y 23—002 SU(N)1o)T(R:) +ACo(R)T(R)] . (6)

i=1
The representations of the three sets of techniquarks mentioned above are labeled R, R»
and Rj3. Their corresponding parameters are given in Table II.
TABLE II. The representation parameters of this model. d(R) is the dimension of the
representation, and d(SU(N)pc) is the number of group generators. Co(R;) and Co(SU(N)7c)
are the quadratic Casimir operators of the representation R; and the adjoint representation,

respectively. Ny is the number of techniquarks in the same representation,

NiCy(R)d(R) = T(R)d(G)

il d(Ry) Ca(Ry) Co(SU(N)re)  T(Ri)  d(SU(N)rc) Ny
1 N N% -1 2N? N¢N NZ—-1 12
2 N N% -1 2N? NyN N?—-1 6
3|{N(N —1)/2 2(N +1)(N —2) 2N? NyN(N—-2) N?-1 1

The reason that we only use the two-loop S function is that the three-loop term of the
[ function is scheme dependent. Usually, it is only used for error estimates. The behavior
of the TC coupling, «, is guided by the renormalization group equation ug—z = (. From
the equation, we know that Sy > 0 corresponds to the case in which the TC interaction
allows asymptotic freedom. However, 5y < 0 corresponds to the loss of asymptotic freedom,
or non-asymptotic freedom. From (Bl) and Table II, we find that the critical value dividing
asymptotic freedom and non-asymptotic freedom is determined by [y = 0 and leads N =
32/9. If further (8, > 0 and f; < 0), TC interaction creates a Banks-Zaks infrared fixed

% |, which corresponds to the zero of the § function. In the more general

point o, = —
case, an infrared fixed point may not exist , which often happens in the situation in which
the number of fermions is small. This is the case for QCD. In this model, because there
are already too many technifermions, we have checked that the infrared fixed point always

exists. The existence of an infrared fixed point requires that the coupling remains nearly

2 Here we apply the convention of Ref. ﬂﬂ]



constant over a given range of infrared energy scales, i.e., it walks. This is the modern
realization of the walking mechanism. When an infrared fixed point exists, the two-loop

function dictates the following energy scale dependence of the TC coupling:

1L B 1 a(z) ¢
o) 2W1nx+a*lna*_a(:€) x—A%U. (7)

Where the parameter A, is roughly the length of the interval of constant coupling in the
infrared region. At this scale, the coupling constant completes the walk and begins a fast
run in which it exhibits typical asymptotic freedom behavior. In Section IV, we show that in
the ideal walking situation, A,, can be interpreted as the ETC scale. It is often referred to as
Agrc in the literature[17]. Moreover, in the standard running situation, A,, can be treated
as the TC scale (or Arc). Realistically, in our model, the system is somewhere between the
cases of running and ideal walking, which suggests that At¢ < A,, < Agrc. This change from
Agrc to A, also reflects the fact that a(z) in the presence of some walking effects does not
depend on the value of Agr¢ too much. However, in the ideal walking theory they are very
much correlated. Furthermore, the existence of both asymptotic freedom and an infrared
fixed point will divide the theory into two different phases. One phase is the asymptotic
freedom phase in which @ < a,. In this case, the coupling « increases from zero to a,
monotonically while the energy scale decreases from the ultraviolet region to the infrared
region. The other phase is the non-asymptotic freedom phase, where a > «,. In this case,
the coupling a decreases from infinity to a,, monotonically while the energy scale decreases
from the ultraviolet region to the infrared region. Furthermore, the ladder approximation

Schwinger-Dyson equation (SDE) for techniquark self-energy predicts a critical coupling:

B 2mN
Y= 305(R)

(8)

for techniquarks that belong to the techni-gauge group representation, R. While the infrared
fixed point «, exceeds its critical coupling a.., spontaneous chiral symmetry breaking occurs,
and the SDE automatically develops nonzero techniquark self-energies and condensates.
However, when «, is less than «., there is no spontaneous chiral symmetry breaking, and
the techniquark self-energy vanishes. Later, we will see that to ensure the correctness of
our 8 function, the nonzero values of the techniquark self-energy and condensate must be
small enough compare to A,. This dictates that «, can only be larger than «, by a small

amount. In practice, a, may not be so close in value to «., this will cause inaccuracy in



FIG. 1: Phases of Lane’s alternative TC2 model with nontrivial TC fermion condensation
and walking. The blue solid line represents the infrared fixed point a,. The red dashed line
denotes the critical coupling of the first and second techniquark sets(fundamental
representation of SU(N)r¢)). The black dashed-dotted line denotes the critical coupling of
the third techniquark set(antisymmetric representation of SU(N)t¢)). The magenta
dotted line shows the value N = 32/9 from [y = 0.
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our computations. We will estimate this error in later calculations. For the cases discussed
above for different values of TC coupling and different choices of NV, our model may exhibit
different behaviors and then form different phases. We present® a phase diagram of our
model in Fig[Il

From Figlll we can see that the blue line (infrared fixed point) divides the phase space
into two parts: the region above the blue line represents the non-asymptotic freedom phase
and that below the blue line represents the asymptotic freedom phase.

In the asymptotic freedom phase, a runs from . (blue line) to zero, as the energy scale

3 Because N s is fixed in the model, we depict the phase diagram in terms of NV and «, instead of N and
Ny, which is more commonly done in the literature. Comparing our Figll to the phase diagram depicted
by Fig.1 in Ref.[15], our phase diagram corresponds to a horizontal line with a fixed Ny in their diagram.
Their phase diagram only provides information about Ny and N. Our phase diagram does not provide

information about Ny , but does provide more information about the running coupling constant.
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increases. The blue line crosses the red dashed line (critical coupling of the first and second
techniquark sets) and the black dashed-dotted line (critical coupling of the third techniquark
set) at two points, which divide the blue line into three segments. The trapezoids (and
triangle) under these segments form the three sub-regions of the asymptotic freedom phase.
From left to right, the blue region is the conformal region, where « is always below its
critical value and no techniquark condensation forms. Therefore, there is no spontaneous
chiral symmetry breaking. The second red region is the intermediate mixture region, where
a is always below the critical value a.; = a2, but will cross a3 as the energy scale
decreases. This means the third set of techniquarks forms condensates, but the first and
second sets do not. The yellow and green regions are the ones that we mainly focus on in
this paper. In these regions, o will cross all its critical values as the energy scale decreases.
Thus, all techniquarks have nonzero self-energies and condensates. Therefore, this is the
model required for spontaneous chiral symmetry breaking.

In the yellow region, the unique TC coupling in the infrared energy region approaches
that of the infrared fixed point, critical values a, of the first and second techniquark sets
(within a magnitude of 0.2 ), and that of the third techniquark set (within a magnitude of
0.4 ), as the energy scale decreases. This causes a near conformal behavior in which the value
of the techniquark self-energy is very small (corresponding to a tiny mass). For at least two
reasons, this region is the most important to the investigation of the walking effect. First,
the lower the techniquark self-energy, the more accurate and reliable our estimate of the [
function over the energy region will be. This is because we have used the MS scheme, which
assumes massless techniquarks, to obtain the coefficients of the § function in (&) and ().
Second, if a techniquark has a significant mass, it will decouple and not contribute to the
[ function in the low energy region. Therefore, in the extreme infrared region, because of
spontaneous chiral symmetry breaking, we cannot treat techniquarks as massless. Therefore,
we need to ignore techniquark contributions if they have mass. The coupling without these
techniquark contributions will run (rather than walk) to a very large value and will not
reach its original infrared fixed point. We show this special running behavior in the infrared
energy region for N = 6 using a dashed magenta line near the vertical axis in Figld A
techniquark self-energy on the order of Fr¢ leads to an infrared interval of the same order
size, which is small in comparison to the typical scale for A,,. The smaller the Fr¢ is, the

more accurately (7)) describes the coupling walking behavior. Therefore, we expect that
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replacing the running behavior in this region with an infrared fixed point will only cause
errors of order Frg/A, in the solution of the SDE for the techniquark self-energy. In this
model, because our techniquarks belong to different representations of the TC group, which
leads to different critical couplings, there is not a unique point where the «, is equal to
all the critical coupling values. Usually this is a necessary component of modern walking
theory.

Furthermore, the minimum integer N closest to the conformal region is N = 6, but
the value N = 4 was chosen in Lane’s original paper[5] and does not satisfy the walking
requirements of this study. Although we do not have an unique «, that is equal to all
the critical coupling values and N = 6 is perhaps too far from the conformal region, our
numerical results given in section IV show that walking effects are present. Therefore, we
do achieve the situation where the infrared fixed point is not enough but sufficiently close
to the critical coupling. In fact, even if we found a unique infrared fixed point a, meets all
the critical couplings and an integer N very near the conformal region, the walking results
would not be significantly more reliable. This is because of the large number of assumptions
made in our calculations. These assumptions include: ignoring higher-order loops (error of
1/167%), SM particles of mass m (error of m?/F2), and gauge fields such as coloron and Z’
(error of F2./M?2%, . and F2%./MZ% in the § function). The precision in the critical value
is now only at the two-loop level. As we mentioned before, the ETC effects may also play a
role. One known effect from the ETC interaction] is that while the coupling of the ETC-
induced effective four-fermion interaction exceeds its critical value, the area of the conformal
window will be substantially reduced. In this sense, we must include all the above-mentioned
corrections before we can quantitatively improve the precision of the present calculation of
the possible walking effects of the model. In the asymptotic freedom phase, we show the scale
dependence of the TC coupling according to formula () for different values of N in Fig[2
From Figl2 it can be seen that in the asymptotic freedom phase, the smaller the value of
N, the flatter the curve. In other words, the smaller the slope of the curve or corresponding
value of the g , the larger the impact on the walking effect. From Figlll we know that when
N <5, there is no overall spontaneous chiral symmetry breaking. Therefore, the minimum
value of N at which spontaneous chiral symmetry breaking occurs and results in the largest
walking effect is N = 6. Throughout this paper, we will use N = 6 in our quantitative

computations.
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FIG. 2: Energy scale dependence of the TC coupling, «, determined using ().

Tiafig
OO N®©O
Il Il

15

)

2
w

a(p2//\

III. DERIVATION OF THE EWCL FROM LANE’S MODEL

Our goal is to obtain

exp (iSEW[Wg,BM]) = / DyDyDT' DT DT*DT*DT'DT'DT'DT' DT DI DG DB, DZ,,

X exp (z’S[ij,A{‘u,Ag‘u, WS, By, Boy, T, T,w,w]) (9)
A;j‘:o
= N[Wg,BM]/DM(U) exp <iSeﬁr[U, Wﬁ,B,J) , (10)

where Seg[U, W, B,] = fd%ZE,- is the action of the EWCL. B, is the gauge field of

U(1)y and Z, is the gauge field of U(1)’ = U(1)y, ® U(1)y,/U(1)y. They are related to By,
and By, through the mixing angle 6 by

(Blu Bm) _ (ZL Bu) cosf —sind

g1 = ¢ sinf = gacosf . (11)
sinf cos@

In (@) Af} is the gluon field of SU(3). and B/f is the gauge field of SU(3); ® SU(3)/SU(3)..

They are related to A{‘u and Ag‘u through the mixing angle 6" by

(g, a2) = (32 ag) [0~

g3 = hisin€ = hycost . (12)
sin@ cos®’
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In the next section, we will use Schwinger-Dyson analysis that the SU(N )¢ interaction
induces techniquark condensates (12 1) # 0 and <T_L2T}’2> # 0 for i,7 = 1,2. They trigger
the extended hypercharge symmetry breaking, U(1)y, ® U(1)y, — U(1)y, and the topcolor
symmetry breaking, SU(3); ® SU(3)s — SU(3)., at a TeV energy scale. These processes
leave a singlet heavy state Z;, in broken U(1)" and colorons B;‘ in the broken SU(3); ®
SU(3)2/SU(3)., respectively. Because this work is only concerned with the EWCL, we
ignored the gluon field by taking Aﬁ =0.

In (I0), U is the standard electroweak Goldstone boson, which can be expressed in terms
of a dimensionless unitary unimodular 2 x 2 matrix field, Dy denotes the normalized func-
tional integration measure on U. The normalization factor N[W¢, B, ] is determined through
the requirement that when the TC interaction is switched off, Seg[U, Wi, B,] must vanish.

This fixes it at:
NWi. B,] = / DYDYy DT DT DT*DT*DT'DT'DT'DT' DT DT DGLDB,DZ,

.(13)

Aﬁ =0,ignore TC interation

X exp (ZS[GZ{, Aﬁw Aéug WS; Bl,uu B2,u7 T7 T7 iv 1”)

In Ref.[6], the EWCL was constructed with building blocks which are SU(2), covariant
and U(1)y invariant as 7' = UT3UT, V,, = (D, U)UT, ¢1B,,, oW, = 92§W§V. Where
By, and W, are the field strengths of the U(1)y and SU(2); gauge fields, respectively.
Alternatively, in Ref.|8], we reformulated the EWCL equivalently using SU(2), invariant
and U(1)y covariant building blocks as 72, X, = U(D,U), ¢1 By, W, = UlgW,,U. In
which, 73 and g, B,,, are both SU(2); and U(1)y invariant, but X, and W ,, are bilinearly
U(1)y covariant. The second formulation was used throughout this paper. In Table III, we
detail the relationship between the two formalisms.

From (@) and (I0), it can be seen that to obtain the EWCL, we must integrate in the
electroweak Goldstone boson field, U. We also need to integrate out the series of fields which
include the three sets of techniquarks, v, T, T2, T', T*, T® and the technigluon Gy, and

the colorons B;f and Z L In the following subsections, we divide this work into five steps.

A. Integrating in the electroweak Goldstone boson field U

We introduce a local 2 x 2 operator
O(x) = [T} T+ TiTh + T Tk + TETh + ToTh] (2) (14)
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TABLE III. Symmetry breaking sector of the EWCL Seg[U, W, B,] = fd4wZ£,-

Formulation in Ref.[6] Formulation in Ref.[§]
L | L f2Hr[(D,UN(DHU)] = — 1 f2r(V,,VH) =1 (X, XH)
LN 181 f2[te(TV,))? 1ALt (TP X))
Ly %algggl B tr(TWH) %algl Bw,tr(T?’Ww)
Lo %iagngwtr(T[V”, V) iagngwtr(T?’X“X”)
Lz |iazgatr(W,, [V*, VY]) 2iastr(W ,,, XHXY)
Ly |au[tr(V,V,)]? aytr(X, X))
L5 |as[tr(V,VH))? s [tr( X, X))
Ls |agtr(V,V,)tr(TVF)tr(TV") aetr(X, X, )tr(r3 X H)tr (3 X ")
L7 |agtr(V V)t (TV, )t (TVY) artr( X, XP)tr(r3 X, )tr (3 X ")
Ls |rasga[tr(TW))? Tastr(T3W )2
Loy |3iaggotr(TW,, ) tr(T[VH, V")) icgtr(T3W 0 )tr (T3 X1 XY)
Lo |3aro[tr(TV,)tr(TV,)]? Taotr(TX,)tr(r3 X))
L1 al1g26“”p>‘tr(TVu)tr(V,,Wp>\) alle“”pAtr(T?’Xu)tr(XVWp)\)
Lio |a12gotr(TV,)tr(V, WH) algtr(T?’Xu)tr(XVWW)
L13 013920177 By tr(TW ) 13677 gy By tr (73 W o)
L4 a14g§e“”p"tr(TWW)tr(TWpU) a14e“”p”tr(T3WW)tr(T?’WpU)

In this case, tr are the traces with respect to the Lorentz, SU(N)tc, SU(3); and SU(3),
indices. The transformation of O(z) under SU(2), x U(1)y is

a

O(z) — Vi ()0 (2)Vii(z) Vi(z) = 7@ Vu(z) = 7@ . (15)
Then we decompose O(z) as
O(x) = &} (v)o(2)Er(x) (16)

Where o(x) which is represented using a Hermitian matrix, describes the modular degree of
freedom; and &7 (z) and &g(z), which are represented using unitary matrices, describe the
phase degrees of freedom of SU(2), and U(1)y respectively. Their transformations under

SU2), @ U(1)y are
o(z) — h(x)o(z)h () Er(x) — h(x)fL(x)VLT(x) Er(z) — h(x)SR(x)V;(x) (17)
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where
3

T

h(z) = @)z (18)

belongs to an induced hidden local U(1) symmetry group. Next, we define a new field

U(x) = € (x)ér(2) | (19)

which is the nonlinear realization of the Goldstone boson field in the EWCL. Subtracting the
o(x) field, we find that the present decomposition results in a constraint &, (z)O(z)Eh(z) —

Er(x)O1(2)€] (2) = 0 and its functional expression is

/ D,( 16(L,0¢€h, — €gOTeD) = const | (20)

where D, (U) is an effective invariant integration measure; and F[O] only depends on O and
is invariant under SU(2), ® U(1)y transformations. This causes the value of the integrated

quantity to be a constant. Inserting the above identity into (@), we have
eiSew Wi Bul — / DYDYDT' DT'DT*DT*DT'DT' DT DT DT DT DG DB, DZ,,
/ Pul 6(£L0&], — ErOTEL) i AL AR B Ban DT (1)
AA=0

Using a special SU(2), ® U(1)y rotation for Vi (x) = &.(x) and Vi(z) = {r(z) and labeling
the fields after rotation with the subscript, ¢, the above path integral becomes:

eiSew Wi Byl / DYDY DT} DI} DI DT DI DT DI DT DI DI} DG DB, DZ,,

X / D, (U)F[OL8(0¢ — Of) e lCi Ao We o Bre Baepe TeTe V1] (29)

AA=0

where we have used the result that the functional integration measure, F[0O] and the action
on the exponential of the integrand are invariant under SU(2), ® U(1)y transformations.

From Table I, it can be seen that:

TglL _ e—i(u1+u2)eoPL§LTL1 Tis _ 6—i(v1+v2)60PR€RT}12

T?, = e ite)lopy ¢, T2 Ten = e~ tutu)lo ppe TR

TglL = e~i@+a0 p ¢ Tl TglR _ e—i(:c’1+x’2)00PR€RT}% (23)
TgtL - e—i(y1+yz)90pL§LT£ TgtR — e—i(y’ﬁryé)eopRgRTlfz
TgbL = emilrtm)lo p g, b Tg;R _ e—i(zﬁzg)eOPRgRTg ’
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Furthermore,

T . T L.

o5 W = Eulgr Wi = i9,1¢] (24)
3 3 » ; ) cosf —sinf

0 Bew = Ealn g Bu =00k (Biw Boca) = (2 B) | ] @)

Note the fields without the subscript ¢ in (22]) are the fields that are invariant under SU(2),®
U(1)y rotation.

B. Integrating out the technigluons

As a second step,we integrate out the technigluon in (22]) using:

/DGzeiS[GﬁvAfuvA?uvwgu7Blﬁ,u7B2§,M7T§7T£7157w} — eiSTC[vaTgyleH‘iSTCl[AiquéqWWnglg,u7Bzg,u7T§7T§71Z177/’] ) (26)

where we choose

eSrolTe,Te, 9] _ /DGﬁ ot [ d'e(= 3G, GOM —groGFIme) (27)
STCI[Aﬁu A‘;w Wgaﬂw Blﬁ,,uv B2§,u7 T§7 TEv 1;7 w] = S[ij? Aﬁu A?pu Wga,;u Blﬁ,,ua B2§,,u7 TEu T§7 &7 ¢] (28>
G%=0
and
JHE = i 4 JH (29)
JH = THONT} + TR T + TAOAPTE + TR TE + T T (30)

Integrating out the technigluon fields in (27]), we get

. A 7 - —1 " al..a
ZSTC[T&T@wa?vb] = Z/d4$1 s d4xn%6juius(l’l> cee axn)JSi(zl) ce JSZZ(zn) ; (31)
n=2

where G0 (1, . .., ¥,) is a n-point Green’s function for the technigluons.

C. Integrating out the techniquarks

Combining ([22)) and (28), our starting Sew[W, B,], after integrating in the electroweak

Goldstone boson field U and integrating out the technigluons, becomes
eiSewWii Byl / Dy DyDI DT} DI} DI DI DI PI{DT{ DI} DI{ DB, DZ,, (32)

X /D/J,(U>-F|:O§]6(O£ _ Og)eiSTC[T&Tgﬂ/_},W"‘iSTCI[Aiqu?ngu,Blg,u,Bzg,wT&T@@ﬂZ’]
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After some detailed derivations and approximations which can be found in Appendix [Al we

get:
e/ SewlWii, Bl / D, (U)F[Oe6(0; — Of) / DB/'DZ,, exp [ / d'x [——(A{‘WAA i
?HVAA 22Uy + Wa W aHv + Bl,/u/Bl SV + BZ,MVBZMV)]
+TrInfid + g1 (cot O+ tan 0)EZ'y® — 2(0%)] + Te" Infid + Vae + Agey® — 2(72)]
FIVRD et A= 57 - ar S]] (33)
Ad=0

The various quantities appearing in ([33]) are defined at the end of Appendix[Al Furthermore,
in Appendix[B] we have shown that the techniquark self energies 3, 3, S and 35 satisfy the
following SDEs,

S(pp) = (N ZQ@,%V -2 / d' EQE;Z;E__ q(,];;);] @ i(gg()q%) o
o) = [
Srh) = 87T3N By R e e )
Sk = My [ e O

where the technigluon propagator is parameterized though the TC running coupling constant

Q as
d'p —id” Pl 91
G (s :/ ~ip(a—y) ( . #) 2y 9rc  ag
;u/(x y) (27’(’)46 p2[1—|—H(—p2)] m p2 a(pE) 47T[1—|—H(p%)] ( )

D. Integrating out the colorons and the low energy expansion

Before integrating out the coloron field, we first discuss its mass which is determined by
the kinetic and mass terms. From the exponential of the integrand in (B3]), it can be seen
that there is already a standard coloron kinetic term from —f(Af),, AN + Ag  Ad2m),

The first set of techniquarks contributes to the quantum loop corrections to the coloron

kinetic and mass terms through the term Tv'Infid + V¢ + A1e7° — B(V?) — in37255(V?)] in
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[B3). Through detailed computations, we find that these corrections are

~

Tr'In[id) —|—V’15+ A1575— i(@2) — iy572 85 (V?)]

coloron kinetic and mass terms
= i /d43€ {C’gg(tan 0’ +tan 9/)233351 _ (8“3;4 _ 8”33)2[1Cg§(cot2 0’ +tan? 9,)

A 1~
+K37 092 (tan 0 —cot 0')? + §Eg§(tan 6" + cot 9’)2]] : (39)

In this case, the coefficients are given at the beginning of Appendix [Cl Combining the
standard coloron kinetic term in ([33]) and the techniquark quantum loop correction given

by [39), we find the formula for the coloron mass to be:
M2 joron = c
coloron — ~ ) 2 -E#0 / ne
E+2(K+ K )+(2/95 —8K15 ")/ (cot 0 + tan 6)

In Appendix [C, we integrate out the coloron fields and perform the low energy expansion.

(40)

Finally we obtain,
6iSEW[Wﬁ,BM} _ 6ifd4x[—%WEVWa,uu_%BM,,BM”} /DM(U)F[Og](S(Of N Og) /DZL 6iSo+iSZ/ ) (41)
Where detailed expressions of Sy and Sz are given in (CI8) and (C22) respectively in

Appendix

E. Integrating out 7’

We denote the resulting action after the integration over Z’ as

/ DZ, %7 = ez (42)
We can use the loop expansion to calculate the above integral:
Sy =Sy + loop corrections (43)
7'=27!
where the classical field Z! satisfies:
0
m {S 7z + loop corrections} =0. (44)

Using this method, we integrate out the Z’ field in Appendix [D] and simplify the result Sy
given in (D4)) into the form of EWCL. Furthermore, combining ([@2)) and (Il together, we
find

eiSew(WiBul ez’fd4x[—%WﬁVWa,uu_%BuyB#V] /'DH(U)J—"[Og](S(Og - OD 6iso+iSZ, . (45>
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Comparing this with (I0) and Table.III, we obtain all the EWCL LECs. Our final analytical
results for the EWCL LECs (up to an order of p?) are

e 10a§f702 5 SYNA0 SN£0 Bif* bk
f2:5F02 51: ]\7[%, 04125(1—251)(’@ _IC13 )+2M%, _2—%
1 5emz0 Deszo  Bf? b 1 5 0 D 2340
- DGR - 2K NG C ) EREA 2R
Lo 92520 92540 5 exz0 D w0 51f
= (2 /C — —/C /C /C
a1 =20+ )5 8 )+ (16 hai )+ 202,
5 SA0 | S0 | S I ) Bif?
= -_—— 4 —
as ( B+ )’C (35 + )’C 32(/C3 Ky™) — 0,
= ﬁ f* B 202 + a7 — (2 5a2)K37° — 10a2K77° + 5a2K7°
= —5 42[ (2a5 + a) (2a3 + a2 + 5a3) — +
Z/
+2a2Dy] — @(— Y70 L1570 — 5K7Y)
op= DL BiSa A2)1c2¢° + (24 2a2 — )/c%"f0 _102K570 4 5a2K570 + 2Dy
2M2,  4a2"2 a3 o+ % T 5% 3 0
@1 CRE? 2370 1530 + 5K37)
B f? - B f? - - 5
s = 2;4;, + 106, (K57 = K17) o = 2]14% + B35~ 10K+ ZK?ZEO)
_ BB ewso | pwroy | B B L 2 20 NS0 | N g 7
o = = (IC3 + 7)) + S AN~ 53 [(2a3 + 6agas + 3agas) (K37 + K{77) + 2agaz Do
3 3

app = o = a3 =apg = 0.

IV. NUMERICAL RESULTS AND DISCUSSION

We first analyze the general features of the EWCL LECs obtained in the previous section,

which are similar to those in Lane’s first natural prototype TC2 model|9]:

e The contributions of the p*-order coefficients are divided into two parts: the contribu-

tion from the three sets of techniquarks and the Z’ contribution

e All correction terms from the Z’ particle to the EWCL LECs are proportional to
powers of 3; which vanish if the mixing disappear (# = 0). This can be seen from ({40)
and (C34]) which show that: 8; = %. By using the relation ae,T = 25;, we
can express all LECs in terms of the T" parameter. Later in the paper, we show the T’

dependence of the LECs.
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e From (EG) (for f? and £), combined with (C34), (C21) , the relation ae,T = 28, and
the relationships of the hyper-charges from Ref.[5], we have

2 81F2 F? -
Qe = |1+ 5[ | + 716 + 4( )] (w1 — 01)*(1 + cot? 6)?
0 0

If we include the numerical result that Fj? < ﬁ’g, the above result implies that 7" must

be positive and has an upper bound. The upper bound is:

1
Qem I Max = . (47)

142 [ifg + 716 + 4(1 — —)](u1 — )2

e Because numerical calculation shows that 1622 #0_

ICE?éo < 0 and f; is positive, ag is
negative based on ({6l). Then U = —16mag which is a coefficient given in Ref.|G] , is

always positive in the present model.

Combining (C27)), (C28) and (C42), we find,

2 2

EF F F
2M—O%Ig%(cot 0 + tan 0)%¢* + 4M%, (2a3 + a2 + 5a3) — 8M—O%Iag (48)

=1+ [4(cot 0 + tan 6)%¢2 + 2 tan® 6 + 86 + 3tan> 0 + §]Kg> + 4(cot  + tan 0)22K57 02
+8(2a2 4 62 + 5a2) K570 + [40a2 + 2(f + 8)? )K" — 15Dga? .

We treat the above equation as a constraint on K. This is done as following: A suitable choice
is made for the hypercharges (this will be discussed later), electroweak gauge coupling, T’
and M. We already know most of the parameters in ([@S]), except Fy, FO, F?, 16227&0, ]@227'&0’
K=7° and Dy. By solving the SDEs, @34), B), (30), (37), we can obtain the techniquark
self-energies, 3, 3, ©, &5. Furthermore, substituting the resulting techniquark self-energies
into the formulae given in Appendix [E] and (CI3), we can obtain Fp, Fy, FP?, 1622 70, ,@22750’
K370 and Dy from ([@R). Now, aside from K all the parameters in (@8] are known. Then we
can use [@J)) to fix the value of . Once K is fixed, with the help of ([C2]), we can determine
the ratio of the infrared cutoff x and ultraviolet cutoff A. Numerical calculations show that
this is unlike the results in Refs.ﬁ, ], where the condition A > k occurs through the
definitions used for the calculations and offers stringent constraints on the allowed region
for T" and the upper bound for M. In our model, A > k is naturally satisfied for real values
of M. For example, we find that Inx/A is about —7.6 and —9.0 for M values of 0.5TeV
and 1TeV, respectively.
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FIG. 3: Coloron mass for Lane’s model.
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With the above qualitative features, we now can generate numerical results. First, we
take N = 6 which yields an infrared fixed point of «,, = 887/523. Then, we take f =
250GeV. This completely fixes the two-loop value at A, = 5.5TeV through the running
behavior of (Z), SDE @3, f2 = 5F2 and (EI) which sets up the relationship between F2
techniquark self-energy. This value of A, is smaller than the expected conventional ETC
scale. Therefore, we cannot interpret it as Agpc. Later, we will see that this is because the
walking effect is not large enough, and more ideal walking can lead to a larger A,,. The
current result with A, < Agrc shows that our running coupling constant cannot always
walk from extreme infrared energy regions to the ETC scale, Agpc. Instead, it can only
walk a shorter distance to the scale, A,,. Beyond A,, it will run and fall quickly exhibiting
conventional asymptotic freedom behavior. Another theoretical parameter is the coloron
mass given by ([40), which theoretically depends on the values ', introduced in (I2)) and
©, introduced in (BIZ). We find the largest coloron mass occurs for © = 7/2, i.e., the
self-energies for the first set of techniquarks are completely contributed by the twisted part
of the set, &5 = Xsin® and © = 0. Using this value of © = /2, in Figl3 we plot the
coloron mass in terms of the 7" parameter. We used four values of Mz = 0.5,1,2,5TeV
(corresponding to Inx/A ~ -7.6,-9.0,-9.4 and -9.5). We found that that the coloron mass

is not sensitive to #’. From Fig[3 it can be seen that the coloron mass is roughly half the
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1 TeV expected in Lane’s original paperB]. The reason is that we included a techniquark
loop correction in the coloron kinetic term, which appeared in ([@Q) with the coefficients E,
K and 161237&0. If we denote the coloron mass without this correction as Mpare coloron Which
was the notation used in Lane’s original work|3], then our numerical calculation shows that:
Myare coloron/ Meoloron ™~ %(tan 0'+cot 0’). This leads to a larger value for Myare coloron- In fact,
if we carefully examine the denominator of (0], the structure of this kinetic term correction
can be divided into three parts: the tree order term 2/g3(cot 6’ + tan#')?, the techniquark
self-energy dependent part E 4 2K77° — 8K37°/(cot @' + tan@')2, and the techniquark self-
energy independent part 2/C. The numerical calculation shows that the main contribution
comes from the techniquark self-energy dependent part, which is an order of magnitude
larger than the contributions from the other two parts. Because the coloron mass is small?,
we will use © = 7/2 to give the largest coloron mass for all the following computations.

To provide numerical values for all the EWCL LECs, we need to choose the various
hyper-charges for the model. Note that the arrangement of the hyper-charges given in
Lane’s original paper[5] is not suitable here because that result used N = 4. We showed in
Section II that for the modern interpretation of our two-loop based phase structure model,
we use N = 6, and recalculate the hyper-charges. According to a series of relations among
different hyper-charges given by K. Lane in Ref.[5], we need to use three hyper-charges x1,
y1 and y; + yo. We use a treatment similar to the one used by K. Lane in Ref.[5]. Namely,
we use r1 = Y1, y1 + y2 = 0. Furthermore, this requires that v = (u; — v1)/2 ~ 1. These
fully fix the typical values of all the hyper-charges. By "typical” we mean that the value of
the hyper-charges must satisfy all 23 constraint equations given in Ref. [3] and two more
constraints: z1; = y1, y1 + y2 = 0. The last two constraints were not explicitly mentioned
in Ref.|3], but the detailed example used them. These typical hyper-charges are: a = —39,
a=—46,b =14, =82, ¢ = -39, ¢ = —46,d = —12, d = —14, £ = 4.6, { = —4.6,
xy =25, 2y =19, 2o = =26, 2, = —19, y; = 25, v} = 23, yo = =25, yh = =23, z; = —7.7,

4 The small coloron mass forces us to switch the order of integration over the coloron and Z’, i.e., instead
of integrating out the coloron before the Z’ boson, we need to integrate out Z’ and then the coloron.
We have performed the computation using this new procedure and found the same result as that of the
present paper, i.e. switching the order of integration yields no correction. We found that the possible
correction from switching this order of integration depends on the classical field Bﬁ)c caused by the
coloron integration. These classical coloron fields are determined by stationary equations. In both cases,

the stationary equations offer the null solution, B’ ., = 0, which was used in our results.
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FIG. 4: S parameter for Lane’s model.
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FIG. 5: U parameter for Lane’s model.
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21 =19, 2o = 7.7, 2, = =19, u; = —4.1, v; = —6.1, uy = 4.2, v, = 6.2.Using this set of
typical hyper-charges, combined with the other necessary inputs for the model, which were
discussed in the previous paragraph, (A7) yields an upper bound, T},.x = 0.035. We show
S = —16maq in Figlll, and U = —167ag in Fighl
of S is generally larger than 2, which is not in agreement with experimental data. This value

of the S parameter already includes the walking effects in the model, which we will discuss

T
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FIG. 6: S parameter for various choices of the hyper-charges: x1 = —50,y; = 36,y, = —12.
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later. To examine the possibility of reducing the value of the S parameter through the choice

of hyper-charges, we found that when the input hyper-charges x1,y; are not constrained by
the requirement x; = y; and are much larger than 1, S may achieve small values. Figld]
shows the case with: z; = —50,y; = 36,y = —12 which leads a = —19, o’ = —22, b =7,
V=4,c=-19, ¢ =-22,d=—6,d = -7, (=23, ¢ =-23, x; = =50, ] = —53,
Ty = 2.7, oy = 5.7y = 36,y] = 35,y0 = —12, yo, = —11, 2, = 20, 2| = 33, z2 = 3.6,
2zh = =94, u; = 041, vy = —0.59, uy = —0.41, v, = 0.59. The S parameter can achieve
negative values with larger values of 7. There may be other sets of hyper-charges which
can also yield small or even negative values of S, but typically these hyper-charges have
large values. Excluding the S and U parameters, the leftmost eight non-zero parameters
(9, i3, (g, A5, O, Qi7, Qlg, (v1g are shown in Fig[llto Figll3l a3 and aqg are independent of My,
and are shown in the same figure.

We found that aw, as, oy, as, are on the order of 1072, ag, a7, aig are on the order of 107°
and a; is on the order of 10719,

Previously, we discussed the three other TC2 modelsﬂﬂ, , ] In Table IV., we list the
different features and the orders of magnitude for all the LECs of these TC2 models. In
Figlldl Figllh Figl@Figl7 and FiglI§ we show the ten nonzero LECs from these four
TC2 models for comparison. This comparison may be useful to other researchers as they

consider the needs of future models.
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FIG. 7: g parameter for Lane’s model.
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FIG. 8: a3 and a;g parameters for Lane’s model.
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Finally, we estimate the magnitude of the walking effect in the present model. Because
the primary contribution to the walking effect is from the running coupling constant, which
appears in the kernel of the SDE, we can measure the walking effect by comparing two other

running behaviors:
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FIG. 9: a4 parameter for Lane’s model.
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FIG. 10: as parameter for Lane’s model.
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e Running a: Rather than using a two-loop running coupling constant ([7) which exhibits

an approximation of walking behavior in N = 6 and spontaneous chiral symmet

T
breaking, we used the one-loop running coupling constant used in our previous work|§,
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FIG. 11: ag parameter for Lane’s model.
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FIG. 12: a; parameter for Lane’s model.
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FIG. 13: ag parameter for Lane’s model.
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FIG. 14: a; and ay of the TC2 model H]—Hill, E]—Lane(l), ﬂﬂ]—Chiv and E]—Lane(ﬂ). The

numbers on each curve are the masses of the Z’ boson in TeV.
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Eq.(d9) was originally introduced in Ref.[18]. The general principle of the technique is
to use a plateau in the low energy region to normalize the possibly infinite value in the
infrared region that is predicted using the perturbative result and smoothly connect
this infrared plateau with the ultraviolet asymptotic freedom running behavior. Note

that if we ignore the two-loop term in the g function in this model and normalize the

infrared coupling constant such that it has a finite value, we can qualitatively obtain
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TABLE IV. Features and LECs of the TC2 models M], H], M] and E]
Property or LEC Schematic TC2W  Natural TC2H Hypercharge Universalld Present
Upper bound of My, vV Vv i X
Negative S My <0.44TeV or T >0.17 X T > 10" choose hypercharges
Typical S=—16may ~ 0.3 ~ 0.8 ~1 ~ 2
s —-1073 —-1073 —-1073 —-1072
as -1073 3x result of [1] -1073 —1072
ay 1073 3x result of [1] 1073 1072
as —1073 3x result of [1] —1073 —1072
a6 ~—10"* ~—107° ~—10"* ~—107°
oy ~ 1071 ~ 1073 ~107* ~107°
ag = —1& ~—107% 3x result of [I]  ~ —107% ~—107°
Qg ~—107% 3x result of [I]  ~ —107% ~ =107
aig ~ —1078 ~ —107% ~ =107 ~ 10710

FIG. 15: a3 and ay of the TC2 model H]—Hill, E]—Lane(l), ﬂﬂ]—Chiv and E]—Lane(ﬂ). The
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the above form of the running coupling constant. Furthermore, this approximation at

the one-loop level suggests that A, must be treated as Arc in this running situation.

The change from one-loop running to two-loop walking reflects the evolution of our

understanding of the gauge-coupling running behavior in non-abelian gauge theory.

In addition, the decision to use the latter model in this study is important because it
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FIG. 16: a5 and ag of the TC2 model H]—Hill, E]—Lane(l), ﬂﬂ]—Chiv and E]—Lane(ﬂ). The

numbers on each curve are the masses of the Z’ boson in TeV.
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FIG. 17: a7 and ag of the TC2 model B]-Hill, B]—Lane(l), @]—Chiv and B]-Lane(ﬂ). The
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numbers on each curve are the masses of the Z’ boson in TeV.
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confirms the existence of the infrared fixed point[19] which qualitatively supports the

modern two-loop-based explanation of walking.

Ideal walking «: Rather than using a two-loop running coupling constant ([l) and a

value of a, = 887/523 that is not close in value to the critical coupling o, = 47 /35 for

the first and second set of techniquarks, we use the same running coupling constant but

change the value of «, in (@) by artificially requiring that a, = 1.02a,. = 1.02 % 47/35.

Although this is not a realistic case for the model, it is closer to the conformal situation,

and therefore, ideal walking.
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FIG. 18: ay and oy of the TC2 model H]—Hill, E]—Lane(l), M]—Chiv and B]—Lane(ﬂ). The

numbers on each curve are the masses of the Z’ boson in TeV.

-12+

-14+

-16F

-1.8+

-2

Hll
Lane(1)

— = — Chiv

Lane(l1)

107

.
10"
T

0

-7t

-8}

-9

x 10

-8

Hill
Lane(1)

— — — Chiv

Lane(l1)

107

.
10"
T

The reason we must consider the above cases is because our analytical estimation using the
[ may cause some error. Therefore, we can use these two extremes to investigate the effect
of changes in the situation on our results. We show three different behaviors of « in Fig 20l
It can be seen that «, is much bigger than «,, only in the extreme infrared region, and that
the running behavior corresponding to 1.02a,. is smaller than that corresponding to v, over
most of the energy region. From a comparison of Figl2( with Figll it can be seen that
the running effect increases the height of the infrared plateau and narrows its length. To
contrast other differences resulting from these different couplings, in Fig2T we show the
techniquark self-energies, > and f), which are determined by the SDEs ([B4]) and (35]). We
found that the closer the system came to walking, the lower and wider the techniquark self-
energy plateau was. By contrast, during running, the plateau was higher and narrower. For
fixed f = 250GeV, we found that the running situation produces a value of Apq = 0.21TeV
(AgTc in the running case cannot be determined solely by the running behavior and requires
some other physical parameters to be known). This result is consistent with the estimate of

Arc >~ 2f/3/N given in Ref.

|. Our walking and ideal walking situations yield:

5.5TeV
958TeV

walking

ideal walking

From this, it can be seen that A,, is very sensitive to the walking effect. The closer the system
is to ideal walking, the bigger the value of A,,. This was further checked by calculating A,,
for several values of a../a. = 1.04,1.06,1.08,1.1,1.12,1.14,1.16, 1.18, 1.2. These points were
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FIG. 19: Dependence of the A,, (TeV) on the degree of walking.
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then plotted as a curve in Fig[l9 to quantitatively show the sensitivity of A, to the degree
of walking. The small value of A, in our walking situation suggests that the walking effect
in the present model is not large enough. In an ideal walking situation, A,, is large and can
be treated as Agrc.

To show the effect of walking on the S parameter, in Fig22l we show the value of S for
couplings corresponding to running and ideal walking. It can be seen that for ideal walking
(the upper bound on T is reduced to 0.012 in this case), S is only slightly smaller than 2.
Therefore, our prediction that S is about 2 is not significantly altered, even as one approaches
the walking region. However, Fig[22]shows that for running, S is doubled by reaching a value
of 4. This implies that because of the existence of the infrared fixed point, the walking only
reduces the S parameter by a factor of 2. Furthermore, comparing the values of the S
parameters at different couplings with their perturbative values Spery = Np * N/6m = 9/,
we found that the perturbative value of S lies just between our realistic value and that of
the running case.

For the effect of walking on the other EWCL LECs, our numerical calculation shows
that for am, a3, ay walking reduces these LECs to roughly 65% of their original values in the
running case. «s, similar to the S parameter, is reduced by the walking effect to half of

its original value in the running case. «g, a7, ag are reduced by one order of magnitude by
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FIG. 20: Three different couplings. «, is the coupling used in our calculation. «,. is the
running coupling, which is given in ([@9). Here, we show «,/5 to facilitate comparison

between the couplings. 1.02a, is the ideal walking coupling, where a, = 1.02c..
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the walking effect, but their signs are preserved. «qq is reduced by two orders of magnitude
and changes in sign. Using the expression for ayg given by (40]), the numerical computation
shows that some cancellations occur here. It is these cancellations that result in ajgbeing the
smallest among the EWCL LECs. Because of this cancellation, if the techniquark self-energy
is changed, more sign changes may occur. This cancellation may reduce the reliability of
our estimate of a9 and a9 may be seen as one of the limitations of the calculation for the
approximations used. We found that not all LECs are sensitive to how close to ideal walking
the theory is. The only major exception is ay. Finally, we found that walking has almost no
effect on the coloron mass. We interpret this to mean that the techniquark self-energy will
change the value of the coloron mass significantly, but walking, which changes the form of
the techniquark self-energy, does not have a large effect on the coloron mass. In fact, some
quantities, such as A,, are sensitive to this detailed form of the techniquark self-energy, but

some other quantities, such as the coloron mass, are not.
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FIG. 21: Techniquark self-energies for three different couplings: 3, and ¥, the
self-energies for the second and third sets of techniquarks for the coupling that we used in
our calculation. ir and ir are the self-energies for the second and third sets of
techniquarks for the running coupling, which is given in (49]). Here, we show 5, /5 and
ir /5 to facilitate comparison between the self-energies. 21_02% and ‘21,02% are the
self-energies for the second and third sets of techniquarks for the ideal walking coupling,

where o, = 1.02cx,.
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V. SUMMARY

In this paper, we discuss K. Lane’s TC2 Model in the presence of nontrivial TC fermion
condensation and walking. We focus on the walking effects in the model, which has not
been discussed before. We also discuss the phase structure of the model in terms of the
two-loop S function of the TC coupling of the model. We found that to have both an
infrared fixed point and spontaneous chiral symmetry breaking, the minimum N for the
TC group SU(N) is N = 6. This is the optimal choice because it is the value that is the
most conformal that can be used in our model. Although this choice differs from the critical
values, Ny, = 5.42 for the first and second sets of techniquarks and N3 = 4.93 for the third
set of techniquarks (Figlll), walking effects occur in the computed EWCL LECs. We can
understand this explicit walking effect qualitatively through the relation, N — Nf < Nf
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FIG. 22: S parameters for the running and walking cases.
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for i« = 1,2,3. For N = 6, using the technique used in our previous studiesﬂg, B, |£|],We
derive the EWCL from Lane’s model and calculate the EWCL LECs up to an order of p*.
We found that the primary contributions to the p* order coefficients arise from the three
sets of techniquarks and Z’. There is no limit on the upper bound of the Z’ mass which
differs from the TC2 modelsﬂﬂ, , ] that we discussed previously. Moreover, all corrections
from the Z’ particle are at least proportional to [3; and vanish for a mixing of 8 = 0. It is
especially important that the scale parameter, A,,, appears in the solution of the two-loop
. This signifies that the scale of walking cannot be assumed to be Agrc in this model
because, generally, Ar¢ < A, < Agpc. We found that A, = 5.5TeV. The value of A, is
small because it is sensitive to the walking effect. However, our choice of N differs from its
critical value, and does not exhibit a sufficient walking effect. We verified that in a more
ideal walking case, A,, can be increased by at least two orders of magnitude. The ratio
(Agrc — Ay)/Agrc can be used as a measurement of the deviation of our theory from ideal
walking. We also found that the coloron mass is roughly half of its expected value of 1
TeV and is independent of the walking effect. The small coloron mass occurs as the result
of including a correction from the coloron kinetic term for which the main contribution is
from the techniquark self-energy. The 71" and U parameters are positive, and there is an
upper bound for the T' parameter. For our choice of typical hyper-charges, the upper bound

of the T" parameter is 0.035, which is well below the experimentally measured bound from
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PDG. The S parameter is about 2 for our choice of typical hyper-charges, which already
exceeds the experimentally verified constraint that it be half of the value from the running
case, but similar to that of the ideal walking case. To reduce the value of the S parameter,
one can change hyper-charges. This can result in S being negative for slightly larger values
of T'. This allows for a case in which both S and 7" are within the bound from PDG.
The leftmost nine nonzero LECS, s, a3, o, a5 are on the order of 1072 which matches the
estimate obtained from naive dimensional analysis. ag, a7, a9 are on the order of 107> and
a9 is on order of 107!, This is because ag, a7, arg,and especially o, are sensitive to walking
effects. Comparing these results with the constraints imposed by the precision data ], we
find that the results are consistent with the constraints from the precision data. However,
a3 has the correct order of magnitude, but the wrong sign.

Previously, we investigated bosonic contribution to the EWCL LECs for most of the TC2
models. In the future, we will focus on calculating the EWCL LECs in four areas: The
first will be to explore new physics models, including the non-TC2-type models. The second
will be to investigate the part of the EWCL dealing with matter. In particular, we will
focus on the top quark. The third will be to deepen our understanding of the structure
of the model we are currently discussing in areas such as phase diagrams and the infrared
behavior of the gauge coupling constant. The fourth will be to improve the precision of
the computation and reduce the number of approximations necessary. With an increasing
number of models in our EWCL platform, it will be effective for future investigations of the

electroweak symmetry breaking mechanisms.
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Appendix A: Process of integrating out the techniquarks

To integrate out the techniquarks, which we have done in previous studiesﬂg, , ], we
assume only four fermion interactions in (B1I]), because a naive dimensional analysis indicates

that the contributions from higher dimensional operators are usually suppressed in the low
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energy region. Also, this approximation leads to the conventional ladder approximation,

which is often used in discussions of the SDE. This yields:

12

; 2
; T /s —t ehe?) 1 2
iS1clle Te bl = [ e, E2 Grntan )22 ) 25 )

2
= —gTTC /d4I1d4$2Gﬁig§(fc1,I2) {w(xl)f‘“v“lw(xl)w(@)f”v*‘%(%)

+ Z T (w A TE (1) TE (w222 T () + 2 Z (a1 ) B 1) (1) T (w2 )22 T (2)
iG=1,2,1,t,b i=1,2,0,t,b

~ /d4x1d4x2 |:1;U(l’1)ﬁop(xl,$2)¢p(l’2> + Z ng(xl)ﬂifk(xl,x2)T§jp(x2)} : (A1)

i,j=1,2,l,t,b

where we have used (29) and (30). And

op(21,22) = —ghcGoioz (wy, ma) IR (U7 (21)00 (22)) 172712, (A2)
]:[0'

U (w1, 20) = —groGoiez (wy, ma)t™aht (T () T77% () )t2A42 (A3)

To obtain ([ATl), we have used the average field approximation and approximated the four-
fermion interactions using their vacuum expectation values (VEVs). Furthermore, we used
the result: (Y(z)y*h(x)) = (T*(x)y*T7(z)) = 0, which can be obtained from the Lorentz
invariance; (¢(x)T%(z)) = (T*(x)y(z)) = 0, which was assumed in Lane’s original paper [7]
and can be verified as a solution to the SDE. In fact, one can confirm that the VEV's between
the different sets of techniquarks vanish and VEVs among the different techniquarks of the
second set also vanish. For ([ATl), this yields:

iStolTe, Te, ¥, 9] =~ /d4$1d43€2 [ﬁo(xl)ﬂgp(xh@)wﬂ(@)ju > TE (@)Y (w1, 00) T ()

1,7=1,2

+ Z ng(xl)ﬁop(xl,x2)Tgp(x2)} (A4)

i=ltb
with
]':[?p(xblé) 7’7] = 1a 2
Hffjp(xlvx2) = : (A5>

A

Ho‘p(xlvx2> 7’7.] = latvb

Therefore II, IT and II represent the fermion self-energies for the first, second, and third sets

of techniquarks, respectively. Following the treatment in our previous studiesﬂg, B, |£|], these
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techniquark self-energies can be approximated as:

[ (2, y) & =05, [B(V)8 5=y Tlopl,y) ~ =0, 5028 (v—y)  V'=0"—iV}i (A6)
05, (2,y) = = [0, 2(V3) + 75,7 55(V3)]550* ( — y) VE=0r =iV L(AT)
01=0

where V3¢, V¢ and v} will be discussed later in the appendices. The above approximation
is the lowest order of a dynamical perturbation originally proposed by Pagels and Stokar
in Ref. ] In this perturbation, all source dependent parts are expressed in terms of the
techniquark self-energy and the detailed dependence is determined by including the minimal
contribution that is covariant with the local chiral symmetry. An important result of this
dynamical perturbation is that the lowest order, which includes the fermion loop terms,
yields spontaneous chiral symmetry breaking and is dominated by the fermion self-energy.
In our previous studiesﬂg, g, ], the II functions are diagonal in the spinor space, but in
this model, Il,,(z,y) in (AT) differs from the conventional expression. In this case, there
is an extra term (X;) that is proportional to «° and 72 (in isospin space) because of the
special model arrangement that generates nontrivial twisted TC fermion condensation. This
condensation will stimulate topcolor symmetry breaking: SU(3); ® SU(3); — SU(3). and
generate the coloron mass. Later, we will discuss the appearance of this term and determine
the functions corresponding to 3,58, % and 5 .

With the results from ([Ad)-([AT), the techniquark interactions in (B2]) become bilinear,

and we can complete the integration over the techniquarks and obtain (B3]), which is given

in the text. Where:

A
v+ vy — g32-BA cot & 0 a1+ as
Vig = i N A e Arg = (A8)
0 U1+ Vo + g3°%- B tan a,— Qs
v 00 a; 0 0
V2§ =10 v O Agg =10 a O . (Ag)
00 v 0 0 a

The prime in Tr" denotes the trace of the extra 2 x 2 space for the first two sets of techni-

quarks, and the double prime in Tr” denotes the trace of the extra 3 x 3 space for the third
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set of techniquarks with:

1 7 1 73
v = —5927W§“ — §g17(35 — Z'tanb)
1 1
vy = =5 g1(ug +v2)(Be — Z'tan ) — 5g1(ur +v1)(Be + Z' cot 6) (A10)
r o1 7 , 1 ,
a1 = 592W¢ — 5915 (Be — Z' tan 0) ay = =g1(uy — vy)(cot 0 + tan 0) Z(A11)

2772 272 2

1 a
v; = _592%Wa %%(Bg Z'tan0) — 5(x2+ 24)(Be—Z' tan 0) — 5 (:zl—l— 2)(Be+Z' cot 0)
L e L, 7 1 / /
a225927l4/5 — 3915 —(Be = 7' tan9)+2g1( . — ") (cot @ + tan ) Z i=110.(A12)

We have used the relation
i1€Bie P, — 192 Bog , Pr, + 1€, Big uPr — 1q2& Bog ,Pr = —igl(coté’ + tan 0)£ Z, {A13)
—hlgAf—gz WgPL—C_IlulB15PL—Q2U2B25PL—Q1U1$15PR—Q2(U2+ )BngR
= it = B ot 4 (fy + ) (A1)
~hsy E—AA;—% WgPL @01 B¢ PL— o2 Bog PL— Q1U1B15PR—CI2(U2+ )B2§PR
=9, +9, + 93713 tan 6’ + (¢, — ¢,)7° (A15)
—g2T—aWZPL— G121 B1ePL— o2 Boe P — 1) B Pr— Q2($/2+%3)B2§PR = #, + d;7TAL6)
—92 WgPL_ @1 B1ePL— qoyoBoc P — 1y Bre Pr— qo(ys+ %3)132513}2 = ¢, + ¢, (ALT)

3
-
—92 WgPL_ (hlelgPL Q2Z2B2§PL QIZ1B1§PR Q2(Z2 ?)B%PR = 74 + ¢iﬂ5(A18)

Appendix B: Derivation of the Schwinger-Dyson equations for the techniquark self-

energies

In this appendix, we derive the SDE for the techniquark self-energies. We start from the
path integral given in (B2), and fix the functional integration over the U, B;‘ and 7 L fields.

The total functional derivative of the integrand with respect to 1) and Tg is zero, which
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yields:

0 . . .
0 = /DM(¢7T) __— ptSretiSTci+iSsource (Bl)
oy (x) Ad=0
O = /Dlu(w,T)%eiSTc—"_iSTClﬁ'iSsource (B2)
5T§7 (a:) Af=0
Du(,T) = DYDYDIT DI} DI DI DI{DT{DT{DIT{DITL DI | (B3)

In this case, we have introduced source terms with external sources I and J to help to derive

the SDEs:
iSsource = | dz |(x)I(x) + TH(x)J"(x)| . (B4)
el 32 riaseo)

We derive I?(y) for both sides of (BI)) and remove all external sources. We obtain:

0= Sy (z,y) +ilidl,+ gi(cot O+tan 0)EZ 70,0 (x—y) — gHcGoe (z, y) [ 9" S (2, )T 7],
(B5)

_ [ Du(w,T) ¢ (z)?(y) eHretista
IDM(¢7 T) etStotiSton o :

m

(B6)

Svop(,y) = (V7 (2)0° (1))

(B3) is the SDE in coordinate space for the third set of techniquarks. Combining ([A2)
and (BI), we find that Sy,,(x,y), which is determined by the SDE, relates to Il,,(z,y),
introduced in ([A2)), through:

0= S;;p(:z, y) + i[id,+ g1(cot O +tan 9)5Z’75]0p5(1’—y) + I, (z,y) = 0. (B7)
Similarly we derive J7?(y) for both sides of (B2)), and remove all external sources, We obtain:

0= 87 a,y) +ilid, +Vie+ Aey’12,6(w—y) — groGoes (x,y) [t " S, y)t2 2],

=12 (B3)
0= 8%, y) + i+ Voe+ Aoy 0 (x—y) — gFcGo02 (2, y) [t 4" S (2, y)t°2"2],
ii=1tb, (B9)

where

_ fDM(¢7T) TiU(SL’)ij(y) etStc+iSTa
- IDM(¢7 T) etStotiSton adzo .

Stap(,y) = (T (2)T7"(y))
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(BY) and (BI) are the SDEs in the coordinate space of the first and second sets of techni-
quarks. Combining (A3), (A7), (BY) and (BY), we find that S (z ,(7,y) which is determined
by the SDE, relates to I17 (x, y) and f[ﬁ,jp(x,y), introduced in (A3) and (AH), through:

0= S¢, (2,9) +ilid, +Vie+ A1, 0(e—y) + M (xy)  ij=12 (Bl
0= 57, (@.y) + ilido+ Vet Aoer 15,0 (x—y) + 1, (wy) i j=1tb. (Bl2)
Following the treatment in our previous works ﬂg, , ], the techniquark self-energies 3 and

> in (A6G) and ¥, %5 in (A7) are determined by removing the gauge fields in the SDEs.

Using this approximation, we find the three sets of techniquarks:

ij=110 (B13)

Sw ( >_/ d4p e—ip(x—y) ¢ ? .17=1.2 (B14)
(2m)* P—5(—p) — 157255 (—p?) R

ap

In Euclidean space, we obtain(B4]), (83), ([Bd) and ([BD)in the main text.
In terms of ¥, comparing(B3) with (36) and (B7),we can construct & and &5 as follows:

S(p%) = S(p) cos © S5(p%) = S(p%)sin © . (B15)

O at the present stage in the computation is an arbitrary constant, and we have verified
that the vacuum energy generated by 3 and X5 only depends on X2 + %2 = 32 which is
independent of ©. Later we show that the coloron mass is dependent on © and the present
model gives a relatively small coloron mass (several hundred GeV). In practice, we use the
value of © which offers the largest coloron mass. Once nonzero techniquark self-energies are
present, we will have nonzero techniquark condensates:

<Tz( ) —QN/ d'pg { _&ji(p%)_ _ E'T%ES(I?% P%—Sz(p%)

)
TR (0R) T2E(0R) PR HER(0E) 25 (0R) pR 22 (0h)
i,j =1,2, (B16)

[ ] d'ps _ S(p % -
e 67 = 1,4,b,(B17)

! . (B18)

Walen) = NV -1 [ Gl

Note that the first techniquark set has a nontrivial twisted condensation: (T} (x)T3(z)) =
—(T?(z)T}(x)) # 0 resulting from the nonzero self-energies.
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Appendix C: Integrating out the colorons and the low energy expansion

The coefficients in ([B9) are,

C= /d‘%[—zf + 72k}, + 167°%2] (C1)
1 K2 . .
K=- T [ln el ] k, A : infrared and ultraviolet cutoffs (C2)
~ = - = < - 1 16 -
- / k[ +167°%5 35 + 477k + 877k XE + AT RN — o7k — o %

2 3 5ac e 32 secer 32 scser 2 sacen 2 siac
—37REEY — 6Tk — %7322’23 - ‘%73232{5 — 57 kpEy” — 5T kpY”

2 gucen 2 aaen 32 g0cce o 16 goccmer 16 55 cnc
—5 T kETs Ty — oTOkpYE — ST RpEE NN, — T kNN NS — o R RYS

e 4 2 2 16 e
—1673k75252 + — 7'k + kRN + ST REEY + 9T4/€E252/ 3741{%22/23

18 3 9
1 o o o o
+—674k%222’ + —7‘4]{34 5257 4+ Tk pSY SN + T kN2
6 4 2525 2 32 4 35V 16 41.2 a2
ThEYIEENS + T kBRI 4+ o kY] (C3)

/ Ph— N / & / The g0 So503),  S=50), (C4)

Where 161237&0 are the coefficients that are introduced later in (Cg)), A is a cutoff that is not
sensitive to changes for values between 10 TeV and 100 TeV for our walking theory. In our
practical calculation, we set it to 40 TeV. Combining the standard coloron kinetic term in
[B3) and the techniquark quantum loop correction given by (B9]), we obtain the formula for
the coloron mass ([0 given in the text. With the coloron mass from (40), we can discuss
coloron field integration in ([A0]), we then discuss coloron field integration in (B3]). This can
be achieved using the standard loop expansion:

/ DB; exp lz / d'z [—Z(A{‘WAA A AN L W WS 4+ By, BY 4+ By, B
+Trnfid + g1 (cot 0+ tan 0)EZ'~° — £(0%)] + Tr” Infid + Vet Aoy’ — E(V2)]

I Ifid +V e+ Arer’ = B(V?) = iy S5(V?)]
Af=0

2uy

= exp {z / d' [——(AﬁwAA T A AAI LW W 4 By, BY 4 By, BYY)]

+TrIn(id) + g1 (cot 6+ tan 0)Z'° — S(0%)] + T nfid + Vae+ Aner®— (V)]

+TI[if +V e+ Ay’ — S(V?) — iy 7255 (V)] + loop corrections . (Ch)
AA=0,BA=BA,
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And Bﬁc is determined by requiring that the result reach its extremum at B:j‘ = Bﬁ"c. One

can show that Bﬁc = 0 is one solution. Consequently, ([B3) becomes:
SN WEB] i sl W W By ) / D,(U)FIO8(0¢ — Of) / DZ,

exp {z / d%[—iZ;’wZ'“”] + TrIn[id 4 g1 (cot O+ tan 0)EZ' " — £(8%)]
+T'In[id +V 1+ Aren°— S(V?) = iys7785(V?)]

+Tr" In[id) + Ve + Aoy — ‘Z(Vz)] + loop corrections} . (C6)
AA=BA=0

Note that we are interested in the bosonic part of the EWCL, those operators involve explicit
top quark fields, which belong to the part of the EWCL dealing with matter, are beyond
the scope of this paper. The top quark loop term (especially the top quark condensate)
is expected to essentially contribute only to the top quark mass and not to the W and Z
masses in TC2 models. This suggests that the contribution from top quark condensation
to the bosonic part of the EWCL may also be small (we will show this in the future in a
separate paper). Consequently, colorons, which are important in the formation of top-quark
condensates and contribute the majority of the top-quark mass, only play a passive role in
our present calculations. From ([I2]),the requirement, A;‘ = B;1 =0 in () is equivalent to
the requirement, A{‘u = A‘g‘u = 0.

Now, with the help of a technique used in our previous studiesﬂg, B, H], we take low
energy expansion for the three TrLn terms in (CGl):

Trlnfid + g1 (cot 0+ tan )EZ " — 2(0°)] (C7)

normal part

— / d*z(cot f-+tan §)> {Fggfﬁzﬂ — (K + K37 gie?z,, 2" — K770 gie% (0" Z))*

+(K37" 4+ K270 g (cot 0 + tan 9)2542'4} +O(p%)
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~

Tl“'ln[i&? +V/1§‘|‘ A1§’YS - i(@% - i7572i5(v2)]

(C8)

normal part
. 1
= i/d%{F&A?S — 8FPg?u?(cot O + tan§)* 2" — §IC [gSW;‘VW“W + g2 [1 + 4(uy + uy)?
+4(vy + 12)?| B, B + g3 [4(ua tan @ — uy cot 0)® + 4(vy tan @ — vy cot §)® + tan® 6
+4Dgu’(cot § + tan 0)*) 2, 2" — 297 [4(us + uz)(uz tan 6 — uy cot 0)

+4(v1 + v9)(ve tan @ — vy cot 0) 4 tan H]BWZ”“'] + tr{ — I@?’éo(duA’fg)Q + I@?’éo(/ﬁff
—K57(dy Ay — dyAiey)” + K7 (Argudien)” = K15 Vi Vi + K] Vi AL Al
—8[Dyag + Doaga3) 2" + DyadZ"tr(X"X,) + 2Dsad Z), Z,tr(X " X")

+4il§2a(2)a3Z'2ZLtr(X”73)} +0(p%)

T Infi) + Voe + Ase?’ — (V)] (C9)

normal part

= z’/d4x Z try {Fgam — K77(d,a™)? — K370(d,,a" — dyal)? + K37 (a)? + l@f’éo(aZaZf
n=L,t,b

—I@?fovzva” + Z'ICIEZEOCLZ(LZUW”} +0(p%)

where

dpAiey = OpAigy — ilVigu, Argn] Vigw = 0.V1er — 0, Vigy — i[Vigu, Ve (C10)
d,a)l = 0,a) — i[vZ, all vp, = 0] — v — z'[vZ, v (C11)
F? = / d*k 2752 (C12)
~ 47, 16, 25§V soe en 2350 2 g0a e 4 scace 4 sese

Dy = | d*k [27°3:X5 + 7°kpEs X — 37 X — 37 kpXs3; — 37 PID I 37 PHN4

4 g e o 2 aoeccs 2 a0ence 2 socaer 10 5 ococm 1 4sc
—3 T REEE NS, — STk YRR — ST kRS — STk — ?07%%222’52 + 57 ks

2 yioeeer | 2 aneser | 2 apacocner | 4 4 eecser | 2 4,2 cuc
+3m KRS 4 ST R TSTs 4 ST kp TP EIRS 4 or RTINS + ok REs]  (C13)

Dy= [k (3] - 3riksl - SriEsE - Sty (C14)
Dy = [ &k 2]+ gris: - ar'ERsy (C15)
Dy = / d'F [%T%ig - %f*i?ig] (C16)
D, = / Qi [PPSR — ASesE %#ig] | (c17)
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Fg and I@?#) are functions of the techniquark self-energy i(p%) which is determined by (B5]).
Detailed expressions for these quantities are given in ([EIl) and (E2) of Appendix[E]l Similarly,
F2 and K 70 are functions of the techniquark self-energy %(p%) , which is determined by
[B34). Detailed expressions for these quantities are given in (EIl) and (E2) of Appendix[El
In this case, the substitution, > — ¥ is used.

With expansions (C7),([C8]) and ([C9) and (AS8)-([AIZ), and by ignoring loop corrections,
we can express (C6) as (4I) in the text. In this case, Sy and Sz are Z’ independent and

dependent parts of the actions:
I Dy Leszo | Dz 3Az¢o srra a0 L on L on D 30

5 . 5 . 5. 5
+(g 20+ 28)K37 19 B BM + (élc??é0 2/@*0 lczs'é0 — —/cza’é0 + —lClzfo)(tr[XuX“])z

3 32
P+ R — SOl X X, + GRS — Sl ] B

+(—§/C12f° + é/Cif’“))z'tr[WWXMX"] + (—%/@?fo + E/C14 %Yigy By tr[r? X1 X"]

+1/€E¢%r[UT(DﬂDuU)UT(D”DVU) +20"(D*D,U)(D*UT)(D,U)]

+= /cmtr[UT(DﬂDuU)UT(D”DVU) + 2UT(D“DHU)(D”UT)(DVU)]} , (C18)

where

U(x) = &} (2)¢r(x) X, =UN(D,U) W Ug2—W“U (C19)

a 3
DMU:8HU+ig2%W5U—ig1U%BH DUt =08,Ut — ZggUT "W g ig = BHUT(CQO)

&= (21 +22)* + (11 +42)° + (21 + 22)° = (u + U2)2 + (v + v2)2 . (C21)
While
Sy = / dz EZ DM 7+ 2 g+ 2P 20 0y + iz 2 (C22)
with
D, = g"(c2,0% + M2) — (14 Az)0"0” + A (X) (C23)
Ty = Jhy + 170" B, + J4 (C24)

gaz = [10a3 + 12a3(2a2 + a2) + 4ai + 244 (K37° + K37°)
+g!(tan 6 + cot 0) 1 (K37 +K57°) — 8Dyaf — 8Dya2a? (C25)
Jb, = —i[(10a3 + 12a2a2 + 6a2a3) (K370 + K17°) + 4a2as Do)tr[X#7%],  (C26)
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where

M2, = 2F2g3(cot 0 + tan )¢ + 4F2(2a2 + a2 + 5a2) — 8Fa} (C27)
2, =1+ [4(cot 8 + tan 0)%¢% + 2tan® @ + 80 + 3tan® 0 + §]Kg? + 4(cot 6 + tan §)2K, 7" g?

+8(2a2 + a2 + 5a2) K570 + [40a2 + 2(f + 8) g2 K7 — 16 Dya? (C28)
Az = —2¢3(tan 0 + cot 0)2K770 — 4(2a2 + a2 + 5a2) K770 (C29)

AR (X) = [40a2K77° — (4a2 + 2a2)KT7° — (402 + 242 4 10a2) K77 — 2062570 + 10a2K77°
+2a2 Dy)tr[ X" XY] — (206570 + 5K570 — 10K37° + 5K ) altr [ X A%t XV 72

+¢"[(5a2 + 2a2 + a2) K370 + (2a2 + 232 — 5a2)KT7" — 2002370 4 10a2K57°

+a2Dstr[ XA Xy] — g™ (5K57° + 10K57° — 5K570) altr[ X\ rP|tr[ X 7P (C30)

Jbo = —biag F2tr[ X 17 (C31)
. . 5

v = 2[5a3K57° + (5as + 491 + 212)K5 ° + (4 + 5 tand +22)g,K] (C32)

= 10(—KZ2 4 R as, a7 7% + 10(K3F° — %K?fo)mgautr[xuxvf?’]
GRS — JRE — RE + K iastn[ XY X, Jir[ X7
+5(%/€§¢° + 70— %/@?fo)mgtr[X”X,,]tr[XVT?’]
HERE + 2R astelT (X, — X,

+5iasK77 tr U (DY D, U)UT D*UT® — U (DY D, U7 UTD*U — 9#[UT (D" D, U)7]

+iag K7 0" [ XV X, — UN(DYD,U)] (C33)
in which
1 1
ag = §g1(u1 — v1)(cot @ — tan0) as = Zgl tan 6 (C34)
= 2% (tan 0+ cot 0[(ry — 24)? + (v — ) + (1 — 1)) (3
i = oo (band + cot ) (ry — 20+ (n — 9"+ (21 — ) (30
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0 = (uptan @ — uy cot 0)* + (vy tan § — vy cot §)?
W = (ug + ug)(ug tan @ — uy cot 0) + (v + vg)(vy tan @ — vy cot 6) (C37)
t = 2[(ug + vy) tan d — (uy + vp) cot ) (C38)
§ = (zhtan @ — 2 cot 0)* + (2o tan  — x; cot 0)* + (y4 tan 6 — 1/} cot §)?
+(ya tan @ — y; cot 0)* + (25 tan — 2} cot 0)* + (2 tan § — 21 cot §)? (C39)
2= (11 + 22) (2 + 22) tan 0 — (2] + x1) cot 0] + (y1 + y2)[(vh + o) tan§ — (y; + y1) cot 6]
+(21 4 22)[(25 + 22) tan 8 — (2] + z1) cot 6] (C40)
8 = [(@h + x9) tan O — (2} + 1) cot )% + [(y4 + o) tan 6 — (/) + 1) cot )

+[(2h + z9) tan§ — (2/ + z) cot H]? C41
2 1

From (C22) and (C23)), it can be seen that the Z’ mass squared, M2,, is determined by:

M2,
M, = CTZ : (C42)

o
Appendix D: Process of integrating out 2’
From (C22)), the solution of Eq.([#4) is
ZM(x) = =DY Jz,(x) + O(p*) + loop corrections , (D1)
then

O 1 v 7 v v
Sz = /d‘*x[_ §JZ,uD§ Iz = Jszw (D" Jz) (DY Jz.)? + 912(DYy Jz,)"

+loop corrections , (D2)
where
D" Dgun= DYy’ Doy = i (D3)

It can be shown that if our accuracy is on the order of p?, then p' order Z! solution is
sufficient because all contributions from p® order Z! are at least on the order of p°.

Combining (D2), ([C23) and ([C24)and ignoring loop corrections, we obtain:

- 1 y 1 = 5 1 Jaz
Sy I/d4x { - §JZ0,uDg Jz00 — M—%,JZOM(JZngw&,,B“ ) — M—%Jw,ujgojéo + M—%Jéo - (D4)
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With the help of the following algebraic relations,
D tr[r* X" =0
tI‘[’T?’(aMX,, -0,X,)] = —2tr(7‘3XMX,,) + itr(T?’WW) — i1 B
tr(7° X, X, )tr(TP X" X") (D5)
= [tr(X,X,)]* — [tr(X, X")]? — tr( X, X, )tr(r* X tr(r3 X)) + tr( X, X ") [tr(7° X,)]?

tr(TA)tr(TBC) + tr(TB)tr(T'CA) + tr(TC)tr(TAB) = 2tr(ABC)

where trA = trB = trC = 0 and 7% = 1. We can simplify (D4]) into the form of the EWCL.
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Appendix E: K coefficients

In Minkowski space,

F
K
K

Ks

K4

Ks
K~

Ky
IClO

ICIZ
IC13

IC14

Kis

K770 =

X,
2 / dﬁ[(—QZi — P50 X2 + (252 4 pPE,%)) A2]’ (E1)

X2 X, X,
2/dp{ 24,X + 2ApF — APA4 Zﬁﬁ — 32’2)(5,],

X2 X X,
/dp{—QB Xp+ 28,78 —BPA—§+p 2;2F,—52’2X2}
458 2p?%2 p4 6X3 3X?2 X
2/dpl(7p_ 3 18)(6X4 oA )
2 2 3 2X2 2
+(—4% +2)( 2X7 A2 —ﬁ ——+X}
—4%t 2p*%2 p4 6X2 3X2 X, 2X?
dp P X, - Xy X 4%2(—2X3 P
/p{(?) 3 T A2+A4 o) T2+
X X )
_A_Z)+A—§—Xp],
K =0,
I X,
Q/dp (352 + 2p°5,50) X2 + [—252 — p*(1 + 25,3 AJ,
0,

[ X,
2/dp (324 2p°%,50) X2 — p*(1+ 2%, 2/)/\2]’

0,

[ X, X, X,
4/dp (—453 + p°%,) X + (433 — p°% )A2 (253 — —p22 )p+32pA2
—321,)(3},

0,
dp L Y84 L 2,20 X, + (C, — D Xp C,—D)X?—-2E X3
p(ip +6p ) +( )A2 (p_ p) p P<*p

X2 X2
+2E,~-L v —EpA4],

X2 X, X, p?
3 2 2 v 2
_4/dp{ 2F, X +2FpA2 —Fppju 2;, s 52;,Xp],

) 1 X, 1,
—4/dp{ — (2, + =p°8 )F + (2, + §p22p)X§],

i=1,2,...,15 (E2)
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in which the short notations are

d4 p2_52(p2
/d~EiN/(2 ];46—%( g (E3)
m
S = 2007,
1
X, = ——,
-2
2 1 1
A, = —§p22p2;)(—1 —28,%7) — g2;(—1 —25,%0) + §p22§(—2;,2 —-5,20)
1 4 2 "
—op (=X - 55,
6 p p
2 1 1
B, = —§p22p2;(—1 —28,%7) — g2;(—1 —25,%0) + §p22§(—2;,2 —-5,20)
1
_1_8p4(_z§ -5 — 6p2(—1 —25,%),
11 1
Cp = g - gZPZ; - 5])22;2,
12/2 12 " ! 24/// ! 24/2 12 "
D, = "% = 2p S (—1—2%,50) — 5P Sn(—1—2%,50)] — P S =2 - Spsn)
1
—§p22p2;(—2;? — 50,
1 1
E, = _6p22p2;(—1 —25,%7)? — §kp42§(—1 —25,%0)%,
Fy, = —SpPS5 4+ SpA(S,S)? — xR 23S+ LpteR(ox?
p 3p P=p 3p P=p 3 p 3 p—Pp 3p p p p=p
1 1 1
_§P4(_2;72 - Eng) - 5172(_1 - 22192;:) - 5172- (E4)
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