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Abstract

The current attempt is aimed to honor the first centennial of
Johannes Diderik van der Waals (VDW) awarding Nobel Prize in
Physics. The VDW theory of ordinary fluids is reviewed in the first
part of the paper, where special effort is devoted to the equation of
state and the law of corresponding states. In addition, a few mathe-
matical features involving properties of cubic equations are discussed,
for appreciating the intrinsic beauty of the VDW theory. A the-
ory of astrophysical fluids is shortly reviewed in the second part of
the paper, grounding on the tensor virial theorem for two-component
systems, and an equation of state is formulated with a convenient
choice of reduced variables. Additional effort is devoted to particu-
lar choices of density profiles, namely a simple guidance case and two
cases of astrophysical interest. The related macroisothermal curves
are found to be qualitatively similar to VDW isothermal curves below
the critical threshold and, for sufficiently steep density profiles, a crit-
ical macroisothermal curve exists, with a single horisontal inflexion
point. Under the working hypothesis of a phase transition (assumed
to be gas-stars) for astrophysical fluids, similar to the vapour-liquid
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phase transition in ordinary fluids, the location of gas clouds, stellar
systems, galaxies, cluster of galaxies, on the plane scanned by reduced
variables, is tentatively assigned. A brief discussion shows how van
der Waals’ two great discoveries, namely a gas equation of state where
tidal interactions between molecules are taken into account, and the
law of corresponding states, related to microcosmos, find a counter-
part with regard to macrocosmos. In conclusion, after a century since
the awarding of the Nobel Prize in Physics, van der Waals’ ideas are
still valid and helpful to day for a full understanding of the universe.
keywords - galaxies: evolution - dark matter: haloes.

1 Introduction

One century ago (1910), the Nobel Prize in Physics was awarded to Johannes
Diderik van der Waals (hereafter quoted as VDW). In his doctoral thesis
(1873) the ideal gas equation of state was generalized for embracing both the
gaseous and the liquid state, where these two states of aggregation not only
merge into each other in a continuous manner, but are in fact of the same
nature. With respect to ideal gases, the volume of the molecules and the
intermolecular tidal forces were taken into account.

The VDW equation was later reformulated in terms of reduced (dimen-
sionless) variables (1880), which allows the description of all substances in
terms of a single equation. In other words, the state of any substance, defined
by the values of reduced volume, reduced pressure, and reduced temperature,
is independent of the nature of the substance. This result is known as the
law of corresponding states.

The VDW equation of state in dimensional and reduced form, served
as a guide during experiments which ultimately led to hydrogen (1898) and
helium (1908) liquefaction. The Cryogenic Laboratory at Leiden had devel-
oped under the influence of VDW’s theories. For further details on VDW’s
biography refer to specialized textbooks (e.g., Nobel Lectures 1967).

The current paper has been written in honor of the first centennial of
VDW awarding Nobel Prize in Physics. The ideal and VDW equation of
state, both in dimensional and reduced form, are reviewed, and a number
of features are analysed in detail, in Section 2. Counterparts to ideal and
VDW equations of state for astrophysical fluids, or macrogases, are briefly
summarized and compared with the classical formulation in Section 3. The
discussion and the conclusion are drawn in Section 4.



2 Equation of state of ordinary fluids

Let ordinary fluids be conceived as fluids which can be investigated in lab-
oratory. The simplest description is provided by the theory of ideal gas,
where the following restrictive assumptions are made: (i) particles are iden-
tical spheres; (ii) the number of particles is extremely large; (iii) the motion
of particles is random; (iv) collisions between particles or with the wall of
the box are perfectly elastic; (v) interactions between particles or with the
wall of the box are null.

The equation of state of ideal gases may be written under the form (e.g.,
Landau and Lifchitz, 1967, Chap.IV, §42, hereafter quoted as LL67):

pV =kNT (1)

where p is the pressure, V' the volume, T' the temperature, N the particle
number, and k£ the Boltzmann constant.

In getting a better description of ordinary fluids, the above assumption
(v) is relaxed and tidal interactions between particles are taken into con-
sideration. The VDW generalization of the equation of state of ideal gases,
Eq. (1), reads (van der Waals, 1873):

<p + Ag) (V= NB) = kNT ; (2)

where A and B are constants which depend on the nature of the particles.
More specifically, the presence of an attractive interaction between particles
reduces both the force and the frequency of particle-wall collisions: the net
effect is a reduction of the pressure, proportional to the square numerical
density, expressed as A(N/V)?. On the other hand, the whole volume of the
box, V, is not accessible to particles, in that they are conceived as identical
spheres: the free volume within the box is V' — N B, where B is the volume
of a single sphere. For further details refer to specific textbooks (e.g., LL67,
Chap. VII, §74).

The isothermal (7' = const) curves for ideal gases are hyperbolas with
axes, p = FV, conformly to Eq. (1). In VDW theory of real gases, the isother-
mal curves exhibit two extremum points below a threshold, which reduce to
a single horisontal inflexion point when a critical temperature is attained,
as shown in Fig.1. Well above the critical isothermal curve, T' > T, the
trends exhibited by ideal and VDW gases look very similar. Below the criti-
cal isothermal curve, T' < T, the behaviour of VDW gases is different with
respect to ideal gases and, in addition, the related isothermal curves provide
a wrong description within a specific region where saturated vapour and lig-
uid phases coexist. Further details are shown in Fig.2. Above the critical
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Figure 1: Isothermal curves related to ideal (left panel) and VDW (right
panel) gases, respectively. Isothermal curves (from bottom to top) corre-
spond to T'/T. = 20/23, 20/22, 20/21, 20/20, 20/19, 20/18. No extremum
point exists above the critical isothermal curve, T'/T, = 1.

isothermal curve (7' = T¢) the trend is similar with respect to ideal gases.
Below the critical isothermal curve and on the right of the dashed curve,
the supersaturated vapour still behaves as an ideal gas. Below the critical
isothermal curve and on the left of the dashed curve, the liquid shows little
change in volume as the pressure rises. Within the bell-shaped area bounded
by the dashed curve, the liquid phase is in equilibrium with the saturated
vapour phase. A diminished volume implies smaller saturated vapour frac-
tion and larger liquid fraction at constant pressure, and vice versa. The
VDW equation of state is no longer valid in this region. The dashed curve
(including the central branch) is the locus of intersections between VDW and
real isothermal curves, the latter being related to constant pressure where
liquid and vapour phases coexist. The dotted curve is the locus of VDW
isothermal extremum points.



A specific (T'/T. = 20/23) VDW and corresponding real isothermal curve,
are represented in Fig. 3. The VDW isothermal curve and the real isothermal
curve coincide within the range, V' < V) and V' > V. The VDW isother-
mal curve exhibits two extremum points: a minimum, B, and a maximum,
D, while the real isothermal curve is flat, within the range, VA <V < Vg.
Configurations related to the VDW isothermal curve within the range, Vy <
V < Vi (due to tension forces acting on the particles yielding superheated
liquid), and Vp < V < Vg (due to the occurrence of undercooled vapour),
may be obtained under special conditions, while configurations within the
range, V3 < V < Vp, are always unstable. The volumes, V, and Vg, cor-
respond to the maximum value in presence of the sole liquid phase and the
minimum value in presence of the sole vapour phase, respectively.

The surfaces, ABC and CDE, are equal, as first inferred by Maxwell (e.g.,
Rostagni, 1957, Chap.XII, §19). The VDW and real isothermal curves
represented in Fig. 3 being related to the same temperature, 7', the cycle,
ABCDECA, is completely both isothermal and reversible, and the work, W,
performed therein cannot be positive to avoid violation of the second law of
the thermodynamics. The cycles, ABCA and CDEC, occurring in counter-
clockwise and clockwise sense, respectively, are also completely both isother-
mal and reversible. Accordingly, Wagcpeca = Wasca — Wepee < 0. A sim-
ilar procedure, related to the reversed cycle, ACEDCBA, yields Wacepcea =
Weepe — Wegac < 0. Then Wagcpeca = Wacepcea = 0, which implies
Wasca = Wepec = Weepe = Wegac and, in turn, the equality between the
related surfaces. For further details refer to specific textbooks (e.g., LL67,
Chap. VIII, §85).

In order to simplify both notation and calculations, it is convenient to
deal with (dimensionless) reduced variables (e.g., Rostagni, 1957, Chap. XII,
§16; LL67, Chap. VIII, §85). To this aim, the first step is the knowledge of the
parameters related to the critical point, V., p., T.. Using the VDW equation
of state, Eq. (2), the pressure and its first and second partial derivatives, with
respect to the volume, read:

kENT N?
P=v—NEB AW’ N = const ; (3)
kENT N?
( ) ~ (V-NB)? T2 )
2kNT N2
g 0ATT (5)
<8V2>‘,’T (V- NB)? V4

where the domain is V' > NB, V = NB is a vertical asymptote, and p = 0
is a horisontal asymptote. The critical isothermal corresponds to the highest
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temperature allowing a liquid phase, which occurs therein only at the crit-
ical point. The critical isothermal curve exhibits neither a minimum nor a
maximum, which are replaced by a horisontal inflexion point coinciding with
the critical point. Accordingly, (9p/0V v, 1, = 0, (8?°p/OV?)y.1r. = 0, and
p. = kNT./(V. — NB) — AN?/V2. The solution of the related system is:

Ve =3NB ; (6)
c:%%% ; (7)
b= gy 0
i ®

where, in general, the compressibility factor, Z = pV/(kNT), defines the
degree of departure from the behaviour of ideal gases, for which Z = 1,
according to Eq.(1). For further details refer to specific textbooks (e.g.,
Rostagni, 1957, Chap. XII, §20; LL67, Chap. VIII, §85).

With regard to the reduced variables:

y=v o #=Li r=1 (10

the ideal gas equation of state, Eq.(1), and the VDW equation of state,
Eq. (2), reduce to:

V=T (1)
R0

and Egs. (3), (4), and (5), reduce to:
=g - (13
(%), o w
(7)., ~wr 57 )

where, for assigned 7', the domain of the function, y(y),is ¥ > 1/3, ¥V =
1/3 is a vertical asymptote, and p = 0 is a horisontal asymptote. In the
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special case of the critical point, ¥ =1, 1" =1, § = 1, the partial derivatives
are null, as expected.
The extremum points, via Eq. (14), are defined by the relation:

By — 1) ,

f(V)—4—W—T» (16)
which is satisfied at the critical point, as expected. The function on the
left-hand side of Eq. (16) has two extremum points: a minimum at J = 1/3
(outside the physical domain) and a maximum at ¥ = 1, where 1" = 1.
Accordingly, Eq. (16) is never satisfied for 1" > 1, which implies no extremum
point for related isothermal curves, as expected. The contrary holds for
I' < 1, where it can be seen that the third-degree equation associated to
Eq. (14) has three real solutions, related to extremum points. One lies outside
the physical domain, which implies ¥ < 1/3. The remaining two are obtained
as the intersections between the curve, f( V'), expressed by Eq. (16), and the
straight line, y = 1, keeping in mind that f(1/3) = 0, f(1) = 1, and
limy 400 f(V) = 0.

The third-degree equation associated to Eq. (14), may be ordered as:

V2 —9ay?+6ayY —a=0 ; (17a)

1
= ﬁ ; (17b)

with regard to the standard formulation (e.g., Spiegel, 1968, Chap.9):

a

4 az? +ar+a3 =0 ; (18)

the discriminants of Eq. (17a) are:

3 _ 42
Q:—a29 al:a(2—9a) ; (19)
9ajay — 27az — 2a3  a(l — 18a + 54a?)
R dma 543 1 . , (20)
21-4
=@ ypp =010 v Qi (21)

where D = 0 in the special case of the critical isothermal curve (1'=1,a =
1/4), D <0 for I'<1,and D > 0 for ' > 1. Accordingly, three coincident
real solutions exist if D = 0, three (at least two) different real solutions if

D < 0, one real (outside the physical domain) and two complex coniugate if
D > 0.



The three real solutions (D < 0) may be expressed as (e.g., Spiegel, 1968,
Chap.9):

Vi= 2\/5005 (71’ + g) — %al ; (22a)
Vo= 2\/5008 (7T + g + 2%) - %al ; (22b)
Vs = 2\/5008 (7T + g + 4%) - %al ; (22¢)
0 = arctan J_%D ; (22d)
where a; = —9a and, in the special case of the critical isothermal curve,

a=1/4,Q = —1/16, D = 0, which implies ¥y = min( V1, V2, V3), Va = Vs =
Vo = Vb = Ve = max(Vi, Vo, V3). In the special case, T' — 0, Eq. (17a)
reduces to a second-degree equation whose solutions are Vo, = Voo = 1/3,
while the related function is otherwise divergent as a — —+o0o. In general,
the extremum points of VDW isothermal curves (1" < 1) occur at Y = V3
(minimum) and ¥ = Vp (maximum), V5 < Vp. As ' — 0, Vs — 1/3,
Vb — 400, where, in all cases, 1/3 < Vg <1 < Vb.

The two areas defined by the intersection of a generic VDW isothermal
curve (1" < 1) and related real isothermal curves (see Fig. 3), are expressed
as:

Wi [ eav = [ pav = pove [getFe - v - [ bay | 2z
Wom [ pav = [ peav = pove | [ gay — bette - yo o

and the substitution of Eq. (13) into (23) allows explicit expressions for the
integrals. The result is:

L/BPIRE PR/l SR 10l /S BN
pCvC_ﬁc(VC Va) ?)T1 BY/A—1+ VaVe (24a)
pcVo =37 3Vo— 1 VeVe po(Ve—Vc) 5 (24b)

and the condition, Wi = W, after some algebra reads (Caimmi 2010, here-
after quoted as C10):

P 8f-1_ 3
—Va 3Va—-1 VaVe '’

8

yo=: (25)
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where, for a selected isothermal curve, the unknowns are po = ga = g, Va,
and Vg.

The reduced volumes, Va, Vo, Vg, see Fig. 3, may be considered as inter-
sections between a VDW isothermal curve (1" < 1) and a horisontal straight

line, ¥ = pPo, in the (OY §) plane. In other words, Va, Ve, Vi, are the real
solutions of the third-degree equation:

3 8 I ) 2, L.

P (i) P R0 ()
which has been deduced from Eq.(13), particularized to y = po. The re-
lated solutions may be calculated using Eqgs. (22). The last unknown, pc, is
determined from Eq. (25).

An inspection of Fig. 3 shows that the points, A and E, are located on the
left of the minimum, B, and on the right of the maximum, D, respectively.
Keeping in mind the above results, the following inequality holds: Vi <
Vs <1< Vb < Vg, which implies further investigation on the special case,
Vo = 1. The particularization of the VDW equation of state, Eq. (13), to the
point, C = Cy, assuming Vg, = 1, yields:

p-tots, (27)

and Eq. (26) reduces to:
Vi— (14200 +3bY —b=0 ; (28a)
A (28b)

¢Cl

with regard to the generic third-degree equation, Eq. (18), the three solutions,
x1, Ta, T3, satisfy the relations (e.g., Spiegel, 1968, Chap.9):

X1+ To+ T3 = —ay ; (298,)
T1Xo + ToX3 + T3T1 = Ay (29Db)
T1ToT3 = —a3 | (29c¢)

where, in the case under discussion:
ap=—1-2b ; as = 3b ; a3 = —b ; (30a)
=Va ;s wm=Vo=1; 23=V&; (30b)
and the substitution of Egs. (30) into two among (29) yields:

Va=b—-Vb2—10 ; (31a)
Vo= bt VE—D ; (31b)
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and the combination of Egs. (27), (28b), and (31) produces:

1-2/1-71 |
Va = “ar—3 ' <1 ; (32a)
e Ny

Ve = r<1; ; (32b)

Ar—3
which, together with Y, = 1, are the abscissae of the intersection points be-
tween a selected VDW isothermal curve in the (O} §) plane and the straight
line, y = Po,, in the special case under discussion.

The substitution of Eqgs. (32) into (25), the last being related to the real
isothermal curve, yields:

T 1n3—2T+3,/1—T:6 ; (33)
V-1 3-21-3/1-1T1T

which holds only for the critical isothermal curve, 1" = 1. Accordingly, the
abscissa of the intersection point, C, between a selected VDW isothermal
curve and related real isothermal curve, see Fig.3, cannot occur at Vo =1
unless the critical isothermal curve is considered. Then the third-degree equa-
tion, Eq. (26), must be solved in the general case by use of Egs. (22). The
results are shown in Tab. 1, where the following parameters (in reduced vari-
ables) are listed for each VDW isothermal curve, see Fig. 3: the temperature,
T, the lower volume limit, V4, for which the liquid and vapour phase coexist;
the extremum point (minimum) volume, Vg; the intermediate volume, V¢,
for which the pressure equals its counterpart related to the corresponding
lower and upper volume limit, for which the liquid and vapour phase coexist;
the extremum point (maximum) volume, Vp; the upper volume limit, Vg, for
which the liquid and vapour phase coexist; the extremum point (minimum)
pressure, pp; the pressure, ps = Pc = Pg, related to the horisontal real
isothermal curve; the extremum point (maximum) pressure, pp. The locus
of the intersections between VDW and real isothermal curves is represented
in Fig. 2 as a trifid curve, where the left, the right, and the middle branch
correspond to Va, Vg, and Vg, respectively. The common starting point
coincides with the critical point. The locus of the VDW isothermal curve
extremum points is represented in Fig. 2 as a dotted curve starting from the
critical point, where the left and the right branch corresponds to minimum
and maximum points, respectively.

A fluid state can be represented in reduced variables as (Y, ¢, 1'), where
one variable may be expressed as a function of the remaining two, by use
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Table 1: Values of parameters, 1", Va, Vs, Vo, Vb, Ve, ¥5, Pc, P, within
the range, 0.85 < 1" < 0.99, using a step, A 1" = 0.01. Additional values are

computed near the critical point, to increase the resolution. The true value of
the reduced temperature on the last row is 1" = 0.9999 or 10 7" = 9.999. All
values equal unity at the critical point. Index captions: A, C, E - intersections
between VDW and real isothermal curves; B - extremum point of minimum;
D - extremum point of maximum. Extremum points are related to VDW
isothermal curves, while their real counterparts are flat in presence of both
liquid and vapour phase. To save aesthetics, 01 on head columns stands for
unity.

107 [ 10V | 10Vs |01Vc |01V |01V | 1045 | 104c | 10pp

8.50 | 5.5336 | 6.7168 | 1.1453 | 1.7209 | 3.1276 | 0.4963 | 5.0449 | 6.2055
8.60 | 5.6195 | 6.8003 | 1.1337 | 1.6821 | 2.9545 | 1.2750 | 5.3125 | 6.4005
8.70 | 5.7116 | 6.8883 | 1.1225 | 1.6436 | 2.7909 | 2.0346 | 5.5887 | 6.6011
8.80 | 5.8106 | 6.9814 | 1.1116 | 1.6052 | 2.6360 | 2.7752 | 5.8736 | 6.8076
8.90 | 5.9176 | 7.0804 | 1.1009 | 1.5669 | 2.4889 | 3.4965 | 6.1674 | 7.0205
9.00 | 6.0340 | 7.1860 | 1.0905 | 1.5285 | 2.3488 | 4.1984 | 6.4700 | 7.2401
9.10 | 6.1615 | 7.2994 | 1.0804 | 1.4900 | 2.2151 | 4.8807 | 6.7816 | 7.4669
9.20 | 6.3022 | 7.4221 | 1.0706 | 1.4511 | 2.0869 | 5.5430 | 7.1021 | 7.7014
9.30 | 6.4593 | 7.5561 | 1.0610 | 1.4117 | 1.9634 | 6.1849 | 7.4318 | 7.9443
9.40 | 6.6369 | 7.7040 | 1.0516 | 1.3715 | 1.8438 | 6.8058 | 7.7707 | 8.1963
9.50 | 6.8412 | 7.8697 | 1.0425 | 1.3300 | 1.7271 | 7.4049 | 8.1188 | 8.4584
9.60 | 7.0819 | 8.0593 | 1.0336 | 1.2867 | 1.6118 | 7.9811 | 8.4762 | 8.7319
9.70 | 7.3756 | 8.2830 | 1.0249 | 1.2404 | 1.4960 | 8.5328 | 8.8429 | 9.0185
9.80 | 7.7554 | 8.5611 | 1.0164 | 1.1892 | 1.3761 | 9.0576 | 9.2191 | 9.3209
9.90 | 8.3091 | 8.9461 | 1.0081 | 1.1278 | 1.2430 | 9.5510 | 9.6048 | 9.6437
9.95 | 8.7471 | 9.2353 | 1.0040 | 1.0876 | 1.1618 | 9.7830 | 9.8012 | 9.8157
9.98 | 9.1727 | 9.5049 | 1.0016 | 1.0540 | 1.0972 | 9.9158 | 9.9202 | 9.9240
9.99 | 9.4018 | 9.6456 | 1.0008 | 1.0377 | 1.0670 | 9.9585 | 9.9600 | 9.9614
9.99 | 9.8035 | 9.8856 | 1.0001 | 1.0117 | 1.0204 | 9.9960 | 9.9960 | 9.9960
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of the reduced ideal gas equation of state, Eq.(11), or the reduced VDW
equation of state, Eq.(12). The formulation in terms of reduced variables,
Egs. (10), makes the related equation of state universal i.e. it holds for any
fluid. Similarly, the Lane-Emden equation expressed in polytropic (dimen-
sionless) variables, describes the whole class of polytropic gas spheres with
assigned polytropic index, in hydrostatic equilibrium (e.g., Chandrasekhar
1939, Chap.1V, §4).

The states of two fluids with equal (¥, §, 1), are defined as corresponding
states. The mere existence of an equation of state yields the following result.

Law of corresponding states. Given two fluids, the equality between two
among three reduced variables, V', §, T', implies the equality between the
remaining related reduced variables i.e. the two fluids are in corresponding
states.

The law was first formulated by van der Waals in 1880. For further details
refer to specific textbooks (e.g., LL67, Chap. VIII, §85).

3 Equation of state of astrophysical fluids

Let macrogases be defined as two-component fluids which interact only gravi-
tationally. For assigned density profiles, the virial theorem can be formulated
for each subsystem, where the potential energy is the sum of the self potential
energy of the component under consideration, and the tidal energy induced
by the other one. The virial theorem for subsystem can be expressed as a
macrogas equation of state in terms of dimensionless variables, Xy, X,, Xr,
related to axis ratio, mass ratio, virial (i.e. self + tidal) potential energy
ratio, respectively. The result is (C10):

XvaFX(Xp, Xv) = XT ) (34&)
Xp=m*; Xy=-; Xp=¢; (34b)

where the function, F'y, depends on the selected density profiles, m is the
(outer to inner component) mass ratio, y is the (outer to inner component)
axis ratio along a generic direction, ¢ is the (outer to inner component)
virial energy ratio, and the density profiles are restricted to be homeoidally
striated. The variables, Xy, X,, Xp, play a similar role as the volume,
the pressure, and the temperature, for ordinary fluids. Accordingly, Xy, X,,
X7, may be defined as macrovolume, macropressure, and macrotemperature,
respectively. For further details refer to the parent paper (C10).
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Macroisothermal curves on the (OXyX,) plane exhibit a similar trend
with respect to VDW isothermal curves on the (OVp) plane, with two main
differences. First, no critical point occurs for sufficiently mild density profiles,
where all macroisothermal curves are characterized by two extremum points,
one maximum and one minimum. Second, a critical macroisothermal curve
appears for sufficiently steep density profiles, above (instead of below) which
macroisothermal curves exhibit extremum points. For further details refer
to the parent paper (C10) and an earlier attempt (Caimmi and Valentinuzzi
2008).

The last inconvenient may be avoided turning Eq. (34) into the following:

Vi YwEy (Y, Yv) = Y7 (35a)
1 1 1
Y o — — . Yo — — - Vi — — -
p Xp ) 14 XV ) T XT y (35b)
Fy(Y,,Yy) = Fx(X,, Xv) (35¢)

as suggested in the parent paper (C10).

The existence of a phase transition moving along a selected macroisother-
mal curve, where the path is a horisontal line (“real” macroisothermal curve)
instead of a curve including the extremum points (“actual” macroisothermal
curve), must necessarily be assumed as a working hypothesis, due to the
analogy between VDW isothermal curves and macroisothermal curves. Un-
like the VDW equation of state, Eq. (3), the theoretical macrogas equation of
state, Eq. (3ba), is not analytically integrable, which implies the procedure
used for determining a selected macroisothermal curve, must be numerically
performed.

The main steps are (i) calculate the intersections, Yy, , Yi, Y, Y, <
Yvi. < Yis, between the generic horizontal line in the (OYy/Y,) plane, Y, =const,
and the theoretical macrogas equation of state, within the range, Y,, <Y, <
Y, , where B and D denote the extremum points of minimum and maximum,
respectively; (ii) calculate the area of the regions, ABC and CDE; (iii) find the
special value, Y, =Y., which makes the two areas equal; (iv) trace the real
macroisothermal curve as a horisontal line connecting the points, (Yy,,Y,,),
Yo, Yoo)s Vi, Yoi), Yoo = Yoo = Y, = Y,.. For further details refer to an
earlier attempt (C10).

The procedure related to point (ii) above is rather cumbersome and should
be performed again with the new variables, Yy, Y}, and Y, with respect to an
earlier attempt (C10). For this reason, the current paper shall be restricted
to theoretical macroisothermal curves and related extremum points. In order
to preserve the analogy with ideal and VDW gases, the tidal potential energy
shall be excluded and included, respectively, in the formulation of the virial
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theorem and related equation of state. The following cases shall be dealt
with: UU macrogases, where no critical point occurs; HH macrogases, where
the critical point occurs; HN/NH macrogases, where the critical point occurs.

In presence of the critical point, Eq. (35) may be translated into reduced
variables, as:

Voo By (Y Vo) 22—y (362)

T(‘
Y, Yy Yy
D —_ = —_— 36b
)/p }/pc ) 1% YVC ) YT YTC ) ( )
Fy (Yo, W) = iy (VYo YWwYv) (36¢)

where Y, , Yy., Y., are the values of the variables related to the critical point.
The counterpart of Eq. (36a) for ideal macrogases reads:

Yw

Yo WwGy (Yo, VW) === =Yr ; (37)

(‘

where Gy (Y, Yv) is the expression of Fy (Y, ¥v) where the interaction terms
are omitted. For further details refer to an earlier attempt (C10). Ac-
cordingly, the equation of state for ideal macrogases where Gy (¥,, ¥v)Y,./
(Yv.Yr.) = 3/8, coincides with its counterpart related to ideal gases, con-
formly to Eq. (11).

Macroisothermal curves related to IUU (tidal potential energy excluded)
and AUU (tidal potential energy included) macrogases, are plotted in Fig. 4,
left and right panel, respectively, for values of the macrotemperature, Yo =
20/23, 20/22, 20/21, 20/20, 20/19, 20/18, from bottom to top. The coordi-
nates, Yy, Y}, Y, may be conceived as normalized to their fictitious critical
counterparts, Yy, = 1, Y, =1, Y, = 1 (C10). The comparison with ideal
and VDW gases, plotted in Fig.1, shows a similar trend, except the ab-
sence of a critical macroisothermal curve, above which the extremum points
disappear.

Macroisothermal curves related to IHH (tidal potential energy excluded)
and AHH (tidal potential energy included) macrogases, are plotted in Fig. 5,
left and right panels, respectively, for infinitely extended subsystems and val-
ues of the reduced macrotemperature, ¥r = Y /Y = 20/23, 20/22, 20/21,
20/20, 20/19, 20/18, from bottom to top. The general case of bounded sub-
systems makes only little changes. The comparison with ideal and VDW
gases, plotted in Fig. 1, shows a similar trend where macroisothermal curves
are more extended along the horisontal direction with respect to isothermal
curves.
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Macroisothermal curves related to IHN/NH (tidal potential energy ex-
cluded) and AHN/NH (tidal potential energy included) macrogases, are plot-
ted in Fig. 6, left and right panels, respectively, for infinitely extended sub-
systems and values of the reduced macrotemperature, ¥Yr = Yr/Yr, = 20/23,
20/22, 20/21, 20/20, 20/19, 20/18, from bottom to top. The general case
of bounded subsystems makes only little changes for AHN/NH macrogases,
while the scale change tends to disappear for IHN/NH macrogases. The
comparison with ideal and VDW gases, plotted in Fig.1, shows a similar
trend where macroisothermal curves are more extended along the horisontal
direction with respect to isothermal curves, and the occurrence of a scale
difference for ideal macrogases. The last is due to a mass divergence for in-
finitely extended N density profiles, which makes tidal effects higly increase.

The comparison between the VDW critical isothermal curve and its coun-
terparts related to HH and HN/NH macrogases is shown in Fig. 7. The bro-
ken curve is the same as in Fig. 2. Accordingly, the vapour and the liquid
phase of ordinary fluids coexist within the bell-shaped region bounded by
the broken curve. Both HH and HN/NH macroisothermal curves are more
extended along the horisontal direction with respect to VDW isothermal
curves, which implies a more flattened counterpart of the above mentioned
bell-shaped region. The critical point belongs to all curves.

4 Discussion and conclusion

Tidal interactions between neighbourhing bodies span across the whole ad-
missible range of lengths in nature: from, say, atoms and molecules to galax-
ies and clusters of galaxies i.e. from micro to macrocosmos. Ordinary fluids
are collisional, which makes the stress tensor be isotropic and the velocity
distribution obey the Maxwell’s law. Tidal interactions (electromagnetic
in nature) therein act between colliding particles (e.g., LL67, Chap. VII,
§74). Astrophysical fluids are collisionless, which makes the stress tensor
be anisotropic and the velocity distribution no longer obey the Maxwell’s
law. Tidal interactions (gravitational in nature) therein act between a single
particle and the system as a whole (e.g., C10).

In both cases, an equation of state can be formulated in reduced vari-
ables: the VDW equation for ordinary fluids and an equation which depends
on the density profiles for astrophysical fluids. For sufficiently mild density
profiles, macroisothermal curves are characterized by the occurrence of two
extremum points, similarly to isothermal curves where a transition from lig-
uid to gaseous phase takes place, or vice versa. For sufficiently steep density
profiles, a critical macroisothermal curve exhibits a single horisontal inflex-
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ion point, which defines the critical point. Macroisothermal curves below
and above the critical one, show two or no extremum point, respectively, in
complete analogy with VDW isothermal curves. In any case, the existence
of an equation of state in reduced variables implies the validity of the law of
corresponding states for macrogases with assigned density profiles.

For astrophysical fluids, the existence of a phase transition must neces-
sarily be assumed as a working hypothesis by analogy with ordinary fluids.
The phase transition has to be conceived between gas and stars, and the
(OYvY,) plane may be divided into three parts, namely (i) a region bounded
by the critical macroisothermal curve on the left of the critical point, and
the locus of onset of phase transition on the right of the critical point, where
only gas exists; (ii) a region bounded by the critical macroisothermal curve
on the left of the critical point, the locus of onset of phase transition on the
left of the critical point, and the vertical axis, where only stars exist; (iii) a
region bounded by the locus of onset of phase transition, and the horisontal
axis, where gas and stars coexist. The locus of onset of phase transition,
not shown in Fig. 7 for reasons explained above, is similar to its counterpart
related to ordinary fluids, represented by the bell-shaped curve in Fig. 7, but
more extended along the horisontal direction.

In this view, elliptical and SO galaxies lie on (ii) region unless hosting hot
interstellar gas, and the same holds for globular clusters; spiral, irregular, and
dwarf spheroidal galaxies lie on (iii) region, and the same holds for cluster
of galaxies; gas clouds in absence of star formation lie on (i) region, and the
same holds for hypothetic galaxies with no stars.

In conclusion, van der Waals’ two great discoveries, more specifically a
gas equation of state where tidal interactions between molecules are taken
into account, and the law of corresponding states, related to microcosmos,
find a counterpart with regard to macrocosmos. After a century since the
awarding of the Nobel Prize in Physics, van der Waals’ ideas are still valid
and helpful to day for a full understanding of the universe.
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Figure 2: Same as in Fig. 1 (right panel), where the occurrence (within the
bell-shaped area bounded by the dashed curve) of saturated vapour is consid-
ered. Above the critical isothermal curve (T" = T.) the trend is similar with
respect to ideal gases. Below the critical isothermal curve and on the right
of the dashed curve, the gas still behaves as an ideal gas. Below the crit-
ical isothermal curve and on the left of the dashed curve, the liquid shows
little change in volume as the pressure rises. Within the bell-shaped area
bounded by the dashed curve, the liquid phase is in equilibrium with the sat-
urated vapour phase. A diminished volume implies smaller saturated vapour
fraction and larger liquid fraction at constant pressure, and vice versa. The
VDW equation of state is no longer valid in this region. The dashed curve
(including the central branch) is the locus of intersection between VDW and
real isothermal curves, the latter being related to constant pressure where
liquid and vapour phases coexist. The dotted curve is the locus of VDW
isothermal extremum points.
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Figure 3: A specific (T'/T, = 20/23) VDW and corresponding real isothermal
curve. The above mentioned curves coincide within the range, V < Vi
and V > Vi. The VDW isothermal curve exhibits two extremum points: a
minimum, B, and a maximum, D, while the real isothermal curve is flat within
the range, V) < V < V. Configurations related to the VDW isothermal
curve within the range, VA < V < Vg (due to tension forces acting on
the particles yielding superheated liquid), and Vp < V < Vg (due to the
occurrence of undercooled vapour), may be obtained under special conditions,
while configurations within the range, Vg < V < Vp, are always unstable.
The volumes, V) and Vg, correspond to the maximum value in presence of
the sole liquid phase and the minimum value in presence of the sole vapour
phase, respectively. The regions, ABC and CDE, have equal area. For further
details refer to the text.
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Figure 4: Macroisothermal curves related to IUU (left panel) and AUU (right
panel) macrogases, respectively. Macroisothermal curves (from bottom to
top) correspond to Yr = 20/23, 20/22, 20/21, 20/20, 20/19, 20/18. No
critical macroisothermal curve exists, above which the extremum points dis-
appear. The coordinates, Yy, Y, Y1, may be conceived as normalized to
their fictitious critical counterparts, Yy, =1,Y, =1, Y5, = 1.
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Figure 5: Macroisothermal curves (Y, = Y,/Y,. vs. Vv = Yy/Yy,) related
to IHH (left panels) and AHH (right panels) macrogases, respectively, for
infinitely extended subsystems. Macroisothermal curves (from bottom to
top) correspond to Yt = Y /Y =20/23, 20/22, 20/21, 20/20, 20/19, 20/18.
The general case of bounded subsystems makes only little changes.
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Figure 6: Macroisothermal curves (¥, = Y,/Y,. vs. YW = Yy/Yi.)
related to THN/NH (left panels, to be noted the scale difference) and
AHN/NH (right panels) macrogases, respectively, for infinitely extended
subsystems.. Macroisothermal curves (from bottom to top) correspond to
Yr = Yr/Yr, =23/20, 22/20, 21/20, 20/20, 19/20, 18/20. The general case
of bounded subsystems makes only little changes for AHN/NH macrogases,
while the scale difference tends to disappear for IHN/NH macrogases.
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Figure 7: Comparison between VDW critical isothermal curve (full), HH
critical macroisothermal curve (dotted) and HN/NH critical macroisothermal
curve (dot-dashed). With regard to ordinary fluids, the vapour and the lig-
uid phase coexist within the bell-shaped region bounded by the dashed curve
and, in addition, Yy =V, Y, = p. More extended (along the horisontal direc-
tion) bell-shaped regions are expected for HH and HN/NH macroisothermal
curves. The critical point belongs to all curves. Different letters denote the
expected location of different astrophysical systems. Caption: EG - elliptical
galaxies; SO - lenticular galaxies; SG - spiral galaxies including barred; IG
- irregular galaxies; DS - dwarf spheroidal galaxies; GC - globular clusters;
CG - clusters of galaxies; WC - wholly gaseous clouds i.e. in absence of star
formation; WG - (hypothetical) wholly gaseous galaxies i.e. in absence of
star formation.
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