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Abstract

Quantum Lie algebras related to multi-parametric Drinfeld–Jimbo R-
matrices of type GL(m|n) are classified.

1 Introduction

Quantum groups are examples of non-commutative manifolds having a rich dif-
ferential geometry. Woronowicz developed a general theory of the differential
calculus on a quantum group, the so called bicovariant differential calculus. Bi-
covariant bimodules are objects analogous to tensor bundles over Lie groups
[16]. The vector space dual to the space of left-invariant differential forms (i.e.,
the space of the left-invariant vector fields) is endowed with a bilinear operation
playing the role of the Lie bracket (for a friendly introduction to the subject
see, e.g., [1, 2]). This vector space is a quantum analogue of a Lie algebra. A
quantum Lie algebra can be defined axiomatically as a triple (V, σ, C) consisting
of a vector space V , a braiding σ : V ⊗V → V ⊗V and a “quantum Lie bracket”
C : V ⊗ V → V on it satisfying certain compatibility identities, see below.

Given a braiding σ, it is natural to try to describe quantum Lie algebras
compatible with σ. An important class of braidings arises as quantizations
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[8, 11] of classical r-matrices corresponding to Belavin–Drinfeld triples [3]. The
problem of a description of quantum Lie algebras compatible with the Cremmer–
Gervais R-matrix [6] has been addressed in our previous work [15] with the help
of a suitable rime Ansatz [14]. The Cremmer–Gervais R-matrix corresponds to
a maximal Belavin–Drinfeld triple for the defining fundamental representation
of the quantum group of type GL. In the defining representation this braiding
is of Hecke type which, in particular, implies that the BRST operator for a
quantum Lie algebra with this braiding is finite [9, 10]. In this note we give
a complete list of quantum Lie algebras compatible with the Drinfeld-Jimbo
R-matrix [7, 12] (which corresponds to the empty Belavin–Drinfeld triple) in
the defining fundamental representation on a vector super-space.

2 Bicovariant calculus

We give here a short extract from the differential calculus on quantum groups
to motivate the notion of the quantum Lie algebra and related objects used in
the sequel.

Let A be the Hopf algebra of functions on a quantum group. We denote
by ∆, ǫ and S the coproduct, the counit and the antipode of A. We use the
Sweedler notation for the coproduct

∆(a) = a(1) ⊗ a(2) .

Woronowicz [16] introduced the notion of the bicovariant bimodule Γ over A.
It is an A-bimodule endowed with two coactions

∆L : Γ → A⊗ Γ , ∆R : Γ → Γ⊗A

satisfying certain compatibility conditions. One supposes that Γ is a free left
(and right) A-module admitting a basis ωi formed by left-invariant forms, that
is,

∆L(ω
i) = 1⊗ ωi . (1)

Elements rij ∈ A are defined by

∆R(ω
i) = ωj ⊗ rij . (2)

Denote the Hopf algebra dual to A by A′; it has the coproduct ∆′, counit ǫ′

and antipode S′. There exists a set of elements f i
j ∈ A′ relating the left and

the right actions
ωib = (f i

j ∗ b)ω
j := b(1)f

i
j(b(2))ω

j . (3)

The consistency implies

∆′f i
j = f i

k ⊗ fk
j , ǫ′(f i

j) = δij , S′(f i
k)f

k
j = δij = f i

kS
′(fk

j ) , (4)

∆rij = rkj ⊗ rik , ǫ(rij) = δij , S(rkj )r
i
k = δij = rkj S(r

i
k) . (5)
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The differential (on functions) in the Woronowicz calculus is the map d :
A → Γ, given by

da = (χi ∗ a)ω
i ∀ a ∈ A , (6)

where the elements χi ∈ A′ form a basis of the free (left) A-module of the
left-invariant vector fields.

The dual A′ of a (finite dimensional) Hopf algebra A is again a Hopf algebra.
The Leibniz rule implies the coproduct

∆′χi = χj ⊗ f
j
i + 1⊗ χi . (7)

and the duality induces ǫ′(χi) = 0, hence S′(χj) = −χiS
′(f i

j).

The elements χi and f i
j satisfy the quadratic-linear relations

χiχj − χkχlσ
kl
ij = χkC

k
ij , σab

kl f
k
i f

l
j = fa

k f
b
l σ

kl
ij ,

χkf
a
l σ

kl
ij + fa

l C
l
ij = Ca

klf
k
i f

l
j + fa

i χj , χif
a
j = fa

kχlσ
kl
ij .

(8)

Here
σ
ij
kl = f i

l (r
j
k) and Ck

ij = χj(r
k
i ) . (9)

The compatibility leads to the following relations between the braiding σ and
structure constants C:

σab
lmσmc

nk σ
ln
ij = σbc

lmσal
inσ

nm
jk (braid relation) , (10)

Cb
skC

s
ij = Cb

isC
s
jk + Cb

slC
s
irσ

rl
jk (braided Jacobi identity) , (11)

σab
skC

s
ij = Cb

slσ
as
ir σ

rl
jk , (12)

σab
sl C

s
irσ

rl
jk + σab

il C
l
jk = Ca

rlσ
lb
skσ

rs
ij + Cb

skσ
as
ij . (13)

Denote by W the algebra with the generators χi and f i
j and the defining

relations (8). The formulas (4) and (7) equip W with a Hopf algebra structure.
For further details see the original work [16].

The relations (10)-(13) can be conveniently written [4, 5] as a single braid
relation. Let us make a convention that the small indices i, j, . . . , k run over
a set I = {1, . . . , dimV } and the capital indices I, J, . . . ,K run over the set
I0 := 0 ∪ I.

Lemma 1. Let R̂IJ
KL be a matrix whose non-vanishing components are

R̂
ij
kl = σ

ij
kl , R̂

0j
kl = C

j
kl , R̂

0A
B0 = δAB , R̂

A0
0B = δAB . (14)

Then the system (10)-(13) is equivalent to the braid relation

R̂12R̂23R̂12 = R̂23R̂12R̂23 , (15)

where R̂12 := R̂ ⊗ Id and R̂23 := Id ⊗ R̂. Let T I
J be the matrix with elements

T i
j = f i

j , T
0
j = χj , T

0
0 = 1, T i

0 = 0,

T I
J =

(

1 χj

0 f i
j

)

. (16)
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Then the relations (8) of the algebra W take the concise form

R̂
AB
KLT

K
I TL

J = TA
KTB

L R̂
KL
IJ . (17)

The Hopf structure of W (see eqs. (4) and (7)) reads

∆′T I
J = T I

K ⊗ TK
J , ǫ′(T I

J ) = δIJ ,

S′(T I
K)TK

J = δIJ = T I
KS′(TK

J ) .
(18)

The complexity of the relations (8) of the algebra W is hidden into the single

matrix R̂ and the matrix of generators T I
J .

Recall that the (right) adjoint representation of a Hopf algebra H on itself
is defined by adx(y) := S(x(1))yx(2). The image of the space V in W is stable
with respect to the adjoint action and one has

adfi
j
(χa) = χbσ

ib
aj , adχi

(χa) = χbC
b
ai .

In this representation the defining relations (8) turn into the (numerical) rela-
tions (10)-(13).

3 Quantum Lie algebra

The notion of a quantum Lie algebra formalizes the properties of the subalgebra
of “vector fields”, generated by χi, in W . We give the precise definitions. Let
V be the vector space with the basis {χi}i=1,...,dimV . The space V is endowed
with a braiding operator, that is, the operator σ : V ⊗V → V ⊗V which satisfies

σ12σ23σ12 = σ23σ12σ23 .

We assume that σ is semi-simple and has an eigenvalue 1. Denote by P(1) the
projector of σ corresponding to the eigenvalue 1.

Definition 1. A quantum Lie algebra is a triple (V, σ, C) where C is the
”bracket” C : V ⊗ V → V such that the following conditions hold:

i) braided symmetry: the bracket is in the kernel of the projector P(1)

CP(1) = 0 , (19)

ii) braided Jacobi identity

C(C ⊗ id) = C(id ⊗ C) + C(C ⊗ id)σ23 , (20)

iii) additional, linear in C, identities

σ(C ⊗ id) = (id⊗ C)σ12σ23 ,

σ(C ⊗ id)σ23 + σ(id⊗ C) = (C ⊗ id)σ23σ12 + (id⊗ C)σ12 .
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Definition 2. The universal enveloping algebra Uσ,C(V ) of the quantum Lie al-
gebra (V, σ, C) is the associative algebra with the generators χi, i = 1, . . . , dimV ,
and the defining relations

χiχj − χkχlσ
kl
ij = χkC

k
ij . (21)

Notation. We shall often write the compatibility conditions (12) and (13)
between σ and C in the form

Eσ,C(i, j, k; a, b) := σab
skC

s
ij − Cb

s lσ
as
ir σ

rl
jk , (22)

Fσ,C(i, j, k; a, b) := σab
sl C

s
irσ

rl
jk + σab

il C
l
jk − Ca

rlσ
lb
skσ

rs
ij − Cb

skσ
as
ij . (23)

4 Ice condition

The Boltzmann weights of the 6-vertex model in 2D statistical mechanics are
subject to a restriction known as “ice” condition. Namely, the ice condition for
the entries of an R-matrix R̂ can be different from zero only if the set of the
upper and the set of the lower indices coincide

R̂
ij
kl 6= 0 ⇒ {i, j} ≡ {k, l} . (24)

An ice matrix R̂ ∈ End(V ⊗ V ) has the form

R̂kl
ij = aijδ

l
iδ

k
j + bijδ

k
i δ

l
j .

If the set I of indices cannot be split into a disjoint union of two subsets I ′

and I ′′ such that bij = 0 = bji whenever i ∈ I ′ and j ∈ I ′′ then we say that

the matrix R̂ is indecomposable. Recall that an operator R̂ ∈ End(V ⊗ V ) is
called skew-invertible if there exists an operator Ψ ∈ End(V ⊗ V ) such that
Ψiu

jvR̂
vk
ul = δilδ

k
j . The characteristic function θi>j is defined to be 1 when i > j

and zero otherwise (similarly for θi<j).

Lemma 2.(See [13] for the proof.) Let R̂ be an ice solution of the braid equa-
tion. Assume that R̂ is invertible, skew-invertible and indecomposable. Then,
up to a reordering of the basis and rescaling, R̂ is the standard multi-parametric
Drinfeld-Jimbo R-matrix [7, 12] with aij and bij given by

aij = (−1)îδijq(1−2̂i) δijpijq
θi<j−θi>j , bij = (q − q−1)θi<j . (25)

Here q ∈ C∗ and î ∈ {0, 1}; the parameters pij satisfy pijpji = 1 and pii = 1.
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5 Drinfeld-Jimbo quantum Lie algebra

We shall say that î is the “parity” of the basis vector χi. Thus, aii = q if î = 0
and aii = −q−1 if î = 1.

Recall that the braiding operator σ of a quantum Lie algebra must have an
eigenvalue 1. We thus have to rescale the standard R-matrix whose eigenvalues
are q and (−q−1); there are two possibilities:

σ = q−1R̂ or σ = −qR̂ .

The second possibility can be reduced to the first one. Namely, the replacement
of q by (−q̃−1) in (25) leads to the standard R-matrix with the parities î′,
parameters q̃ = −q−1 and p̃ij where î′ = 1 − î and p̃ij = −pij q̃

2(θi>j−θi<j).
Thus we have to investigate the quantum Lie algebras with the braiding operator
σ = q−1R̂ or, explicitly,

σkl
ij = Aijδ

l
iδ

k
j +Bijδ

k
i δ

l
j ,

Aij = (−1)îδij q−2̂i δijpijq
−2θi>j , Bij = 1− q−2θi<j .

(26)

The R-matrix is called unitary if it squares to the identity operator. The matrix
σ is unitary iff q2 = 1 and not semi-simple iff q2 = −1.

Theorem 3. Let σ be a standard Drinfeld-Jimbo R-matrix (26). Assume that
σ is non-unitary and semi-simple, that is, q4 6= 1. The non-trivial quantum Lie
algebra with the braiding operator σ exists only if the generator χ1 is even and
p1j = 1 for j > 1. It is then unique (up to a global rescaling of Ck

ij) and the

structure constants Ck
ij are given by

Ck
ij = c(δ1i δ

k
j − δ1j δ

k
i ) . (27)

Explicitly, the relations (21) for this universal enveloping algebra Uσ,C(V ) read







χ1χj − q2χjχ1 = q2cχj if 1 < j ,

χiχj − pijq
2χjχi = 0 if 1 < i < j ,

χ2
i = 0 if î = 1 .

We start with the following lemma.

Lemma 4. For the operator σ given by (26) with q4 6= 1, the relations (19),
(12) and (13) imply

Ck
ji = −pjiC

k
ij and Ck

jj = 0 . (28)

Proof. The relation (19) is equivalent to Ck
ab(σ

ab
ij + q−2δai δ

b
j) = 0 for the Hecke

matrix σ with the eigenvalues 1 and (−q−2). For i 6= j, this immediately yields

Ck
ji = −pjiC

k
ij , i 6= j .
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For i = j and ĵ = 0 the relation (19) reads (1 + q−2)Ck
jj = 0 so, by the semi-

simplicity of σ, we obtain

Ck
jj = 0 , ĵ = 0 . (29)

For i = j and ĵ = 1 the relation (19) does not impose any constraint on Ck
jj and

we have to use eqs. (13) and (12). Consider the equation Eσ,C(j, j; j, j, j) = 0

with ĵ = 1. The summation indices get fixed by the ice condition and we obtain

σ
jj
jjC

j
jj = C

j
jjσ

jj
jjσ

jj
jj (no summation) ⇒ C

j
jj

(

1− (−1)ĵq−2ĵ
)

= 0 ⇒ C
j
jj = 0

by the semi-simplicity condition. It is left to show that Ck
jj for ĵ = 1 and j 6= k.

Choose the following equations from the system (12)-(13):

Eσ,C(j, j, j; j, k) = 0 , (30)

Eσ,C(j, j, k; k, k) = 0 , (31)

Fσ,C(j, j, j; j, k) = 0 . (32)

Again the ice condition “freezes” all summations and we obtain

(σjk
kj − σ

jj
jjσ

jj
jj )C

k
jj = 0 ,

(σkk
kk − σ

kj
jkσ

kj
jk )C

k
jj = 0 ,

(σjj
jjσ

jk
kj + σ

jk
jk − σ

jj
jj )C

k
jj = 0 .

(no summation!) (33)

Substituting the values of the matrix elements of σ we obtain (recall that ĵ = 1)
[

pkjq
−2θk>j − q−4

]

Ck
jj = 0 ,

[

(−1)k̂q−2k̂ − p2jkq
−4θj>k

]

Ck
jj = 0 ,

[

−q−2pkjq
−2θk>j + 1− q−2θj<k + q−2

]

Ck
jj = 0 .

(34)

If Ck
jj 6= 0 then each square bracket in (34) vanishes. It is straightforward to

see that this contradicts to the restriction q4 6= 1. �

Proof of Theorem 3. We first prove that

Ck
ij = 0 , i 6= j 6= k 6= i .

Consider the subsystem

Eσ,C(i, j, k; k, k) = 0 ⇔ AkkC
k
ij = AjkAikC

k
ij ,

Eσ,C(i, j, j; j, k) = 0 ⇔ AkjC
k
ij = AjjAijC

k
ij , (no summation!)

Eσ,C(i, j, i; i, k) = 0 ⇔ AkiC
k
ij = AjiAiiC

k
ij

(35)

with three different indices i 6= j 6= k 6= i. Since AijAji = q−2 the system (35)
has a non-zero solution Ck

ij iff

AiiAjjAkk = q−2 or (−1)î+ĵ+k̂q−2(̂i+ĵ+k̂) = q−2 .
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This equation may have a solution only if q4 = −1 and î = ĵ = k̂ = 1. But then
the equation Fσ,C(i, i, j; i, k) = 0 implies that Ck

ij = 0.

Next we consider the equation Eσ,C(k, i, j; i, k) = 0 with i 6= j 6= k 6= i; by

the ice condition, this equation reduces to 0 = σ
ij
ijσ

ik
kiC

k
k j . Since σik

ki 6= 0 and

σ
ij
ij 6= 0 iff i < j we conclude that Ck

kj = 0 iff i < j. If j > 1 we can always

find i : i < j. Thus the possibly non-zero structure constants Ck
kj are only Ck

k1;

the structure constants Ck
1k may also be different from 0, Ck

1k = −p1kC
k
k1 by

Lemma 4. As we have seen, all other structure constants vanish.
The constants Ck

1k are subject to further constraints resulting from the equa-
tion Eσ,C(1, j, k; j, k) = 0 with 1 < j < k,

σ
jk
jkC

j
1j = Ck

1kσ
j1
1jσ

jk
jk ⇒ C

j
1j = p1jC

k
1k for j, k such that 1 < j < k (36)

(no summation). The relation Eσ,C(i, j, j; j, j) = 0 reads

σ
jj
jjC

j
ij = C

j
ijσ

ji
ijσ

jj
jj (no summation) ,

which implies for i = 1 that

(1− p1j)C
j
1j = 0 .

Thus if p1j 6= 1 for some j then C
j
1j = 0 and, by (36), Ck

1k = 0 for all k and
there is no non-trivial quantum Lie algebra. Therefore p1j = 1 and then, by
(36), the constants Ck

1k for all k 6= 1 are equal, Ck
1k = c. Now consider the

equation Eσ,C(1, j, 1; 1, j) = 0,

C
j
1jσ

1j
j1(1 − σ11

11) = 0 (no summation) ,

So, if χ1 is odd then all structure constants vanish. This is our final result:

p1j = 1 , Ck
ij = c(δkj δ

1
i − δki δ

1
j ) , χ1 is even . (37)

It is straightforward to check that (37) defines the quantum Lie algebra. The
proof is finished. �

The braid relation is stable under three canonical operations (and their com-
positions): σ 7→ σT (transposition), σ 7→ σ21 := PσP , where P ∈ End(V ⊗ V )
is the flip, P (u⊗ v) = v⊗ u, and σ 7→ σ−1. However for the standard R-matrix
σ, the matrices σT , σ21 and σ−1 are again standard (modulo a base change and
a redefinition of parameters) and we do not need to consider them separately.
We conclude that Theorem 3 gives all quantum Lie algebras compatible with
the standard Drinfeld-Jimbo R-matrices.
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