
IDEAS OF E. CARTAN AND S. LIE IN MODERN GEOMETRY:

G-STRUCTURES AND DIFFERENTIAL EQUATIONS. LECTURE 1

J. R. ARTEAGA, M. MALAKHALTSEV

Problem:

How to reduce to a simplest equation one ODE.

Our purpose of this mini-curse is to explain some ideas of E. Cartan and S. Lie when we
study differential geometry, particularly we will to explain the Cartan reduction method. The
Cartan reduction method is a technique in Differential Geometry for determining whether two
geometrical structure are the same up to a diffeomorphism. This method use new tools of
differential geometry as principal bundles, G-structures and jets theory. We start with an
example of a G-structure: the 3-webs in R

2. Here we use the Cartan method to classify the
differential equations but not to resolve. This is a classification can be a weak classification in
the sense of not involving all the structural invariants.

3-Webs in R
2

Definition 1. A collection of three foliations of R2, L = {L1, L2, L3} defined in an open set U
in the plane, such that pairwise are transverse is called a 3-web.

Example 1. Let L = {L1, L2, L3} be the 3-web in R
2 where

(1)











L1 = {(x, y) | x = const.}

L2 = {(x, y) | y = const.}

L3 = {(x, y) | y − x = const.}

Associated 3-web to one ODE.

Theorem 1. For every ordinary differential equation ODE of first order,

(2)
dy

dx
= F (x, y)

where F (x, y) is a smooth function defined in an open set U ⊆ R
2, such that F (x, y) 6= 0 for

all (x, y) ∈ U , we can always associated a 3-web defined in W for some W ⊆ U .

Proof. For any smooth function F (x, y), s.t. F (x, y) 6= 0 in U we can associate the 3-web
L = {L1, L2, L3} where

(3)











L1 = {(x, y) | x = const.}

L2 = {(x, y) | y = const.}

L3 = {(x, y) | y − f(x) = const.}

1
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where f(x) is the family of integral curves of (2) in U . The Picard-Lindelöff theorem guarantees
us the existence of this family in any W ⊆ U . �

Remark 1. The ODE (2) where F (x, y) satisfies the conditions of theorem 1 we called one ODE
3-web type.

Example 2. Let U = {(x, y) | x > 1} be an open set of R2. Consider the following ODE in U ,

(4)
dy

dx
= 1− x

In U we define the associated 3-web L = {L1, L2, L3} where

(5)



















L1 = {(x, y) | x = const.}

L2 = {(x, y) | y = const.}

L3 = {(x, y) | y −

(

x−
x2

2

)

= const.}

In the Figure 1 we can see that effectively L is a 3-web in U .

x

y

y = −
1

2
(x− 1)2 + c

Figure 1. Example 2, 3-web associated to y′ = 1− x

Exercise 1. Given the ODE y′ = y, determine an open set U of the plane where you can define
a 3-web associated with it. Write the 3-web explicitly and draw a picture of it.
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Equivalence of 3-webs.

Definition 2. We say that two 3-web L1 and L2 defined in U1 and U2 respectively, are equivalent
if exists a diffeomorphism ϕ,

(6) ϕ : U1 −→ U2

such that ϕ(L1) = L2. In this case we will write L1 ∼ L2.

The diffeomorphism ϕ we can write as,

ϕ :U1 −→ U2

(x, y) 7→ ϕ(x, y) = (x̃, ỹ) = (α(x, y), β(x, y))
(7)

Adapted coframe to a 3-web. Let R2, L = {L1, L2, L3} be a 3-web defined in U . Let ~ui(x, y)
be a vector field that has Li as its integral curves, i.e. Li is the flow of ~ui for i = 1, 2, 3.

(8)











L1 = flow of ~u1

L2 = flow of ~u2

L3 = flow of ~u3

This means that if ~ri(t) is a parametrization of Li, then

(9)
d

dt
~ri(t) = λi~ui(x(t), y(t)), for any λi ∈ R\0

By definition 1 for any pair {~ui, ~uj}, (i, j ∈ {1, 2, 3}, i 6= j), ~ui and ~uj are linear independent
in each point (x, y) ∈ U , then we can give the following definition.

Definition 3 (Adapted coframe to L). The coframe {η1, η2} where,

(10)











η1 annihilates ~u2, i.e. η1(~u2) = 0

η2 annihilates ~u1, i.e. η2(~u1) = 0

η3 = η1 − η2, annihilates ~u3, i.e. η3(~u3) = 0

is called an adapted coframe to a 3-web L = {L1, L2, L3}.

Example 3. Find an adapted coframe to the ODE,

(11) y′ = 1− x

Let U = {(x, y) ∈ R
2 | x > 1}. The associated 3-web L = {L1, L2, L3} described in the

Example 2 we can re-write in terms of vector fields as follows:

(12)



























L1 = span{~u1} where ~u1 =
∂

∂x

L2 = span{~u2} where ~u2 = (1− x)
∂

∂y

L3 = span{~u1 + ~u2} where ~u3 = ~u1 + ~u2 =
∂

∂x
+ (1− x)

∂

∂y
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An adapted coframe η = {η1, η2} to this ODE is

(13)











η1 = (1− x)dx

η2 = dy

η3 = dx− dy

Exercise 2. Find one associate frame η = {η1, η2} to the ODE,

(14) y′ = y

Equivalence of ODE’s web-type

Problem 1. Given two ODE,

(15)
dy

dx
= F1(x, y),

dy

dx
= F2(x, y),

under what conditions we can say that they are equivalent?

Suppose that we get the following definition:

Definition 4 (Bad definition). Two ODE

(16)
dy

dx
= F1(x, y),

dy

dx
= F2(x, y),

are equivalents if there exists a change of coordinates (diffeomorphism φ),

φ : (x, y) 7→ (x̃, ỹ),

x̃ = α(x, y)

ỹ = β(x, y)

(17)

such that φ sends the associate 3-web of one to the associate 3-web of the other one.

This definition is a bad definition because we do not know any invariant of one ODE under
a coordinates change. For this reason we must to know some invariant of a 3-web associated to
one ODE. We will approach to solve this problem from the viewpoint of Cartan.

Adapted coframe to one ODE.

Definition 5 (Adapted coframe to one ODE.). Let

(18)
dy

dx
= F (x, y),

be one ODE 3-web type. A coframe {η1, η2} of the plane R
2 such that,

(19)











η1 = F (x, y)dx

η2 = dy

η3 = η1 − η2 = F (x, y)dx− dy

is called an adapted coframe to one ODE (18)
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The Blaschke-Chern curvature form. Suppose that we have one EDO 3-web types with
two different adapted coframes (19),

dy

dx
= F (x, y) 











η1 = F (x, y)dx

η2 = dy

η3 = η1 − η2 = F (x, y)dx− dy

dy

dx
= F (x, y) 











η1 = F (x, y)dx

η2 = dy

η3 = η1 − η2 = F (x, y)dx− dy

(20)

We need to determine how unique our choice of adapted coframe is?. Any other adapted
coframe change by the rule,

(21)

(

η̃1

η̃2

)

=

(

α 0
0 β

)(

η1

η2

)

for any non vanishing functions α = α(x, y) and β = β(x, y). But the third condition of an
adapted coframe must be satisfy,

(22) η̃3 = γη ⇒ η̃1 − η̃2 = γ(η1 − η2)

for any non vanishing function γ = γ(x, y). Solving equations (21) and (22) we have that

(23) α = β = γ

Therefore two adapted coframes to the same ODE satisfy,

(24)

(

η̃1

η̃2

)

=

(

α 0
0 α

)(

η1

η2

)

for non-vanishing function α = α(x, y).

The space of adapted coframes to one ODE. Let B be the space of all adapted coframes
to one ODE given by the 1-forms

(25) η = (η1, η2) =











η1 = F (x, y)dx

η2 = dy

η3 = η1 − η2 = F (x, y)dx− dy

Let us denote by q = (~x, η) a point of B, where ~x = (x, y) is a point of the plane R
2 and

η = {η1, η2} is an adapted coframe (19) of a fixed ODE. Two points q1, q2 ∈ B with p fixed
satisfy q2 = g · q1, where g is a scalar matrix, g ∈ E(2). The set of the scalar matrices E(2) is
a group under standard multiplication of matrices and it is a sub-group of the general linear
group GL(2).
B is a manifold and precisely meets the definition of a principal G-bundle where the group

actions is E(2) and projection π : B −→ R
2.
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On the manifold B we can take coordinates (x, y, α) and we will consider the coframe field:

(26) θi =
(

g−1
)i

s
ηs

θ1 = α−1η1 = α−1F (x, y)dx

θ2 = α−1η2 = α−1dy

θ3 = dα

Theorem 2. There exists a unique 1-form ϕ such that

(27)

(

dθ1

dθ2

)

=

(

ϕ 0
0 ϕ

)

∧

(

θ1

θ2

)

are satisfied.

Proof. Calculate

dθ1 = −
1

α2
Fdα ∧ dx+

1

α
∂yFdy ∧ dx =

(

−
1

α
dα+

Fy

F
dy

)

∧
1

α
Fdx

dθ2 = −
1

α2
dα ∧ dy =

(

−
1

α
dα+

Fy

F
dy

)

∧
1

α
dy

(28)

Now we take

(29) ϕ = −
1

α
dα+

∂yF

F
dy

One can easily check that

dθ1 = ϕ ∧ θ1 and dθ2 = ϕ ∧ θ2.

This proves the theorem. �

Definition 6. Given an adapted coframe η in the manifold of adapted coframes of one ODE
B the 1-forms θ1 and θ2 that satisfy (26) are called the tautological forms. Any choice of a
tautological forms (coframe field θ = (θ1, θ2)) give as an unique 1-form

(30) ω =

(

ϕ 0
0 ϕ

)

called associated connection form. The equations (27) are called the structural equations.

Now we have

dϕ = d

(

∂yF

F
dy

)

=
F∂xyF − ∂xF∂yF

F 2
dx ∧ dy.

From this follows that

(31) dη = Kθ1 ∧ θ2,

where

(32) K = α2

(

F∂xyF − ∂xF∂yF

F 3

)
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Definition 7. Given a 3-web R
2, L = {L1, L2, L3} with associated tautological forms {θ1, θ2}

such that the function K which satisfy

(33) dη = Kθ1 ∧ θ2,

is called the Blaschke-Chern curvature for the 3-web.

Example 4. Calculate the Blaschke-Chern curvature for

(34)
dy

dx
= 1

Using (32) we obtain that K = 0.

Example 5. Calculate the Blaschke-Chern curvature for

(35)
dy

dx
= x+ y

By (32), we have that K = − 1
(x+y)3

, therefore the ODEs
dy

dx
= 1 and

dy

dx
= x + y are not

equivalent.

Definition 8 (Good definition). Two ODE

(36)
dy

dx
= F1(x, y),

dy

dx
= F2(x, y),

are equivalents if they have the same Chern-Blaschke curvature. Always there exists a change
of coordinates φ such that φ sends the associate 3-web of one to the associate 3-web of the
other one.

Example 6. Decide if the ODEs:

(37)
dy

dx
= 1− x,

dy

dx
= xe−y

are equivalents in certain domains. Find a diffeomorphism φ such that φ sends the associate
3-web of one to the associate 3-web of the other one.
Effectively the ODEs are equivalents up to the Chern-Blaschke curvature that is K = 0.

Then we can take

U1 = {(x, y) ∈ R
2 | x > 1, y > 0}

U2 = {(x, y) ∈ R
2 | x > 0, y > 0}

(x̃, ỹ) = φ(x, y) = (x− 1, ln y)

(38)

(39)



















L1 = {(x, y) | x = const.}

L2 = {(x, y) | y = const.}

L3 = {(x, y) | y =

(

x−
x2

2

)

+ c1}



















L1 = {(x, y) | x = const.}

L2 = {(x, y) | y = const.}

L3 = {(x, y) | y = ln

(

c2 −
x2

2

)

}

Remark 2. (1) The definition 8 determines whether two EDO are the same up to a diffeo-
morphism. This means that we only we require one differential invariant, the Blaschke-
Chern curvature but no all possible invariants.
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(2) There is not a general method for to find the existing isomorphism. In the most cases
we can find it by simple inspection.

Exercise 3. Decide if the ODEs:

(40)
dy

dx
= xy

dy

dx
= y

are equivalents in certain domains. Find a diffeomorphism φ such that φ sends the associate
3-web of one to the associate 3-web of the other one.

Summary of Lecture 1

The main problem is “How to reduce to a simplest one ODE”.

• Some ODE of first order we can reduce to a simplest are the ODE web-type. These
equations are which we can associate a 3-web.

• A 3-web in R
2 is a set of three foliation that are transverse, and is an example of a

G-structure.
• For any 3-web we can calculated its Blaschke-Chern curvature form.
• Finally, two ODEs are equivalents if have the Blaschke-Chern curvature and this equiv-
alence is up to a diffeomorphism.

What will we do in the next lecture?. In the next lecture we will define what is
G-structure in general a how we can adapted a coframe filed for a given geometrical structure.

Answers to exercises

1 For example U = {(x, y) | y > 0}, L1 = {(x, y) | x = const.}, L2 = {(x, y) | y = const.},
L3 = {(x, y) | y − cex = 0, where c = const.}

2 We can take as associated coframe η = {η1, η2} the following,

(41)











η1 = ydx

η2 = dy

η3 = η1 − η2 = ydx− dy

3 U1 = U2 = {(x, y) ∈ R
2 | x > 0}, K = 0 and (x̃, ỹ) = φ(x, y) = (x2, y2)
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