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Abstract

We derive PAC-Bayesian generalization bounds for supedvésid unsupervised learning models
based on clustering, such as co-clustering, matrix ttieféation, graphical models, graph cluster-
ing, and pairwise clusteringWe begin with the analysis of co-clustering, which is a wydesed
approach to the analysis of data matrices. We distinguighngrtwo tasks in matrix data analysis:
discriminative prediction of the missing entries in datancas and estimation of the joint proba-
bility distribution of row and column variables in co-ocoemce matrices. We derive PAC-Bayesian
generalization bounds for the expected out-of-samplepadnce of co-clustering-based solutions
for these two tasks. The analysis yields regularizatiomsethat were absent in the previous for-
mulations of co-clustering. The bounds suggest that theargd performance of co-clustering is
governed by a trade-off between its empirical performamckthhe mutual information preserved by
the cluster variables on row and column IDs. We derive aatiter projection algorithm for finding

a local optimum of this trade-off for discriminative pretiin tasks. This algorithm achieved state-
of-the-art performance in the MovieLens collaborativesfilhig task. Our co-clustering model can
also be seen as matrix tri-factorization and the resultgigeageneralization bounds, regularization
terms, and new algorithms for this form of matrix factoriaat

The analysis of co-clustering is extended to tree-shapaghiral models, which can be used
to analyze high dimensional tensors. According to the beutite generalization abilities of tree-
shaped graphical models depend on a trade-off betweendhmgiirical data fit and the mutual
information that is propagated up the tree levels.

We also formulate weighted graph clustering as a predigifoblem: given a subset of edge
weights we analyze the ability of graph clustering to prethe remaining edge weights. The
analysis of co-clustering easily extends to this problewh suggests that graph clustering should
optimize the trade-off between empirical data fit and theualihformation that clusters preserve
on graph nodes.

Keywords: matrix tri-factorization, graphical models, graph clustg, pairwise clustering, com-
binatorial priors, density estimation

1. This paper is based on (Seldin and Tishby, 2008, 2009; Seldin, 2000).

(©20?7? Yevgeny Seldin and Naftali Tishby.



SELDIN AND TISHBY

1. Introduction

Structure learning and, in particular, clustering is an important and longistaproblem in sci-
ence. In many situations it has to be performed based on a limited data sampligramal or limited
supervision. A natural question that arises in this context is to what etkiemferred structure is
a reflection of a “true” structure underlying the data or a mere artifacteofgtéarning model and/or
statistical fluctuation of the finite sample. But is there a “true structure” in thediace? Consider
the following example: assume we have a bag of blocks which we can clysteultiple parame-
ters, such as shape, color, material they are made of, and so on. Allgbssibilities are equally
plausible and asking whether a clustering of blocks by shape is betterrse Wmn a clustering of
blocks by color makes no sense. But the absence of an objective deampetiterion for outputs of
two structure learning algorithms poses a serious obstacle for their evalaaticthe advancement
of unsupervised learning in general.

We argue that one does not learn structure for its own sake, but tatfamilitate solving some
higher level task. By evaluating the contribution of structure learning toghgisn of the higher
level task it is possible to derive an objective comparison of the utility of miffestructures in
the context of this specific task. Returning to the bag of blocks example, Knoe that after
clustering the blocks we will have to pack them into a box, then the clusteribtpoks by shape
is much more useful than the clustering of blocks by color, since packingiféerent to color. We
can further measure the amount of time that different clusterings saviedhss packing task and
thereby obtain an objective numerical evaluation of the utility of clusterindaafids by different
parameters in this context. Moreover, by repeating the experiment kdxera (or by some more
intelligent analysis) it is possible to provide generalization guaranteeswnrhuh time this or
other clustering algorithm is expected to save us in the packing task in the.futur

Since in any non-trivial data many structures coexist simultaneously, “blindupervised
learning without specification of its potential application is doomed to failure irgémeeral case.
This is because the potential application (or range of applications) can angkgroperty or ele-
ment of the structure either decisive or completely irrelevant for the taskhance render it useful
or useless for identification by unsupervised learning. The need tidesnsisupervised learning
within the context of its subsequent application has been pointed out bynesegrchers, especially
those concerned with practical applications of these methods (Guyon 20@8). In the present
paper we reformulate traditional unsupervised learning problems agtiwadroblems and then
adapt well-developed tools from supervised learning to provide ghzatian bounds on their ex-
pected out-of-sample performance. We start with the problem of co-ghggtéut then show that
our approach to problem formulation is applicable to and can be analyzeiicka broader range
of applications.

Co-clustering is a widely used method for analysis of data in matrix form by simadts
clustering of rows and columns of the matrix (Banerjee et al., 2007). Herlaus solely on co-
clustering solutions that result in a grid form partition of the data matrix. Thiws faf co-clustering
is also known as partitional co-clustering (Banerjee et al., 2007), enleclird bi-clustering (Cheng
and Church, 2000; Kluger et al., 2003), grid clustering (Devroyd.efl896; Seldin and Tishby,
2008, 2009), and box clustering. Note that some authors use the terolgstering and bi-
clustering to refer to a simultaneous grouping of rows and columns thahdbessult in a grid-form
partition of the whole data matrix (Hartigan, 1972; Madeira and Oliveira4Rafut these forms of
partitions are not discussed in this work. Note as well that this paper @ssdft assignments of
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rows and columns to their clusters, while using two-level generative modletsas those discussed
in (Dhillon et al., 2003; Banerjee et al., 2007) for hard assignments.rflgcBayesian approaches
to co-clustering have been suggested, for example (Shan and Bar28@8 Salakhutdinov and
Mnih, 2008; Shafiei and Milios, 2006; Wang et al., 2009; Lashkari@otiand, 2009), which con-
sider mixed memberships by introducing an additional level to the generaticegs. However,
three-level generative models require approximate inference methoasiswariational inference
or Markov Chain Monte Carlo, whereas the two-level model for discrimiegiiediction discussed
here can be learned by iterative projections. The analysis presemedsheot limited to two-
dimensional data matrices, but holds for higher dimensional tensors ag\ietee-level Bayesian
approach to clustered tensor factorization was recently presentedske@er et al. (2009).

In the past decade co-clustering has successfully been applied in multipkrdg including
clustering of documents and words in text mining (Slonim and Tishby, 200@aiiv and Sourou-
jon, 2001; Dhillon et al., 2003; Takamura and Matsumoto, 2003), gere=qrerimental conditions
in bioinformatics (Cheng and Church, 2000; Cho et al., 2004; Klugdr,e2@G03; Cho and Dhillon,
2008), tokens and contexts in natural language processing (Frédtagy,Rohwer and Freitag, 2004;
Li and Abe, 1998), viewers and movies in recommender systems (Gewtdéerugu, 2005; Seldin
et al., 2007; Salakhutdinov and Mnih, 2008; Seldin, 2009), etc. In {{®eldal., 2007; Seldin and
Tishby, 2009) it was pointed out that there are actually two differenseksf problems that are
solved with co-clustering that correspond to two different high-levédstasd should be analyzed
separately. The first class of problems are discriminative prediction @s&gsypical representative
of which is collaborative filtering (Herlocker et al., 2004). In collabomtfiiltering, the analyst is
given a matrix of viewers by movies with ratings, e.g. on a five-star scaldyuaéd by the viewers
to the movies. The matrix is usually sparse, as most viewers have not sd¢lem mibvies. In this
problem the task is usually to predict the missing entries. We assume that tseraésunknown
probability distributionp(xs,X2,y) over the triplets of viewek;, moviexp, and ratingy. The goal
is to build a discriminative predictay(y|xs,x2) that given a pair of viewek; and moviex, will
predict the expected rating A natural form of evaluation of such predictors, no matter whether
they are based on co-clustering or not, is to evaluate the expectelJ@ss ) Eq(yx x)! (Y;Y’),
wherel(y,y') is an externally provided loss function for predictigiginstead ofy. In Section 3
we provide this analysis for co-clustering-based predictors. The sinalgn be used not only to
construct co-clustering solutions to this problem, but also to conduct eetifed comparison of the
co-clustering-based approach to this problem with other possible apf®a

The second class of problems, which are solved using co-clusterengr@slems of estimation
of a joint probability distribution in co-occurrence data analysis. A typisalngple of this kind
of problem is the analysis of word-document co-occurrence matricestimieing (Slonim and
Tishby, 2000; El-Yaniv and Souroujon, 2001; Dhillon et al., 2003).rifddocument co-occurrence
matrices are matrices of words by documents where the number of times eabbogorred in each
document is counted in the corresponding entries. If normalized, suctria o@n be regarded as an
empirical joint probability distribution of words and documents. To illustrate tfierdnce between
co-occurrence data and the data considered in discriminative predictks) tee point out that the
ratings in the collaborative filtering example are functions of viewer and mbvpairs and they do
not depend on other viewers or movies. By contrast, in co-occuriategthe joint probability (or
the number of co-occurrence events) is normalized by the size of thascar thus depends on
the whole subset of words and documents considered (or the size arfhesdf no normalization
is applied).
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Although many researchers have analyzed co-occurrence datadbgriclg similar words and
similar documents (Slonim and Tishby, 2000; El-Yaniv and Souroujon]2D@illon et al., 2003;
Takamura and Matsumoto, 2003), or by using topic models (Steyvers difith&r2006; Blei and
Lafferty, 2009) and other approaches, no clear learning task in tbidgm has been defined and
it remains difficult to compare different approaches or perform modigroselection. In (Seldin
and Tishby, 2009) one possible way of defining a high-level task foiptiaislem was suggested. It
was assumed that the observed co-occurrence matrix was drawnrfronkiaown joint probability
distribution p(x1,X2) of wordsx; and documents;. The suggested task was an estimation of this
joint probability distribution based on the observed sample. In such a fotioldhe quality of
an estimato(xy, Xz) for p(x1,X2) can be measured byEy, x,) INq(X1, X2), where the choice of
the logarithmic loss is natural in the context of density estimation. In particulesyiesponds to
the expected code length of an encoder that géasx;) to encode samples generateddiys, X2)
(Cover and Thomas, 1991). In Section 3 we provide an analysis of thistipfor co-clustering-
based density estimators. Similar to the case with co-clustering-based distisienpradictors, the
analysis serves to perform model order selection in this problem. It fuethebles a theoretical
comparison of the co-clustering-based approach to this problem withptkeible approaches.

For the purpose of analysis and derivation of generalization bounds€@bove two problems
we found it convenient to apply the PAC-Bayesian framework (McAllesté88, 1999), which
is reviewed in Section 2. Similar to the Probably Approximately Correct (PA@nlag model
(Valiant, 1984), PAC-Bayesian bounds pose no assumptions or restsictiothe distribution that
generates the data (apart from the usual assumption that the data grenitelet and identically
distributed (i.i.d.) and that the train and test distributions are the same). Howelike the usual
PAC bounds, where the whole hypothesis space is characterized byitkMahervonenkis (VC)
dimension (Vapnik and Chervonenkis, 1968, 1971), PAC-Bayesiandmapply a non-uniform
treatment of the hypotheses by introducing a prior distribution over thethgpis space. For ex-
ample, within the class of decision trees a preference for shallow tredseaggiven by assigning a
higher prior. If a good prior over the hypothesis space can be dekigmetightness of the bounds
can be improved considerably. As shown in the literature, PAC-Bayes&lysis is able to provide
practically useful bounds that in some cases are only 10%-20% awaytlietest error (Langford,
2005; Seldin and Tishby, 2008; Seldin, 2009; Germain et al., 2009).

Originally, PAC-Bayesian bounds were derived for classification taBkey have been applied
in the analysis of decision trees (Mansour and McAllester, 2000), Stigpctor Machines (SVMs)
(Langford and Shawe-Taylor, 2002; McAllester, 2003; Langf@@)5; Ambroladze et al., 2007;
Crammer et al., 2009; Germain et al., 2009), transductive learning (Keeeteal., 2004), struc-
tured prediction (Bartlett et al., 2005; McAllester, 2007), and other rsiged learning models.
In (Seldin and Tishby, 2009) we introduced PAC-Bayesian analysis toatésdensity estimation.
Recently, Higgs and Shawe-Taylor (2010) applied PAC-Bayesian siaaly continuous density
estimation. In Section 3 we present the PAC-Bayesian analysis of discriveir@agdiction and
density estimation with co-clustering. According to the derived bounds,gherglization perfor-
mance of co-clustering-based models depends on a trade-off betveseartipirical performance
and the mutual information that the clusters preserve on the observedqiara (row and column
IDs). The mutual information term introduces model regularization that Wwasrd in the previ-
ous formulations of co-clustering (Dhillon et al., 2003; Banerjee et al.7200/e further suggest
algorithms for optimization of the trade-off in Section 4. In Section 5, we aehstate-of-the-art
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performance in the prediction of missing ratings in the MovieLens collaberfiliering dataset by
optimization of the trade-off.

The co-clustering models analyzed here are tightly related to matrix tri-faationiz- a 3-factor
decomposition of a matrix of the ford ~ Q] FQ, (Banerjee et al., 2007; Ding et al., 2006; Yoo
and Choi, 2009a,b) and to Tucker decomposition of higher dimensionalrgeftisim and Choi,
2007). This relation is discussed in Section 6. We point out that similar tdusbecing itself there
are at least two different forms of matrix tri-factorization; one that gpoads to discriminative
prediction tasks, such as collaborative filtering, and the other which is appeopriate for co-
occurrence data analysis. In the first cAsean be arbitrary, whereas in the second case the input
matrix A is a joint probability distribution matrix (its entries are non-negative and sumo ope).
At the technical level, in discriminative prediction tasRs and Q, are right stochastic matrices
(their rows sum up to one) arfe is arbitrary, whereas in co-occurrence data anal@giand Q.
are left stochastic matrices (their columns sum up to one)raisa joint probability distribution
matrix (in the cluster product space). Our analysis provides generatizadionds, regularization
terms, and new algorithms for both forms of matrix tri-factorization.

Co-clustering can also be regarded as a simple graphical model. In Séatiersuggest how
to extend our analysis to more general tree-shaped graphical models.g&yhical models can
be useful to treat the curse of dimensionality in the analysis of high dimensesrs. This also
provides a new perspective on learning graphical models: insteadroiriga graphical model that
fits the training data, the approach suggests optimizing the model’s ability to pnesicbserva-
tions. In Sections 3 and 7 it is demonstrated that PAC-Bayesian boundblar® take advantage
of the factor form of graphical models and provide bounds that depeitlde sizes of the cliques of
graphical models and the amount of mutual information that is propagatee tgéhlevels.

In Section 8 we extend our approach to the formulation of unsupervisadriggroblems as
prediction problems to graph clustering and pairwise clustering (the lattenigadent to clustering
of a weighted graph, where edge weights correspond to pairwise distange formulate weighted
graph clustering as a prediction problem: given a sample of edge weighasalgze the ability
of graph clustering to predict the remaining edge weights. We adapt theBR&€sian analysis
of co-clustering to derive a PAC-Bayesian generalization bound fphgclustering. The bound
shows that graph clustering should optimize a trade-off between empidtalfitland the mutual
information that clusters preserve on the graph nodes. A similar tragke@éed from information-
theoretic considerations has been shown to produce state-of-tleswatsin practice (Slonim et al.,
2005; Yom-Tov and Slonim, 2009). This paper supports the empiricalestdey providing a better
theoretical foundation, suggesting formal generalization guaranteeéfeering a more accurate
way to deal with finite sample issues.

2. PAC-Bayesian Generalization Bounds

This section is devoted to PAC-Bayesian generalization bounds, whidheraain tool used for
the analysis of our learning models in the subsequent sections. We redamethknown PAC-

Bayesian bound for classification and present a slight variation of aviels&nown PAC-Bayesian
bound for discrete density estimation. The PAC-Bayesian generalizatiomdbgoioneered by
McAllester (1998, 1999) provide guarantees on generalization abilitieanafomized predictors
(formally defined below in Section 2.1) within the classical PAC learning modaignt, 1984)

and build upon preceding works on PAC analysis of Bayesian learningley@&leawe-Taylor et al.,
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1998; Shawe-Taylor and Williamson, 1997). The classical PAC learnindeirevaluates learning
algorithms by their ability to predict new events generated by the same probalslityoution as
the one that was used to train the algorithm. No restrictions on the data gegeratiability distri-
bution are imposed except the assumption that the samples are i.i.d. The KASleéBaramework
should be distinguished from Bayesian learning, which assumes thattievdee generated by
hypotheses from the hypothesis class and applies Bayes’ rule foemaf=rBayesian learning does
not provide guarantees on the expected error of the Bayes’ inferatecand in some situations can
lead to overfitting (Kearns et al., 1997).

The classical PAC bounds are derived by covering the error sgazdngpothesis class. For
example, the most familiar PAC bounds are based on the VC-dimension obthkgjs class, which
is a logarithm of the maximal number of points that can be jointly classified in asgilpe way by
functions from the hypothesis class (Vapnik and Chervonenkis, 1968,; Vapnik, 1998; Devroye
et al., 1996). More recent bounds involve Rademacher and Gaussigrlexities (Koltchinskii,
2001; Bartlett et al., 2001; Bartlett and Mendelson, 2001; Bouchetrah,e2005). However, in
all the above approaches the whole hypothesis class is characterizesifigle number: its VC-
dimension or Rademacher complexity, which means that all the incorporatragHgses are treated
identically and there is no way to differentiate them and give preferencsinapfer” ones. For
example, if the hypothesis class consists of straight lines and paraboM€-dsnension is equal
to the VC-dimension of a hypothesis class consisting of parabolas only areithno direct way
to give preference to straight lines within the combined hypothesis clagsBe&esian bounds are
derived by covering the hypothesis space and they enable non+artistment of the hypotheses.
In the PAC-Bayesian approach each hypothesis is characterized lynitsamplexity defined by
its prior. This refined approach provides several important benefiticshvwinclude: (1) the ability
to give explicit preference to certain hypotheses (e.g, in the example atmean assign a higher
prior to straight lines); (2) a gradient within the hypothesis space, whanhe used in algorithms
for bound minimization; (3) considerably tighter bounds, which are meauliimgh practical sense:
in some applications the discrepancy between the bound value and thedest enly 10%-20%
(Langford, 2005; Seldin and Tishby, 2008; Seldin, 2009; Germaih,2@09). There is one more
distinction between the usual PAC analysis and the PAC-Bayesian bouridsxtbad the scope
of applicability of the latter. Classical PAC analysis aims at bounding the ghanoy between the
expected performance of the hypothesis with the best empirical perfoeraaddhe best hypothesis
within the hypothesis class. Such types of bounds require a uniformdbaunhe discrepancies
between empirical and expected performances for all the hypotheses afipothesis class. The
uniform bound exists if and only if the hypothesis class has a finite VC-diimenBAC-Bayesian
bounds bound the expected performance of a given hypothesisy It @éttempt to bound its gap
to the performance of the best hypothesis within the hypothesis class. athisifikes it possible
to apply PAC-Bayesian bounds even in situations where the VC-dimensiarhgothesis class
is infinite, for example, decision trees of unlimited depth or separating higmep in infinite-
dimensional spaces. This does not disprove the fundamental theoRAT déarning theory, which
states that learning is possible if and only if the VC-dimension of a hypothlesis s finite, but
rather extends the notion of learnability. Instead of a regret-basedtiefiof learnability, by
which the ability to learn is the ability to achieve, up to a small epsilon, the besibpmsslution
within a hypothesis class, the PAC-Bayesian approach defines learnasilitg ability to bound the
expected performance of the obtained solution. Then it is a question fasénd¢o decide whether
the guaranteed expected performance is sufficient for his or hesneed
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Since the strength of PAC-Bayesian analysis lies in its ability to provide a niforon treatment
of the hypotheses within a hypothesis class, its advantage over traditioGabRalysis is best
seen in the analysis of heterogeneous hypothesis classes (or, in otlgkst when the hypotheses
constituting a hypothesis class are not symmetric). Some hypothesis clabgass & “natural
heterogeneity”; for example, we can partition the class of decision treesubtmasses according
to tree depth. A higher prior can then be assigned to shallow trees to ptheiaewith preference
over deep trees. For example, a pript) = 2~ @022 \whered(t) is the depth of a tree
would be a legal prior over the space of full binary decision trees of unihdepth (2 (40+1) js
a prior over tree depth and %" is a prior over trees of a given depth). Note that it is possible
to assign a higher prior tall shallow trees simultaneously because there are fewer shallow trees
than deep trees. Hence, the above prior exploits knowledge about Wictustrof the hypothesis
space, but makes no assumptions about the data. As we will see belovguhesbdepend on
—InP(t) = In(2)[(d(t) + 1) 4+ 29V]; thus the value of the logarithm of the first part of the prior
(d(t) + 1), which accounts for the tree depth, is negligible compared to the value ofghdtiom
of the second half of the pric(Qd(‘)), which counts the number of symmetric trees given the depth.
Given a strong prior knowledge on the problem domain, which breaks/thenstry between trees
of a given depth, it is possible to give preference (a higher prior) timicedeep trees; however it
is impossible to give a higher prior to all deep trees simultaneously, becatrseatie too many of
them. Thus, a choice of a different prior over tree depth and evelsprpdor knowledge of the
tree depth can only negligibly improve the bound.

For some hypothesis spaces which seem homogeneous at a first glavagesitill be possible
to identify non-trivial asymmetries and define a corresponding strugi@l The best example
comes from the analysis of SVMs, where the class of all possible segphsierplanes iRY is
partitioned into subclasses according to the size of the margin and a higherspgiven to the
hyperplanes with large margins (Langford and Shawe-Taylor, 20@&lesster, 2003; Langford,
2005). In structure learning the hypothesis class usually exhibits a haaiesogeneity since the
hypotheses (structures) can be differentiated by their complexity. H&#¢e-Bayesian analysis
has great potential in the analysis of structure learning which is only partgbipred in this work.
PAC-Bayesian bounds are further distinguished by their explicit deparedon model parameters,
which makes their optimization easy.

Following the pioneering work of McAllester (1998, 1999), the PAC-Bage bounds were
tightened and simplified by Seeger (2002, 2003). Some further improvemvengéssuggested in
(Maurer, 2004; Audibert and Bousquet, 2007; Blanchard and &g2007). This section draws on
the easier-to-read expositions by Maurer (2004) and Banerjee X 20Q& der to present the bounds
for classification and density estimation, we need to define the notion of mapeld predictors,
which is done next. We then present the PAC-Bayesian theorems andrtiads.p

2.1 Randomized Predictors

Let # be a hypothesis class and Rt{h) be a distribution ove#{ (if # is infinite thenQ (h) is a
probability density). Aandomized predictoassociated witl, and with a small abuse of notation
denoted byQ, is defined in the following way: For each sampl@a hypothesih € # is drawn
according toQ (h), and then applied to make a prediction xanin the classification contex,

is termed arandomized classifiefLangford, 2005). However, since this work extends the PAC-
Bayesian framework beyond the classification scenario by using the sah@mization technique,
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we use the term “randomized predictor”. In this more general cohfextis a general function of
X, hot necessarily a classifier.

In the context of classification, &= {(x1,y1),..,(Xn,Yn)} be an i.i.d. sample of sizH of
instances and their labels drawn according to unknown distribyiirry) and letl (y,y') be a given
loss function for predictiny instead ofy. Let h(x) be the label ok predicted by hypothesis.
For eachh € # we denote by.(h) = & 5;1(yi,h(x)) the empirical loss of the hypothegison S
and byL (h) = E )1 (Y,h(X)) the expected loss ¢fwith respect to the true, unknown distribution
that generates the data. We further extend the definitions of the empiritaixaected losses for
randomized predictors in the following way:

L(Q)=EqnLt(h) and L(Q)=EqmnL(h).

For two distributiongy and p over domainXx we define

q(x)

KL =EqIn==

to be the Kullback-Leibler (KL) divergence betwegmand p (Cover and Thomas, 1991). As well,
we define

A * oy in Q) A 1-L(Q)
KIL(Q)IL(Q))=L(Q)In—=+(1-L(Q))In ————=
CQILQ) =L 5+ AN
as the KL-divergence between two Bernoulli distributions with bidgey) andL(Q). Now we are
ready to state the PAC-Bayesian theorems.

2.2 PAC-Bayesian Theorems

Theorem 1 (PAC-Bayesian bound for classification)For a hypothesis clas${, a prior distribu-
tion ? over #H and a zero-one loss function |, with probability greater thian d over drawing a
sample of size N, for all randomized classifi€simultaneously

A(L(QL(Q) < “HUDERNFD =S )

Theorem 2 (PAC-Bayesian bound for discrete density estimation).et X be the sample space
(possibly infinite) and let (x) be an unknown distribution over X. Let A be a hypothesis
class, such that each membeel¥# is a function fromx to a finite setZ with cardinality|Z|. Let
Pn(2) = P,_,,, {h(X) = z} be the distribution ovetZ induced by fx) and h. Let? be a prior dis-
tribution over#{. Let Q be an arbitrary distribution over{ and p, (z) = E,,, pn(2) a distribution
over Z induced by x) and Q. Let S be an i.i.d. sample of size N generated according(xp p
and letp(x) be the empirical distribution ovex corresponding to S. Lei(z) = P, _,, {h(X) =z}
be the empirical distribution oveZ corresponding to h and S. L (2) =E,, pn(2). Then with
probability greater tharil — o for all possibleQ simultaneously

KL(po(@)|pq(@) < XH(QUIP) + (2] ?\Il) In(N+1) - Ing

(2)

Remarks:
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1. This form of Theorem 1 first appeared in (Seeger, 2002). A slightfgrdnt version of
Theorem 2 first appeared in (Seeger, 2003) and independentlyldin(@ed Tishby, 2009),
where it found the first non-trivial application.

2. The PAC-Bayesian bound for classification (1) is a direct conseguef the PAC-Bayesian
bound for density estimation (2). To see this ddie the error variable. Then each hypothesis
h € # is a function from the sample space (in this case the samples arg}aify to the
error variableZ and|z| = 2. Furthermorel (h) = pn(Z = 1) andL(h) = pn(Z = 1), hence
KI(L(Q)IL(Q)) = KL(Pq(2)||pq(2))- Substituting this into (2) yields (1).

3. Maurer (2004) showed that due to convexity of the KL-divergeimmzuality (1) is valid for
all loss functions bounded in the [0,1] interval, and not only for the zem®4oss. He also
proved that due to tighter concentration of empirical means of binary VesiaforN > 8
bound (1) can be further tightened:

1 _
AL(QL(Q) < SHUL T2 AT —Tn @

and that this is the tightest result that can be proved using the techniqidsam also used
in this paper.

4. Although there is no analytical expression for the inverse oktkdivergencel (Q) can be
bounded numerically:

L(Q) <k (ﬁ(Q), KL(Q||?) +El|n(4N) _ ,n5>
— max{v: KI(L(Q)[IV) < KL(QHT)JrEIInMN) —Iné}. "

Sincekl(L(Q)||v) is convex inv, (4) is easy to compute.

5. The proof of Theorem 2 presented below reveals a close relatiorbetive PAC-Bayesian
theorems and the method of types in information theory (Cover and Thom@s). 19he
trade-off betweeiL(Q) andKL(QJ|P) in the PAC-Bayesian bounds also has a tight relation
to the maximum entropy principle in learning and statistical mechanics (Jaygts, Dudk
et al., 2007; Catoni, 2007; Shawe-Taylor and Hardoon, 2009). &lasions between the
PAC-Bayesian bounds, information theory, and statistical mechanicarénerf discussed in
(Catoni, 2007).

The proof of Theorem 2 presented below is based on two auxiliary reghith have value in
their own right and therefore are presented in dedicated subsectiom§irst auxiliary result applies
the method of types to bound the expectation of the exponent of the diaergpetween empirical
and expected distributions ov&rfor a single hypothesisEseN KL(P(@IIPm(2) | The second auxiliary
result relates the divergend®, ) KL(Pn(2)|/pn(2)) for all Q to a single (prior) reference measure
. This relation is actually the cornerstone of the PAC-Bayesian analysiall\im Section 2.5
a quantity depending on the prior measirés treated using the first auxiliary result to obtain the
final bound in equation (2).
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2.3 The Law of Large Numbers

In this subsection we analyze the rate of convergence of empirical distriswover finite domains
to their true values. The following result is based on the method of types inmat@mn theory
(Cover and Thomas, 1991).

Theorem 3 Let S= {Xy,..,Xx} be i.i.d. distributed by {x). Denote byj(x) the empirical distri-
bution overX corresponding to S and by | the cardinality ofX. Then

I @NKLBIIP0) < (N )X, ®)

Proof Enumerate the possible valuesiotby 1,..,|.X| and letn; count the number of occurrences
of valuei. Let p; denote the probability of valueand i = § be its empirical counterpart. Let
H(p) = — 3 piln pi be the empirical entropy. Then:

. N AL .
F_NKL(BIp) _ ( ) P NKLBI)
S nl,.Z!m: nl;"anlx‘ ||:l I

Yin=N

< NH(D) . N3ipilnpi | NKL(P]Ip) (6)
ng,..; \X\:
Si ni=N

N—i—\X!—l) X|-1

= 1:< < (N41)X=2, 7)
Ng,- M- ’X‘ -1
Yin=N

In (6) we used thénl’_h'n‘x) < NH(P) hound on the multinomial coefficient, which counts the num-
ber of sequences with a fixed cardinality profile (unnormalized tgpe), n x| (Cover and Thomas,
1991). In the second equality in (7) the number of ways to chapsesquals the number of ways
we can placex| —1 ones in a sequence bf+ |.X| — 1 ones and zeros, where ones symbolize a
partition of zeros (“balls”) intg.X| bins. |

2.4 Change of Measure Inequality

The simultaneous treatment of all possible distributions (meas@esyer # is done by relat-
ing them all to a single reference (prior) meastite We call this relation a&hange of measure
inequality This inequality was formulated as a standalone result in (Banerjee, ,28l@@&ugh it

originates much earlier. Banerjee (2006) termsdbmpression lemmadowever we find the term
“change of measure inequality” more appropriate to its nature and ushgéndqguality is a simple
consequence of Jensen’s inequality.

Lemma 4 (Change of Measure Inequality) For any measurable functioph) on A and any dis-
tributions ? and Q on A, we have:

EQ(h)(p(h) < KL(QH?) + |nE5P(h)e(p(h). (8)

10
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Proof For any measurable functiagih), we have:

_ Q(h) P(h)
Eame® ~Eann (G5 g )
P(h
= KL(QJP) +EqIn (e‘iih) Q((h))>
P(h
< KL(QJIP) +InEqm) <e(p(h) Q((h))> 9)
= KL(Q||?) + INEpgne™"
where (9) is by Jensen’s inequality. |

2.5 Proof of the PAC-Bayesian Generalization Bound for Density Estiration

We apply the results of the previous two subsections to prove the PACsBaygeneralization
bound for density estimation.
Proof of Theorem 2Let @(h,S, p) = NKL(pn(2)||pn(2)). Then:

NKL(Po(2)[[Pq(2)) = NKL(Eqm) Pn(2)[Eqh) Pn(2))
< EqmNKL(Pn(2)[|pn(2)) (10)
< KL(QH_(P)+|n]E?(h)eNKL(i5h(Z)Hph(z))7 (11)

where (10) is by the convexity of the KL-divergence (Cover and Ttgrh@91) and (11) is by the
change of measure inequality. To obtain (2) it is left to boHpg, eN<L(Pr(@P(@) This is a random
quantity depending on the samgesince pp(z) for eachh depends on the sample. By Markov’s
inequality we know that with probability at least-15 over the sampletp, NKHP@IP@) <
3Es [Ep(ny NP @IP@)] In order to obtain a bound dii [Eqp ) eN<HPn(2 “ph 2)] we note that it
is possmle to exchangdés with E,) sinceSandh are independent

Es iEﬂ,(h)eNKL(ﬁha)iiph<z>>i = Epn iES SNKL(Pn(2)]pn( >>i < (N+1)121, (12)

The last inequality in (12) is justified by the fact thageN<-(P(@lm@) < (N + 1)/71-1 for eachh
individually according to (5). By Markov’s inequality we conclude that watlobability of at least
1-doverS

RCTCXCILYE @)  N+Y=T

)
Substituting this into (11) and normalizing byyields (2). [ |

2.6 Addendum to the Law of Large Numbers

Note in passing that it is straightforward to recover theorem 12.2.1 in Gowe Thomas, 1991)
from Theorem 3 (even with a slight improvement). This theorem is used lateeiastimation of
marginal distributions.

11
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Theorem 5 (12.2.1 in Cover and Thomas, 1991)nder the notations of Theorem 3 with proba-
bility greater thanl — &:

< (1X] —1)In(N+1)—In6.

KL(P()[[p(x)) < N (13)

Proof Immediate from application of Markov’s inequality to (5). |

2.7 Construction of a Density Estimator

Although we have boundeiL (P (2)||pq (2)) in Theorem 2pg (2) still cannot be used as a density
estimator forpg (z), because it is not bounded from zero. In order to bound the logarithrséc lo
—Ep,»n Pq(2), which corresponds, e.g., to the expected code length of enpgdehén samples
are generated by, , we have to smootphq. We denote a smoothed versionmf By fp and define

it as:

. Pn(2) +y
= 14
A o P2ty
pQ(Z) - EQ(h) ph(z) - 1+V‘Z‘ :
In the following theorem we show that KL (P (2)||pq(2) < &(Q) andy(Q) = 7V8|(ZQ‘)/2, then

_—]qu(z) Inpg(2) is roughly within£,/€(Q)/2In| Z| range arount (f)Q(z))_._ The bou_nd orKL(ﬁQ(z) 1Pq(2)
is naturally obtained by Theorem 2. Thus, the performance of the dessityatorp,, is optimized
by distributionQ that minimizes the trade-off betweeh(fg (z)) and SKL(Q)|P).

Note that for a uniform distribution(z) = %‘ the value of-EEp; Inu(z) =In|Z|. Thus, the the-

orem below is interesting whepe(Q ) /2 is significantly smaller than 1. For technical reasons in the
proofs of the following section, the upper bound in the next theorem isistate-E,, ) In Pq(2)
and for—Eq ) Ep, 2 In pn(2). We also denote = g(Q) for brevity.

Theorem 6 Let Z be arandom variable distributed according tg(g) and assume that Klpq (2)|| pq (2)) <

E. I‘ghen—IEpQ(z) In P (2) is minimized by = \{2{7 For this value ofy the following inequalities
old:

~EqtyEpy 2N Bn(2) < H(Pe(2) + V&/2In| 2|+ gle), (15)
~Epy (2N P (2) <H (P (2) +v/&/2In| 2|+ @(e), (16)
—Ep, (N Pa(2) > H(Po(2)) — Ve/2In| 2| —w(e), (17)

where:

w(e) = s/2|n1j:/\§€2/72 and @(e) = Y(e) +In(1+ /¢/2).

12
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The proof is provided in appendix A. Note that baift) andy(g) converge to zero approximately
as—./e/2In/e/2 and for\/e/2 < 2, they are in fact dominant over thge/2In| z| term. Nev-
ertheless, the main message is still that in order to minimﬂEgQ(z) In Pq (2) the trade-off between
H(pq(2)) andKL(pq(2)||pq(2)) should be minimized. This message is explored in more details in
Section 3.4.

Remark: As an aside we consider the case of direct density estimation. Assume givemea
set ofN i.i.d. observationsy,..,xy generated according to an unknown distributja{x) over a
finite domainX. We want to construct an estimaséx] for p(x) based on the empirical frequencies
P(x), such that the expectationE ) In f(x) is minimized. This problem, known as “histogram
smoothing”, has received significant attention in statistics and informatiomytti€ibert, 1971;
Cover, 1972; Krichevskiy, 1998; Paninski, 2004). Uniform smootluhtihe form

s PO)+Y

such as the one applied in (14) is known as the Dirichlet-Bayes or “adstaot” estimator. Theo-
rem 6 provides the optimal value pf

1 1 [(X[—D)inN+1)-Ind
= Ve iy N

for which with probability greater than-1 over the sample

H(B(X)) — v/&/2In|X| — () < —Ep In B(X) < H(B(X)) + /&/2In|X| + (),

wheree = (lx‘*l)'”,(\lNH)*'”é is obtained from Theorem 5. By Theorem 6 the optimal smootiing

decreases as the sample dizacreases. A more detailed comparison of this result with preceding
work is beyond the scope of this paper and will be presented elsewhire that in the more
general case considered in Theorem 6, where the distribptign) depends orQ the smoothing
parametey also depends oQ.

3. PAC-Bayesian Analysis of Co-clustering

In the introduction we defined two high-level goals, which can be solved®dalustering. The
first is discriminative prediction of the matrix entries, as in the collaborativeifijeexample. The
second is estimation of the joint probability distribution in co-occurrence detlysis. We further
defined the notion of generalization for each of the two problems. In thi®osewe derive PAC-
Bayesian generalization bounds for the two settings. We begin with the stexhg approach to
discriminative prediction, which is slightly easier in terms of presentation. Tesoonsider the
discrete density estimation problem.

3.1 PAC-Bayesian Analysis of Discriminative Prediction with Grid Clusteing

Let Xy x .. x Xg x 9 be a(d+ 1)-dimensional product space. We assume that gachcategorical
and its cardinality, denoted byi| = n, is fixed and known. We also assume thats finite with
cardinality || and that a bounded loss functibfy,y’) for predictingy’ instead ofy is given. As
an example, consider collaborative filtering. In collaborative filtedng 2, X; is the space of the

13
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Y
C, ¢, C C,
X] XZ Xl XZ
(a) Graphical Model for Dis- (b) Graphical Model for Den-
criminative Prediction sity Estimation

Figure 1: lllustration of graphical models corresponding to discriminative prediction (18) and
density estimation(27). The illustrations are fod = 2.

viewers,n; is the number of viewersX; is the space of the movien; is the number of movies,
andy is the space of the ratings (e.g., on a five-star scale). Thé(lpg9 can be, for example, the
absolute loss$(y,y) = [y — Y| or the quadratic losky,y') = (y—Y/)?. There is no natural metric
either on the space of viewers or on the space of movies; thustha@hd X, are categorical.

We assume an existence of an unknown probability distribytiem, .., Xq4,Y) over thexi x .. x
Xq x ¥ product space. We further assume that we are given an i.i.d. sample® gienerated
according top(xy,..,Xd,Y). We usep(xi,..,Xd,Y) to denote the empirical frequencies (@f+ 1)-
tuples(xs, ..,Xq,Y) in the sample. We consider the following form of discriminative predictors:

d
QY Xa) = 5 alylesca) []ale ). (18)
C1,.-,Cd
The hidden variableGs, ..,Cq represent a clustering of the observed varialfles, X4. The hidden
variableC; accepts values ifi1,..,m }, wheremy = |C;| denotes the number of clusters used along
dimension. The conditional probability distributiog(c;|x;) represents the probability of mapping
(assigningk; to clusterc;. The conditional probabilitg(y|ca, ..,cq) represents the probability of as-
signing labely to cell (cy, .., cq) in the cluster product space. The prediction model (18) corresponds
to the graphical model in Figure 1.a. Note that this is a two-level randomimﬁk}ﬂon model. The
free parameters of the model are the condltlonal distributigtsi|x )} ; andq(y|cy, ..,cq). We
denote these collectively by = {{q Gi|xi)}d ¢ ..a(yley, .., cd } In the nextsubsectlon we show that
(18) corresponds to a randomized prediction strategy. We furtheteteno

L(Q) = Eppxy....xa) Eaty ... (Y- Y)

and

A~

L(Q) = Eppa....xa Eatypa..xa! (YY),
whereq(y|X, ..,Xq) is defined by (18). We define

X|C| *zqc||x| (Gx)
Ni s ()

14
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wherex; € X; are the possible values ¥f, ¢; € {1,..,m} are the possible values Gf, and

qlc) = = 3 qa(cix)

ni &

is the marginal distribution oveZ; corresponding t@(c;|x;) and auniformdistributionu(x;) =
over.x. Thus,l_(Xi;Ci) is the mutual information corresponding to the joint distributigr, ¢;)
ﬁliq(ci Ixi) defined byg(ci|x) and the uniform distribution ovex;.

With the above definitions we can state the following generalization bounddoriminative

prediction with co-clustering.

1
]

Theorem 7 For any probability measure (g, .., Xq,Y) overXi x .. X Xq x 9 and for any loss func-
tion | bounded by 1, with probability of at least- d over a selection of an i.i.d. sample S of size N
according to p, for all randomized classifie@= {{q(ci|x)}% ;. q(y|c1, ...Cq) }:

WE(QIL(Q)) < 4, (il (%;C) +m Inni):I-MIn|9’|+%In(4N) —In6’ 19)

where M is the number of partition cells:

d
M:rlm.
1=

Remarks: Of course, any bounded loss can be normalized to the [0,1] interval. Natitren
a prediction strategy) = {{a(ci[x)};,qa(y/c1....cq)} both L(Q) and1(X;C;) are computable
exactly.L(Q) can be bounded by numerical inversiorkbfas shown in equation (4). To minimize
L(Q) bothL(Q) andI(X;C;) should be minimized.

Discussion: There are two extreme solutions to the collaborative filtering task that provide g
intuitions on the co-clustering approach to this problem. If we assign all afdteeto a single large
cluster, we can evaluate the empirical mean/median/most frequent rating ofusster fairly well.
In this situation the empirical Iosfs(Q) is expected to be large, because we approximate all the
entries with the global average, but its distance to the truell6Qy is expected to be small. If
we take the other extreme and assign each row and each column to a sehmtatef_(Q) can be
zero given that we can approximate every entry with its own value, but izndis to the true loss
L(Q) is expected to be large because each cluster has too little data to make a statistiebly
estimation. Thus, the goal is to optimize the trade-off between the locality of guctions and
their statistical reliability.

_ This trade-off is explicitly exhibited in bound (19): if we assignxies to a single cluster, then
I(X;Ci) = 0 and thereford(Q) is close toI:_(Q). And if we assign eack; to a separate cluster,
thenl (X;;G) is large, specifically in this casdéX;;Ci) =Inn;, andL(Q) is far frng:(Q). But there
are even finer observations we can draw from the bound. Bear in mihd;t%;C;) is linear in
nj, whereasm Inn; is logarithmic inn;. Thus, at least whem is small compared to; (which is

a reasonable assumption when we cluster the valug$) dhe leading term in (19) isl (X;;Ci).
This term penalizes theffectivecomplexity of a partition, rather than the raw number of clusters
used. For example, the unbalanced partition of~admatrix into 2x 2 clusters in Figure 2.a is
simpler than the balanced partition into the same number of clusters in Figure 2ebredson,
which will become clearer after we have defined the prior over the sgguagtdtions in Subsection
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(a) Unbalanced Partition (b) Balanced Partition

Figure 2: lllustration of (a) an unbalanced and (b) a balanced partition of a 4<4 matrix into

2x2 clusters. Note that there are 4 possible ways to group 4 objects into 2 unbalanced

clusters ano(‘z‘) = 6 possible ways to group 4 objects into 2 balanced clusters. Thus,
the subspace of the unbalanced partitions is smaller than the subspacebafathesd
partitions and the unbalanced partitions are simpler (it is easier to descuimdalanced
partition than a balanced one).

3.3, is that there are fewer unbalanced partitions than balanced onegefdrl, the subspace of
unbalanced partitions is smaller than the subspace of balanced partitioihésagmbier to describe
an unbalanced partition than a balanced one. Intuitively, the partition ind-Ryardoes not fully
use the Z 2 clusters that it could use, and should therefore be penalized lesspi@atial level,
the bound makes it possible to operate at the optimization step with more clusteesétectually
required and to penalize the final solution according to a de facto measuhester use. This
claim is supported by our experiments. To summarize this point, the bounduyd§é¢sts a trade-off
between the empirical performance and the effective complexity of a partition

Finally, consider théviIn|9’| term in the boundM is the number of partition cells (in a hard
partition) andM In || corresponds to the size of th€;,..,Cq,Y) clique in the moral graph cor-
responding to the graph in Figure 1.a. The number of sample pMistsould be comparable to
the number of partition cells, so it is natural for this term to appear in the bolimd term grows
exponentially with the number of dimensiodsthus we can apply the bound for low-dimensional
problems like collaborative filtering, but when the number of dimensionsgeosiifferent approach
is required. We suggest one possible way to handle high dimension&m®mn Section 7.

Proof of Theorem 7The proofis a direct application of the PAC-Bayesian bound for claasiic
in Theorem 1 (or, more precisely, its refinement in (3)). In order to afifytheorem, we have to
define a hypothesis spagg, a prior over hypothesis spa@ a posterior over hypothesis spa@e
and calculate the KL-divergenéd_(QJ|?). We define the hypothesis space in the next subsection
and design a prior over it in Subsection 3.3. Substitution of the calculatigh @@ || ?) in Lemma
9 into Theorem 1 completes the proof. |
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3.2 Grid Clustering Hypothesis Space

We define the hypothesis spagé to be the space of hard grid partitions of the product space
X1 x .. X Xq (as illustrated in Figure 2) augmented with label assignments to the partition ¢ells. (
Subsection 3.4 we use grid partitions without labels on the partition cells; thdssthession in this
and the following subsection is kept general enough to hold in both cdeeshard grid partition
each valueg € X is mapped deterministically to a single clustee {1,..,m}. To operate o/

we use the following notations:

e Letm= (my,..,my) be a vector counting the number of clusters along each dimension.

e We use | to denote the space of partitionsxf In other words#|; is a projection ofH
onto dimension.

e Let #x denote the subspace of partitionsafx .. x Xy in which the number of clusters used
along each dimension matchms Obviously, for distincims, #z-s are disjoint.

o We use# | m or simply # |y, to denote the space of possible assignments of labetto
Then we can writeH = U, (Hi % Hym)-

e For eachh € # we write h = h|; x .. x h|g x h|y; whereh|; denotes the partition induced
by h along dimensiori and h|y; denotes the assignment of labels to partition cell$.of
In the discussion of density estimation with grid clustering in Subsectionhdstjusth =
hj1 x .. x h|g, without the labels assignment.

We show thatQ, = {{q(ci|x;) d ,a(yle, ..,Cq) } is a distribution over{ and (18) corresponds
to a randomized prediction strategy. More precis€lyis a distribution overty x #|ym, where
m matches the cardinalities @-s in the definitions of {q(ci|x)}%;,q(y|c1,..,cq) }. In order to
draw a hypothesik € # according toQ we draw a clusteg; for eachx; € X; according tay(c;|x;)
and then draw a label for each partition cell according(dc, .., cq). For example, we map each
viewer to a cluster of viewers, map each movie to a cluster of movies, andhassiggs to the
product space of viewer clusters by movie clusters. Then, in ordersigraa label to a sample
(x1,..,Xd) we simply check which partition cell it has fallen into and return the corredipgriabel.
Recall that in order to assign a label to another sample point, we have toadnaw hypothesis
from .

Note that in (18) we actually skip the step of assigning a cluster for gaetk; and a label for
each partition cell (in fact, the whole step of drawing a hypothesis) anghes$abel to a given point
(x1,..,Xq) directly. Nevertheless, (18) corresponds to the randomized predictimess described
above. This makes it possible to apply the PAC-Bayesian analysis.

3.3 Combinatorial Priors in PAC-Bayesian Bounds

In this section we design a combinatorial prior over the grid clustering hgg@tspace and calcu-
late the KL-divergenc&L(Q ||P) between the posterior defined earlier and the prior. An interesting
point about this result is that combinatorial priors result in mutual informaéons in the calcula-
tions of the KL-divergence. This can be contrasted withltform andL;-norm terms resulting
from Gaussian and Laplacian priors respectively in the analysis of Jiagyford, 2005). Another
important point to mention is that the poster@mreturns a named partition of-s (the conditional
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distributionq(ci|x) specifies the “namet; of the cluster thak; is mapped to). However, the hy-
pothesis spacg/ and the prior? defined below operate with unnamed partitions: they only depend
on the structure of a partition (the sizes of the clusters), but do not depethe names assigned
to the clusters. In this manner we account for all possible permutationsstéchimes, which are
irrelevant for the solution.

The statements in the next two lemmas are given in two versions, o fmrgmented with
labels, which is used in the proofs of Theorem 7, and the othetfowithout the labels, which is
used later for the proofs on density estimation with grid clustering.

Lemma 8 It is possible to define a priaP over # that satisfies

1
exp[y, (niH (hist(h};)) + (m — 1) Inm;)]’

where histh|i) = {|ci1],..,|cim|} denotes the cardinality profile (histogram) of cluster sizes along
dimension i of a partition corresponding to h andist(h|;)) = ZJ 1 ‘Cr;” 'C"‘ is the entropy of
the (normalized) cardinality profilnote thatz'j“:1 cij| = ).

It is further possible to define a priaP over # = U, (Hi x H|ym) that satisfies

P(h) >

(20)

1
P 2 T, (A (hist(n) - minmy) - Min|7] -

Remark: The prior® over # that is defined explicitly in the proof of the lemma exploits struc-
tural asymmetries between more and less balanced grid partitions, as shBigara 2, without
making assumptions on the data generating process. Note that the leadingnténemprior are

H (hist(h|;)) that count the number of possible ways to assigstoci-s, which are invariant un-
der permutation ox;-s within eachX; (see the proof for details). Thus, it is impossible to design a
significantly better prior without “strong” prior knowledge on the data gatieg process that can
break the permutation symmetry ans. “Weak” prior knowledge on the number of clustens
along each dimension and even on their sizes can only introduce an improviraieis logarith-
mic in nj-s to the bounds. The PAC-Bayesian analysis enables us to operate wittssible grid
partitions, while paying a very low (logarithmic) price for this generality.

Lemma 9 For the prior defined i(20) and posteriorQ = {q(ci|x) id:1:
L(Q||P) < Zl X. C)+(m—21)Inn). (22)
For the prior defined in21) and posteriorQ = {{q(ci|xi)}id:1,q(y\c1, ,Cq) }:
KL(QJ|?) < i(nil‘m;mmmnowInm. (23)
3.3.1 RROOFs

Proof of Lemma 8 To define the priorP over #z we count the hypotheses iz, There are
(m 1) <nm ! possibilities to choose a cluster cardinality profile along a dimenisioT his is
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because each of tg clusters has a size of at least one. To define a cardinality profile weeartof
distribute the “excess mass” of— my among then clusters. The number of possible distributions
equals the number of possibilities to place— 1 ones in a sequence (Jrh. -m)+(m—-1) =

— 1 ones and zeros.) For a fixed cardinality profilst(h;) there are(,, ™ ) < enfsthi)
pOSSIbIlItIeS to assigm;-s to the clusters. Putting the combinatorial calculations together we can
define a distributior? over # that satisfies (20).

To prove (21) we further define a uniform prior ov#fly;. Note that there argy’|M possibili-
ties to assign labels to the partition cellsify. Finally, we define a uniform prior over the choice
of m. There aren; possibilities to chose the value of (we can assign altj-s to a single cluster,
assign eacly; to a separate cluster, and all the possibilities in between). Combining this with the
combinatorial calculations performed for (20) yields (21). |

Proof of Lemma 9We first handle bound (22). We use the decomposKib(Q||?) = —Eq InP(h) —
H(Q) and bound—EqIn?(h) and H(Q) separately. We further decompogkh) = P(h|1) -
P(hlg) and Q(h) in a similar manner. Ther-EqIn®?(h) = —5;EqIn?(h|i)) andH(Q) =
yiH(Q(hli)). Therefore, we can treat each dimension separately.
By Lemma 8:
—EqIn®(hfj) < (m —1)Inn +nEqH (hist(h;)). (24)

Hence, in order to boundEq In?(h|;) we have to bound the expected entropy of cluster cardi-
nality profiles of the hypotheses generatedyRecall thatQ draws a cluste€; for eachx; € X;
according tay(ci|x) and that this process results in marginal distributién) = ﬁll 3 x d(ci|x;) over

the normalized cluster sizes (this is where the uniform distribution aveomes in). To bound
EqH (hist(h|;)) we use the result on negative bias of empirical entropy estimates cited lselew,
(Paninski, 2003) for a proof.

Theorem 10 (Paninski, 2003)Let X, .., Xy be i.i.d. distributed by (x) and letp(x) be their em-
pirical distribution. Then:

EpH(P) = H(p) —EpKL(p[p) <H(p)- (25)
By (25) EqH (hist(hli)) < H(q(ci)). Substituting this into (24) yields:
—EqIn?(hfi) <nH(q(c))+ (m —1)Inn;. (26)

Now we turn to bound-H(Q(hli)) = EqInQ(hli). To do so we bound I@(h|;) from above.
The bound follows from the fact that if we drawvalues ofC; according tag(ci|x ) the probability
of the resulting type is bounded from aboveesiH(GP*), whereH (Gi|X) = — & 5 ¢, a(cilx) Ing(ci[x)
(see Cover and Thomas, 1991, Theorem 12.1.2). Thy# Q(h[j) < —n; H (Gi|X), which together
with (26) and the identity(X;;C;) = H(q(c;)) — H(Gi|X;) completes the proof of (22).

To prove (23) we recall tha® is defined for a fixedn. Hence,—Eq In P(h|ym) = MIn|Y|
and—H(Q(hlym)) < 0. Finally, since the prio?(m) over the selection afnis uniform we have
—EqIn?(m) =59, Inn andH(Q(mM)) = 0, which is added to (22) by the additivity &fL(Q)|?)
completing the proof. |
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3.4 PAC-Bayesian Analysis of Density Estimation with Grid Clustering

In this subsection we derive a generalization bound for density estimatiomgmdtblustering. This
time we have no labels and the goal is to find a good estimator for an unknovirpjolmability
distribution p(x, .., X4) over ad-dimensional product spacg x .. x Xyq based on a sample of size
N from p. As an illustrative example, think of estimating a joint probability distribution ofdgor
and documents¥{; andX;) from their co-occurrence matrix. The goodness of an estintpftor p

is measured by-E ., x,)INA(X, .., Xa)-

By Theorem 5, to obtain a meaningful bound for a direct estimatigrixaf .., xq) from p(x, .., Xq)
we need\ to be exponential im;-s, since the cardinality of the random variak¥g, .., Xg) is [7; ni.
To reduce this dependency to be linearsim; we restrict the estimatay(Xy, .., Xq) to be of the
factor form:

d
q(Xl,--,Xd): Z q(clvvcd)l_lq(xi|cl> (27)
C1,.,Cd

(%)
= C1,..,Cd) q(ci|x; (28)
017 rlq i[Xi)

We emphasize that the above decomposition assumption is only on the estjraatbnot on the
generating distributiop. A graphical model corresponding to equation (27) is given in Figure 1.b
Similar to the model for discriminative prediction, this is also a two-level randanizediction
model.

We select the hypothesis spaketo be the space of hard partitions of the product spgce.. x
Xy, as before; however, this time there are no labels to the partition cells. Tkeadjemessage of the
following two theorems is that the empirical distribution over the coarse partitiace€; x .. x Cy
converges to the true one faster than the empirical distributionXver.. x X4 converges to its true
counterpart. We also show that (28) can be used to extrapolate the distribuer cluster space
back toX; x .. x Xyq space and obtain better generalization guarantees. Next we state this more
formally.

As seen in the previous subsection, a distributipr- {g(ci|x)}%; is a distribution overt .
To obtain a hypothesis € 7z we draw a cluster for each € X accordmg tag(ci|x). The way we
have written (28) enables us to view it as a randomized prediction progesfraw a hypothesis
according taQ and then predict the probability ¢fy, .., Xq) asq(c?(xl), ..,cd( ) |‘|I

c'(x) = h(x) is the partition cell thax; fell within h. Although (28) skips the process of drawmg
the complete partitioh and returns the probability @k, ..,xq) directly, the described randomized
prediction process matches the predictions by (28) and thus enabledysisndgth PAC-Bayesian
bounds.

Let h € H be a hard partition oft; x .. x Xq and leth(x;) denote the cluster to whick is
mapped irh. We define the distribution over the partition celts, .., cq) induced byp andh:

Pn(C1,..,Cd) = P(X1,..,Xd),
XLZXd'

Vi h(x)=q

pn(ci) = p(X).-
" xi:h(%:ci
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We further define the distribution over partition cells induced by the empirisallolition g(x1, .., X4)
corresponding to the sample ahdy substitution ofp'instead ofp in the above definitions:

ﬁh(clu“ucd): p(xla"uxd)v
Xl-;d'

Vi h(x)=c

Xi:h(Xi)=ci

We also define the distribution over partition cells induced)gndp and its empirical counterpart:

d
Pa(C1, -, Ca) ZQ Pn(C1,.Ca) = 5 P(x, .. ,xd)|'| q(cilx),

X1,--,Xd

ZQ Pn(Ci) Zp qa(cilx),
d

z ﬁ(XL 7Xd> uq(cllxl%

X1,--,Xd

ZQ Pn(ci) ZpX. q(cilx;)-

ﬁQ(Cl;-de) = Z Q(h) ﬁh(clv"vcd) -

We extrapolateon, pq, Pr andpg to the whole spacg; x .. x Xy using (28):

d
(X0, ) — (00, () [lp(_h’“)_

p(X;)
Pe(Ci)

aleifx),

T 8

Po(X1,--Xd) = 3 Po(C1;--Cd)
C1,..,Cq

o

N

n(x0. . ¥a) = Pn(lx0). .l (ka) Mi(h’&))
(

5 . Xi)
X 7"7Xd = C 7"7C A
PQ (X1, .-, Xd) cz(:d Po(c1 d)i: 5o ()

i=
d A

q(cilx)-

Note thatpg (X1, ..,Xq) is a distribution overXy x .. x Xg, which has the form (28) and is the closest
to the true distributiom(xy, .., X4) under the constraint thdi(ci|x)}?_, are fixed. Further, note
that since we have no accesspy, ..,Xq) we do not kKnowpq (X1, ..,X4). In the next theorem we
provide rates of convergence of the distributiqng(X1, ..,Xd), Pq(C1,..,Cd), andpq () based on
the sample to their counterparts corresponding to the true distribpgian.., xq).

Theorem 11 For any probability measure p ove; x .. x Xy and an i.i.d. sample S of size N
according to p, with probability of at least — & for all grid clusteringsQ = {q(ci|x)}", the
following holds simultaneously

KL(Pa(er....co) [pa cs..c0) < T KC) 11 29)

and for all i ;
i —1)In(N+1)+In%tt
KL(p0x) p(x)) < DI EN S (30)
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where
d+1
Kl_Zmlnn, (M— 1)In(N+1)+In?. (31)
As well, with probability greater thath — &:
N :G)+K
KL(BQt ) [P ) < M XEC) Kz (32)

where

d d
Ko = Inni+ M+ n—d—1|In(N+1)—1Ind.
2 i;m i Zi i ] ( )

Before we discuss and prove the theorem we point out that althpygky,~.,x4) converges
to pq (X1, ..,Xq) it still cannot be used to minimize Epy, v, InPg(X1,..,X4), because it is not
bounded from zero. Also, we cannot construct a density estimator bgteing g (X1, ..,Xd) di-
rectly using Theorem 6, because the cardinality of the random varible, Xy) is []; ni and this
term will enter into the bounds. To circumvent this we take advantage of ¢her flarm of pg and
use the bounds (29) and (30). We define an estimaomwhich is a smoothed version of; 'in the
following way:

~ Pr(C1,..,Cq) +
Ph(Cl,--,Cd)ZW,
~ P(Xi) +
px) = BN, (39)
Pn(ci) = (),
Xi:h(X)=ci
d ~
. ~  h h p(xi)
Bh(X1,..,Xd) = Pn(c(X1),..,cq(Xg — .
And for a distributionQ over #:
- Do (C1,..,Cq) +
pQ(Clv-de):pQ(f_'_y:/Id) Y (34)
Pq(Ci) +Yiq(Ci)n;
ZIOX. a(Gfx) = == (35)
P (X1, .-, Xd) =ZQ P (X1, .-, Xd)
q(ci|%)- (36)

= C17 7Cd |_|
Ci>ns cd Q

In the following theorem we provide a bound eff,y,  x,)IN Bq (X1, -, Xa). Note that we take the
expectation with respect to the true, unknown distribufidhat may have an arbitrary form (i.e,
is not restricted to be of the factor form (27)).

Theorem 12 For the density estimatdig (x1, .., Xd) defined by equation83), (34), (35), and(36),
—Epii,.. xg) P (X1, .-, Xq) attains its minimum ay(Q) = # andy; = Y 2:/2, whereg(Q) is
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defined by the right-hand side ¢29) and ¢j-s are defined by the right-hand side (40). At this
optimal level of smoothing, with probability greater thar- & for all Q = {q(ci|x)}_; simultane-
ously

3 . d nl(X:C)+K
_Ep(xl,..,xd)lnpQ(Xla"aXd)g_I(pQ(Clv'-aCd))+In(M)\/ZI_1n (;<|N )+ 'iKs,  (37)

where [(Pq(C1,..,ca)) = [SL1 H(Pg(c))] —H(Pq(C1, -, Cq)) is the multi-information betweenC.,Cqg
with respect tgdq (C1,..,Cd), K1 is defined by31),

Ks=(e(Q)) +

'iH(ﬁ(Xi)) +2V/&i/2Inni + (&) + w(sJ] :

and the functiong andy are defined in Theorem 6.

Discussion: We discuss Theorem 12 first. We point out tipg(X1,..,Xq) is directly related to
Pq (X1, ..,Xd4) and thatpg (x1,..,Xq4) is determined by the empirical frequencie; .., xq) of the
sample and our choice @ = {q(ci|xi)}id:1. There are only two quantities in the bound (37) that
depend on the choice @; —I(Pq(c1,-.,¢cq)) and y; 11(X;Ci) [note that the latter also appears
in @&(Q) in Kg]. Thus, Theorem 12 suggests that a good estimpgdixi’ .., Xa) of p(x1,..,Xq)
should optimize the trade-off betweed (pg(c1,..,cq)) and ¥; §1(X;;Gi). Similar to Theorem

7, the latter term corresponds to the mutual information that the hidden clastables preserve
on the observed variables. Larger valued ©;C;) correspond to partitions ofj, .., Xy, which
are more complex. The first term;l (pg(c1,..,Cq)), corresponds to the amount of structural in-
formation onCi-s extracted by the partition. More precisely, we need to look at the value of
SiH(P(X)) —1(Pq(cy,...cq)), whereyiH(P(x)) is a part ofKz and roughly corresponds to the
performance we can achieve by approximatpig, ..,Xq) with a product of empirical marginals
i P(Xi). Thus,—I(pq(cy,..,Cq)) is the added value of the partition in estimatipxs, ..,xq) and
sincey;H(P(x)) > 1(Pg(c1,-.,¢q)) the bound (37) is always positive.

The value ofl (pg(c1,..,¢q)) increases monotonically with the increase of the partition com-
plexity Q (we can see this by the information processing inequality (Cover and Thdaas)).
Thus, the trade-off in (37) is analogous to the trade-off in (19): thétjger Q should balance its
utility function —I(pg(cy, ..,Cq)) and the statistical reliability of the estimate of the utility function,
which is related toy; %I (X;Ci). This trade-off suggests a modification to the original objective
of co-clustering in (Dhillon et al., 2003), which is maximizationld€,;;C,) alone (Dhillon et al.
(2003) discuss the case of two-dimensional matrices). The trade-@f)rcan be applied to model
order selection.

Now we make a few comments concerning Theorem 11. An interesting paiat tiis theorem
is that the cardinality of the random variab(¥;,..,Xg) is []ini. Thus, a direct application of
Theorem 2 to boundKL(Pq (X1, ..,Xd)||Pq(X1,.-,%d)) would introduce this term into the bound.
However, by using the factor form (28) pf, (X1, ..,Xd) andpgq (X1, ..,Xd) we are able to reduce this
dependency toM + 5;nj —d — 1). This result reveals the great potential of applying PAC-Bayesian
analysis to more complex graphical models, which we explore further in &ettio

3.4.1 RROOFS

We conclude this section by presenting the proofs of Theorems 11 and 12.
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Proof of Theorem 11The proof is based on PAC-Bayesian theorem on density estimation (Theo-

rem 2). To apply the theorem we need to define a gPiover 4 and then calculatéL (Q||P). We

note that for a fixedQ the cardinalities of the clustensare fixed. There arf; n; disjoint subspaces

Hgin H. We handle eactt{z independently and then combine the results to obtain Theorem 11.
By Theorem 2 and Lemma 9, for the pri@ over #z defined in Lemma 8, with probability

greater than + W we obtain (29) for eack:. In addition, by Theorem 5 with probability

greater than + d+l inequality (30) holds for eack;. By a union bound over thf]; nj subspaces
of A and thed variablesX; we obtain that (29) and (30) hold simultaneously for@landX; with
probability greater than 4 .

To prove (32), fix some hard partitidgnand letc" = h(x;). Then:

KL(Pn(X1;--»Xa)[| Pn(X1; -, Xd))
= KL(Pn(Xe, - Xd, €} (X1), -+, & (Xa)) | Pa(Xa, .-, X, €1 (%), -+, € (X))
= KL(Pn(C1,..,Cd)[[Pn(Ca, -, Cd))
+KL(Pr(x1, -, Xa| (%), -, &G (%)) || Pr(Xa, -, a1 (xa), -, € (%a)))

d
=KL(I@h(CL--,Cd)th(Cly-de))+_ZLK|-(I5h(Xi!CP(Xi))HDh(Xi\CP(K)))
d
KL(Pn(C1;--,Ca)[lPn(C1; --,Ca) +ZKL x)|Ip(xi)) — ;KL(f’h(Ci)th(Ci))

< KL(Pn(c1, -+, Ca) || Pn(C1, -, Ca)) + ZiKL X)[Ip(xi)).
And:
EgeNKL(Bn(x1.%a) [Pa(x1,--X0)) < (ESeNK'- Ph(CL.--.Ca) [ Pn(Cr.-. ) l_lE SENKL(BOS)Ip0K))

< (N+ 1)M+zid:1n.—(d+1)7

where the last inequality is by Theorem 3. From here we follow the lines gtvaf of Theorem
2. Namely:

Es E?(h)eNKuﬁh(xl,...,xd)Hph(xl.,..yxd»} = Epy [ESeNKLmh(xl,..,xd)Hph<xl,..,xd>>
< (N 1MF3Ean—(d+1)

Thus, by Markov's inequalityE p) eNKHPrL--Xa) [Pn(x-Xa)) < 2(N + 1)M+Zin=(4+1) with proba-
bility of at least 1— & and (32) foIIows by the change of measure inequality (8) and convexity of
the KL-divergence, when the pric® over # defined in Lemma 8 is selected (this time we give a
weight of ([ ni) ~* to each?4; and obtain a prior over the whol). The calculation oKL(Q/|?)

for this prior is provided in Lemma 9. |

Proof of Theorem 12

—Eppa,..x) INBQ(X1s -, Xd) = —Epxy, _xq) INEqny Pr(Xe, .., Xa)
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< —EqnEppa...x) N (X, -, Xa)

= —Eq(nEppq,..x) N Pr(C1(X0), ..,CH(Xa)) ||_| B (Ch0%))
=B [Eaen,.c0 N P(Ca, -+ Ca)] =3 Bt I BOG) + 3 By Bpwe) In r(C)
< ~Eqh) [Epp(cr,..c) N Pn(C1, .,Ca)] — IZEP(Xi) In 5(X5) + IZEPQ(CO Inpo (G

At this point we use (15) to bound the first and the second term and the bmued (17) to bound
the last term and obtain (37). [ |

4. Algorithms

In the previous section we presented generalization bounds for disctiveipeediction and density
estimation with co-clustering. The bounds presented in Theorems 7 anddl@hany prediction
rule Q based on grid clustering of the parameter sp#ce .. x Xy. In (Seldin, 2009) it is shown
that ford = 1 the global minimum of bound (19) can be found efficiently. Howeverdfor2 it can
be exponentially hard to find the global minimum of both (19) and (37). Fyrétthough we show
in the applications section that bound (19) is remarkably tight, its tightnesdittdre snsufficient
for practical purposes. In this section we suggest how to replace thadbavith parameterized
trade-offs that can be further fine-tuned, e.g., via cross-validatiampoove the usability in prac-
tice. The substitution of the bounds with parametrized trade-offs doe®ngiromise on the rigor
of the analysis: first, the bounds hold simultaneously for all the solutionsdftay minimization
of the parameterized trade-offs and, second, the parameter of theoffadn also be tuned by
substituting the result of trade-off minimization back into the correspondingdhahus providing
an estimate on a local minima of the bound.

4.1 Minimization of the PAC-Bayesian Bound for Discriminative Predicion with Grid
Clustering

We start with minimization of the PAC-Bayesian bound for discriminative predidiased on grid
clustering (19) suggested in Theorem 7. We rewrite the bound in a slighiéyetit way in order to
separate terms which are independent of the conditional distributias in

I(E(QIL(Q) < TG TK

(38)
where
d 1
K:Zmlnni+Mln|9f|+éln(4N)—ln6. (39)
i=
Note thatK depends on the number of clustensused along each dimension, but not on a
specific form of a grid partition. Once the number of clusters used alortgdienension has been

selectedK is constant.
The minimization problem corresponding to (38) can be stated as follows:

X:;Ci) +K
A .

minL st KIL(QIL) = el (40)
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Itis generally possible to find a local minimum of the minimization problem (40) tyreising
alternating projection methods - see, e.g., (Germain et al., 2009) for suappaoach to solving a
similar minimization problem for linear classifiers. We take a slightly different@ggh that further
enables us to compensate for the imperfection of the bounds. Kirsceonstantl(Q) depends on
a parameterized trade-off betwelefQ) and %, nil (X;;Ci), which can be written as follows:

d _
7(QB)=BNE(Q)+ 3 nl(X:C), (41)
wherep is the trade-off parameter. The corresponding minimization problem is:
d _
Fmin(B) = m(inBNL(Q) +i;nil(>Q,G)- (42)

In general, every value @ yields a different solution to the minimization problem (42). The
optimum of (40) (which is computationally hard to find) corresponds to soraeifspvalue off.
Hence, by scanning the possible valuegominimizing (42), and substituting the resultiﬁgQ)
andl (X;;Ci) back into (19) it is virtually possible to find the optimum of (40) (only virtuallychese
finding the global optimum of (42) is computationally hard as well). However tthde-off (41)
provides an additional degree of freedom. In cases where the b@his (ot sufficiently tight for
practical applications it is possible to tune the trade-off by determining thieedeglue off3 via
cross-validation instead of back-substitution into the bound.

The minimization problem (42) is closely related to the rate distortion trade-offannration
theory (Cover and Thomas, 1991). To find a local minimun¥diQ,3) we adopt an EM-like
alternating projection procedure, very similar to the Blahut-Arimoto algorithnrmfimimization
of the rate distortion function (Arimoto, 1972; Blahut, 1972; Cover andrii&®, 1991). We note
that ford > 2 the alternating projections involve more than two convex sets and henca sl
minimum can be achieved. (Fdr= 1 the procedure achieves the global minimum.) For the sake
of simplicity of the notations we restrict ourselves to the casag 6f2, but it is straightforward to
extend the algorithm to higher dimensions.

The Lagrangian corresponding to the minimization problem (42) is:

L(Q,B)=BNL(Q +Zn. 1(%:;G) +Z > V(X Zq cilx)+ Y v(c,c2) zq yler, c2),
X €X C1,C2

wherev-s are Lagrange multipliers corresponding to normalization constraintg(orix) }2_; and
q(y|c1,c2). In order to minimizeL(Q, B) we writeL(Q) explicitly:

L(Q = 3 Blxa, %y ZQB/\Xl,Xz (YY)

X1,X2,Y
= > Px,%,y) z q(y' |1, C2)a(Calxa)a(czlx2)l (v,Y)
X1,X2,Y y',C1,C2
=5 1yY) S alylew.co) Y alcalxa) Blxa, X2, y)a(Czlx2).
vy C1,C2 X1,X2
We further derivel (Q) with respect taj(c1|x1). The derivative with respect @(c|xz) is similar.
oL(Q)
— = C1,C2) P(X1, X2, Co|X2). 43
3q(calx0) % xZZczq |c1,C2) P(X1, X2, Y)q(C2|%2) (43)
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Recall thatl (X;Gi) = & 5 d(c[x)In (I
nil (%;G) is:

i)=& L. q(c|x). Hence the derivative of

ni(%:G) _ | aGlx)

da(cilx) a(ci)
Derivatives of the remaining terms ia(Q, ) provide normalization for the corresponding vari-
ables. Thus, by taking the derivative Q(Q, B) with respect tog(ci|X;), equating it to zero and
reorganizing the terms we obtain a set of self-consistent equations thbé¢eerated until conver-
gence:

th Gilxi),

| Xi
G(C) —pnHQ).
o Clx)= ——~—¢e CECT

Zt+1 XI th+l CI‘XI

Yir1(C1,C2) = arg fg,'”Z' YY) Y Gera(Calxa) Blxe, X2, Y)ha(CalX2), (44)
y X1,X2
Ge+1(YIC1,C2) = B[y, eya (s C2)), (45)

whered[-, ] is the Kronecker delta function&% is given by (43), and the subindéxdenotes

the iteration number. Equations (44) and (45) correspond to minimizatiﬁb@)‘ with respect to
g(y|c1,c2) and generally depend on the loss function. For the zero-oneygss, c;) is the most
frequent value of appearing in thécs, c,) partition cell; for the absolute loss it is the median value;
for the quadratic loss it is the average value. We summarize the algorithm ifgbgtAm 1 boX.
We note that for the quadratic loss the loss minimizéc, c;), which is the average value in this
case, can fall out of the finite space of labgls However, the algorithm can still be applied and a
bound can be obtained by post-process quantization, see appendid&dads.

4.2 Minimization of the PAC-Bayesian Bound for Density Estimation

Similar to the PAC-Bayesian bound for discriminative prediction, the PACeBiay bound for den-
sity estimation (37) depends on the trade-off:

2 _
G(QB)=~PNI(Ba(cu,cz)) + 3 miX:C)

All other terms in (37) do not depend on the specific form of grid partitian(As in the previous
subsection we restrict ourselvesde= 2.) Unfortunately,—I(pq(c1,C2)) is concave img(c;j|x;)-s
wheread (X;Gi) is convex inq(ci|x). Therefore, alternating projection methods are hard to apply.
Instead,G(Q,3) can be minimized (with respect @) using sequential minimization (Slonim et al.,
2002; Dhillon et al., 2003). The essence of the sequential minimization mettiwat ise start with
some random assignmeq(ci|x;) and then iteratively take-s out of their clusters and reassign
them to new clusters, so thgt(Q, ) is minimized. This approach leads to a hard partition of the
data (i.e., eack; is deterministically assigned to a singl¢. The algorithm is given in Algorithm 2
box.

2. Matlab implementation of the algorithm is availablét://www.kyb.mpg.de/ ~seldin .
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Algorithm 1 Algorithm for minimization of ¥ (Q,B) = BNL(Q) + S2.; n; 1(X;;C;) by alternating
projections.

IanJt: ﬁ(X]-vXZ)y) N, ng, N2, my, My, ( y) |9/| B
Initialize: qgo(ci|x) anddo(y|c1,C2) randomly.

t<0
Q(Ci) 7 3 G(Gilx)
repeat
fori=1,2do
BN Q)
Qt+1(C|! i) < Ge(ci)e oGk
Zii1(X) Y Oe+1(Ci[%)

Gpr1(Gifx) *ngq;ry

(
G+1(Ci) < Zx. Ge+1(Cil%)
Yii1(C1,C2) i argminy 31 (Y,Y') ¥ xux Gra(CalXa) P(Xa, X2, Y) Ge1(C2/%2)
ql+1(y‘C17C2) — 6[y7 y*-t,-l(clvcz)]
t—t+1
end for
until convergence
return  {q(ci|x)}2_;, e (y|c1,C2) from the last iteration.

Algorithm 2 Algorithm for sequential minimization ofG(Q,B) = —BNI(Pg(c1,C2)) +
Yo a0l (X%;G).

Input: P(x1,%2), N, ng, Nz, mg, my, B.

Initialize: qo(ci|x;) randomly.

repeat
for all x; € X7 and allx; € X, according to some random order ovgrand X, do
fori=1,2do

Selectx; € X; according to the order selected above.
ComputeG (Q,B) for each possible assignmentotoc € {1,..,m}
Reassign; to ¢; such thatG(Q,B) is minimized.
Updatepq (C1,C2) 4= 3, x, d(Ce[X1) P(X1, X2)0(C2[X2).
end for
end for
until no reassignments further minimizg Q, B).
return {q(ci|x;)}2 ; from the last iteration.
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5. Applications

In this section we illustrate an application of the PAC-Bayesian bound forigisative prediction
based on co-clustering (19) and Algorithm 1 for minimization of the corneding trade-off (41)
on the problem of collaborative filtering. The problem of collaborativerfiitg was discussed in
the previous sections. The goal of collaborative filtering is to complete théngisstries in a
viewers-by-movies ratings matrix. This problem attracted a great dedlewttian recently thanks
to the Netflix challengé Since our goal here is mainly to illustrate our approach to co-clustering
via the PAC-Bayesian bounds rather than to solve the large-scale cleldengoncentrate on a
much smaller MovieLens 100K dataseThe dataset consists of 100,000 ratings on a five-star scale
for 1,682 movies by 943 users. We take the five non-overlapping splitsesofidtaset into 80%
training and 20% test subsets provided at the MovieLens website. We #iegghe training data
are extremely sparse - only 5% of the training matrix entries are populatedead 95% of the
values are missing.

To measure the accuracy of our algorithm we use the mean absolute MA&) (neasure,
which is commonly used for evaluation on this dataset (Herlocker et al.,)20@4p(x1,X2,Yy) be
the distribution ove(Xy, X2,Y) in the test set. The mean absolute error is defined as:

MAE= S p(x.%,y) ;Cl()/’XLXZ)‘y—w-

X1,X2,Y

In previous work the best MAE reported for this dataset was 0.73 (Elezloet al., 2004).

It is worth recalling that the ratings are on a five-star scale, thus a MAE7Z¥ feans that, on
average, the predicted rating is 0.73 stars (less than one star) far feoabslerved rating. The
maximal possible error is 4 (which occurs if we predict one star insteadeobfivice versa), which
determines the scale on which all the results should be judged.

In (Seldin et al., 2007) we improved the MAE on this dataset to 0.72 by usingnanidm
Description Length (MDL, Giinwald, 2007) formulation of co-clustering. In the MDL formulation
the co-clustering solutions are evaluated by the total description lengtH) lsiades the length of
the description of assignmentspfs toc;-s together with the length of the description of the ratings
given the assignments. For fixed numbers of clusterssj used along each dimension, the MDL
solution corresponds to optimization of the trade-off (41) with logarithmic ﬁc@@) = f(Y;Cl,Cz)
andp = 1 (wherel (Y;Cy,C,) is the empirical mutual information between the clusters and the label).
In the MDL formulation of co-clustering developed in (Seldin et al., 200y bard (deterministic)
assignments of;-s toc;-s were considered. The best performance of 0.72 was achiemad-af.3
andmp, = 6 with below 1% sensitivity to small changesripm andmy, both in the description length
and in the prediction accuracy. The deviation in prediction accuracy ketite five splits of the
MovielLens dataset was below 0.01.

In the present work we implemented Algorithm 1 for minimizatiorfofQ, ) as a function of
Q and applied it to the MovieLens dataset. There are four major differdretaseen Algorithm 1
and the MDL algorithm suggested in (Seldin et al., 2007) that should be Hidédig

e Algorithm 1 directly optimizes a given loss function (MAE in the case of Moviet)erather
than the description length, which is only indirectly related to the loss function.

3. Seenttp:/www.netflixprize.com/rules
4. Available athttp://www.grouplens.org
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(a) Bound (19). (b) Test Loss (zoom into subfigure a.).

Figure 3: Co-clustering of the MovieLens dataset into 13x6 clusterdrigure (a) shows the value
of bound (19) together with the MAE on the test set as a functigh &igure (b) zooms
into MAE on the test set. The values[dfire on a log scale. See text for further details.

e Algorithm 1 considers soft assignmentsxps toc;-s.

e Algorithm 1 is an iterative projection algorithm rather than the sequential optiimizalgo-
rithm suggested in (Seldin et al., 2007). Note that this point is neither posiivaegative,
since sequential optimization algorithms are very powerful and especiallgrihdases can
outperform iterative projection methods. The advantage of iterativeqtimjemethods is in
their mathematical elegance, faster convergence (although in the haslitasay be fast
convergence to trivial, but strong attractors), and the ability to handi@ssignments.

e Algorithm 1 considers arbitrary values pf (However, the algorithm in (Seldin et al., 2007)
can be easily extended to handle arbitrary value@.pfAs we will show below, the value
of B = 1 dictated by the MDL formulation is not always optimal and MDL solutions can
overfit the data. This observation was already made previously in a ¢aftether learning
problems by Kearns et al. (1997).

We conducted three experiments with Algorithm 1. In all three experimentsxe fihe num-
bers of clustersn; andnm, used along both dimensions and analyzed the MAE on the test set and
the value of bound (19) as a function @f In each experiment, for each of the five splits of the
dataset into training and test sets mentioned earlier, and for each vflueeoépplied 10 random
initializations of the algorithm. The solutio@ corresponding to the best value 5{ Q, ) per each
data split and per each value®fvas then selected. We further calculated the average of the results
over the dataset splits to produce the graphs of the bound values anthEsts functions of3.

In the first experiment we verified that we are able to reproduce thésesihieved previously
in (Seldin et al., 2007). We set; = 13 andn, = 6, as the best values obtained in (Seldin et al.,
2007) and applied Algorithm 1. The results are presented in Figure 3. We tha following
conclusions from this experiment:
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Figure 4: Co-clustering of the MovieLens dataset into 50x50 clustergzigure (a) shows the value

of bound (19) together with the MAE on the test set as a functigh &igure (b) zooms
into MAE on the test set. The values[dfire on a log scale. See text for further details.

The performance of Algorithm 1 is comparable to the performance achiey&ealdin et al.,
2007) with sequential optimization.

The optimal performance is achieved3atlose to one, which corresponds to the MDL func-
tional optimized in (Seldin et al., 2007).

The values of the bound are meaningful (recall that the maximal possilslésids thus the
bound value of- 1.25 is informative).

The bound is 25%-75% far from the test error.

The bound does not follow the shape of the test loss. According to thedbiauthis task
it is best to assign all the data to one big cluster. This is explained by the &dhik is a
hard problem and the improvement in the empirical Ib&Q) achieved by co-clustering is
relatively small. For the best co-clustering solution fouIrQQ) ~ 0.67, whereas if we assign
all the data to one big clustéx Q) ~ 0.89. Thus, the improvement in(Q) achieved by the
clustering is only about 30% while the tightness of the bound is 25%-75%. i kigarly
insufficient to apply the bound as the main guideline for model order seleckomever,
it is possible to set the value @fin the trade-off ¥ (Q,[) via cross-validation and obtain
remarkably good results. It should be pointed out that the tradg-adf, 3) was derived from
the bound, thus even though the analysis is not perfectly tight it produceseful practical
result.

Note that in the setting of this experiment the small valuesyodndmy, provide “natural reg-
ularization”; thus there is no significant decrease in performance whkeancreas beyond
1. This will change in the following experiments.
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(a) Bound (19). (b) Test Loss (zoom into subfigure a.).

Figure 5: Co-clustering of the MovieLens dataset into 283x283 clusterdrigure (a) shows the
value of bound (19) together with the MAE on the test set as a functifn Bfgure (b)
zooms into MAE on the test set. The value{3dadre on a log scale. See text for further
details.

The power of bound (19) and the trade-6ff Q,3) derived from the bound is that it penalizes
the effective complexity of the solution rather than the gross number of dusted. The practical
implication of this property is that we can initialize the optimization algorithm with moretetss
than are actually required to solve a problem, and the algorithm will automatichligtahe extent
to which it uses said available clusters. This property is verified in the follptvio experiments. In
the first experiment we initialized Algorithm 1 witlmy, = mp = 50 clusters along each dimension.
The result of optimization off (Q,B) as a function of3 is presented in Figure 4. We make the
following observations based on this experiment:

e The best performance (the 0.72 test MAE) achieved in the previous seftingy = 13 and
M, = 6 is achieved in the new setting withy = mp, = 50 as well. This supports the ability of
the algorithm to operate with more clusters than are actually required by thieprand to
adjust the complexity of the solution automatically.

e Note that the optimal value ¢ in this setting is below 1. In particular, this implies that the
MDL formulation, which corresponds t = 1 would overfit in this case. The role of the
regularization paramet¢ris also more evidently expressed here compared to the preceding
experiment.

e The values of the bound, although less tight than in the previous casstjlaneeaningful.
The shape of the bound becomes closer to the shape of the test losgglalitndight of the
preceding experiment we would not attribute importance to it, and would stitpieeset the
value of3 via cross-validation.

In our last experiment we went to the extreme case of taking= m, = 283 = v/N. Note
that the size of the cluster spalvk= mym in this case is 889 and is equal to the size of the
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Figure 6: The values ofl (X;;C;) in the minimized ¥ (Q, ) corresponding to Figures 3, 4, 5We
show the values df(X;;C;) that were obtained after minimization 8f(Q,3) by Q when
clustering the MovieLens dataset into 13x6, 50x50, and 283x283 dduster

training set,N = 80,000. The implication is that extensive use of all available clusters can result
in a situation where each partition cell contains an order of a single olieerverhich is clearly
insufficient for statistically reliable predictions. Thus, in this experiment thmber of clusters
provides no regularization at all and the only parameter responsibledalarization of the model

is the trade-off paramet@: The result of the experiment is presented in Figure 5. We highlight the
following points regarding this experiment:

e The best performance (the 0.72 test MAE) is achieved in this experimardliad his further
stresses the ability to have full control over regularization of the model venpeate3 of the

trade-off 7 (Q, B).

e The role of the regularization paramefgrs further increased in this experiment compared
to the previous two. The optimal value Pfhere is clearly below 1 (the optimfl~ 0.5),
suggesting that the MDL solution would be overfitting.

e The value of the bound still remains meaningful, although it is already quifedfarthe test
error. The shape of the bound does not seem to provide usefuiafimm and the value ¢
should be set via cross-validation.

In Figure 6 we show how the mutual informatiofX;;C;) andl(Xz;C,) changed in the three
experiments as we optimizef(Q, ) by Q for increasing values @. An important observation to
be made from these graphs (by relating them to Figures 3, 4, and 5) is tibtliree experiments
the best prediction performance was achieved at roughly the same gathesmutual information
I(X1;C1) and1(Xg;Cz). For clustering into 13x6 clusters prediction performance of MAE equal
to 0.72 and slightly lower was achieved (awalues starting from 0.7 and larger, whiiX;C1)
was in the range between 1.1 and 2.1 a_(mz;cz) was in the range between 0.8 and 1.5; for
clustering into 50x50 clusters prediction performance of 0.72 and slightlgriovas achieved fds
values in the range between 0.5 and 1.0, whefi; C;) was in the range between 1.1 and 2.2 and
[ (X2;C2) was in the range between 0.8 and 1.7; and for clustering into 283x283rsltiseoptimal
prediction performance of slightly below 0.72 was achieved3fer 0.5 and at this value o we

hadl (X1;C;) = 1.1 andl (X2;Cy) = 0.8. We see that although the three experiments were initialized
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with different numbers of clusters; andmy, the optimal prediction performance was achieved at
roughly the sameffective complexitgf the solution (measured ByX;; Ci)-s) and that the trade-off
parametef took care of regularization of the model.

6. Probabilistic Matrix Tri-Factorization

Ford = 2 the discriminative prediction and density estimation models considered in tres qap
be seen as two forms of matrix tri-factorization and for higher dimensian® as Tucker decom-
positions. In this section we discuss this relation in more detail, starting fromisbendinative
prediction problem.

6.1 Probabilistic Matrix Tri-Factorization for Discriminative Predictio n

Ford = 2 equation (18) accepts the form:

q(yPxa,x2) = 3 a(Cilxa)a(yles, C2)a(Czlx2)-

C1,C2

If q(y|ci,c2) is restricted to be a delta distribution then it can be replaced by a funttmnc,).
This means that instead of drawip@ the cluster product space according to a distribugjgcs, c2)
itis predicted deterministically bf/(cy, c2). Note that the assignmentxfs toc;-s remains stochas-
tic. The restriction of deterministig(y|c;, cz) does not limit the model significantly, since for many
loss functions, such as zero-one, absolute, or quadratic lossestitmalggrediction rule is deter-
ministic in the cluster product space in any case. At the same time the bouidsidmeviously
are still valid, since they are valid for any distributiggy|ci,c) and in particular for the delta
distribution. The restricted model accepts the form:

Fxa,x2) = 3 a(cilxa) f(cr, c2)a(calx2),

C1,C2

which can be written as a matrix product:

A=QIFQy, (46)

where
Q=lax)] (=12
arem; x n; left stochastic matric@smappingx;-s to their clusters;-s, and

F = [f(c1,c2)]

is anmy x nmp matrix describing what happens in the cluster product space.

Given a data matriA (probably sparse) and a trade-off paramgehlgorithm 1 provides
a locally optimal approximation of\ in the form of (46) regularized by the mutual information
preserved iMQ; andQ,. Note that Algorithm 1 naturally handles the missing entrieé.inThe
productQ] FQ; can then be used to complete the missing entries.

5. A left stochastic matrix is a matrix of non-negative real numbers with each cofumming up to 1. In aight
stochastic matrix each row sums up to 1.
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C, C, C, C,
X, X, X, X,
Figure 7: A graphical model for simultaneous tri-factorization of multiple matrices (equations

(47)(49)). The mapping of; to C; is modeled by a corresponding matfx and labels
Y; correspond to prediction tasks in the respective maté¢es

Matrix factorization of the form (46) was already considered in (Baeegjeal., 2007) without
regularization. However, in (Banerjee et al., 2007) the matf@esndQ; are restricted to determin-
istic assignments of-s toc;-s (the entries 0Q; andQ, are in{0,1}), whereas in the factorization
proposed her®; andQ- are stochastic matrices afds arbitrary. Matrix tri-factorization consid-
ered in (Ding et al., 2006; Yoo and Choi, 2009a) is more closely related toxmidtfactorization
for density estimation discussed in the next subsection. We note that the Begesian approaches
to matrix factorization (Shan and Banerjee, 2008; Salakhutdinov and Mad8) are three-level
stochastic models and unlike the two-level stochastic model in (46) cannvatifen as a simple
product of matrices. The following list of positive properties of probatidisatrix tri-factorization
suggested here further distinguishes it from other forms of matrix faetaiz, including singular
value decomposition (SVD) (Strang, 2009; Golub and Loan, 1996}negative matrix factoriza-
tion (Lee and Seung, 1999, 2001), low-rank matrix factorization (8rebal., 2005a), and maxi-
mum margin matrix factorization (Srebro et al., 2005b; Srebro, 2004)s#iefy only parts of the
list:

e It has a clear probabilistic interpretation.

e |t naturally handles missing values.

e The factorized matriXA can be arbitrary (not necessarily positive or positive definite).

e Overfitting can be controlled via the regularization parampter

e The generalization bound derived for co-clustering applies to this fomagrix factorization.
e Itis a two-level stochastic model of the data.

e The model can be optimized by iterative projections.

e The model achieves state-of-the-art results in prediction of missing matrigen

We leave a wider practical comparison of the different matrix factorizatichoas as a subject for
future work.

A promising direction for future research suggested in (Seldin, 20@Pralependently in (Yoo
and Choi, 2009b) is to apply matrix tri-factorization in tasks, where multiple relddé¢gisets are
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considered. For example, l&i be a matrix of viewers-by-viewers propertiég,be a collaborative
filtering matrix, andAz be a matrix of movies-by-movies properties. We can look for simultaneous
tri-factorizations, such that:

A~ QIF1Q, (47)
A~ Q3F2Qs (48)
Ag ~ Q3 F3Qa. (49)

In other words, the clustering of viewers into clusters of viewers is shiagéwveen factorizations
of A; andA; and the clustering of movies into clusters of movies is shared between fatitmmiz
of A, andAs. An unregularized form of simultaneous tri-factorization for collabogafiltering
was already explored in (Yoo and Choi, 2009b). Problems of a similar fmemnalso frequent
in bioinformatics, when multiple experiments with partial relations are considdfedexample,
Alter et al. (2003) applied generalized SVD (GSVD) to compare yeashantan cell-cycle gene
expression datasets. In their experiment it is natural to create sepgstams of clusters for yeast
and human genes, but a common system of clusters for the cell-cycle time. pdistalready
pointed out, probabilistic matrix tri-factorization suggested here has $adrantages over SVD
(and consequently over GSVD). Hence, it would be interesting to applythigdype of problem.

6.2 Probabilistic Matrix Tri-Factorization for Density Estimation
The model for discrete density estimation based on co-clustering in equaTipceh also be written
as matrix tri-factorization (fod = 2):

A=R[GR,, (50)
where
q(x)
a(ci)

arem; x nj right stochastic matrices of probabilities of generatig givenc;-s and

Rz[o«xi\ci)]:[ q(cm)] (=12

G =[q(c1,c2)]

is anmy x mp matrix of joint probability distribution o€; andc,. As already mentioned, this model
is appropriate for co-occurrence data analysis, such as wordr@otco-occurrence matrices. An
unregularized form of such decomposition was already consideredirig @ al., 2006; Yoo and
Choi, 2009a). HereA is assumed to be a joint probability matrix (i.e., the entrief\@fre non-
negative and sum up to 1). In practiéeis an empirical joint probability distribution matrix and
factorization (50) regularized by the mutual informatio(; C;) can be used to regularize the esti-
mation of the joint probability distribution. Algorithm 2 can be used to find a loc@fmgm of such
factorization given the regularization paramdieil he generalization bound developed in Theorem
12 holds for this factorization. We remind the reader that Algorithm 2 opexsitd deterministic
assignments of;-s to clusters;-s. Although the resulting reverse conditional distributigr |c;) is
not deterministic, the algorithm does not explore all possible solutions to thidgon. Developing
an algorithm for finding a local optimum of the regularized decomposition withamxemberships
of x;-s is a challenging direction for future research.
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Figure 8: lllustration of (a) a graphical model for discriminative prediction a nd (b) its moral-
ized counterpart. The illustration is ford = 4.

7. PAC-Bayesian Analysis of Graphical Models

The analysis of co-clustering presented in Section 3 holds for any dinmedsidHowever, the
dependence of the bounds (19), (32), and (374 mexponential because of tMe= [; m; term that
they involve. This term is reasonably small when the number of dimensions lis(Bmeor three),
as in the example of co-clustering. However, as the number of dimensiows,ghis term grows
exponentially. Thus, high dimensional tasks require a different treatrSBente improvements are
also possible if we consider discriminative prediction based on a singlmpteeX (i.e., in the case
of d = 1), but the one-dimensional case is beyond the scope of this papereaefanthe interested
reader to (Seldin and Tishby, 2008; Seldin, 2009) for further detailshis section we suggest a
hierarchical approach to handle high-dimensional problems. We thewntblad this approach can
also be applied to generalization analysis of graphical models.

7.1 Hierarchical Approach to High Dimensional Problems ¢ > 2)

One possible way to handle high dimensional problems is to use hierarchitiéibps, as shown
in Figures 8 and 9. For example, the discriminative prediction rule comeksipg to the model in
Figure 8.a is:

qy|xe,..xa) = Y q(y|di,dy) q(dilcai—1,¢2) []alcj|x;)- (51)
d%g C]_,ZC4I|_| l . l I_ll ol

And the corresponding randomized prediction strategy is

Q= {{q (Gilx) | 1-{a(di|cai- 1,Czi) }2 i—1,d (y|d1,d2)}. In this case the hypothesis space is the space
of all hard partitions ok;-s toci-s and of the pairgcy_1,Cyi) to d;-s. By repeating the analysis in
Theorem 7 we obtain that with probability greater than&:

1 _
QL) < Bl+Bz+\D1|D2\Inl\\|9’\+2|n(4N) In67 (52)
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Figure 9: lllustration of (a) a directed model for density estimation and (b) its moralization
and application to sequence modelingThe sequence in subfigure (b) is an imaginary
subsequence of length 8 of a protein sequence. Eachbrresponds to a pair of amino
acids in the subsequence.

where

4 _

By = _Zl(nil(N;Q)erlnni),

i=
2
Bz = Zl((mZiflmZi)l(Di;CZifl,CZi)+|Di||n(m2iflm2i))-

=
Observe that thé/1In || term in (19), which corresponds to the cliqi@;,Cy,C3,C4,Y), is re-
placed in (52) with terms which correspond to much smaller cliq@gsC,,D1), (C3,C4,D>), and
(D1,D2,Y). This factorization makes it possible to control the complexity of the partitiontiaed
tightness of the bound. In a similar way it is possible to derive factorizetbgeao bounds (32)
and (37) that apply to density estimation hierarchies as in Figure 9.

We provide an illustration of a possible application of the models in Figure 9. ifredbat
we intend to analyze protein sequences. Protein sequences arecgsgoeer the alphabet of 20
amino acids. Subsequences of length 8 can reah-2266- 10° instances. Instead of studying
this space directly, which would require an order of 256 samples, we can associate ea¢h
with a pair of amino acids - see Figure 9. The subspace of pairs of amin®iacdly 2¢ = 400
instances and local interactions between adjacent pairs of amino acieasirbe studied. We can
cluster the pairs of amino acids into, say, 20 clus@rinteractions between adjacent pairsis$
in such a construction correspond to interactions between quadruesd acids. The subspace
of quadruples is 2b= 16-10* instances. However, the reduced subspace of pai@-sfis only
20% = 400 instances. Thus, we have doubled the range of interactions,rbained at the same
level of complexity. We can further cluster pairs@fs (which correspond to quadruples of amino
acids) intoDj-s and study the space of 8-tuples of amino acids while remaining at the saheflev
complexity.

The above approach shares the same basic principle already discugisedollaborative fil-
tering task: by clustering together similar pairs (and then quadruples) obaawids we increase
the statistical reliability of the observations, but reduce the resolution abwegrocess the data.
Bound (52) suggests how the trade-off between model resolution atnstisth reliability can be
optimized.
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7.2 PAC-Bayesian Analysis of Graphical Models

The result in the previous subsection suggests a new approach to ¢egrajphical models by
providing a way to evaluate the expected performance of a graphicall modew data. Thus,
instead of constructing a graphical model that fits the observed dataéissier construct a model
with good generalization properties. The analysis used to derive b&2)atdén be applied to any
directed graphical model in the form of a tree (as in Figures 8.a, 9.a) or italired counterpart
(as in Figures 8.b, 9.b). The analysis shows that the generalization pbtheise graphical models
is determined by a trade-off between empirical performance and the awfomtual information
that is propagated up the tree. It is important to note that the PAC-Bayesigtl lis able to take
advantage of the factor form of distribution (51) and that bound (5@¢dés on the sizes of the tree
cliques, but not on the size of the parameter space.. x Xy. Further, a prior can be added over all
possible directed graphs under consideration to obtain a PAC-Bayesiad khat will hold for all
of them simultaneously. Development of efficient algorithms for optimizationetrie structure
and extension of the results to more general graphical models are keyyatisefor future research.

8. PAC-Bayesian Analysis of Graph Clustering and Pairwise Qlstering

In this section we show that our approach to predictive formulation ofpersised learning prob-
lems and their subsequent PAC-Bayesian analysis can also be applieidtedeyraph clustering
(and, consequently, to pairwise clustering, which can be regardddsasring of a graph with edge
weights corresponding to pairwise distances). Graph clustering is antanptwol in data analysis
with a wide variety of applications including social networks analysis, biomé&tics, image pro-
cessing, and many more. As a result, a multitude of different approaclgespb clustering were
developed. Examples include graph cut methods (Shi and Malik, 200&trapclustering (Ng
et al., 2001), information-theoretic approaches (Slonim et al., 2005t just a few. Comparing
the different approaches is usually a painful task, mainly because gh@igeach of these cluster-
ing methods is formulated in terms of the solution: most clustering methods startibyygesome
objective functional and then minimize it. But, for a given problem, how caclvamse whether to
apply a graph cut method, spectral clustering, or an information-theagtioach?

Here we formulate weighted graph clustering as a prediction prébl&ien a subset of edge
weights we analyze the ability of graph clustering to predict the remaining eegghts. The
rationale behind this formulation is that if a model (not necessarily cluste)as able to predict
with high precision all edge weights of a graph given a small subset efwdghts then it is a good
model of the graph. The advantage of this formulation of graph modelingtist ikdndependent
of the specific way chosen to model the graph and can be used to comrmyat@asolutions,
either by comparison of generalization bounds or by cross-validatiamg&heralization bounds or
cross-validation also address the finite-sample nature of the graph iclggiesblem and provide a
clear criterion for model order selection. For very large datasets,end@mmnputational constraints
can prevent considering all edges of a graph, as for example in (Yanaid Slonim, 2009), the
generalization bounds can be used to resolve the trade-off betweentatimpal workload and
precision of graph modeling.

Below we provide a PAC-Bayesian analysis of graph clustering in the wdmee independent
sampling of edge weights is possible. For example, in the analysis of floiagirapch as loads

6. Unweighted graphs can be modeled by setting the weight of presges ed 1 and absent edges as 0.

39



SELDIN AND TISHBY

on links in traffic or communication networks, we can repeatedly sample omem@ non-adjacent
edge weights at a time (non-adjacent edges have no common vertices).amatlysis of snapshot
graphs, for example image segmentation, the dependencies betweemiaeflaeeweight samples
should be taken into account, but this is again beyond the scope of this pape

8.1 PAC-Bayesian Analysis of Graph Clustering

Assume thaiX is a space ofX| nodes and denote .y, the weight of an edge connecting nodes
x; andxp.” We assume that the weights,y, are generated according to an unknown probability
distribution p(w|x1,X2). We further assume that the space of nodleis known and we are given
a sample of siz&\ of edge weights, generated accordingotas, X2, w). The goal is to build a re-
gression functiomg(w|xy, x2) that will minimize the expected prediction error of the edge weights
I o 0w) Eqwxa,x0) | (W, W) for some externally given loss functidiw,w). Note that this for-
mulation does not assume any specific formg@f|x;,x2) and enables comparison of all possible
approaches to this problem.

Here we analyze generalization abilitiesgd|x;, x2) based on clustering:

q(Wixe,x2) = d(wic, C2)d(Ca|x1)a(Calx2). (53)
C1,C2
One can immediately see the relation between (53) and the co-clustering modedriminative
prediction (18). The only difference is that in (53) the nodgs; belong to the same space of
nodesX and the conditional distributiog(c|x) is shared for the mapping of endpoints of an edge.
Let B(x1,x2,w) be the empirical distribution over edge weights. The empirical loss of predictio
strategyQ = {q(c|x),q(w|cy, C2)} corresponding to (53) can then be written as:

IA-( Q) = Eﬁ(xl,xz,w) IE:q(w’ [X1,%2) I (W7 W/) :

The following generalization bound for graph clustering can be proyedrbinor adaptation of
the proof of Theorem 7.

Theorem 13 For any probability measure (g1, X2, w) over the space of nodes and edge weights
X x X x W and for any loss function | bounded by 1, with probability of at Iehstd over a
selection of an i.i.d. sample S of size N according to p, for all graph clustenodels defined by
Q = {q(clx), a(wlcs, c2)}:
. nl (X;C)+minn+nein|%W|+1In(4N) —Ind
KIL(Q)IIL(Q)) < N 2 : (54)

where m= |C|, n= | .X|, and| /| is the number of distinct edge weights.

Continuous edge weights can be handled by post-process quantizatgimven in appendix B.
As in the case of co-clustering, in practice we can replace (54) with a-tffide

7(Q,B) =BNL(Q) +nl(X;C) (55)

and tunep either by substituting (Q) and I_(X;C) resulting from the solution of (55) back into the
bound or via cross-validation.

7. All the results can be straightforwardly extended to hyper-graphs.
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If the distributiong(w|cy, Cz) is restricted to be a delta distribution equation (53) can be rewritten
as:
f(xi,%2) = 3 d(cafxa) f(cr, c2)a(Calx2)

C1,C2

and the corresponding matrix form is:
A~QTFQ,

whereQ = [q(c|x)], F = [f(c1,¢2)], andAis an input matrix (probably sparse) providing a sample of
graph edge weights. This form of symmetric matrix tri-factorization is brieflytinaad in (Ding
etal., 2006). Lef be an indicator matrix for the entries presenirFor quadratic loss the empirical
approximation errof.(Q) can be written as:

LQ) = %HHO(A—QTFQ)H%, (56)

whereo denotes entrywise product of two matrices. From (56) it is easy to seé(tQa)tis not
convex inQ (unlike in the case of co-clustering, where the dependenc®;emwas quadratic,
here the power of) is 4). Hence, although alternating projections similar to those in Algorithm 1
can be applied tg(Q,B) they are not guaranteed to converge to a local minimum. Nevertheless,
according to some preliminary experiments they can achieve reasonalsglotions and bound
(54) provides reasonably tight guarantees on the expected approxingatity (Seldin, 2010).
Alternatively, trade-off7(Q, ) can be optimized by sequential minimization. Unlike alternating
projections, sequential minimization (similar to the one in Algorithm 2) is guarariteednverge

to a local minimum, but can operate with deterministic assignments of graph medds the
clustersci-s only. A convergent algorithm that will be able to explore stochastic assgts still
awaits to be developed.

8.2 Related Work on Pairwise Clustering

The regularization of pairwise clustering by mutual informatI?QP(;C) was already applied in
practice by Slonim et al. (2005). They maximized a parameterized traggf- 1 (X;C), where
(S) = ¥ca(C) T, % d(X1|C)a(X2|C)Wy,x, Measured average pairwise similarities within a cldster
Their algorithm demonstrated superior results in cluster coherence cednfpal8 other cluster-
ing methods. The regularization by mutual information was motivated by informétieoretic
considerations inspired by the rate distortion theory (Cover and Thor@@4).1Namely, the au-
thors drew a parallel betwedg) and distortion and(X;C) and compression rate of a clustering
algorithm. Further, Yom-Tov and Slonim (2009) showed that the algorithmbearun in paral-
lel mode, where each parallel worker operates with a subset of pairalaéns at each iteration
rather than all of them. Such a mode of operation was motivated by inability sidmrall pairwise
relations in very large datasets due to computational constraints. Yom-@io8lanim (2009) re-
ported only minor empirical degradation in clustering quality, but no formalyais or guarantees
were suggested. The results presented here can help to analyzeahielmg and help to address
the trade-off between computational workload and approximation qualityalysis of very large

graphs.

8. The loss.(Q) is slightly more ggneral tha(s) since it also considers edges between the clusters. Although, this
generality breaks the convexity bfQ) in (56).
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9. Related Work on Clustering

The idea of considering clustering in the context of a higher level taskinggired by the Infor-
mation Bottleneck (IB) principle (Tishby et al., 1999; Slonim, 2002; Sloniml.e2806). The IB
principle considers the problem of extracting information from a randamabie X that is relevant
for prediction of a random variabM. The relevance variab¥ defines the high-level task. For ex-
ample X might be a speech signal and the task might be identification of the speafamnsuription
of the signal. The extraction of relevant information frénis done by means of clustering &finto
clustersX that preserve the information @i (Tishby et al., 1999). Clearly, each relevance variable
9 corresponds to a different partition (clustering))of The IB principle was further extended to
graphical models in (Slonim et al., 2006).

The idea to consider clustering as a proxy to solution of a prediction taskuwher developed
in (Krupka and Tishby, 2005, 2008; Krupka, 2008). Krupka anthBysanalyze a scenario wherein
each object has multiple properties, but only a fraction of the propertidssireed. Consider the
following illustration: assume we are presented with multiple fruits and we obgleer parameters,
such as size, color, and weight. We can cluster the fruits by their olitsparameters in order to
facilitate prediction of unobserved parameters, such as taste and toxibity.approach enables
one to conduct a formal analysis and derive generalization boundsddiction rules based on
clustering.

In recent years extensive attempts have been made to address thenqpiasialel order selec-
tion in clustering through evaluation of its stability (Lange et al., 2004; vorbuay and Ben-David,
2005; Ben-David et al., 2006; Shamir and Tishby, 2009; Ben-Davidvand_uxburg, 2008). This
perspective suggests that for two random samples generated by the@ame, clustering of the
samples should be similar (and hence stable). Otherwise the obtained ctustaenmeliable. Al-
though it has been proven that in a large sample regime stability can be useddel order selec-
tion (Shamir and Tishby, 2009), no upper bounds on the minimal sample giziea@ for stability
estimates to hold can be proved. Moreover, in certain cases stability indised lon arbitrarily
large samples can be misleading (Ben-David and von Luxburg, 200&e Bimny practical appli-
cation the amount of data available is limited, currently existing stability indicesoté&enused for
reliable model order selection and it is not clear whether the stability indicelsecased to compare
solutions based on different optimization objectives.

Gaussian ring example.We use the following example from (Seldin, 2009) to illustrate that
generalization and stability criteria for evaluation of clustering are notvatgrit. Assume points
in R? are generated according to the following process. First, we selectter peof a Gaussian
according to a uniform distribution on a unit circlelk?. Then we generate a poirt A (Y, 0?1)
according to a Gaussian distribution centerepl aith a covariance matrig?| for a fixedo (I is a
2 by 2 identity matrix). Given a sample generated according to the abovegsrae can apply a
mixture of Gaussians clustering in order to learn the generating distributide. that:

1. Due to the circular symmetry in the generating process and model redyndae solution
will always be unstable (the centers of Gaussians in the mixture of Gasss@iel can move
arbitrarily along the unit circle and their variance in the direction tangentialdcittle is
loosely constrained).

2. Byincreasing the sample size and the number of Gaussians in the mixturasgiéns model
the true density of the points can be approximated arbitrarily well.
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Hence, models with good generalization properties are not necessabily. stais point should be
kept in mind when using generalization as an evaluation criterion in clustering.

10. Discussion and Future Work

This paper underlines the importance of external evaluation of unsapdrearning, such as clus-
tering or more general structure learning, based on the context of itstigbt@pplication. Such a
form of evaluation is important for delivery of better structure learningtigms as well as for
better understanding of their outcome. We argue that structure learn@sgndd occur for its own
sake, but rather in order to facilitate a solution of some higher level goanymon-trivial data
many structures co-exist simultaneously and it is a matter of the subsecagt of the outcome
of the learning algorithm to determine which of the structure elements are \alaath which are
not. Therefore, unsupervised learning cannot be analyzed in isofationits potential applica-
tion. In our opinion, one of the main obstacles in theoretical advancemensapervised learning
is an absence of a good mathematical definition of the context of its applicatlmanalysis of
co-clustering presented here is a first step toward context-basediaralynore complex models.

The work presented here started with an attempt to improve our undergaridinstering. We
note that clustering is tightly related to the object naming process in human @nglma sense,
a cluster is an entity that can be assigned a name. By clustering objects we tigeio irrelevant
properties and concentrate on the relevant ones. And of coursejuisisnl can change according
to our needs. For example, we can divide animals into birds and mammals or inig diyd
notatorial or into domestic and wild. Whereas the classification into birds and mlaronféying
and notatorial may be considered intrinsic, the classification into domestic éahdsvdefinitely
application-oriented. In order to design successful clustering andaréation algorithms it is
important to understand the basic principles behind this process. It ispradraclear that, if we
restrict ourselves to pure prediction tasks, clustering the underlyinglsapace helps. As shown
in (Seldin and Tishby, 2008; Seldin, 2009), in classification by a singlerpeter there is no need
to cluster the parameter space, but rather simple smoothing performs batidassification in
higher dimensional spaces, kernel-based methods can be supericsteyinlybased approaches.
However, we know that as humans we communicate by using a clusteredeatation of the world
rather than by kernel matrices. Thus, there should be advantagesfofem of communication.
Identification, understanding, and analysis of these advantages is artantgature direction for
the design of better clustering and higher structure learning algorithms.
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Appendix A. Proof of Theorem 6
Proof of Theorem 6First we prove inequality (15):
~Eq/Epy 2N Bn(2) = Eqty Epy2) - pm(2) N Bn(Z) = Eqm/Epy) IN Br(2)

Pn(Z2) +y Pn(Z2) +v
= EamBipa - 57 ~ Eam B I S
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1 .
< —*HDQ(Z) — P (2)[|1In
< H pQ —v€/2In

The last inequality is justified by the concavity of the entropy functiband the KL-divergence
bound on théd.; norm (Cover and Thomas, 1991):

18o(2) ~ Pa(@) 1 < \/2KL(Po(2)IPe(2) < V.

1+VM+ H(Pn(2)) +In(1+v|Z))

+In(1+v|2)). (57)

y
1+y|Z|

By differentiation (57) is minimized by = @ By substitution of this value of into (57) we
obtain (15). Inequality (16) is justified by (15) and the concavity of the hcfion. Finally, we
prove the lower bound (17):

(2 INP(Z) = E(py(2)-po (2] N B(Z2) —Epy () IN P (2)
1. 1+v|2 .
> 2160~ pe@ i =12 H(po(2)

> H(po(2)) — \/&/2In |Z|1+FF

Appendix B. Treatment of Continuous Label Spaceg)” via Quantization

In Theorems 7 and 13 it was assumed that the label space the edge weight spade’) is finite.
However, for quadratic loss the minimization 8 Q,3) by Algorithm 1 can return a solution that
falls out of this finite space. Furthermore, the input sp@icigself does not have to be finite (e.qg.,
gene expression levels in bioinformatics can be given on a continude$.ddare we show that the
bound can be easily generalized to handle this case via quantizaiénTdfe analysis can be seen
as post-processing and does not require modifications of the trade-Qfff3) and of Algorithm 1,
since the algorithm does not assume finiteneg¥ .of

Assume that) is limited in [0,1] interval and apply uniform quantization 9f at intervalsA,
then|94| = % (94 is the quantized copy @f and we assume that the quantization stari@a&nd
ends at - %A). By rounding the continuous valuesybbtained by Algorithm 1 toward the closest
quantization both the empirical and the expected loss are increased byt&i/xroA? (in the case
of quadratic loss). This is because quantization can shift theytamel the predictiory’ by at most
1A and thenl(y— Ay +18) = (y—y —A)2 = (y—y)?— 2y~ Y)A+ A2 < I(y,y) + 20+ A2,
where the last inequality follows from the assumption &t limited in [0,1]. Hence, we have

A2 YLl (%;G) +K
’ N

L(Q) <kt (E(Q)+2A+ >—|—2A+A2,

whereK, defined previously in (39), becomes:

d
K= _Zlmlnni —MInA+%In(4N)—In6.
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As a rule of thumb one can chooAe= kM/N for k =~ 5, so that the contribution df to the two
operands of the inverse KL-divergence is approximately equivalengeheral this correction for
guantization has no significant influence on the bound (Seldin, 2010).
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