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ABSTRACT. Let A be a commutative AWW*-algebra, let S(.A) be the x-algebra of all measurable
operators affiliated with A, let Z be an ideal in A, let s(Z) be the support of the ideal Z and
let Y be a quasi-normed solid subspace in S(A). We show that any derivation from Z into Y is
always trivial. At the same time, there exist non-zero derivations from Z into S(.A), if and only

if the Boolean algebra of all projections from s(Z).A is not o-distributive.
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1. INTRODUCTION

It is well known ([12], Lemma 4.1.3) that every derivation on a C*-algebra is norm continuous
and, when a C*-algebra A is commutative, any derivation on A is trivial. In particular, for a
commutative von Neumann algebra and a commutative AW *-algebra A any derivation 6: A —
A is identically zero. Development of the theory of algebras S(A) of measurable operators
affiliated with a von Neumann algebra or a AW*-algebra A ([4], [13]) allowed to construct and
study the new significant examples of *-algebras of unbounded operators. One of interesting
problems in this theory is the problem of description of derivations acting in S(.A). For a von
Neumann algebra and an AW*-algebra A it is known ([11], ([12], 4.1.6)) that any derivation
d: A — Aisinner, ie. it has a form §(z) = [a,x] = axr — za for some a € A and for all z € A.
For the algebra S(A) it is not the same. In case of a commutative von Neumann algebra A in
2] it was established that any derivation on S(.A) is inner, i.e. trivial, if and only if A is an
atomic algebra. For a commutative AW*-algebra A there are non-zero derivations on S(A), if
and only if the Boolean algebra of all projections from A is not o-distributive [8]. In case of a
von Neumann algebra A of type I, all derivations from S(A) into S(A) are described in [1].
The next step in the study of properties of derivations in operator algebras has become the
research of derivations acting on an ideal in a von Neumann algebra A with values in a Banach
solid space in S(A) [3]. In particular, in [3] it is proven that any derivation from a commutative
von Neumann algebra A4 with values in a Banach solid space Y C S(A) is always trivial.

In this paper we consider derivations acting on an ideal Z in a commutative AW *-algebra A
(respectively, in the algebra C'(Q) of all continuous real-valued functions defined on the Stone
space @ of a complete Boolean algebra B) with values in a solid space Y C S(A) (respectively,
in £ C Cy(Q)). It is proven that for a quasi-normed solid space Y any derivation 6: Z — Y is
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always trivial. At the same time, there exist non-zero derivations from Z into S(.A) (respectively,
in C(Q)), if and only if the Boolean algebra of all projections from A (respectively, B) is not
o-distributive (compare [8]). In particular, if A is a commutative von Neumann algebra, then
any derivation 0: Z — S(A) is trivial, if and only if the algebra A is atomic (compare [2]).

2. PRELIMINARIES

Let B be an arbitrary complete Boolean algebra with zero 0 and unity 1. For an arbitrary
non-zero e € B set B, = {q € B : ¢ < e}. With respect to the partial order induced from B the
set B, is a Boolean algebra with zero 0 and unity e.

A set D C B minorizes a subset £ C B if for each non-zero e € E there exist 0 # ¢ € D
such that ¢ < e. We need the following important property of complete Boolean algebras.

Theorem 2.1 ([9], 1.1.6). Let B be a complete Boolean algebra, let 0 # e € B and let D be a
manorant subset to B.. Then there exists a disjoint subset D1 C D such that

(i). sup Dy = e =sup D;

(7). For each element q € Dy there is an element p € D satisfying q < p.

A non-zero element ¢ from a Boolean algebra B is called an atom, if B, = {0, ¢}. A Boolean
algebra B is called atomic if, for every non-zero e € B there exists an atom ¢ € B such that
q < e. Each complete atomic Boolean algebra is isomorphic to the Boolean algebra 22 of all
subsets of the set A of all atoms in B ([14], ch. III, §2).

A Boolean algebra B is said to be continuous if B does not have atoms. If B is a complete
Boolean algebra and A is non-empty set of all atoms from B, then for e = sup A we have that
B. is an atomic Boolean algebra and B;_. is a continuous Boolean algebra.

Denote by N the set of all natural numbers and by NY the set of all mappings from N into N.
A o-complete Boolean algebra B is called o-distributive, if for any double sequence {e, m }nmen
in B the following condition holds

VA enm= AV enowm:

neNmeN peNN neN

Each complete atomic Boolean algebra is o-distributive ([8], 3.1). In general, the converse does
not hold. Moreover, there exist continuous o-distributive complete Boolean algebras ([9], 5.1.7).
At the same time, the following proposition holds.

Proposition 2.2. If B is a continuous o-complete Boolean algebra and there exists a finite

strictly positive countably additive measure p on B, then B is not o-distributive.

Proof. Since the measure p is strictly positive, i.e. u(e) > 0 for e # 0, the Boolean algebra B
has a countable type ([14], ch. I, §6), i.e. any set of non-zero pairwise disjoint elements from
B is at most countable. Hence, B is a complete Boolean algebra ([14], ch. III, §2). Since B is a
continuous Boolean algebra, it follows that for any n € N exists a finite set of pairwise disjoint

elements {e{™}7_ C B such that sup e” = 1 and p(el”) = “U for all k = 1,...,n ([14],
1<k<n
ch.ITI, §2). If the Boolean algebra B is o-distributive, then, according to item 5.1.3 from [9],
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there exists a partition {¢;} of unity refined from {e,in)}’kbzl, n € N. It means that for fixed ¢

(n) () _ w)

and n there exists e;° > i, kin € {1,...,n}. Since pu(e, £= — 0 for n — oo, we have

i,n

g; = 0 for all 7, that contradicts to the equality sup ¢; = 1. Hence, the Boolean algebra B is not
o-distributive. 0

A complete Boolean algebra B is said to be multinormed, if the set of all finite completely
additive measures separates the points of B ([9], 1.2.9). If a Boolean algebra B is multinormed,
then there exists a partition {e;};c; of unity 1 such that the Boolean algebra B., has a fi-
nite strictly positive countably additive measure for all i« € I ([9], 1.2.10). Therefore, from

Proposition 2.2 we have the following

Corollary 2.3. A multinormed Boolean algebra B is o-distributive, if and only if B is an

atomic Boolean algebra.

Let @ be the Stone space of a complete Boolean algebra B. Denote by Cy(Q) the set of
all continuous functions = : Q — [—o0, +00] assuming the values +oo possibly on a nowhere-
dense set. The space C (@) with naturally defined algebraic operations and partial order is
an algebra over the field R of real numbers and is a universally complete vector lattice. The
identically one function 1¢ is the unity of the algebra C(Q) and an order-unity of the vector
lattice Coo (@) ([9], 1.4.2).

An element z € C(Q) is an idempotent, i.e. x

1.t € Qe)
z(t) = XqQ(e)(t) {O,t ¢ Oc) te(t)
for some clopen set Q(e) C @ corresponding to the element e € B, in addition, e < ¢ < e(t) <
q(t) for all t € @), where e,q € B. Thus, the Boolean algebra B is identified with the Boolean
algebra of all idempotents from C(Q). In this identification the unity 1 of B coincides with

2 = 7, if and only if

the function 1¢, and zero 0 of B coincides with identically zero function. Further we suppose
that B C C(Q), and the algebra C..(Q) we denote by L°(B).

As in an arbitrary vector lattice, for every x € L°(B) denote by z, := x V 0 (respectively,
x_ := —(x A0)) the positive (negative) part of z and by |z| := 2, + z_ denote the modulus of
z. The set of all positive elements of L°(B) is denoted by L (B).

For every x € L°(B) define the support of x by the equality s(x) = 1 —sup{e € B : ex = 0}.
It is clear that s(z) € B and s(q) = q for all ¢ € B. Note, that an idempotent ¢ € B is the
support of x € L°(B), if and only if gz = z and from e € B, ex = z, it follows that ¢ > ¢.

It is easy to see that supports have the following properties:

Proposition 2.4. If z,y € L°(B),0 # A € R, then
(i). s(A\x) = s(x);
(it). s(zy) = s(x)s(y);
(111). s(|z|) = s(x);

(). If vy =0, then s(xz +y) = s(z) + s(y), in particular, s(z) = s(xy) + s(x_).
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For an arbitrary non-empty subset £ C L°(B) define the support s(F) of E by setting
s(E) = sup{s(z): z € E}.

A non-zero linear subspace X of L(B) is called a solid space, if z € X,y € L°(B) and
ly| < |z| implies that y € X. If X is a solid space in L°(B) and s(X) = 1, then X is said to be
a fully solid space in L°(B).

Denote by C(Q) the algebra of all continuous functions on @) with values in R. It is clear that
C(Q) is a subalgebra and a fully solid space in L°(B), in addition, C'(Q) is a Banach algebra

with the norm ||z||o = sup|z(t)],z € C(Q). As usual, a subalgebra A of C(Q) is called an
teQ
ideal, if xa € A for all z € C(Q),a € A.

Proposition 2.5. (i). A linear subspace X in L°(B) is solid, if and only if C(Q)X = X ;
(11). If X is a solid space and X C C(Q), then X is an ideal in C(Q), in particular, X is a
subalgebra of Cso(Q). Conversely, if X is an ideal in C(Q), then X is a solid space in L°(B).

Proof. (i) It is clear that X = 1X C C(Q)X. Let X be a solid space in L°(B) and let y €
C(Q),x € X. Select ¢ > 0 such that |y| < 1. Then |yz| < c|z|, that implies yz € X.
Consequently, C(Q)X C X, and therefore C(Q)X = X.

Conversely, if C(Q)X = X, z € X,y € L°(B) and |y| < |z|, then |y| = a|z|, where a € C(Q)
and 0 < a < 1. Hence, |y| € X, and therefore y = (s(y;) — s(y-))|y| € X.

(ii) If X is a solid space and X C C(Q), then C(Q)X = X (see item (i)), and therefore X is
an ideal in C'(Q). Conversely, if X is an ideal in C(Q), then C(Q)X = X and, by item (i), X
is a solid space in L°(B). O

Proposition 2.6. Let X be a fully solid space in L°(B). Then
(i). For every non-zero p € B there exists 0 # e € X N B such that e < p.
(11). There ezists a partition {e;}icr of unity contained in X.

Proof. (i) Since s(X) = sup{s(z) : € X} = 1, for every given 0 # p € B there exists a
non-zero o € X, such that s(|zo|)p # 0. For every A > 0 consider the spectral idempotent
ex(|zol) = {t € Q : |zo(t)| < A} of |xg|. Since A(1—ex(|zo])) < (1 —ex(|xo]))|zo| and X is a solid
space in L°(B), it follows that (1 —ex(|zo|)) € X. Using the convergence (1 — ex(|zo|)) 1 s(|xo])
for A — 0, we have (1 — ex(|zo|))p T s(|zo])p # 0. Hence, there exists \g > 0 such that
e = (1—ex(|zo]))p # 0, in addition, e € X and e < p.

Item (ii) follows from Theorem 2.1 and item (i). O

Let X be a linear space over the field K, where K is either the field C of complex numbers,
or the field R of real numbers. A mapping || - || : X — R is a quasi-norm, if there exists C' > 1
such that for all z,y € X, a € K the following properties hold

1) [z]] = 0,[lz]} = 0 & 2 =0

2) x| = leflll;

3) llz +yll < Clll + llylD-



A quasi-norm || - || x on a solid space X is said to be monotone, if x,y € X, |y| < |z| implies
that ||yllx < ||z|lx. A solid space X in L°(B) is called a quasi-normed solid space, if X is
equipped with a monotone quasi-norm.

If (X, ]| |lx) is a quasi-normed solid space in L(B), then from the inequality |yz| < |||l ||
it follows that |lyz||x < H||y\|oo|x]HX: lYlloo||z]|x for all y € C(Q),z € X.

For every non-zero e € B consider the subalgebra eL%(B) = {ex : x € L°(B)}. If Q(e) is
a clopen set corresponding to the idempotent e in the Stone space () of complete Boolean
algebra B, then Q. = Q(e) N Q is the Stone space of the Boolean algebra B.. In addition,
the mapping ®: eL%(B) — L°(B.) defined by the equality ®(z) = z|g,., where z|g, is the
restriction of a function x on the compact @., is an algebraic and lattice isomorphism of
eL°(B) onto L°(B.). Consequently, for every solid space X in LY(B) and every 0 # ¢ € B the

image Y = ®(eX) is a solid space in L°(B,), in addition, if || - ||x is a monotone quasi-norm on
X, then |ly|ly = [|®*(y)||x is a monotone quasi-norm on Y. Hence the following proposition
holds.

Proposition 2.7. If (X, - ||x) is a quasi-normed solid space in L°(B),0 # e € B, then
(@(eX), | - lloex)) is a quasi-normed solid space in L°(B,), where ||®(ex)||oex) = |lex|x for
all x € X. Moreover, ®(eX) is a fully solid space in L°(B.), if e = s(X).

Now, consider the complexification L& (B) = L°(B)®iL°(B) (with i standing for the imaginary
unity) of a real vector lattice L°(B) (see [9], 1.3.11). As usual, for an element z = z + iy, z,y €
L°(B) the adjoint element of z is defined by the equality z = x — iy, in addition, Rez =
5(2 +7%) = w is called the real part of z and Imz = (2 — %) = y is called the imaginary
part of z. The modulus |z| of every element z € LX(B) is defined by the equality |z| :=
sup{Re(e?z) : 0 < 6 < 27}. An element z of L(B) may be interpreted as continuous function
2:Q—-C=CuU {o0}, assuming the values oo possibly on a nowhere-dense set, where C is the
one-point compactification of C. In addition, the algebraic operations in L%(B) coincide with
pointwise algebraic operations on the functions from L% (B), defined up to non-where dense sets.
In particular, L%(B) is a commutative *-algebra and the modulus |z| of an element z € L2 (B)
is defined by the equality |2|(t) = (Z(t)z(t))2 = ((Rez(t))? + (Imz(t))Q)% for all ¢ from some
open everywhere dense set from Q. The selfadjoint part (L2(B)), = {z € L2(B) : z = z}
of a complex vector lattice LL(B) coincides with L°(B8). The algebra C(Q) of all continuous
complex functions z: @) — C coincides with the complexification C(Q) @ iC(Q) and C(Q) is a

commutative C*-algebra with the norm ||z||o = sup |z(?)].
teQ

A solid space X and a quasi-normed solid space (X, || - ||x) in L2(B) are defined as in L°(B).
It is clear that for a solid space X in L%(B) the set X := X;, = XN L%(B) is a solid space in
L°(B), in addition, X = X @i X. If || - ||x is a monotone quasi-norm on X, then (X, | - [|x) is a
quasi-normed solid space in L°(B).

Conversely, if X is a solid space in L°(B) and || - || x is a monotone quasi-norm on X, then
X = X @iX is a solid space in LL(B),X;, = X and the function ||z||x = |||2]||x,2 € X is a

monotone quasi-norm on X.
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3. DERIVATIONS ON SOLID SPACES IN LY(B)

A linear mapping § from L°(B) (respectively, L2(B)) into L°(B) (respectively, L%(B)) is
called a derivation if

(1) d(zy) = d(x)y + x6(y)
for all z,y € LY(B) (respectively, z,y € LL(B)).

If a complete atomic Boolean algebra B has a countable type, then there exists a strictly
positive countable additive measure on B, and therefore any derivation from L°(B) (respectively,
L%(B)) into L°(B) (respectively, L&(B)) is trivial ([2], Theorem 3.3). The following theorem
gives a necessary and sufficient condition for existence of non-zero derivations.

Theorem 3.1 ([8],§3, Corollary 3.5). For a complete Boolean algebra B the following conditions
are equivalent:

(i). B is a o-distributive Boolean algebra;

(ii). There are no mon-zero deriations from L&(B) into LL(B).

In case, when the Boolean algebra B is multinormed, B is o-distributive if and only if B is
an atomic Boolean algebra B (see Corollary 2.3). Therefore for a multinormed Boolean algebra
B, there exist nonzero derivations on LX(B), if and only if the Boolean algebra B is not atomic
(this fact was also established independently of [8] in ([2], Theorem 3.4)).

By Theorem 3.1, in case when B is not a o-distributive Boolean algebra there exists non-
zero derivations from LY(B) into L(B). Later, in Section 5, we show that for any complete
Boolean algebra B every derivation from a solid space X C C(Q) into a quasi-normed solid
space Y C L°(B) (see the definition below) is always trivial.

Let X, Y be solid spaces in LY(B), X C C(Q). By Proposition 2.5, C(Q)Y =Y, ie. ay €Y
forallz € X,y €Y.

A linear mapping 6: X — Y is called a derivation if condition (1) hold for all z,y € X. A
(complex) derivation of solid spaces X and Y in L2(B), where X C C(Q), is defined in the same

manner.

Proposition 3.2 (compare [2], §2, Proposition 2.3). If §: X — Y is a derivation from X into
Y, then for alle € X N B,x € X the equalities §(e) = 0 and 6(ex) = ed(x) hold.

Proof. If e € XNB, then §(e) = d(e?) = d(e)e+ed(e) = 2ed(e), and therefore ed(e) = 2ed(e), i.e
ed(e) = 0, that implies the equality §(e) = 0. Further, for x € X we have §(ex) = d(e)x+ed(x )
ed(x). O

Let X = X @iX,Y =Y @Y be solid spaces in L4(B),X C C(Q), X =X,,Y =Y}, and let &
be a complex derivation from X into Y. Consider the mappings dre: X — Y and opy,: X — Y,
defined by the equalities:

5 o(z) §(z) —6(x)
5R<B(x) = w’éﬂﬂl(m) — w’x c X.
Then Oge, drm are (real) derivations from X into Y, in addition, 0 = dre + 0pm.
6



Theorem 3.1 implies the following

Corollary 3.3. For a complete Boolean algebra B the following conditions are equivalent:
(1). B is a o-distributive Boolean algebra;

(ii). There are no non-zero derivations from L°(B) into L°(B).

Proof. (i) = (ii). If § is an arbitrary (real) derivation from L(B) into LO(B), then d(z + iy) =
§(x) +i6(y),z,y € L°(B) is a (complex) derivation from L2(B) into L&(B). By Theorem 3.1,
we have § = 0, and therefore § = 0.

(41) = (i). Since any derivation 6: L%(B) — L2(B) has a form § = dgre + i05m, Where dre, Opm
are (real) derivations from L°(B) into L°(B), it follows that there are no non-zero derivations
from L2(B) into L&(B). By Theorem 3.1, the Boolean algebra B is o-distributive. O

By Corollary 2.3, for a multinormed Boolean algebras B, there exist non-zero derivations on
L°(B), if and only if the Boolean algebra B is not atomic.
We need the following useful property of derivations on L°(B).

Theorem 3.4. If 6: L°(B) — L°B) is a non-zero derivation, then there exist a sequence
{a,}22, in C(Q) and a non-zero idempotent q € B such that |a,| < 1 and |6(ay,)| = ng for all
n € N.

In the proof of Theorem 3.4 we use the notion of a cyclic set in L°(B) given below.

Let {e;}icr be a partition of unity in B,z; € L°(B),i € I, where I is an arbitrary indexing
set. Select a unique x € L°(B) such that e,z = e;x; for all i € I (the uniqueness of z follows
from the equality supe; = 1 (9], 7.3.1)). The element x is called a mixing of the family {x;}es

il
by the partition of unity {e;};c; and is denoted by mi;x(eixi). If z; > 0 for all 7+ € I, then
1€
r?el;{(eixi) = Szlel.? €;T;.

The set of all mixing of families of elements from E C LY(B) is called a cyclic envelope of

a subset F in L°(B) and is denoted by mix(F). If mix(F) = F, then E is said to be a cyclic

subset in LY(B) ([10], 0.3.5).

Lemma 3.5. If E C LY(B),E = mix(E) and E is an order unbounded set in L°(BB), there
exist 0 # q € B, {xz,}:2, C E such that qx, > nq for alln € N.

Proof of the lemma. Let us show that there exists a non-zero idempotent ¢ € B such that
the set pFE is an order unbounded in L°(B) for all 0 # p € B,. If this is not the case, for
every 0 # g € B there exist 0 # p, € By,a, € p, LY (B) such that 0 < p,z < a, for all
x € E. By Theorem 2.1, there exists a partition of unity {e;};e; such that e; < p,, for some
0#£qeB,iel. Seta= H]éi;{<€iapqi)' Then a € LY (B) and for x € F the relationships hold
el = €Pg, T K €y, = eialfor all ¢ € I, that implies 0 < = < a. It means that E is order
bounded in L°(B), which is a contradiction. Consequently, there exists a non-zero idempotent
q € B such that pE is order unbounded in L°(B) for all 0 # p € B,.

Fix n € N and for every 0 # p € B, select an element z,,,, € pE/ which is not dominated by

the element np. It means that there exists 0 # r, € B, such that r,z,, > nr,. Using Theorem
7



2.1 again, select a partition {2;} ;e of the element ¢ such that z; < r,, for some r,, € B,. Since
E is a cyclic subset, then z,, = miﬁc(zj:cn,pj) € ¢F, in addition,
J€

ZjTn = ZjTnp; = 2jTp;Tnp; 2 NZjTp; = NZj
for all j € J. Hence gz, = x,, > nq for all n € N. O

Let us proceed to the proof of Theorem 3.4.

Assume that the set £ = {|d(a)| : @ € L°(B),|a] < 1} is order bounded in L°(B), i.e. there
exists © € LY (B) such that |[§(a)|] < x for all a € L°(B) with |a| < 1. Let us show that in this
case 0 = 0.

Let {y,} € C(Q) and t,, = ||yn — Y||oc — 0 for some y € C(Q). Then
(2) 16(yn) = 0(W)| = 16(yn — y)| = tn

ln
for all n € N with ¢,, # 0.

Since d(e) = 0 for all e € B (see Proposition 3.2), it follows that é(x) = 0 for all step

elements z = > \je;, where \; € R,e; € B,i = 1,n,n € N. For every b € C(Q) there
i=1
exists a sequence of step elements {z,}>°, such that ||b — z,|lc — 0. Due to (2), we have

10(b)] = 16(b) — 6(xn)| < ||b — n||co x, that implies 6(b) = 0.

Now, let b be an arbitrary element from L°(B). Select a partition of unity {e,}°°, such that
e,b € C(Q) for all n € N. Since e,5(b) = d(e,b) = 0 for all n € N (see Proposition 3.2), it
follows d(b) = 0.

Thus, the set E is order unbounded in L°(B). Let us show that £ = mix(E). Let {e;}ier
be a partition of unity and let {z;};c; be a family of elements from E. Since x; = |§(a;)|, a; €
C(Q),|a;| < 1, then e;x; = |e;0(a;)| = |0(esai)|,4 € I. Setting a = r?ei;((ei&i) we have that
a€C(Q),|al <1 and

eilo(a)| = le;0(a)| = 6(e;a)| = |0(e;a;)| = ejwyyi € 1,

ie. mi;c(eixi) = |d(a)| € E. Consequently, E = mix(F). Therefore, by Lemma 3.5, there exist
S

0 # q € B,{a,} € C(Q) with |a,| < 1, such that |d(a,)| = ¢|0(a,)| = ng for all n € N.
U

4. EXTENSION OF DERIVATIONS

In this section we give the construction of extension of any derivation §: X — L°(B), acting
on an ideal of the algebra C'(Q), up to a derivation 6: L°(B) — L°(B) (compare [2], Theorem
3.1).

Theorem 4.1. Let B be a complete Boolean algebra, let () be the Stone space of B, let X be an
ideal in the algebra C(Q) and let 6: X — L°(B) be a derivation. Then there exists a derivation
6: LY(B) — L°(B) such that 6(z) = 6(z) for all z € X. In addition, if s(X) = 1, then such

derivation § is unique.



Proof. Firstly, let us assume that X = C(Q). For every x € L°(B) there exists a partition of
unity {e, }nen such that e,z € C(Q) for all n € N. Set d(z) = mili]((ené(enx)). Let us show
ne

that this definition does not depend on a choice of the partition of unity {e, }nen. If {gn}nen is
another partition of unity, for which ¢,z € C(Q) for all n € N and y = mi§(qn5 (gnz)), then
ne

A

EmdnlY = ean(s(an) - Qnema(eanx) - Qnem(S(emQ:) - Qnemé(x)

for all n,m € N. Since sup e,, = supgq, = 1, then y = §(z). Thus, the mapping 0: L°(B) —
meN neN

LY(B) is correctly defined.
If z,y € L°%(B) and {e, }nen, {Pn}nen are partitions of unity such that e,z,p,y € C(Q) for
all n € N, then

~

6npm6(x + y) = enpm(s(enpm(x =+ y)) = enpm(s(enpmx) + enpm(s(enpmy> =
= eupm (6(en) + (Pmy)) = enpm(0(z) + 0(y))

for all n,m € N. Consequently, 6(x +y) = 6(x) + 6(y). Similarly, it is established that (A\z) =
Y} (x) for all A € R. Thus, § is a linear mapping. Further

enPm0 () = enPmd((€nt)(Pmy)) = €nPrm (6(en)pmy + €ntd(pmy))=
= epm(0(z)y + ()

for all n,m € N, that implies the equality d(zy) = d(2)y + 20 (y).
Consequently, §: LO(B) — L°(B) is a derivation, in addition, for 2 € C(Q) and a partition
of unity {e,}nen the equalities €,6(z) = e,0(epz) = €,6(x),n € N hold, i.c. §(z) = ().
Assume that §;: L°(B) — L%(B) is another derivation, for which &;(x) = d(z) for all z €
C(Q). Then, by Proposition 3.2, for x € L°(B) and a partition of unity {e,}.en such that
enr € C(Q),n € N we have e,01(x) = e,01(e,x) = eng(enx) = enS(x) for all n € N. Since

supe, = 1, it follows that & (z) = 6(z) for all z € LY(B), i.e. & = d;.
neN
Now, let X be an arbitrary ideal in C(Q) such that s(X) = 1. Due to Proposition 2.5(ii),

X is fully solid space in L°(B). By Proposition 2.6(ii) there exists a partition of unity {e;}ics
contained in X. For all i € I, A\ € R we have that \e; € X, that implies the inclusion e;C(Q) C
X for all i € I.

Define the mapping 6: C(Q) — L°(B) by setting

0(x) = rglei;((eié(e,;x)),x € C(Q).

As above it is established that § is a derivation from C(Q) into L°(B), in addition, §(z) = §(z)
for all z € X. Assume that dy: C'(Q) — L°(B) is another derivation for which dy(z) = (), x €
X. If x € C(Q), then e;x € X for all i € I and

eida(x) = e;02(e;x) = e;0(e;x) = e;0(e;x) = e;0(x),

i.e. o = 0. Thus, ¢ is a unique derivation from C(Q) into L°(B) such that §(x) = §(z) for
all z € X. From the first part of the proof it follows that there exists a unique derivation

§: LO(B) — L°(B) such that d(z) = d(z) = 8(z) for all z € X.
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Now, consider an arbitrary ideal X in C(Q). Let e = s(X) # 1 and ® is an algebraic and
lattice isomorphism from eL%(B) onto L°(B.) (see Section 2). Let us show that §(X) C eL%(B).
By setting ¢ = 1 —e, assume that ¢o(z) # 0 for some x € X. Then g = s(¢d(x)) = ¢s(d(z)) # 0.
Since ®(X) is a fully solid space in L°(B.), by Proposition 2.6(i), there exists a non-zero
eo € X N B, such that ey < g. Hence,

0 # eg = epqs(0(x)) = eg(1 —e)s(d(x)) = egs(d(z)) — epes(d(z)) =0,

which is a contradiction. Thus, ¢d(z) = 0 for all z € X, ie. 6(z) = ed(z) € eL’(B), and
therefore §(X) C eL°(B).

Consequently, there is correctly defined a mapping dy: ®(X) — ®(eL’(B)) = L°(B.) by the
equality d(®(z)) = ®(§(x)). It is clear that dy is a derivation from ®(X) with values in L°(,).
Since ®(X) is a fully solid space in L°(B,), then, from the proven above, it follows that there
exists a derivation &y: L(B,) — L°(B,) such that d(®(x)) = do(®(x)) for all z € X. Consider
the mapping o1 : eL°(B) — eL%(B), defined by the equality 6, (ex) = ®(5o(P(ex))), z € LO(B).
It is clear that &, is a linear mapping, in addition, for all z,y € L°(B) we have

~

o1 (exey) = D1 (3o(P(ex)D(ey))) = @ (d(P(ex)) P (ey) + Blex)do(P(ey)))=
= O (6o (D(ex)))ey + exd(dy(D(ey))) = 01(ex)ey + exds(ey).

Consequently, & is a derivation from eL°(B) into eL°(B), in addition,

A ~ A

01(w) = d1(ex) = &~ (do(P(2))) =~ (do(®())) = d(x)

for all z € X.

Extend a derivation 0 : eL9(B) — eL°(B) up to a derivation d: LO(B) — L°(B) by setting
6(x) = by(ex). Tt is clear that ¢ is a derivation from L°(B) into LO(B) and 6(x) = 6,(z) = &(z)
for all x € X. U

Let X be an arbitrary nonzero ideal in C'(Q)) with the support e = s(X). Let us show
that, when the Boolean algebra B, is not o-distributive, there exists a non-zero derivation &
from X into L°(B). Indeed, in this case, by Corollary 3.3, there exists a non-zero derivation
§: LY(B.) — L°(B.). Let ® be an algebraic and lattice isomorphism from eL"(B) onto L°(1,).
Consider the restriction dy of the derivation 6 on ®(X). Since ®(X) is a fully solid space in
LO%(B.) (see Proposition 2.7), it follows by Theorem 4.1 that there exists a unique derivation
bo: LO(B,) — L°(B.) such that y(®(x)) = do(P(z)) for all z € X. Since §(P(z)) = 6o(P(2))
for all x € X, due to the uniqueness of the derivation 50, we have § = 8. If &, is a trivial
derivation, then, due to the construction of 30 (see the proof of Theorem 4.1), we have that
do is also trivial, and therefore § = 0, which is a contradiction. Consequently, dy is a non-zero
derivation from ®(X) with values in L°(B,). Construct the mapping 0: X — L°(B) by setting
0(x) = ®1(5o(®(x))). As in the proof of Theorem 4.1, it is established that the mapping ¢ is a

derivation. In addition, it is clear that ¢ is a non-zero derivation from X with values in L°(1).
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Similarly, it is established that, when B, is a o-distributive Boolean algebra, then any deriva-
tion ¢ from an ideal X with values in L°(B) is always trivial. Thus, the following version of
Theorem 3.1 holds.

Theorem 4.2. Let B be a complete Boolean algebra, let Q be the Stone space of B, let X be
an ideal in C(Q) (respectively, X an ideal in C(Q)). The following conditions are equivalent:
(i). The Boolean algebra By(x) (respectively, Byx,)) is o-distributive;
(ii). There are no non-zero derivations from X (respectively, X) with values in L°(B) (re-
spectively, L2(B)).

5. MAIN RESULT

In this section we prove that any derivation from an ideal X C C(Q) into a quasi-normed

solid space Y C L°(B) is always trivial.

Theorem 5.1. Let B be an arbitrary complete Boolean algebra, let () be the Stone space of
B, let X be an ideal in C(Q) and let Y be a quasi-normed solid space in L°(B). Then any
derivation §: X — 'Y s trivial.

Proof. Firstly assume that X = C(Q). Let §: C(Q)) — Y be a non-zero derivation. By Theorem
4.1, the derivation § extends up to a derivation §: L(B) — L°(B). Since § is a non-zero
derivation, ¢ is also a non-zero derivation from L°(B) into L°(B), in addition, §(C(Q)) =
5(C@Q) C Y,

By Theorem 3.4, there exist a sequence {a,}>°; C C(Q) and a non-zero idempotent g € B
such that |a,| < 1 and

(3) 10(gan)| = |gd(an)| = qld(an)| = ng
for all n € N.
Assume that ¢ has a form ¢ = sup ¢;, where ¢; are atoms in B, k € N. Then B, is an atomic
1<i<k

Boolean algebra, and hence, the Boolean algebra B, is o-distributive. Consider an algebraic and
lattice isomorphism ®: ¢L%(B) — L°(B,) from Section 2. Define mapping é,: L°(B,) — L°(B,)
by setting

0q(x) = B(5(q® " (2))) = B(gd(® " (2))),x € L(B,).

It is clear that d, is a linear mapping, in addition,
0q(zy) = B(gd(® ()@ (1)) = 2 (g(0(@7 () (y) + 2 (2)d(® (1)) =
= B(go(® " (2)))y + 2P (q(P (1)) = dg(@)y + 20, (y)-

Consequently, d, is a derivation from L°(B,) into L°(B,) and, according to Corollary 3.3, 6, = 0,
that contradicts to (3).

It means that there exist a countably partition {e, },en of ¢ such that e, # 0 for all n € N.
Since Y is a solid space in L°(B), the inclusion d(ga,) € Y and the inequality ¢ < %|5(qan)|
(see (3)) imply that ¢ € Y. Since 0 < e,, < g, it follows that e, € Y for all n € N, in addition,

llenlly > 0.
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For every n € N select an integer m, such that my,|le,|ly > n. After that select x € ¢(L% (B))
such that e,x = e,a,,,. Since |e,z| = e,|am,| < e, for all n € N, supe, = ¢ and gr = z, it

neN
follows that |z] < ¢, i.e. 0 < x € ¢C(Q).
We have that
2 2 2 2 (3)
|end ()] = [6(enz)| = |6(€nam, )| = €nld(am,)| > mnen.
Hence, due to the selection of m,,, we have
10(2)]ly = llenllscllo(@)lly = llend(@)lly = lmnenlly = mallenly > n

for all n € N. Consequently, the derivation §: C(Q) — Y is trivial.

Now, let X be an arbitrary ideal in C'(Q). By proposition 2.5(ii), X is a solid space in L°(B).
Firstly let us assume that X is a fully solid space in L(B). By Proposition 2.6(ii) there exists
a partition {e;};c; of unity contained in X. For all i € I, A € R we have A\e; € X, that implies
e;C(Q) C X foralli e I.

Let @, be the Stone space of the Boolean algebra B., and let ®; be an algebraic and lat-
tice isomorphism from e;L°(B) into L°(B,) for which ®;(x) = z|q, (see Section 2). Since
d;71(C(Q.,)) = e;:C(Q) C X, there is defined a mapping 6;: C(Q.,) — L°(B.,) by the equal-
ity 0;(z) = ®i(e;0(®;(2))),z € C(Q.,). As above, it is established that §; is a derivation
from C(Q.,) into L°(B.,), in addition, §;(C(Q.,)) C ®;(e;Y) for all ¢ € I. By Proposition 2.7,
(Pi(e;Y), |-
it follows that §; = 0 for all < € I. Thus, for every x € X we have that

eid(z) = e;0(e;x) = €;6(P; 1 (Pi(esw))) = ;@ (6:(Pi(ex))) = 0,i € I,

®;(e,v)) 18 @ quasi-normed solid space in LY(B.,). Therefore, from the proven above

i.e. d is trivial.

Now, let X be an arbitrary solid space in L°(B), X C C(Q), e = s(X) = sup{s(z) : = €
X} # 1 and let ® be an algebraic and lattice isomorphism from eL°(B) onto L°(B.). As in
the end of the proof of Theorem 4.1, it is established that §(X) C eY. By Proposition 2.7,
(@(eY), || - lla(ey)) is a quasi-normed solid space in L°(B,), and ®(X) = ®(eX) is a fully solid
space in L%(B.), in addition, dy(x) = ®(6(®(x))),z € ®(X) is a derivation from the fully
solid space ®(X) into the quasi-normed solid space ®(eY). From the proven above, we have
that dg = 0, and therefore : X — Y is also trivial. O

Now, consider the complex case. Let X be an ideal in the algebra C(Q) and let (Y, || - ||y) be
a quasi-normed solid space in L%(B). Since any derivation 0: X — Y has a form 0 = dre + ¢01m,
where ORe, 0 are derivations from the ideal space X = X, C C(Q) into the quasi-normed
solid space Y = Y}, Theorem 5.1 implies the following

Corollary 5.2. Let B be an arbitrary complete Boolean algebra, let () be the Stone space of
B, let X be an ideal in C(Q) and let Y be a quasi-normed solid space in LL(B). Then any
derivation §: X = Y is trivial.

Recall that, by Theorem 4.2, for nonzero ideal X (respectively, X) in C(Q) (respectively,

C(Q)) in case, when the Boolean algebra By x) (respectively, Byx,)) is not o-distributive, there
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exist non-zero derivations 0 from X (respectively, from X) with values in L°(B) (respectively,
LY.(B)).

Now, give a version of Corollary 5.2 for commutative AW *-algebras. An AW™*-algebra is a
C*-algebra which is simultaneously a Baer x-algebra ([9], 7.5.2). If A is a commutative AW *-
algebra, then the lattice P(A) = {p € A: p = p* = p*} of all projections from A is a complete
Boolean algebra [5], in particular, if A is a commutative von Neumann algebra, then the Boolean
algebra P(A) is multinormed. In this case, AW*-algebra A is x-isomorphic to the C*-algebra
C(Q(P(A))), where Q(P(.A)) is the Stone space of the Boolean algebra P(A) ([9], 7.4.3, 7.5.2).
Denote by S(A) the x-algebra of all measurable operators affiliated with AW *-algebra A (see
e.g. [4], [5]). It is known [4], that for a commutative AW*-algebra A the x-algebra S(A) is
*-isomorphic to the x-algebra LL(P(A)). Therefore, Theorem 4.2, Corollaries 2.3 and 5.2 imply
the following

Theorem 5.3. Let A be a commutative AW*-algebra (respectively, commutative von Neumann
algebra), let T be an ideal in A. Then

(1). The Boolean algebra P(s(Zy).A) of all projections from s(Iy)A is o-distributive (respec-
tively, atomic), if and only if any derivation from T into S(A) is trivial;

(i0). If (Y, || - |ly) is @ quasi-normed solid space in S(A), then any derivation from I into Y
is trivial.

Give one more illustration of Theorem 5.1. Let (€2, %, 1) be a measurable space with a com-
plete o-finite measure p, let L°(Q) be the algebra of all measurable real-valued functions de-
fined on (2,3, 1), and let L>°(€2) be the subalgebra of all essentially bounded functions from
L°(Q) (functions that are equal almost everywhere are identified). Denote by ¢, the topology
of convergence locally in measure p in L°(Q). Convergence f,, N [, fn, f € L°(Q) means that
faxa — [xa in measure for any A € ¥ with u(A) < co. By Proposition 3.2, and because of
density of the subalgebra of step functions in the algebra L°(£2) with respect to the topology
t,, any t,-continuous derivation §: L°(Q2) — L°(Q) is trivial.

Consider an arbitrary non-zero ideal X in the algebra L>°(£2) and Banach solid space (Y, || -
lly) of measurable functions on (2, %, ) (see e.g. [6], ch.IV, §3). The examples of such solid
spaces are L,-spaces, p > 1, the Orlicz, Marcinkiewicz spaces, symmetric spaces of measurable
functions on (€2, 3, ) [7]. Theorems 4.2, 5.1 and Corollary 2.3 imply the following

Theorem 5.4. (i). Any derivation from X into Y is trivial;

(i). If (2,5, 1) does not have atoms, then there exists a non-zero derivation from X into
LO(Q), which is not continuous with respect to the topology t,,;

(iii). If (2,3, 1) is an atomic measure space, then any derivation from X into L°(Q) is
trivial.
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