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Abstract

A quantum financial approach to finite games of strategy is addressed, with an exten-
sion of Nash’s theorem to the quantum financial setting, allowing for an entanglement
of games of strategy with two-period financial allocation problems that are expressed
in terms of: the consumption plans’ optimization problem in pure exchange economies
and the finite-state securities market optimization problem, thus addressing, within
the financial setting, the interplay between companies’ business games and financial
agents’ behavior.

A complete set of quantum Arrow-Debreu prices, resulting from the game of strat-
egy’s quantum Nash equilibrium, is shown to hold, even in the absence of securities’
market completeness, such that Pareto optimal results are obtained without having
to assume the completeness condition that the rank of the securities’ payoff matrix is
equal to the number of alternative lottery states.

Keywords: Quantum Financial Economics, Finite Games, Quantum Nash Equilib-
rium, Quantum Arrow-Debreu Prices, Securities Markets

1 Introduction

Underlying economic theory, the notion of game constitutes a fundamental con-
ceptual unit with operativity in approaching the systemic behavior and dynam-
ics of economic systems, an argument that was established by von Neumann
and Morgenstern in [12]. Each (formal) game structure attempts to formalize
complex decisional problems that demand a calculatory adaptiveness on the
part of the players, a main point which is present both in standard game theory
[10, 12] as well as in the quantum expansions [9} [11].

Financial economics has approached, foundationally, the decisional contexts
for the problem of allocation of resources, from an exposure to games comprised
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of pure lotteries, that is, a game against nature where nature “chooses” each
state with a certain probability [IL [5] [§].

However, this constitutes an oversimplification of financial systems and their
interplay with economic systems. Since companies play games of strategy and,
ultimately, a securities market for those companies’ shares is about an exposure
to such strategic contexts.

Thus, to better understand the consequences of such an interplay between
business games and financial systems’ resources and wealth allocation problems
[, B, 8], we change, in the present work, the fundamental building block of
the pure lottery game, to make the lottery entangled with a quantum game of
strategy, and address how the financial economics of quantum games of strategy
may impact on the structure and conclusions of the two basic financial decision
problems: the management and optimization of consumption plans
in pure exchange economies and the securities’ market optimization
problem [II 5], for securities that lead to exposure, on the part of the financial
agents, to each player’s position in the quantum game.

In section 2., we address the quantum financial economics of finite games
of strategy and provide for an illustrative example of a game between two com-
panies, showing how one may interpret both the disentangled quantum mixed
strategies equilibrium as well as the quantum entangled solution.

In section 3., we draw upon the formal work of section 2. and introduce
a quantum game of strategy-dependent lottery, leading to a quantum entangle-
ment between a pure exchange economy for consumption claims on the lottery
results and the underlying game of strategy. In this way, it its shown how one
can operationalize the traditional two-period exchange economy results of stan-
dard financial theory within a setting in which the lottery is entangled with a
strategic choice problem.

From these results, the securities market portfolio problem is addressed,
being shown that, when each security offers an exposure to a game position,
Pareto optimality for the financial agents’ consumption problem is guaranteed,
even in incomplete financial markets, as long as the financial prices reflect the
quantum game present value of that exposure.

In section 4., we conclude with some final remarks regarding quantum game
theory and quantum financial economics.

2 Quantum Financial Economics of Finite Games of
Strategy

2.1 The Formalism and Equilibrium Problem

Finite games of strategy, within the framework of noncooperative quantum game
theory [10], can be approached from finite chain categories, where, by finite chain
category, it is understood a category C(n; N) that is generated by n objects and
N morphic chains, called primitive chains, linking the objects in a specific order,
such that there is a single labelling. C(n; N) is, thus, generated by N primitive
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chains of the form:

o LN 1 LN Tl Tyt ELN T, (1)
A finite chain category is interpreted as a finite game category as follows: to

each morphism in a chain x;_1 N x; there corresponds a strategy played by a
player that occupies the position ¢, in this way, a chain corresponds to a sequence
of strategic choices available to the players.

A quantum formal theory, for a finite game category C(n; N), is defined as a
formal structure such that each morphic fundament f; of the morphic relation

Ti_1 i) x; is a tuple of the form:
fi= (’Hi,Pi’Pfi) (2)

where H; is the i-th player’s Hilbert space, P; is a complete set of projectors
onto a basis that spans the Hilbert space, and I:’fi € P;. This structure is inter-
preted as follows: from the strategic Hilbert space H;, given the pure strategies’
projectors P;, the player chooses to play Pfl..

From the morphic fundament definition (2), an assumption has to be made
on composition in the finite category, we assume the following tensor product
composition operation:

fiofi= Fi (3)
i = (Hji =H; @ Hi, Pji = Py @ Py, Py, = Py, ®Pfi) (4)

From this definition of composition, a morphism for a game choice path can be
introduced as:

Zo Fropa Ty (5)

1 1 1
Jrn.21= (HG = ®Hi7PG = ®Pivpfn...21 = ®pf¢> (6)

in this way, the choices along the chain of players are completely “encoded” in
the tensor product projectors an”_ﬂ. Given the above definitions, there are
N =TJ;_, dim (#;) such morphisms, a number that coincides with the number
of primitive chains in the category C(n; N).

Each projector can be addressed as a strategic marker of a game path, and
leads to the matrix form of an Arrow-Debreu security [1l 5], therefore, we call
it game Arrow-Debreu projector.

While, in traditional financial economics, the Arrow-Debreu securities pay
one unit of numeraire per state of nature, in the present game setting, they
pay one unit of payoff per game path at the beginning of the game, however
this analogy may be taken it must be addressed with some care, since these are
not securities, rather, they represent, projectively, strategic choice chains in the
game, so that the price of a projector anmzl (the Arrow-Debreu price) is the
price of a strategic choice and, therefore, the result of the strategic evaluation
of the game by the different players.
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Now, let |¥) be a ket vector in the game’s Hilbert space Hc, such that:

) = Z Y (fr..21) [ fa..21) (1)

f'n““21

where 1 (f5,..21) is the Arrow-Debreu price amplitude, with the condition:

> W (fa)P=D (8)

fr.. .21

for D > 0, then, the |¢) (f,. 21)|* correspond to the Arrow-Debreu prices for the
game path f, 21 and D is the discount factor in riskless borrowing, defining
an economic scale for temporal connections between one unit of payoff now and
one unit of payoff at the end of the game, such that one unit of payoff now can
be “capitalized” to the end of the game (when the decision takes place) through
a multiplication by %, while one unit of payoff at the end of the game can be
discounted to the beginning of the game through multiplication by D.

In this case, the unit operator 1 = E,fn...21 P(fn21) has a similar profile

as that of a bond in standard financial economics, with <\I/ m \IJ> = D, on the
other hand, the general payoff system, for each player, can be addressed from
an operator expansion:

T = Z T (fn21) an,“2l (9)

fr.. .21

where each weight m; (fy...21) corresponds to quantities associated with each
Arrow-Debreu projector that can be interpreted as similar to the quantities of
each Arrow-Debreu security for a general asset. Multiplying each weight by
the corresponding Arrow-Debreu price, one obtains the payoff value for each
alternative such that the total payoff for the player at the end of the game is
given by:

W] 0) = 3 i (fn) 2]l (10)

fn...21

We can discount the total payoff in (10) to the beginning of the game using
the discount factor D, leading to the present value payoff for the player:

2
PV;=D (V|| W) =D > m (fn..21) w (11)

fn...21

In the above equation, the 7; (f,,. 21) represent quantities, while the ratio M
represents the future value (at the decision moment) of the quantum Arrow-
Debreu prices (capitalized quantum Arrow-Debreu prices). Introducing the ket
|Q) € He, such that:

Q) = —=|¥) (12)
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then, |Q) is a normalized ket for which the price amplitudes are expressed in
terms of their future value. Replacing in (11), we have:

PV =D (Q|m| Q) (13)

In the quantum game setting, the capitalized Arrow-Debreu price amplitudes(f,.. 21|Q)
become quantum strategic configurations, resulting from the strategic cognition
of the players with respect to the game. Given |Q), each player’s strategic
valuation of each pure strategy can be obtained by introducing the projector
chains: R A A R
Cfi = Z an...i+1 ®Pfi ®Pfi—1...1 (14)

fr.it1,fim1.

with > Cf, = 1. For each alternative choice of the player i, the chain sums
over all of the other choice paths for the rest of the players, such chains are called
coarse-grained chains in the decoherent histories approach to quantum mechan-
ics [2, 4 6], following this approach, one may introduce the pricing functional
from the expression for the decoherence functional [2, [ [6]:

D(fing::1Q) = (@ ¢} Cu| Q) (15)

we, then, have, for each player:

D (fi,9i:1Q)) =0, Vfi # gi (16)

this is the usual quantum mechanics’ condition for an aditivity of measure (also
known as decoherence condition), which, in the present case, means that the
capitalized prices for two different alternative choices of player ¢ are additive.
Then, we can work with the pricing functional D (f;, f; : |Q)) as giving, for
each player an Arrow-Debreu capitalized price associated with the pure strat-
egy, expressed by f;. Given that the condition (16) is satisfied, each player’s
quantum Arrow-Debreu pricing matrix, defined analogously to the decoherence
matrix from the decoherent histories approach, is a diagonal matrix and can
be expanded as a linear combination of the projectors for each player’s pure
strategies as follows:

= D(fifi: Q) Py, (17)
fi

which has the mathematical expression of a mixed strategy. In particular,

D, (|Q)) can be regarded as points in a simplex whose vertices are the pure

strategies’ projectors. Gathering all of the pricing matrices D; (|Q)) we obtain

the n-tuple D (|Q)) = (D (|Q)) . D2 (|Q)) . D, (|Q)))- Introducing pu; [ (|Q))] ==
Vi =(Q |7;] Q), Nash’s equilibrium definition [10], follows, within the quantum

financial setting, as:

P[0 (1)) = max {pui [0 (1@):D: (U1@)) )]} (18)
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where by © (|Q’> Dy (U |Q’))) it is understood that, given the feasible quan-

tum price strategy |Q’), the i-th player performs a unitary rotation U leading to
a substitution of D, (|Q")) by D; (U |Q’)) leaving all of the rest of the elements

in the n-tuple unchanged. Thus, each player chooses from all of the possible
quantum computations, the one that maximizes the present value payoff func-
tion with all the other strategies held fixed, which is in agreement with Nash
[10].

The equilibrium price ket |Q) is such that each player’s present value payoff
is optimal, given all of the other players’ strategies. The following theorem can
now be proven:

Theorem 1. (Quantum Equilibrium Theorem) - Every quantum finite
game has a ket of capitalized Arrow-Debreu price amplitudes, unique
up to a capitalized Arrow-Debreu price-conserving unitary transfor-
mation, that is an equilibrium solution for the game.

Proof. In the present proof, we assume all of the above definitions and game
formalism context. Let, then, |Q) € Hg be a ket of capitalized Arrow-Debreu
price amplitudes and D (|Q)) be the corresponding n-tuple of pricing matrices,
define also |Q : f;) € He to be such that D; (|Q : f;)) = D, (|Q)) for every j # i
and D; (|Q : fi)) = Py,. Following Nash’s proof in [10], we introduce the set of
continuous functions of ® (|Q)) defined by:

@i, [D(1Q))] == max (0, pv; [D (|Q : fi))] — pv:i [D (1Q))]) (19)
Let, now, U be a unitary transformation such that U |Q) = |X) and, for each,
D; (|Q)) € ®(]Q)) it holds that:

1 )
Di (X)) =17 ST D; (|Q)) + ,Z pir (D (@) Pr | (20)

then, the unitary transformation leads to a pricing matrix transformation that
coincides with the transformation addressed by Nash in [10], such that its fixed
points are the equilibrium points. Given the geometric coincidence between
Nash’s formulation and the structure of the space of pricing matrices for the
quantum game, it follows that Nash’s theorem applies and every game has an
n-tuple of equilibrium pricing matrices.

For any © (|@)) which is an equilibrium, there is a family of kets defined by:

€@ (@) ={IX) e He : D (X)) =2 (|Q))} (21)

all of the kets in £ (D (]Q))) are related to each other by equilibrium preserving
unitary transformations, which necessarily conserve the capitalized equilibrium
quantum Arrow-Debreu prices. O

In the above theorem, and proof, the probabilistic interpretation is not in-

[ (fn...20)?
D

voked for the capitalized prices , which have a mathematical structure,
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with respect to the payoff operators, similar to probability measures. Within
an evolutionary finance framework, one can, however, offer a probabilistic in-
terpretation by working with a notion of fitness as a selectibility of a strategic
solution in an adaptation problem [3], such that the probability of a strategy
being selected is proportional to its adaptive value.

In the present case, the capitalized quantum Arrow-Debreu prices constitute
a strategic valuation measure of a game path at the end of the decision frame
(future) and, therefore, they become a measure of the adaptive value of a game
alternative for the system of players.

The game paths with higher assigned prices are the most desired by the play-
ers’ system as good adaptive solutions, therefore, these should be more probable
of being selected by the system of players, hence, the probabilities of selection
of each game path should numerically coincide with the capitalized quantum
Arrow-Debreu prices. This is a numerical coincidence, not a conceptual one,
since the capitalized prices are expressed in units of payoff, while the proba-
bilities are pure numbers. Under the evolutionary interpretation, the present
value of the decision, therefore, leads to an expectation on the future decisional
moment discounted to the present.

We now provide for an example from quantum corporate finance.

2.2 A Two-Company Game Example

In order to illustrate the formalism introduced so far, let us assume that two
companies, labelled A and B, are evaluating a new investment opportunity,
having the choice of implementing the project with one of two alternative tech-
nologies, labelled 0 and 1.

Both companies are expected to announce simultaneously, the new invest-
ment, making public to the markets the technology chosen, and neither com-
pany knows beforehand what the other will choose, so that each decides without
knowledge of the other’s decision.

If both companies choose the same technology, then, company A expects
to obtain a project’s return index (PRI) of 2, while it obtains a PRI of 1.5 if
the companies do not choose the same technology. Company B, on the other
hand, expects to obtain a PRI of: 2.5 if the companies do not choose the same
technology; 1.4 if both companies choose technology 0 and 2 if both companies
choose technology 1.

There are four primitive chains for this game, with a freedom to choose who
to place first in the chain. In the present case, for simplicity, we follow the

labels and write these chains as 0 <% 1 2= 2, where A, means A chooses
technology s, with s = 0,1, the same holding for Bs;. The game’s choice paths’

morphisms are, then, expressed as 0 By 2, with B,A, = (’HG,’PG,PBSAT)
and Pg = {pBSAT = |BsA,) (BsAy| : 1,8 =0, 1}.
Given the description of the game, the payoff operators are, in turn, given
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by:
Ta =2 (PB()A() + PB1A1) +1.5 (PBIAO + PBoAl) (22)

Fp = 14Pp,a, +2Pp, 4, +2.5 (Po,a, + Pya,) (23)

Up to a price-conserving unitary transformation, the quantum Nash equilib-
rium is, in this case, given by:

Q) = \/g (|BoAo) + |B14o)) + \/%OBOAQ +[B1A1)) (24)

which is separable in A and B’s strategies:

@ = (5180 + 5180 ) ([ 4o \/%|A1>> (25)

and the resulting pricing matrices reflect this tensor product structure:

Dy = %PAO + 1—;PA17 Dp = %PAO + %PA1 (26)
Assuming that the IRP are calculated for the beginning of the game, which
forms part of the “year 0” at which the project is evaluated, we have D = 1 and,
thus, assuming the quantum Arrow-Debreu prices to be expressed in monetary
units: PV4 = $1.75 while PVp = $2.15625. Under the evolutionary framework,
introduced in the previous subsection, A chooses technology 0 with probability
equal to 7% and chooses technology 1 with probability % 16, while B plays a fair
coin game for 0 and 1, these probabilities are conserved for any quantum Arrow-
Debreu price conserving transformation of |@) and the choice of one player is
probabilistically independent from the choice of the other player.

If, on the other hand, company A were to announce first its decision, then,
B could always wait for A and choose its strategy so as to maximize its payoff,
a resulting general solution, for D = 1, is an entangled ket:

|Q) = 14(0) |B1Ao) +¥a(1) |Bo A1) (27)

such that PV = (Q|74] Q) = 1.5 and PV = (Q|7p| Q) = 2.5, which is the
result of either the path B; Ay or the path ByAj, being played by the companies,
it does not matter what the value of the quantum Arrow-Debreu prices are, the
result is always the same for each company.

3 Quantum Games with Exchange Economies

We now expand the formalism of the previous section to include exchange
economies, first a pure exchange economy comprised of a lottery that is a single
bet game on the result of an underlying quantum game of strategy, and, second,
a securities economy.
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3.1 Single bet game

In the present section it is useful to introduce Greek letter indexes ranging in
1,2,...N, keeping the Latin lettered indexes for denoting adaptive agents (both
agents in the exchange economy as well as game players), thus, one assumes
to order the morphic fundaments f, o1 and write, according to that order, f,
with the index o = 1,2, ..., N. Assuming this notation, in order to introduce an
exchange economy structure, we, first, expand the strategic game of subsection
2.1 with a lottery, by adding an addicional x,, 41 object, such that the morphism
(5) is expanded to:

g 'fgl Tp — Tpil (28)

where w is an index ranging as w = 1,2, ...IN. This is called the single bet game,
since there is only one lottery type. The ket (12) is, accordingly, replaced by:

1
Q) = No ;jw (for @) | faw) (29)

The price amplitudes ¥ (f,,w) are now pricing, simultaneously, the game path
and the lottery.
Introducing the lottery economy operator é, such that:

élQ) =1Q) (30)

| faton) = {'()f“w>’ o (31)

then, it follows that the lottery result is entangled with the game, that is, in
the quantum game equilibrium, we have the entangled kets as solutions to the
above eigenvalue equation:

1
Q) = Ni ;w (furw) | fow) (32)

thus, the quantum state for the game is no longer a pure state, but, instead
a statistical mixture density operator, resulting from tracing out the lottery
economy, such that, from the systemic position of the game, we have the density
operators for the game and the lottery:

N )l

paame = Trronery (1Q) Q) = D =="5="=Py, (33)

i Y (fur ) -

PLottery = TTGame (|Q> <Q|> = Z %Pw (34)
in both cases, the capitalized quantum Arrow-Debreu prices W are as-

sumed from now on to be, always, the Nash Equilibrium prices for the underlying
quantum game of strategy.
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Now, let us introduce a two-period pure exchange economy with a single
perishable good in both periods, such that the agents, in the economy, choose a
consumption at time 0 (beginning of the game) and state contingent claims on
lottery-dependent consumption for the end of the game, taken, for simplicity,
to be time 1.

The exchange econonomy’s agents and the players are, in this case, assumed
to be different entities, while the players are addressing the game of strategy, the
agents are addressing the lottery, through a consumption allocation problem,
such that, c;p is the i-th agent’s consumption at time 0, and c¢;,, is the i-th
agent’s consumption at time 1. A utility operator on consumption for each
agent is introduced such that, for i = 1,2,...,I (I being the number of agents
in the exchange economy):

Uy | fawk) = ui (cio, Ciw) | faw) (35)

For two different agents, their utility operators are assumed to commute [i;, 4;] =
d;; and the utility functions u; are assumed to be increasing and strictly con-
cave functions of the consumption plan (¢, ¢;,). We now have a problem of
allocation of state contingent consumption among agents, where, without loss
of generality, the single consumption good is used as the numeraire for the
exchange economy [5].

Taking Cy to be the aggregate time-0 consumption available and C,, the
aggregate consumption in the w-th lottery result at time 1, the feasibility con-
ditions are given by [5]:

1 I

C'0 = Z Ci0, Co = Z Ciw (36)

=1 =1

Assuming that each agent knows that the lottery and the strategic game are
entangled and assigns a subjective probability to each alternative w, then, each
agent has a subjectively assigned density operator for the lottery:

[)iLottery = Z bell (fwa w) Pw (37)

where bel; (f,,w) is a subjective statistical weight that the agent assigns to the
lottery, without any further information available upon the underlying game’s
payoff system. The (subjective) expected utility is:

<’&i>Bel =Tr (ﬁiotteryﬁi) (38)
Then, the following optimization problem, then, ensues for the Pareto opti-

mal allocation:

I N
max{(cio,cw)le,w:1,2,...,N} Zi:l Ai <ui>Bel
s.t. S =C,w=12,...N (39)
iy cio = Co
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Forming the Lagrangian for the optimization problem we have:

max L=
{(cw,ciw){zl,w:1,2,...,N}
I I
e 9L F
=1
N
Z Z%
The first-order conditions lead to:
N SO0y beli (fu,w) Lulemcie) — g =12, 1 (41)

Nibel; (fo,w) Luleocio) — g =12 . N, i=1,2,..,1 (42)

I
> i =Cu Yw =12, N (43)

=1

I
Z Cio = CQ (44)
=1

Since the utility functions are assumed to be increasing and strictly concave and
the weights {)\; } _, are assumed to be strictly positive, the first order conditions
are necessary and sufficient for a global maximum [5].

Replacing (42) in (41) for each agent, the marginal rates of substitution
between present consumption and future lottery-state contingent consumption
are equal across individuals:

beli (fu,w) Sufteed g
SN beli (f )765(“”’%) %0 (19)
w=1 € w, W dcio

forw=1,2,....,Nandi=1,2,...,1.

Following Huang and Litzenberger in [5], the above optimization problem
can be solved for the cases where, taking ¢y = 1, ¢, become the lottery-state
contingent Arrow-Debreu prices. In the present case, since the contingency does
not come from a pure lottery, but, instead from a lottery that is entangled with
a finite quantum game of strategy, we may let ¢, equal the quantum Arrow-
Debreu price for the game, that is:

b = [ (fu, w)|? (46)

If we replace (46) in (45), and let ¢o = 1, we obtain:

bel (fo.)7 ) auw é;czO;czw)
N it = ¢ (fu, )" (47)
Zw:l beli (f(—w ) 1(('9;70(310
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going further, and assuming that each agent has enough information to form
a financially sustained rational equilibrium prediction about the game, that is,
provided each agent, in the transaction economy, has enough information on the
game of strategy to compute the quantum Nash equilibrium for the game and,
therefore, the probabilities for the lottery, then:

2
bel; (fu,w) = 1% (fo, w)I” (48)

D
Replacing this last result in (47), and given the positivity of the quantum Arrow-

Debreu prices, the following result holds:

8ui(ci0;ciw) _ Di |7/J (fmw)|2 ) 8ui(ci0;ciw)

4
6Ciw acio ( 9)

establishing the relation between the marginal utilities and the quantum game
of strategy solution.

3.2 Securities market game

Assuming the single-lottery framework of equations (30) to (32), we can intro-
duce a transaction market for m securities with payoff operators:

. i (W) |faw), w=a«a
T | fawr) = { i (@) faw) (50)

0, w#
for 5 = 1,2...,m . Each operator is financially consistent with the lottery econ-
omy, in the sense that [£;,é] = 0 having the same entangled eigenstates de-

scribed by equation (32). Letting s;; and S; denote, respectively, the number
of securities held by the agent 4, in equilibrium, and the price for security j at
time 0, the relevant optimization problem for each agent’s portfolio, given the
previous subsection’s framework, can be formulated as follows [5]:

maX{c,, 51]1] 1,2,...,m} (i) per (51)
st cio+ 258557 = eio + Dimq wi S

where e;o is an endowment of time 0 consumption and w;; is a time 0 endowment
of shares of security j. Given the previously assumed properties of the utility
functions, the necessary and sufficient conditions for the i-th agent’s portfolio
problem are given by:

- bel; (fu,w) M
Z Zm bel (f ) g’l:jclo C'Lw) IJ(W) = Sj (52)
w=1 wy W T

with Ciw +— Z;nzl SijLj (w)
To derive a Pareto optimal allocation that reflects the underlying game of
strategy structure, it is first, important to notice that, given the entangled ket of
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equation (32), one may express a financial valuation from the density operator
for the lottery such that, for the game’s quantum Nash equilibrium, we have:

Tr (ﬁLottaryxj Z M (53)

this is the expected payoff for the j-th security, then, following section 2.’s
framework, one may calculate a present value as one would for any other player’s
position, and write:

P‘/}:DXTT‘(pAEconOmy;[;] sz] fwa )| (54)

it is then (financially) natural for the securities market agents to value the
security in terms of this game payoff, such that the condition holds:

Sj = PVj (55)

which is financially sound since each state-contingent payoff is weighed by the
quantum game price of that state, the state being, in this case, the result of the
lottery which is, in turn, contingent upon the game of strategy’s path.

Now, if the number of securities is equal to the number of players in the un-
derlying game of strategy (m = n), and if each security is a financially transac-
tionable exposure to the corresponding player’s position in the game of strategy
(securitization of game positions), in this case, one may consider that the secu-
rity payoff is proportional to the player’s payoff, the constant of proportionality
0 giving the exposure (for instance, the proportion of equity is an example of
an exposure to a company’s value, the company being the player, the equity
holders being the financial agents and the shares being the securities), formally,
we may write &; := 07;.

Thus, by playing for the quantum Nash equilibrium the players are simulta-
neously maximizing the value of the corresponding security asset, and therefore,
the portfolio value for any financial agent is maximized by the Nash optimizing
adaptive behavior of the players involved in the underlying game of strategy.

Denoting |1 (f.o,w)|> by ¢, and letting, as before, bel; (fo,,w) = ¢w, by
replacing (54) in (52), we obtain the optimum:

N Ou;(Ci0,Ciw) N 1
e P (W) =D Y —dur;(w) (56)

which can be rewritten as:

N aui(acimcm) 1
> durs(w) ( A o)~ —) =0 (57)
w=1 D Zi}vzl (bw%w D
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One solution, in particular, for (56) results from taking the argument within
Ou;i(ci0:¢iw)
the brakets to be zero, i T L =0, which leads to the inter-
DZ:}n 1¢w i1Ci0-°%w D

9cio

temporal Pareto optimal consumption plan condition:

8“1(0107 Clw 1 8“1 0107 Clw)
=D w
aczw Z (b 6010 (58)

Therefore, even in incomplete securities’ markets, as long as there is a security
exposure for each game player’s position that is proportional to the payoffs on
that position, and assuming that the quantum Nash equilibrium is played, one
obtains a consumption Pareto optimal plan for securities prices reflecting the
quantum Nash equilibrium of the game.

The optimal consumption plan depends upon two behaviors: a quantum
Nash optimizing behavior on the part of the players and an equilibrium valuation
behavior on the part of the securities’ market agents, such that the securities’
market agents reflect, in each securities’ price, the financial present value of
the exposure at the corresponding quantum Nash equilibrium. Therefore, the
adaptiveness of the financial market system is inextricably interweaved with the
adaptiveness of the business game playing system.

4 Conclusion

Financial decisions, regarding the inter-temporal allocation of wealth and of
financial resources, does not take place within a single pure lottery game struc-
ture, rather, while financial agents manage asset portfolios, trying to optimize
their intertemporal securities’ management, the value drivers for these assets
come from a complex adaptive dynamics in which companies play games of
strategy with their stakeholders, adapting to opportunities and responding to
threats, expanding their strengths and addressing their weaknesses, managing
their business risk. Business strategic decisions affect directly the probabilities
associated with different financial scenarios and, therefore, directly affect asset
allocation and valuation issues.

This state of affairs (business and financial) was the main point of concern
for the present article, dealing with the effects upon the traditional financial op-
timization problems, when one abandons the assumption of a pure lottery game
towards a lottery whose results, and therefore probability profiles, are entangled
with a game of strategy where players enact a quantum Nash equilibrium.

In order to operationalize this problem it became necessary to address how
one might obtain an Arrow-Debreu price structure from the game of strategy
itself and, at the same time, entangle that structure with a lottery game, such
that all of the financial lottery state-contingent prices coincide with the quantum
game equilibrium solution Arrow-Debreu prices.

Such a financial approach to game theory, along with the quantum game
equilibrium theorem, derived in section 2., thus, allowed for the quantum for-
malism to be applied towards a greater effectiveness in the integration between
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business game theory and financial decision theory, showing how Pareto optimal
allocations in a securities market may reflect the game of strategy’s quantum
Nash equilibrium playing, a result that is independent from any completeness
assumption that would restrict the number of linearly independent securities to
equal the number of lottery states.
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