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Abstract

First, we show that implied normal volatility is intimately linked with the incomplete
Gamma function. Then, we deduce an expansion on implied normal volatility in terms
of the time-value of a European call option. Then, we formulate an equivalence between
the implied normal volatility and the lognormal implied volatility with any strike and any
model. This generalizes a known result for the SABR model. Finally, we adress the issue
of the “breakeven move” of a delta-hedged portfolio.
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1 Introduction

This article comes within the scope of the study of the asymptotics of implied volatility
which has been considered extensively ([19], [11], [7]). Asymptotics of implied volatility
are important for different reasons. First, they give information on the behaviour of the
underlying through the moment formula ([17]) or the tail-wing formula ([4]). Second, they
allow a full correspondence between vanilla prices and implied volatilities. With such a
correspondence, asymptotics in call prices can be easily transformed into asymptotics in
implied volatilities. When applied to a specific model, asymptotics are widely used as smile
generators ([13]). In practice, other models are then used for pricing options using tools like
Monte-Carlo simulations.

So far, all the asymptotics studied by authors concern asymptotics for implied lognormal
volatility. In this article, we consider implied normal volatility which refers to the Bachelier
model. Why is it interesting to consider normal implied volatility? First, for short maturities,
the Bachelier process makes more sense than the Black-Scholes model. Indeed, the behaviour
of the underlying from one day to another is generally well approximated by a Gaussian
random variable (see [20]). That’s the reason why the Bachelier model is very popular in high
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frequency trading ([3]). Second, the “breakeven move” of a delta-hedged portfolio option
is easily interpreted as normal volatility. Generally, the P & L of a book of delta-hedged
options is positive if the (historical) volatility of the underlying is greater than a breakeven
volatility which has to be expressed in normal volatility. Moreover, it makes more sense to
compare implied normal volatilities with historical moves of the underlying as can be done
by a market risk department. Likewise, some markets such as fixed-income markets with
products like spread-options are quoted in terms of implied normal volatility ([15]). Finally,
the skewness of swaption prices is much reduced if priced in terms of normal volatility instead
of lognormal volatility. Therefore, it is important to have a robust and quick way to compute
implied normal volatilities from market prices and also to be able to switch between lognormal
volatilities and normal volatilities.

What kind of asymptotics should we consider? Most of the approximations in option
pricing theory are made under the assumption that the maturity is either small (see the
Hagan et al formula [13] for instance) or large ([10]); it is actually assumed that a certain
time-variance σ2T is either small or large. A possible way to derive such approximations
is to replace the factor of volatility σ by εσ and then set ε = 1. This can be done at the
partial differential equation level (see all the techniques coming from physics [13]) as well as
directly at the stochastic differential equation level with the help of the Wiener chaos theory
for instance [21]. Other types of asymptotics are obtained by considering large strikes. In
our approach, we unify all these types of asymptotics (see [11] and [12] for the lognormal
case). Indeed, we obtain an approximation of the implied normal volatility as an asymptotic
expansion in a parameter λ for λ ≪ 1 and it turns out that λ → 0 when T → 0 or K → +∞.

This study is organized as follows. We first give another expression for the pricing of a
European call option which involves an incomplete Gamma function (Proposition 1). Then,
we inverse this function asymptotically and obtain an expansion of normal implied volatility.
This is particularly important if we want to quickly obtain the implied normal volatilities
from call prices as is the case in high frequency trading ([3]). The formula is also potentially
useful theoretically if, given an approximation for the price of a European call option or a
spread option (for instance in the framework of the Heston or the SABR model), we want to
obtain an approximation of the normal implied volatility. Finally, we restrict our formula to
the order 0 and we compare it to a similar formula for the lognormal case. Then, we obtain
an equivalence between normal volatility and lognormal volatility. We use it also to compare
the Black-Scholes greeks to the Bachelier greeks. Finally, we consider a delta-hedged portfolio
and we compute the “breakeven move” in the normal case as well as in the lognormal case.

2 Another pricing formula for call options in the Bachelier

model

In a Bachelier model, the dynamic of a stock (St) is given by:

dSt = σNdWt,

with initial value S at t = 0. The so-called normal volatility σN is related to the price of
a call C(T,K) struck at K with maturity T by the formula [20]:

C(T,K) = (S −K)N

(

S −K

σN
√
T

)

+ σN
√
Tn

(

S −K

σN
√
T

)

(1)
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with

n(x) =
1√
2π

exp

(

−x2

2

)

and

N(x) =

∫ x

−∞
n(u)du

Following Ropper-Rutkowski ([19]), we can isolate the volatility σN in the pricing formula.

Definition 1 Let us denote by TV(K,T ) (or simply TV) the time-value of a European call
option struck at strike K with maturity T : TV(T,K) := C(T,K)− (S −K)+.

Proposition 1 In the Bachelier model,

TV(T,K) =







|S−K|
4
√
π
Γ
(

−1
2 ,

(S−K)2

2σ2

N
T

)

if K 6= S

σN

√
T√

2π
otherwise

(2)

where Γ (a, z) is the incomplete Gamma function:

Γ (a, z) =

∫ +∞

z

ua−1 exp(−u)du

The proof is given in the Appendix. It is clear from Proposition 1 that the real-valued
function T 7→ C(T,K) is non-decreasing, positive, C(0,K) = (S−K)+ and lim

T→+∞
C(T,K) =

+∞. So, given the price of a European call option C, there is a unique real number σN (T,K)
such that C(T,K) = C with a normal volatility σN = σN (T,K). We say that σN (T,K) is
the normal implied volatility.

Note 1 We remark that
TV

|K − S| depends only of
σN

√
T

|S −K| (only one variable).

One of the interests of Proposition 1 is that there are efficient algorithms to compute
the inverse of the incomplete Gamma function. In particular, it is implemented in Matlab.
Therefore, it is always easy to get the implied normal volatility from call prices ([16]) . Such
a task is not always easy in the lognormal case ([14]), especially when we are far from the
money.

Corollary 1 Let p be an integer. Then,

TV(T,K) =
(σ2

NT )
3

2

√
2π(S −K)2

exp

(

−(S −K)2

2σ2
NT

)

(

p−1
∑

k=0

(−1)k
(2k + 1)!

k!

(

σ2
NT

(S −K)2

)k

+Rp

)

with

|Rp| ≤
(2p+ 1)!

p!

(

σ2
NT

(S −K)2

)p

This last equation comes naturally from a well known asymptotic expansion of Γ(a, z) for
large z (see Formula 6.5.32 in ([1])).
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Note 2 From either pricing formula (1) or (2), we can notice that we can use the same
demarch to price large strikes and short maturities European options (as expansions in both
cases are similar)... This comes from the fact that:

C(λ2T, λS + (1− λ)K) = λC(T,K)

for any non-negative real λ. This is particular to the Bachelier model.

To compare with the lognormal case, it can be advantageous to introduce the following
notations.

Definition 2 For K 6= S, we set (the symbol N stands for “Normal”) θN :=
σN

√
T

S
, xN :=

K

S
− 1, γN := ln

(

4
√
π

|xN |

)

, uN :=
2θ2N
x2N

, γN := ln

(

4
√
π

|xN |

)

, λ := − 1

ln
(

TV(T,K)
S

) .

Then, by Corollary 1, for K 6= S and p ∈ N
∗,

4
√
π

|xN |
TV (T,K)

S
= u

3

2

N e
− 1

uN

(

p−1
∑

k=0

(−1)k

2k
a
(k)
N ukN +R

(p)
N

)

(3)

with R
(p)
N ∈ O

(

θ2pN

)

and a
(k)
N =

(2k + 1)!

k!
.

In comparison to the normal case, in the lognormal case, we have ([12]):

4
√
πe−

xLN
2

|xLN |
TV (T,K)

S
= u

3

2

LN e
− 1

uLN

(

p−1
∑

k=0

(−1)k

2k
a
(k)
LN ukLN +R

(p)
LN

)

(4)

with uLN :=
2θ2LN
x2LN

, θLN := σLN
√
T , xLN := ln

(

K

S

)

, Rp
(LN) ∈ O

(

θ2pLN

)

,

a
(k)
LN := (2k + 1)!!

n
∑

k=0

1

j! (2j + 1)!!

(

x2LN
8

)j

and (2k + 1)!! :=

k
∏

j=0

(2j + 1). Here, σLN denotes the lognormal implied volatility and “LN”

stands for “Lognormal”.

3 Asymptotics of the implied normal volatility

Let us assume that K 6= S. Using (3), we get:

u
3

2

Ne
− 1

uN

(

p−1
∑

k=0

αku
k
N +O

(

upN
)

)

= eγN e−
1

λ (5)

with αk :=
(−1)k

2k
ak. Therefore, by Lemma 1 of [12], we get the following proposition.
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Proposition 2 Let us denote by TV the time-value of a European call option, σN its implied

normal volatility and T the maturity of the option. Set λ := − 1

ln(TV
S
)
, γN := ln

(

4
√
π

|xN |

)

and xN = K
S
− 1. Let us assume that K 6= S. Then, in the case when T → 0, we have the

following expansion for the time-variance of the call option: σ2
NT =

(S −K)2

2
uN with

uN = λ− 3

2
λ2 lnλ+ γNλ2+

9

4
λ3 ln2(λ)+

(

9

4
− 3γN

)

λ3 ln(λ)+

(

γ2N − 3

2
γN +

3

2

)

λ3+ o
(

λ3
)

(6)

In the lognormal case [12], for short expiries, the asymptotic expansion of σ2
LNT is given by

σ2
LNT =

ln2(K
S
)

2
uLN with

uLN = λ−3

2
λ2 lnλ+γLNλ2+

9

4
λ3 ln2(λ)+

(

9

4
− 3γLN

)

λ3 ln(λ)+

(

γ2LN − 3

2
γLN − α′

1

)

λ3+o
(

λ3
)

(7)

where γLN := ln

(

4
√
πe−

xLN
2

|xLN |

)

and α′
1 := −x2LN

16
− 3

2
.

First, we note that λ = uLN + o(uLN ). Then, comparing the two results (6) and (7) for
K 6= S, we obtain:

uN = uLN + (γN − γLN )u2LN +O
(

u3LN ln(uLN )
)

So,

σ2
N =

(

S xN
xLN

)2

σ2
LN + 2 (γN − γLN )

S2 x2N σ4
LN

x4LN
T +O

(

T 2 ln(T )
)

(8)

Since
xN
xLN

=
S −K

lnS − lnK
> 0, we deduce that

σN =
S xN
xLN

σLN

(

1 + 2 (γN − γLN )
σ2
LN

x2LN
T

)

1

2

+O(T 2 lnT ) (9)

=
S xN
xLN

σLN

(

1 + (γN − γLN )
σ2
LN

x2LN
T

)

+O(T 2 lnT ) (10)

Moreover, we have:

γN − γLN =
xLN
2

+ ln

(

xLN
xN

)

Hence, we get:

σN =
S −K

lnS − lnK
σLN









1−
ln

(

1√
KS

S −K

lnS − lnK

)

(lnS − lnK)2
σ2
LNT









+O(T 2 lnT )
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Note also that at the money, the situation is quite easy. On the one hand, we have (cf
Proposition 1)

σN =

√

2π

T
C. (11)

On the other hand, we have ([12], Proposition 2):

C = erf

(

σLN
√
T

2
√
2

)

Therefore, we state the following result.

Corollary 2 • If K 6= S, we have:

σN =
S −K

lnS − lnK
σLN









1−
ln

(

1√
KS

S −K

lnS − lnK

)

(lnS − lnK)2
σ2
LNT









+O(T 2 lnT ) (10)

In particular, σN ∼ S −K

lnS − lnK
σLN when T → 0.

• At the money, we have σN =

√

2π

T
S erf

(

σLN
√
T

2
√
2

)

and σN = S σLN

(

1− σ2
LNT

24

)

+o(T ).

In particular, σN ∼ SσLN when T → 0.

Note 3 When K → S, we can check that

ln

(

1√
KS

S −K

lnS − lnK

)

(lnS − lnK)2
−→ 1

24
.

In other terms, for K 6= S,

σLN =
1

S

lnm

m− 1
σN (10)

where m =
K

S
= xN + 1 is the moneyness.

This formula was known (even if it was not stated explicitly) in the SABR model (see
the Hagan et al formula [13]). By differentiating Formula (3) with respect to m, it turns out
that the Black-Scholes skew ∂σLN

∂m
at the money (m = 1) generated by the Bachelier model

is ∂σLN

∂m
= −1

2
σN

S
(σLN is by definition the implied lognormal volatility). Therefore, the

Bachelier model is highly skewed ATM (a slope of −50%× σN

S
). Another way to explain this

feature is that given call prices, when we use the BS model, the function σLN is a decreasing
and convex function of m, i.e., it generates a skew, while the function σN is a rather flat
function of m. Thus, normal volatility is most suited for products such as swaptions for
instance.

4 Comparing greeks and delta-hedged portfolios

Let us denote by ∆N ,ΓN , νN ,ΘN (resp. ∆LN ,ΓLN , νLN ,ΘLN ), the delta, gamma, vega and
theta in the Bachelier (resp. Black-Scholes) model. For instance, νN = ∂C

∂σN
. By differentiating
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(1), we get:

∆N = N

(

S −K

σN
√
T

)

(10)

On the other hand, it is known that:

∆LN = N

(

lnS − lnK

σLN
√
T

+
1

2
σLN

√
T

)

(10)

So, by Corollary 2, we get: ∆LN ∼ ∆N for a maturity T ≪ 1. By differentiating (4), we
obtain:

ΓN =
1

σN
√
T

n

(

S −K

σN
√
T

)

(10)

In the Black-Scholes model, we have:rrrrrr

ΓLN =
1

SσLN
√
T

n

(

lnS − lnK

σLN
√
T

+
1

2
σLN

√
T

)

(10)

Hence, with the help of Corollary 2,

ΓN ∼ S
lnS − lnK

S −K
ΓLN (10)

Now, we consider the Vega. It is shown in the Appendix (Formula (4)) that:

C(T,K) = (S −K)+ + S

∫

σN

√
T

S

0
n

(

1− K
S

u

)

du (10)

So, differentiating by σN , we get:

νN = S

√

T

2π
exp

(

(S −K)2

2σ2
NT

)

(10)

In contrast, the vega in the Black-Scholes model is

νLN = S

√

T

2π
exp

(

(lnS − lnK + 1
2σ

2
LNT )2

2σ2
LNT

)

(10)

In the same way, we can compare the two thetas. So, we get the following proposition.

Proposition 3 When T → 0, and under the hypothesis of bounded volatilities, we have:

∆N ∼ ∆LN (11)

νN ∼ νLN (12)

ΓN ∼ S
lnS − lnK

S −K
ΓLN (13)

ΘN ∼ ΘLN
S −K

S (lnS − lnK)
ΘLN (14)
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The first equivalence ∆N ∼ ∆LN shows that hedging in the Bachelier framework is more
or less like hedging in a Black-Scholes framework. However, the “breakeven move” of a delta-
hedged portfolio is not the same. By definition, the “breakeven move” of a delta-hedged
portfolio is the number µ such that over a short horizon δt, P&L > 0 if the change in S is
> µ. In general, we have:

P&L = −Θδt+
1

2
Γ(∆S)2 (15)

=
1

2
Γ
[

(∆S)2 − µ2
]

(16)

So, with δt = 1,

µ =

√

2Θ

Γ
. (16)

Using Proposition 3, we get that the “breakeven move” µLN in the Black-Scholes model
is related with the “breakeven move” µN in the Bachelier model by:

µLN =
lnm

m− 1
µN (16)

with m = K
S
. So, at the money, µLN ∼ µN . However, if K < S (resp. K > S) then µLN > µN

(resp. µN > µLN ). We have represented in Fig 1, the function m 7→ ln(m)

m− 1
which gives the

smile of the Bachelier model (cf Corollary 2) as well as the ratio of “breakeven moves”
µLN

µN
.

So, depending on the view of the trader on the short term dynamic of the underlying
(normal or lognormal diffusion), he will adjust or not the “breakeven move” of its delta-
hedged portfolio by the factor lnm

m−1 .
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Figure 1: The smile of volatility of the Bachelier model (normalized by the factor
σN
S

where

σN denotes the normal volatility) and the ratio of “breakeven moves” µLN/µN .
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Appendix

Proof of Proposition 1. We have:

C(T,K)

S
= f(ξ, θ) (16)

with ξ := K
S

and θ := σN

√
T

S
and

f(ξ, u) := (1− ξ)N

(

1− ξ

u

)

+ un

(

1− ξ

u

)

(16)
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We have:

∂f

∂u
(ξ, u) := −(1− ξ)2

u2
n

(

1− ξ

u

)

+ n

(

1− ξ

u

)

+ u

(

−1− ξ

u2

)

.

(

−1− ξ

u

)

n

(

1− ξ

u

)

= n

(

1− ξ

u

)

(16)

We have used: n′(ξ) = −ξ n(ξ). Since f(ξ, 0) = C(0,K)
S

= (1− ξ)+, we deduce that:

f(ξ, θ) = (1− ξ)+ +

∫ θ

0
n

(

1− ξ

u

)

du (16)

Set

F (ξ, θ) =

∫ θ

0
n

(

1− ξ

u

)

du (16)

Then,

C(T,K)

S
= (1− ξ)+ + F

(

K

S
,
σ
√
T

S

)

(16)

Let us assume that both θ 6= 0 and ξ 6= 1. With the change of variable v = 1−ξ
u

, we get:

F (ξ, θ) = |1− ξ|
∫ +∞

|1−ξ|
θ

n(v)

v2
dv (16)

So, with the new change of variable u = 1
2v

2, we have:

F (ξ, θ) =
1

4
√
π
|1− ξ|

∫ +∞

|1−ξ|2
2θ2

u−
3

2 exp(−u)du

=
1

4
√
π
|1− ξ|Γ

(

−1

2
,
|1− ξ|2
2θ2

) (16)

where Γ(a, z) is the incomplete Gamma function. At the money, we have simply:

C(T,K) =
σN

√
T√

2π
. (16)
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