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Abstract. Let A be a commutative AW ∗-algebra, let S(A) be the ∗-algebra of all measurable

operators affiliated with A, let I be an ideal in A, let s(I) be the support of the ideal I and

let Y be a quasi-normed solid subspace in S(A). We show that any derivation from I into Y is

always trivial. At the same time, there exist non-zero derivations from I into S(A), if and only

if the Boolean algebra of all projections from s(I)A is not σ-distributive.
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1. Introduction

It is well known ([12], Lemma 4.1.3) that every derivation on a C∗-algebra is norm continuous

and, when a C∗-algebra A is commutative, any derivation on A is trivial. In particular, for a

commutative von Neumann algebra and a commutative AW ∗-algebra A any derivation δ : A →
A is identically zero. Development of the theory of algebras S(A) of measurable operators

affiliated with a von Neumann algebra or a AW ∗-algebra A ([4], [13]) allowed to construct and

study the new significant examples of ∗-algebras of unbounded operators. One of interesting

problems in this theory is the problem of description of derivations acting in S(A). For a von

Neumann algebra and an AW ∗-algebra A it is known ([11], ([12], 4.1.6)) that any derivation

δ : A → A is inner, i.e. it has a form δ(x) = [a, x] = ax− xa for some a ∈ A and for all x ∈ A.

For the algebra S(A) it is not the same. In case of a commutative von Neumann algebra A in

[2] it was established that any derivation on S(A) is inner, i.e. trivial, if and only if A is an

atomic algebra. For a commutative AW ∗-algebra A there are non-zero derivations on S(A), if

and only if the Boolean algebra of all projections from A is not σ-distributive [8]. In case of a

von Neumann algebra A of type I, all derivations from S(A) into S(A) are described in [1].

The next step in the study of properties of derivations in operator algebras has become the

research of derivations acting on an ideal in a von Neumann algebra A with values in a Banach

solid space in S(A) [3]. In particular, in [3] it is proven that any derivation from a commutative

von Neumann algebra A with values in a Banach solid space Y ⊂ S(A) is always trivial.

In this paper we consider derivations acting on an ideal I in a commutative AW ∗-algebra A
(respectively, in the algebra C(Q) of all continuous real-valued functions defined on the Stone

space Q of a complete Boolean algebra B) with values in a solid space Y ⊂ S(A) (respectively,

in E ⊂ C∞(Q)). It is proven that for a quasi-normed solid space Y any derivation δ : I → Y is
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always trivial. At the same time, there exist non-zero derivations from I into S(A) (respectively,

in C∞(Q)), if and only if the Boolean algebra of all projections from A (respectively, B) is not

σ-distributive (compare [8]). In particular, if A is a commutative von Neumann algebra, then

any derivation δ : I → S(A) is trivial, if and only if the algebra A is atomic (compare [2]).

2. Preliminaries

Let B be an arbitrary complete Boolean algebra with zero 0 and unity 1. For an arbitrary

non-zero e ∈ B set Be = {q ∈ B : q 6 e}. With respect to the partial order induced from B the

set Be is a Boolean algebra with zero 0 and unity e.

A set D ⊂ B minorizes a subset E ⊂ B if for each non-zero e ∈ E there exist 0 6= q ∈ D
such that q 6 e. We need the following important property of complete Boolean algebras.

Theorem 2.1 ([9], 1.1.6). Let B be a complete Boolean algebra, let 0 6= e ∈ B and let D be a

minorant subset to Be. Then there exists a disjoint subset D1 ⊂ D such that

(i). supD1 = e = supD;

(ii). For each element q ∈ D1 there is an element p ∈ D satisfying q 6 p.

A non-zero element q from a Boolean algebra B is called an atom, if Be = {0, q}. A Boolean

algebra B is called atomic if, for every non-zero e ∈ B there exists an atom q ∈ B such that

q 6 e. Each complete atomic Boolean algebra is isomorphic to the Boolean algebra 2∆ of all

subsets of the set ∆ of all atoms in B ([14], ch. III, §2).

A Boolean algebra B is said to be continuous if B does not have atoms. If B is a complete

Boolean algebra and ∆ is non-empty set of all atoms from B, then for e = sup ∆ we have that

Be is an atomic Boolean algebra and B1−e is a continuous Boolean algebra.

Denote by N the set of all natural numbers and by NN the set of all mappings from N into N.

A σ-complete Boolean algebra B is called σ-distributive, if for any double sequence {en,m}n,m∈N
in B the following condition holds∨

n∈N

∧
m∈N

en,m =
∧
ϕ∈NN

∨
n∈N

en,ϕ(n).

Each complete atomic Boolean algebra is σ-distributive ([8], 3.1). In general, the converse does

not hold. Moreover, there exist continuous σ-distributive complete Boolean algebras ([9], 5.1.7).

At the same time, the following proposition holds.

Proposition 2.2. If B is a continuous σ-complete Boolean algebra and there exists a finite

strictly positive countably additive measure µ on B, then B is not σ-distributive.

Proof. Since the measure µ is strictly positive, i.e. µ(e) > 0 for e 6= 0, the Boolean algebra B
has a countable type ([14], ch. I, §6), i.e. any set of non-zero pairwise disjoint elements from

B is at most countable. Hence, B is a complete Boolean algebra ([14], ch. III, §2). Since B is a

continuous Boolean algebra, it follows that for any n ∈ N exists a finite set of pairwise disjoint

elements {e(n)
k }nk=1 ⊂ B such that sup

1≤k≤n
e

(n)
k = 1 and µ(e

(n)
k ) = µ(1)

n
for all k = 1, . . . , n ([14],

ch.III, §2). If the Boolean algebra B is σ-distributive, then, according to item 5.1.3 from [9],
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there exists a partition {qi} of unity refined from {e(n)
k }nk=1, n ∈ N. It means that for fixed i

and n there exists e
(n)
ki,n
> qi, ki,n ∈ {1, . . . , n}. Since µ(e

(n)
ki,n

) = µ(1)
n
→ 0 for n → ∞, we have

qi = 0 for all i, that contradicts to the equality sup
i
qi = 1. Hence, the Boolean algebra B is not

σ-distributive. �

A complete Boolean algebra B is said to be multinormed, if the set of all finite completely

additive measures separates the points of B ([9], 1.2.9). If a Boolean algebra B is multinormed,

then there exists a partition {ei}i∈I of unity 1 such that the Boolean algebra Bei has a fi-

nite strictly positive countably additive measure for all i ∈ I ([9], 1.2.10). Therefore, from

Proposition 2.2 we have the following

Corollary 2.3. A multinormed Boolean algebra B is σ-distributive, if and only if B is an

atomic Boolean algebra.

Let Q be the Stone space of a complete Boolean algebra B. Denote by C∞(Q) the set of

all continuous functions x : Q → [−∞,+∞] assuming the values ±∞ possibly on a nowhere-

dense set. The space C∞(Q) with naturally defined algebraic operations and partial order is

an algebra over the field R of real numbers and is a universally complete vector lattice. The

identically one function 1Q is the unity of the algebra C∞(Q) and an order-unity of the vector

lattice C∞(Q) ([9], 1.4.2).

An element x ∈ C∞(Q) is an idempotent, i.e. x2 = x, if and only if

x(t) = χQ(e)(t) =

{
1, t ∈ Q(e)

0, t /∈ Q(e)
=: e(t)

for some clopen set Q(e) ⊂ Q corresponding to the element e ∈ B, in addition, e 6 q ⇔ e(t) 6

q(t) for all t ∈ Q, where e, q ∈ B. Thus, the Boolean algebra B is identified with the Boolean

algebra of all idempotents from C∞(Q). In this identification the unity 1 of B coincides with

the function 1Q, and zero 0 of B coincides with identically zero function. Further we suppose

that B ⊂ C∞(Q), and the algebra C∞(Q) we denote by L0(B).

As in an arbitrary vector lattice, for every x ∈ L0(B) denote by x+ := x ∨ 0 (respectively,

x− := −(x∧ 0)) the positive (negative) part of x and by |x| := x+ + x− denote the modulus of

x. The set of all positive elements of L0(B) is denoted by L0
+(B).

For every x ∈ L0(B) define the support of x by the equality s(x) = 1− sup{e ∈ B : ex = 0}.
It is clear that s(x) ∈ B and s(q) = q for all q ∈ B. Note, that an idempotent q ∈ B is the

support of x ∈ L0(B), if and only if qx = x and from e ∈ B, ex = x, it follows that e > q.

It is easy to see that supports have the following properties:

Proposition 2.4. If x, y ∈ L0(B), 0 6= λ ∈ R, then

(i). s(λx) = s(x);

(ii). s(xy) = s(x)s(y);

(iii). s(|x|) = s(x);

(iv). If xy = 0, then s(x+ y) = s(x) + s(y), in particular, s(x) = s(x+) + s(x−).
3



For an arbitrary non-empty subset E ⊂ L0(B) define the support s(E) of E by setting

s(E) = sup{s(x) : x ∈ E}.
A non-zero linear subspace X of L0(B) is called a solid space, if x ∈ X, y ∈ L0(B) and

|y| 6 |x| implies that y ∈ X. If X is a solid space in L0(B) and s(X) = 1, then X is said to be

a fully solid space in L0(B).

Denote by C(Q) the algebra of all continuous functions on Q with values in R. It is clear that

C(Q) is a subalgebra and a fully solid space in L0(B), in addition, C(Q) is a Banach algebra

with the norm ‖x‖∞ = sup
t∈Q
|x(t)|, x ∈ C(Q). As usual, a subalgebra A of C(Q) is called an

ideal, if xa ∈ A for all x ∈ C(Q), a ∈ A.

Proposition 2.5. (i). A linear subspace X in L0(B) is solid, if and only if C(Q)X = X;

(ii). If X is a solid space and X ⊂ C(Q), then X is an ideal in C(Q), in particular, X is a

subalgebra of C∞(Q). Conversely, if X is an ideal in C(Q), then X is a solid space in L0(B).

Proof. (i) It is clear that X = 1X ⊂ C(Q)X. Let X be a solid space in L0(B) and let y ∈
C(Q), x ∈ X. Select c > 0 such that |y| 6 c1. Then |yx| 6 c|x|, that implies yx ∈ X.

Consequently, C(Q)X ⊂ X, and therefore C(Q)X = X.

Conversely, if C(Q)X = X, x ∈ X, y ∈ L0(B) and |y| 6 |x|, then |y| = a|x|, where a ∈ C(Q)

and 0 6 a 6 1. Hence, |y| ∈ X, and therefore y = (s(y+)− s(y−))|y| ∈ X.

(ii) If X is a solid space and X ⊂ C(Q), then C(Q)X = X (see item (i)), and therefore X is

an ideal in C(Q). Conversely, if X is an ideal in C(Q), then C(Q)X = X and, by item (i), X

is a solid space in L0(B). �

Proposition 2.6. Let X be a fully solid space in L0(B). Then

(i). For every non-zero p ∈ B there exists 0 6= e ∈ X ∩ B such that e 6 p.

(ii). There exists a partition {ei}i∈I of unity contained in X.

Proof. (i) Since s(X) = sup{s(x) : x ∈ X} = 1, for every given 0 6= p ∈ B there exists a

non-zero x0 ∈ X, such that s(|x0|)p 6= 0. For every λ > 0 consider the spectral idempotent

eλ(|x0|) = {t ∈ Q : |x0(t)| 6 λ} of |x0|. Since λ(1−eλ(|x0|)) 6 (1−eλ(|x0|))|x0| and X is a solid

space in L0(B), it follows that (1− eλ(|x0|)) ∈ X. Using the convergence (1− eλ(|x0|)) ↑ s(|x0|)
for λ → 0, we have (1 − eλ(|x0|))p ↑ s(|x0|)p 6= 0. Hence, there exists λ0 > 0 such that

e = (1− eλ0(|x0|))p 6= 0, in addition, e ∈ X and e 6 p.

Item (ii) follows from Theorem 2.1 and item (i). �

Let X be a linear space over the field K, where K is either the field C of complex numbers,

or the field R of real numbers. A mapping ‖ · ‖ : X → R is a quasi-norm, if there exists C > 1

such that for all x, y ∈ X,α ∈ K the following properties hold

1) ‖x‖ > 0, ‖x‖ = 0⇔ x = 0;

2) ‖αx‖ = |α|‖x‖;
3) ‖x+ y‖ 6 C(‖x‖+ ‖y‖).
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A quasi-norm ‖ · ‖X on a solid space X is said to be monotone, if x, y ∈ X, |y| 6 |x| implies

that ‖y‖X 6 ‖x‖X . A solid space X in L0(B) is called a quasi-normed solid space, if X is

equipped with a monotone quasi-norm.

If (X, ‖ · ‖X) is a quasi-normed solid space in L0(B), then from the inequality |yx| 6 ‖y‖∞|x|
it follows that ‖yx‖X 6

∥∥‖y‖∞|x|∥∥X= ‖y‖∞‖x‖X for all y ∈ C(Q), x ∈ X.

For every non-zero e ∈ B consider the subalgebra eL0(B) = {ex : x ∈ L0(B)}. If Q(e) is

a clopen set corresponding to the idempotent e in the Stone space Q of complete Boolean

algebra B, then Qe = Q(e) ∩ Q is the Stone space of the Boolean algebra Be. In addition,

the mapping Φ: eL0(B) → L0(Be) defined by the equality Φ(x) = x|Qe , where x|Qe is the

restriction of a function x on the compact Qe, is an algebraic and lattice isomorphism of

eL0(B) onto L0(Be). Consequently, for every solid space X in L0(B) and every 0 6= e ∈ B the

image Y = Φ(eX) is a solid space in L0(Be), in addition, if ‖ · ‖X is a monotone quasi-norm on

X, then ‖y‖Y = ‖Φ−1(y)‖X is a monotone quasi-norm on Y . Hence the following proposition

holds.

Proposition 2.7. If (X, ‖ · ‖X) is a quasi-normed solid space in L0(B), 0 6= e ∈ B, then

(Φ(eX), ‖ · ‖Φ(eX)) is a quasi-normed solid space in L0(Be), where ‖Φ(ex)‖Φ(eX) = ‖ex‖X for

all x ∈ X. Moreover, Φ(eX) is a fully solid space in L0(Be), if e = s(X).

Now, consider the complexification L0
C(B) = L0(B)�iL0(B) (with i standing for the imaginary

unity) of a real vector lattice L0(B) (see [9], 1.3.11). As usual, for an element z = x+ iy, x, y ∈
L0(B) the adjoint element of z is defined by the equality z = x − iy, in addition, Rez =
1
2
(z + z) = x is called the real part of z and Imz = 1

2i
(z − z) = y is called the imaginary

part of z. The modulus |z| of every element x ∈ L0
C(B) is defined by the equality |z| :=

sup{Re(eiθz) : 0 6 θ < 2π}. An element z of L0
C(B) may be interpreted as continuous function

z : Q→ C = C∪{∞}, assuming the values∞ possibly on a nowhere-dense set, where C is the

one-point compactification of C. In addition, the algebraic operations in L0
C(B) coincide with

pointwise algebraic operations on the functions from L0
C(B), defined up to non-where dense sets.

In particular, L0
C(B) is a commutative ∗-algebra and the modulus |z| of an element z ∈ L0

C(B)

is defined by the equality |z|(t) = (z(t)z(t))
1
2 = ((Rez(t))2 + (Imz(t))2)

1
2 for all t from some

open everywhere dense set from Q. The selfadjoint part (L0
C(B))h = {z ∈ L0

C(B) : z = z}
of a complex vector lattice L0

C(B) coincides with L0(B). The algebra C(Q) of all continuous

complex functions z : Q→ C coincides with the complexification C(Q) � iC(Q) and C(Q) is a

commutative C∗-algebra with the norm ‖z‖∞ = sup
t∈Q
|z(t)|.

A solid space X and a quasi-normed solid space (X, ‖ · ‖X) in L0
C(B) are defined as in L0(B).

It is clear that for a solid space X in L0
C(B) the set X := Xh = X ∩ L0(B) is a solid space in

L0(B), in addition, X = X � iX. If ‖ · ‖X is a monotone quasi-norm on X, then (X, ‖ · ‖X) is a

quasi-normed solid space in L0(B).

Conversely, if X is a solid space in L0(B) and ‖ · ‖X is a monotone quasi-norm on X, then

X = X � iX is a solid space in L0
C(B),Xh = X and the function ‖z‖X = ‖|z|‖X , z ∈ X is a

monotone quasi-norm on X.
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3. Derivations on solid spaces in L0(B)

A linear mapping δ from L0(B) (respectively, L0
C(B)) into L0(B) (respectively, L0

C(B)) is

called a derivation if

δ(xy) = δ(x)y + xδ(y)(1)

for all x, y ∈ L0(B) (respectively, x, y ∈ L0
C(B)).

If a complete atomic Boolean algebra B has a countable type, then there exists a strictly

positive countable additive measure on B, and therefore any derivation from L0(B) (respectively,

L0
C(B)) into L0(B) (respectively, L0

C(B)) is trivial ([2], Theorem 3.3). The following theorem

gives a necessary and sufficient condition for existence of non-zero derivations.

Theorem 3.1 ([8],§3, Corollary 3.5). For a complete Boolean algebra B the following conditions

are equivalent:

(i). B is a σ-distributive Boolean algebra;

(ii). There are no non-zero derivations from L0
C(B) into L0

C(B).

In case, when the Boolean algebra B is multinormed, B is σ-distributive if and only if B is

an atomic Boolean algebra B (see Corollary 2.3). Therefore for a multinormed Boolean algebra

B, there exist nonzero derivations on L0
C(B), if and only if the Boolean algebra B is not atomic

(this fact was also established independently of [8] in ([2], Theorem 3.4)).

By Theorem 3.1, in case when B is not a σ-distributive Boolean algebra there exists non-

zero derivations from L0
C(B) into L0

C(B). Later, in Section 5, we show that for any complete

Boolean algebra B every derivation from a solid space X ⊂ C(Q) into a quasi-normed solid

space Y ⊂ L0(B) (see the definition below) is always trivial.

Let X, Y be solid spaces in L0(B), X ⊂ C(Q). By Proposition 2.5, C(Q)Y = Y , i.e. xy ∈ Y
for all x ∈ X, y ∈ Y .

A linear mapping δ : X → Y is called a derivation if condition (1) hold for all x, y ∈ X. A

(complex) derivation of solid spaces X and Y in L0
C(B), where X ⊂ C(Q), is defined in the same

manner.

Proposition 3.2 (compare [2], §2, Proposition 2.3). If δ : X → Y is a derivation from X into

Y , then for all e ∈ X ∩ B, x ∈ X the equalities δ(e) = 0 and δ(ex) = eδ(x) hold.

Proof. If e ∈ X∩B, then δ(e) = δ(e2) = δ(e)e+eδ(e) = 2eδ(e), and therefore eδ(e) = 2eδ(e), i.e.

eδ(e) = 0, that implies the equality δ(e) = 0. Further, for x ∈ X we have δ(ex) = δ(e)x+eδ(x) =

eδ(x). �

Let X = X � iX,Y = Y � iY be solid spaces in L0
C(B),X ⊂ C(Q), X = Xh, Y = Yh and let δ

be a complex derivation from X into Y. Consider the mappings δRe : X → Y and δIm : X → Y ,

defined by the equalities:

δRe(x) =
δ(x) + δ(x)

2
, δIm(x) =

δ(x)− δ(x)

2i
, x ∈ X.

Then δRe, δIm are (real) derivations from X into Y , in addition, δ = δRe + iδIm.
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Theorem 3.1 implies the following

Corollary 3.3. For a complete Boolean algebra B the following conditions are equivalent:

(i). B is a σ-distributive Boolean algebra;

(ii). There are no non-zero derivations from L0(B) into L0(B).

Proof. (i)⇒ (ii). If δ is an arbitrary (real) derivation from L0(B) into L0(B), then δ̂(x+ iy) =

δ(x) + iδ(y), x, y ∈ L0(B) is a (complex) derivation from L0
C(B) into L0

C(B). By Theorem 3.1,

we have δ̂ = 0, and therefore δ = 0.

(ii)⇒ (i). Since any derivation δ : L0
C(B)→ L0

C(B) has a form δ = δRe+ iδIm, where δRe, δIm
are (real) derivations from L0(B) into L0(B), it follows that there are no non-zero derivations

from L0
C(B) into L0

C(B). By Theorem 3.1, the Boolean algebra B is σ-distributive. �

By Corollary 2.3, for a multinormed Boolean algebras B, there exist non-zero derivations on

L0(B), if and only if the Boolean algebra B is not atomic.

We need the following useful property of derivations on L0(B).

Theorem 3.4. If δ : L0(B) → L0(B) is a non-zero derivation, then there exist a sequence

{an}∞n=1 in C(Q) and a non-zero idempotent q ∈ B such that |an| 6 1 and |δ(an)| > nq for all

n ∈ N.

In the proof of Theorem 3.4 we use the notion of a cyclic set in L0(B) given below.

Let {ei}i∈I be a partition of unity in B, xi ∈ L0(B), i ∈ I, where I is an arbitrary indexing

set. Select a unique x ∈ L0(B) such that eix = eixi for all i ∈ I (the uniqueness of x follows

from the equality sup
i∈I

ei = 1 ([9], 7.3.1)). The element x is called a mixing of the family {xi}i∈I
by the partition of unity {ei}i∈I and is denoted by mix

i∈I
(eixi). If xi > 0 for all i ∈ I, then

mix
i∈I

(eixi) = sup
i∈I

eixi.

The set of all mixing of families of elements from E ⊂ L0(B) is called a cyclic envelope of

a subset E in L0(B) and is denoted by mix(E). If mix(E) = E, then E is said to be a cyclic

subset in L0(B) ([10], 0.3.5).

Lemma 3.5. If E ⊂ L0
+(B), E = mix(E) and E is an order unbounded set in L0(B), there

exist 0 6= q ∈ B, {xn}∞n=1 ⊂ E such that qxn > nq for all n ∈ N.

Proof of the lemma. Let us show that there exists a non-zero idempotent q ∈ B such that

the set pE is an order unbounded in L0(B) for all 0 6= p ∈ Bq. If this is not the case, for

every 0 6= q ∈ B there exist 0 6= pq ∈ Bq, ap ∈ pqL
0
+(B) such that 0 6 pqx 6 ap for all

x ∈ E. By Theorem 2.1, there exists a partition of unity {ei}i∈I such that ei 6 pqi for some

0 6= qi ∈ B, i ∈ I. Set a = mix
i∈I

(eiapqi ). Then a ∈ L0
+(B) and for x ∈ E the relationships hold

eix = eipqix 6 eiapqi = eia for all i ∈ I, that implies 0 6 x 6 a. It means that E is order

bounded in L0(B), which is a contradiction. Consequently, there exists a non-zero idempotent

q ∈ B such that pE is order unbounded in L0(B) for all 0 6= p ∈ Bq.
Fix n ∈ N and for every 0 6= p ∈ Bq select an element xn,p ∈ pE which is not dominated by

the element np. It means that there exists 0 6= rp ∈ Bp such that rpxn,p > nrp. Using Theorem
7



2.1 again, select a partition {zj}j∈J of the element q such that zj 6 rpj for some rpj ∈ Bq. Since

E is a cyclic subset, then xn = mix
j∈J

(zjxn,pj) ∈ qE, in addition,

zjxn = zjxn,pj = zjrpjxn,pj > nzjrpj = nzj

for all j ∈ J . Hence qxn = xn > nq for all n ∈ N. �

Let us proceed to the proof of Theorem 3.4.

Assume that the set E = {|δ(a)| : a ∈ L0(B), |a| 6 1} is order bounded in L0(B), i.e. there

exists x ∈ L0
+(B) such that |δ(a)| 6 x for all a ∈ L0(B) with |a| 6 1. Let us show that in this

case δ = 0.

Let {yn} ∈ C(Q) and tn = ‖yn − y‖∞ → 0 for some y ∈ C(Q). Then

|δ(yn)− δ(y)| = |δ(yn − y)| = tn

∣∣∣∣δ(yn − ytn

)∣∣∣∣ 6 tnx(2)

for all n ∈ N with tn 6= 0.

Since δ(e) = 0 for all e ∈ B (see Proposition 3.2), it follows that δ(x) = 0 for all step

elements x =
n∑
i=1

λiei, where λi ∈ R, ei ∈ B, i = 1, n, n ∈ N. For every b ∈ C(Q) there

exists a sequence of step elements {xn}∞n=1 such that ‖b − xn‖∞ → 0. Due to (2), we have

|δ(b)| = |δ(b)− δ(xn)| 6 ‖b− xn‖∞ x, that implies δ(b) = 0.

Now, let b be an arbitrary element from L0(B). Select a partition of unity {en}∞n=1 such that

enb ∈ C(Q) for all n ∈ N. Since enδ(b) = δ(enb) = 0 for all n ∈ N (see Proposition 3.2), it

follows δ(b) = 0.

Thus, the set E is order unbounded in L0(B). Let us show that E = mix(E). Let {ei}i∈I
be a partition of unity and let {xi}i∈I be a family of elements from E. Since xi = |δ(ai)|, ai ∈
C(Q), |ai| 6 1, then eixi = |eiδ(ai)| = |δ(eiai)|, i ∈ I. Setting a = mix

i∈I
(eiai) we have that

a ∈ C(Q), |a| 6 1 and

ei|δ(a)| = |eiδ(a)| = |δ(eia)| = |δ(eiai)| = eixi, i ∈ I,

i.e. mix
i∈I

(eixi) = |δ(a)| ∈ E. Consequently, E = mix(E). Therefore, by Lemma 3.5, there exist

0 6= q ∈ B, {an} ∈ C(Q) with |an| 6 1, such that |δ(an)| > q|δ(an)| > nq for all n ∈ N.

�

4. Extension of derivations

In this section we give the construction of extension of any derivation δ : X → L0(B), acting

on an ideal of the algebra C(Q), up to a derivation δ̂ : L0(B) → L0(B) (compare [2], Theorem

3.1).

Theorem 4.1. Let B be a complete Boolean algebra, let Q be the Stone space of B, let X be an

ideal in the algebra C(Q) and let δ : X → L0(B) be a derivation. Then there exists a derivation

δ̂ : L0(B) → L0(B) such that δ̂(x) = δ(x) for all x ∈ X. In addition, if s(X) = 1, then such

derivation δ̂ is unique.
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Proof. Firstly, let us assume that X = C(Q). For every x ∈ L0(B) there exists a partition of

unity {en}n∈N such that enx ∈ C(Q) for all n ∈ N. Set δ̂(x) = mix
n∈N

(enδ(enx)). Let us show

that this definition does not depend on a choice of the partition of unity {en}n∈N. If {qn}n∈N is

another partition of unity, for which qnx ∈ C(Q) for all n ∈ N and y = mix
n∈N

(qnδ(qnx)), then

emqny = emqnδ(qnx) = qnemδ(emqnx) = qnemδ(emx) = qnemδ̂(x)

for all n,m ∈ N. Since sup
m∈N

em = sup
n∈N

qn = 1, then y = δ̂(x). Thus, the mapping δ̂ : L0(B) →

L0(B) is correctly defined.

If x, y ∈ L0(B) and {en}n∈N, {pn}n∈N are partitions of unity such that enx, pny ∈ C(Q) for

all n ∈ N, then

enpmδ̂(x+ y) = enpmδ(enpm(x+ y)) = enpmδ(enpmx) + enpmδ(enpmy) =

= enpm
(
δ(enx) + δ(pmy)) = enpm(δ̂(x) + δ̂(y))

for all n,m ∈ N. Consequently, δ̂(x+ y) = δ̂(x) + δ̂(y). Similarly, it is established that δ̂(λx) =

λδ̂(x) for all λ ∈ R. Thus, δ̂ is a linear mapping. Further

enpmδ̂(xy) = enpmδ((enx)(pmy)) = enpm
(
δ(enx)pmy + enxδ(pmy)

)
=

= enpm(δ̂(x)y + xδ̂(y))

for all n,m ∈ N, that implies the equality δ̂(xy) = δ̂(x)y + xδ̂(y).

Consequently, δ̂ : L0(B) → L0(B) is a derivation, in addition, for x ∈ C(Q) and a partition

of unity {en}n∈N the equalities enδ(x) = enδ(enx) = enδ̂(x), n ∈ N hold, i.e. δ(x) = δ̂(x).

Assume that δ1 : L0(B) → L0(B) is another derivation, for which δ1(x) = δ(x) for all x ∈
C(Q). Then, by Proposition 3.2, for x ∈ L0(B) and a partition of unity {en}n∈N such that

enx ∈ C(Q), n ∈ N we have enδ1(x) = enδ1(enx) = enδ̂(enx) = enδ̂(x) for all n ∈ N. Since

sup
n∈N

en = 1, it follows that δ1(x) = δ̂(x) for all x ∈ L0(B), i.e. δ1 = δ̂1.

Now, let X be an arbitrary ideal in C(Q) such that s(X) = 1. Due to Proposition 2.5(ii),

X is fully solid space in L0(B). By Proposition 2.6(ii) there exists a partition of unity {ei}i∈I
contained in X. For all i ∈ I, λ ∈ R we have that λei ∈ X, that implies the inclusion eiC(Q) ⊂
X for all i ∈ I.

Define the mapping δ : C(Q)→ L0(B) by setting

δ(x) = mix
i∈I

(eiδ(eix)), x ∈ C(Q).

As above it is established that δ is a derivation from C(Q) into L0(B), in addition, δ(x) = δ(x)

for all x ∈ X. Assume that δ2 : C(Q)→ L0(B) is another derivation for which δ2(x) = δ(x), x ∈
X. If x ∈ C(Q), then eix ∈ X for all i ∈ I and

eiδ2(x) = eiδ2(eix) = eiδ(eix) = eiδ(eix) = eiδ(x),

i.e. δ2 = δ. Thus, δ is a unique derivation from C(Q) into L0(B) such that δ(x) = δ(x) for

all x ∈ X. From the first part of the proof it follows that there exists a unique derivation

δ̂ : L0(B)→ L0(B) such that δ̂(x) = δ(x) = δ(x) for all x ∈ X.
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Now, consider an arbitrary ideal X in C(Q). Let e = s(X) 6= 1 and Φ is an algebraic and

lattice isomorphism from eL0(B) onto L0(Be) (see Section 2). Let us show that δ(X) ⊂ eL0(B).

By setting q = 1−e, assume that qδ(x) 6= 0 for some x ∈ X. Then g = s(qδ(x)) = qs(δ(x)) 6= 0.

Since Φ(X) is a fully solid space in L0(Be), by Proposition 2.6(i), there exists a non-zero

e0 ∈ X ∩ Be, such that e0 6 g. Hence,

0 6= e0 = e0qs(δ(x)) = e0(1− e)s(δ(x)) = e0s(δ(x))− e0es(δ(x)) = 0,

which is a contradiction. Thus, qδ(x) = 0 for all x ∈ X, i.e. δ(x) = eδ(x) ∈ eL0(B), and

therefore δ(X) ⊂ eL0(B).

Consequently, there is correctly defined a mapping δ0 : Φ(X)→ Φ(eL0(B)) = L0(Be) by the

equality δ0(Φ(x)) = Φ(δ(x)). It is clear that δ0 is a derivation from Φ(X) with values in L0(Be).
Since Φ(X) is a fully solid space in L0(Be), then, from the proven above, it follows that there

exists a derivation δ̂0 : L0(Be)→ L0(Be) such that δ̂0(Φ(x)) = δ0(Φ(x)) for all x ∈ X. Consider

the mapping δ̂1 : eL0(B)→ eL0(B), defined by the equality δ̂1(ex) = Φ−1(δ̂0(Φ(ex))), x ∈ L0(B).

It is clear that δ̂1 is a linear mapping, in addition, for all x, y ∈ L0(B) we have

δ̂1(exey) = Φ−1(δ̂0(Φ(ex)Φ(ey))) = Φ−1
(
δ̂0(Φ(ex))Φ(ey) + Φ(ex)δ̂0(Φ(ey))

)
=

= Φ−1(δ̂0(Φ(ex)))ey + exΦ−1(δ̂0(Φ(ey))) = δ̂1(ex)ey + exδ̂1(ey).

Consequently, δ̂1 is a derivation from eL0(B) into eL0(B), in addition,

δ̂1(x) = δ̂1(ex) = Φ−1(δ̂0(Φ(x))) = Φ−1(δ0(Φ(x))) = δ(x)

for all x ∈ X.

Extend a derivation δ̂1 : eL0(B) → eL0(B) up to a derivation δ̂ : L0(B) → L0(B) by setting

δ̂(x) = δ̂1(ex). It is clear that δ̂ is a derivation from L0(B) into L0(B) and δ̂(x) = δ̂1(x) = δ(x)

for all x ∈ X. �

Let X be an arbitrary nonzero ideal in C(Q) with the support e = s(X). Let us show

that, when the Boolean algebra Be is not σ-distributive, there exists a non-zero derivation δ

from X into L0(B). Indeed, in this case, by Corollary 3.3, there exists a non-zero derivation

δ : L0(Be)→ L0(Be). Let Φ be an algebraic and lattice isomorphism from eL0(B) onto L0(Be).
Consider the restriction δ0 of the derivation δ on Φ(X). Since Φ(X) is a fully solid space in

L0(Be) (see Proposition 2.7), it follows by Theorem 4.1 that there exists a unique derivation

δ̂0 : L0(Be) → L0(Be) such that δ̂0(Φ(x)) = δ0(Φ(x)) for all x ∈ X. Since δ(Φ(x)) = δ0(Φ(x))

for all x ∈ X, due to the uniqueness of the derivation δ̂0, we have δ = δ̂0. If δ0 is a trivial

derivation, then, due to the construction of δ̂0 (see the proof of Theorem 4.1), we have that

δ̂0 is also trivial, and therefore δ = 0, which is a contradiction. Consequently, δ0 is a non-zero

derivation from Φ(X) with values in L0(Be). Construct the mapping δ : X → L0(B) by setting

δ(x) = Φ−1(δ0(Φ(x))). As in the proof of Theorem 4.1, it is established that the mapping δ is a

derivation. In addition, it is clear that δ is a non-zero derivation from X with values in L0(B).
10



Similarly, it is established that, when Be is a σ-distributive Boolean algebra, then any deriva-

tion δ from an ideal X with values in L0(B) is always trivial. Thus, the following version of

Theorem 3.1 holds.

Theorem 4.2. Let B be a complete Boolean algebra, let Q be the Stone space of B, let X be

an ideal in C(Q) (respectively, X an ideal in C(Q)). The following conditions are equivalent:

(i). The Boolean algebra Bs(X) (respectively, Bs(Xh)) is σ-distributive;

(ii). There are no non-zero derivations from X (respectively, X) with values in L0(B) (re-

spectively, L0
C(B)).

5. Main result

In this section we prove that any derivation from an ideal X ⊂ C(Q) into a quasi-normed

solid space Y ⊂ L0(B) is always trivial.

Theorem 5.1. Let B be an arbitrary complete Boolean algebra, let Q be the Stone space of

B, let X be an ideal in C(Q) and let Y be a quasi-normed solid space in L0(B). Then any

derivation δ : X → Y is trivial.

Proof. Firstly assume that X = C(Q). Let δ : C(Q)→ Y be a non-zero derivation. By Theorem

4.1, the derivation δ extends up to a derivation δ̂ : L0(B) → L0(B). Since δ is a non-zero

derivation, δ̂ is also a non-zero derivation from L0(B) into L0(B), in addition, δ̂(C(Q)) =

δ(C(Q)) ⊂ Y .

By Theorem 3.4, there exist a sequence {an}∞n=1 ⊂ C(Q) and a non-zero idempotent q ∈ B
such that |an| 6 1 and

|δ̂(qan)| = |qδ̂(an)| = q|δ̂(an)| > nq(3)

for all n ∈ N.

Assume that q has a form q = sup
1≤i≤k

qi, where qi are atoms in B, k ∈ N. Then Bq is an atomic

Boolean algebra, and hence, the Boolean algebra Bq is σ-distributive. Consider an algebraic and

lattice isomorphism Φ: qL0(B)→ L0(Bq) from Section 2. Define mapping δq : L0(Bq)→ L0(Bq)
by setting

δq(x) = Φ(δ̂(qΦ−1(x))) = Φ(qδ̂(Φ−1(x))), x ∈ L0(Bq).
It is clear that δq is a linear mapping, in addition,

δq(xy) = Φ(qδ̂(Φ−1(x)Φ−1(y))) = Φ
(
q
(
δ̂(Φ−1(x))Φ−1(y) + Φ−1(x)δ̂(Φ−1(y))

))
=

= Φ(qδ̂(Φ−1(x)))y + xΦ(qδ̂(Φ−1(y))) = δq(x)y + xδq(y).

Consequently, δq is a derivation from L0(Bq) into L0(Bq) and, according to Corollary 3.3, δq ≡ 0,

that contradicts to (3).

It means that there exist a countably partition {en}n∈N of q such that en 6= 0 for all n ∈ N.

Since Y is a solid space in L0(B), the inclusion δ̂(qan) ∈ Y and the inequality q 6 1
n
|δ̂(qan)|

(see (3)) imply that q ∈ Y . Since 0 6 en 6 q, it follows that en ∈ Y for all n ∈ N, in addition,

‖en‖Y > 0.
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For every n ∈ N select an integer mn such that mn‖en‖Y > n. After that select x ∈ q(L0
+(B))

such that enx = enamn . Since |enx| = en|amn| 6 en for all n ∈ N, sup
n∈N

en = q and qx = x, it

follows that |x| 6 q, i.e. 0 6 x ∈ qC(Q).

We have that

|enδ̂(x)| = |δ̂(enx)| = |δ̂(enamn)| = en|δ̂(amn)| (3)
> mnen.

Hence, due to the selection of mn, we have

‖δ̂(x)‖Y = ‖en‖∞‖δ̂(x)‖Y > ‖enδ̂(x)‖Y > ‖mnen‖Y = mn‖en‖Y > n

for all n ∈ N. Consequently, the derivation δ : C(Q)→ Y is trivial.

Now, let X be an arbitrary ideal in C(Q). By proposition 2.5(ii), X is a solid space in L0(B).

Firstly let us assume that X is a fully solid space in L0(B). By Proposition 2.6(ii) there exists

a partition {ei}i∈I of unity contained in X. For all i ∈ I, λ ∈ R we have λei ∈ X, that implies

eiC(Q) ⊂ X for all i ∈ I.

Let Qei be the Stone space of the Boolean algebra Bei and let Φi be an algebraic and lat-

tice isomorphism from eiL
0(B) into L0(Bei) for which Φi(x) = x|Qei (see Section 2). Since

Φ−1
i (C(Qei)) = eiC(Q) ⊂ X, there is defined a mapping δi : C(Qei) → L0(Bei) by the equal-

ity δi(x) = Φi(eiδ(Φ
−1
i (x))), x ∈ C(Qei). As above, it is established that δi is a derivation

from C(Qei) into L0(Bei), in addition, δi(C(Qei)) ⊂ Φi(eiY ) for all i ∈ I. By Proposition 2.7,

(Φi(eiY ), ‖ ·‖Φi(eiY )) is a quasi-normed solid space in L0(Bei). Therefore, from the proven above

it follows that δi ≡ 0 for all i ∈ I. Thus, for every x ∈ X we have that

eiδ(x) = eiδ(eix) = eiδ(Φ
−1
i (Φi(eix))) = eiΦ

−1(δi(Φi(ex))) = 0, i ∈ I,

i.e. δ is trivial.

Now, let X be an arbitrary solid space in L0(B), X ⊂ C(Q), e = s(X) = sup{s(x) : x ∈
X} 6= 1 and let Φ be an algebraic and lattice isomorphism from eL0(B) onto L0(Be). As in

the end of the proof of Theorem 4.1, it is established that δ(X) ⊂ eY . By Proposition 2.7,

(Φ(eY ), ‖ · ‖Φ(eY )) is a quasi-normed solid space in L0(Be), and Φ(X) = Φ(eX) is a fully solid

space in L0(Be), in addition, δ0(x) = Φ(δ(Φ−1(x))), x ∈ Φ(X) is a derivation from the fully

solid space Φ(X) into the quasi-normed solid space Φ(eY ). From the proven above, we have

that δ0 ≡ 0, and therefore δ : X → Y is also trivial. �

Now, consider the complex case. Let X be an ideal in the algebra C(Q) and let (Y, ‖ · ‖Y) be

a quasi-normed solid space in L0
C(B). Since any derivation δ : X→ Y has a form δ = δRe+ iδIm,

where δRe, δIm are derivations from the ideal space X = Xh ⊂ C(Q) into the quasi-normed

solid space Y = Yh, Theorem 5.1 implies the following

Corollary 5.2. Let B be an arbitrary complete Boolean algebra, let Q be the Stone space of

B, let X be an ideal in C(Q) and let Y be a quasi-normed solid space in L0
C(B). Then any

derivation δ : X→ Y is trivial.

Recall that, by Theorem 4.2, for nonzero ideal X (respectively, X) in C(Q) (respectively,

C(Q)) in case, when the Boolean algebra Bs(X) (respectively, Bs(Xh)) is not σ-distributive, there
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exist non-zero derivations δ from X (respectively, from X) with values in L0(B) (respectively,

L0
C(B)).

Now, give a version of Corollary 5.2 for commutative AW ∗-algebras. An AW ∗-algebra is a

C∗-algebra which is simultaneously a Baer ∗-algebra ([9], 7.5.2). If A is a commutative AW ∗-

algebra, then the lattice P (A) = {p ∈ A : p = p∗ = p2} of all projections from A is a complete

Boolean algebra [5], in particular, ifA is a commutative von Neumann algebra, then the Boolean

algebra P (A) is multinormed. In this case, AW ∗-algebra A is ∗-isomorphic to the C∗-algebra

C(Q(P (A))), where Q(P (A)) is the Stone space of the Boolean algebra P (A) ([9], 7.4.3, 7.5.2).

Denote by S(A) the ∗-algebra of all measurable operators affiliated with AW ∗-algebra A (see

e.g. [4], [5]). It is known [4], that for a commutative AW ∗-algebra A the ∗-algebra S(A) is

∗-isomorphic to the ∗-algebra L0
C(P (A)). Therefore, Theorem 4.2, Corollaries 2.3 and 5.2 imply

the following

Theorem 5.3. Let A be a commutative AW ∗-algebra (respectively, commutative von Neumann

algebra), let I be an ideal in A. Then

(i). The Boolean algebra P (s(Ih)A) of all projections from s(Ih)A is σ-distributive (respec-

tively, atomic), if and only if any derivation from I into S(A) is trivial;

(ii). If (Y, ‖ · ‖Y) is a quasi-normed solid space in S(A), then any derivation from I into Y
is trivial.

Give one more illustration of Theorem 5.1. Let (Ω,Σ, µ) be a measurable space with a com-

plete σ-finite measure µ, let L0(Ω) be the algebra of all measurable real-valued functions de-

fined on (Ω,Σ, µ), and let L∞(Ω) be the subalgebra of all essentially bounded functions from

L0(Ω) (functions that are equal almost everywhere are identified). Denote by tµ the topology

of convergence locally in measure µ in L0(Ω). Convergence fn
tµ−→ f, fn, f ∈ L0(Ω) means that

fnχA → fχA in measure for any A ∈ Σ with µ(A) < ∞. By Proposition 3.2, and because of

density of the subalgebra of step functions in the algebra L0(Ω) with respect to the topology

tµ, any tµ-continuous derivation δ : L0(Ω)→ L0(Ω) is trivial.

Consider an arbitrary non-zero ideal X in the algebra L∞(Ω) and Banach solid space (Y, ‖ ·
‖Y ) of measurable functions on (Ω,Σ, µ) (see e.g. [6], ch.IV, §3). The examples of such solid

spaces are Lp-spaces, p > 1, the Orlicz, Marcinkiewicz spaces, symmetric spaces of measurable

functions on (Ω,Σ, µ) [7]. Theorems 4.2, 5.1 and Corollary 2.3 imply the following

Theorem 5.4. (i). Any derivation from X into Y is trivial;

(i). If (Ω,Σ, µ) does not have atoms, then there exists a non-zero derivation from X into

L0(Ω), which is not continuous with respect to the topology tµ;

(iii). If (Ω,Σ, µ) is an atomic measure space, then any derivation from X into L0(Ω) is

trivial.
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