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Abstract—The totally asymmetric simple exclusion processes 
(TASEP) has been used since 1968 to model different 
biochemical processes, including kinetics of protein synthesis, 
molecular motors traffic, collective effects in genetic 
transcription. Here, we consider TASEP defined on an open 
network consisting of simple head and tail chains with a 
double-chain section in-between. Our results of Monte Carlo 
simulations show a novel property of the model when the 
simple chains are in the maximum-current phase: upon 
moving the double-chain defect from the central position 
forward or backward along the network, keeping fixed the 
length of both the defect and the whole network, a position-
induced phase change in the parallel defect chains takes place. 
This phenomenon is explained in terms of finite-size 
dependence of the effective injection and removal rates at the 
ends of the double-chain defect. Some implications of the 
results for molecular motors cellular transport along such 
networks are suggested. However, at present these are just 
speculations which need further examinations. 
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I.  INTRODUCTION 
The world of non-equilibrium phenomena is more 

diverse and much more interesting as compared to our 
experience with its equilibrium counterpart. Rigorously 
put, true equilibrium phenomena are an idealization 
which is seldom met in nature. The development of a 
fundamental and comprehensive understanding of 
physics far from equilibrium is currently under way. 
That is why the study of simple non-equilibrium 
models like the totally asymmetric simple exclusion 
process (TASEP) (see, e.g., [1-9]) is very informative 
and helpful. This approach – the study of simple model 
systems - has shown to be very effective in the 
equilibrium statistical mechanics and now it is 
intensively exploited also in the non-equilibrium case. 

One can see that recently more methods and 
concepts from non-equilibrium statistical physics are 

applied to model processes in living systems and 
biological phenomena [10-18]. This is quite natural 
since the object of non-equilibrium statistical physics 
are open many-particle systems with macroscopic 
currents of energy and/or particles. Biological systems, 
on the other hand, are rather complex systems which in 
order to function properly need energy and matter 
flows. There are biological transport phenomena which 
can be considered to be restricted to an effectively one-
dimensional track, e.g., stepping of kinesins and 
dyneins along microtubules, translocation of RNA 
polymerase (RNAP) on DNA during transcription, 
ribosomes on messenger RNA (mRNA) during protein 
syntheses - a process referred to as translation. Kinesins 
and dyneins are cytoskeletal motors: kinesin moves 
cargo inside cells away from the nucleus along 
microtubules and dynein transports cargo along 
microtubules towards the cell nucleus. All these 
stochastic processes are of special interest due to their 
fundamental importance for the functioning of living 
cells. Hence, they are a challenging object for 
mathematical modeling and discrete stochastic models 
seem adequate for that purpose. Usually a large number 
of such agents move unidirectionally along the same 
track with excluded volume interaction, which makes 
the simple models of vehicular traffic appropriate for 
incorporation in more sophisticated ones. For example, 
stochasticity and traffic jams in the transcription of 
ribosomal RNA have been considered by Klumpp and 
Hwa [14]. 

In the present study, we are concerned with one 
specific example of application of a simple non-
equilibrium model, the TASEP, to the protein 
synthesis. Since 1968 this model has been used to 
model different biological processes [10-18] including 
the phenomenon of protein synthesis [10]. In the last 
twenty years, the non-equilibrium statistical physicists 
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[19-24] are very much interested in the study of 
different kind of models which are expected to provide 
deep understanding of the generic behavior of non-
equilibrium systems.  

Another challenging problem, from both biological 
and mathematical point of view, is the consideration of 
biochemical transport phenomena on networks with 
non-trivial topology. Our goal here is to present a study 
of the effects, arising in TASEP, defined on a simple 
example of such a network: a linear chain of 
attachment sites with a double-chain defect inserted in 
it [25]. For other studies of TASEP on topologies more 
complex than a single segment see [26-29]. Recently, 
applications to biological transport have motivated 
generalizations of the TASEP to cases when the entry 
rate is chosen to depend on the number of particles in 
the reservoir (TASEP with finite resources) [30, 31]. 
This year, the cases of multiple competing TASEPs 
with a shared reservoir of particles [32, 33], and 
TASEP with Langmuir kinetics and memory reservoirs 
[34] were studied too. 

The next section is devoted to the single chain 
TASEP, then a short overview is given on the TASEP 
with a double-chain section in-between [25]. The last 
section is devoted to our new Monte Carlo simulation 
results displaying a novel property of the model with 
the double-chain section in the maximum-current 
phase. 

II. MODEL AND APPLICATIONS 

A. Single chain TASEP 
One of the simplest driven (non-equilibrium) 

models of many-particle systems with particle 
conserving stochastic dynamics is the asymmetric 
simple exclusion process (ASEP). It has been 
extensively studied on simple chains with periodic, 
closed and open boundary conditions. In the extremely 
asymmetric case particles are allowed to move with in 
one direction only - this is the totally asymmetric 
simple exclusion process (TASEP). It was first 
introduced in [10] as a model of protein synthesis; in 
the context of interacting Markov processes, see [1]. Its 
steady states are exactly known for both open and 
periodic boundary conditions, for continuous-time and 
several kinds of discrete-time dynamics. Here we shall 
focus our attention on the steady states of the open 
TASEP with continuous-time stochastic dynamics on a 
simple chain, illustrated in Fig. 1. For a review on the 
exact results for the stationary states of TASEP under 
different kinds of stochastic dynamics, and its 
numerous applications, we refer the reader to [4, 22]. 
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Figure 1.  Schematic representation of the open TASEP on a simple 
chain; for details see text. 

The continuous-time dynamics is modeled by the so 
called random-sequential update: in the algorithm one 
chooses with equal probability any one of the lattice 
sites (the left reservoir is included as an additional site), 
and, if the chosen site is occupied by a particle, moves 
it (with rate p = 1) to the nearest-neighbor site on the 
right, provided the target site is empty. In the case of 
open system, particles are injected at the left end with 
rate α and removed at the right end with rate β  when 
the last site is occupied. When , (0,1]α β ∈ the boundary 
conditions correspond to coupling of the system to 
reservoirs of particles with constant densities α  and 
1 β− , respectively.  

 

 
Figure 2.  Phase diagram of the open TASEP on a simple chain. 

The regions of the different phases are explained in the text. 

As predicted by Krug [21], the change of the 
boundary rates induces non-equilibrium phase 
transitions between different stationary phases. In the 
thermodynamic limit, the phase diagram of the 
stationary states in the plane of the particle injection 
and removal rates is shown in Fig. 2. It exhibits three 
distinct phases: a low-density free-flow phase (region 



AI AII∪ ), a high-density congested traffic one (region 
), and a maximum current phase (region MC), 

characterized by a synchronized flow in which jams 
and free-flow coexist at intermediate densities. These 
phases are separated by lines of non-equilibrium first-
order and second-order phase transitions. Here we need 
to mention some basic facts obtained in the case of 
continuous-time dynamics: (a) the correlations in the 
bulk of an infinite chain vanish and the dependence of 
the stationary current of particles J on the average 
density ρ is given by J = ρ(1−ρ); (b) in the maximum 
current phase ρ = 1/2 and J = 1/4; when J < 1/4, there 
are two densities which support that current:  

BI BII∪

(1)  ρ±(J)  = [1± (1−4J)1/2]/2,  
where ρ− (ρ+) is the bulk density in the low-density 
(high-density) phase. 

 

B. TASEP with a double-chain section 
The idea of studying networks, composed of chain 

segments, which exhibit the bulk behavior of an open 
TASEP under boundary conditions given in terms of 
effective input and output rates, was first advanced in 
our work [25]. The network considered there is shown 
schematically in Fig. 3. The appearance of correlation 
effects, close to the ends of the chain segments, as well 
as of cross-correlations in the double-chain segment 
was found.  

 

 
Figure 3.  Schematic representation of the network: a single chain 
with a two-chain incertion. The segments C2  and C3 have equal 
length L2 (L3=L2) in the case under consideration. The particles are 
injected at the left end with a rate α and removed at the right end 
with a rate β . The particles move from left to right, at the 
branching point L1 they take with equal probability the upper or the 
lower branch. 

 
The same approach was applied in Ref. [26] to an 

open network consisting of one vertex with two 
incoming chains, coupled to one reservoir, and one 
outgoing chain, coupled to another reservoir. Different 
versions of simple networks were studied also in Refs. 
[25] and [26]. In the latter work the notion of particle-
hole symmetry in the presence of a junction was 

carefully analyzed and an appropriate interpretation on 
the microscopic level was given. TASEP with parallel 
update on single multiple-input--single-output 
junctions has been investigated too [29]. The main 
concern in the above works was the construction of the 
phase diagram under different open boundary 
conditions. 

Here we continue the investigation of the network 
considered in [25], see Fig. 3. Note, that the last site i 
= L1 of the head chain is a branching point, from 
which the particles can take the upper or the lower 
branch of the two-chain section with equal probability. 
Simultaneous and independent traffic of particles on 
the two equivalent branches was simulated. The 
parallel branches merge at site i = L1 + L2, where the 
particles have to wait for the first site of the tail chain i 
= L1 + L2 +1 to become empty. We have denoted the 
phase structure of the model by (X1, X2,3,X4), where Xk 
(k = 1,2,3,4) stands for one of the stationary phases of 
the chain segment Ck: LD – low density, HD – high 
density, MC – maximum current, and CL – 
coexistence line. Our analytical analysis of the allowed 
phase structures, based on the properties of single 
chains in the thermodynamic limit, and the neglect of 
the pair correlations between the nearest-neighbor 
occupation numbers at the junctions of different chain 
segments, yielded 8 possibilities. Here we focus our 
investigation on 3 of the most interesting cases 
(MC,LD,MC), (MC,CL,MC), and (MC,HD,MC), 
which appear under the conditions α > 1/2, β > 1/2, 
corresponding to the maximum current phase of a 
single chain. The phase state of the chains in the 
double-chain defect depends on the effective injection 
rate α* of particles at the first site of each of the chain 
segments C2,3 and on the effective removal rate β* of 
particles from the last site of each of these chains. As 
in the case of a single infinite chain, the density 
profiles of C2 and C3 are similar to the ones in the LD, 
CL, and HD phases when β* < α* < 1/2, β* = α* < 1/2, 
and α* < β* < 1/2, respectively. The crucial difference 
now is that the above effective rates depend on the 
finite size of the head and tail simple chain segments. 

In the present interpretation, the hard-core particles 
represent individual molecular motors.  
 

III. RESULTS AND DISCUSSION 
As a result of Monte Carlo simulations we have 

found a novel property of the model in the maximum-
current phase, i.e., when α  > 1/2 and β  > 1/2. Then 
the current J2,3 trough each of the chains C2,3 equals 



half of the maximum current, i.e. J2,3 = 1/8. Therefore, 
due to the fundamental relationship J = ρ(1−ρ), in the 
thermodynamic limit these chains can be found either 
in a low-density phase with bulk density 
(2)  ρ−(1/8) = [1−√0.5]/2 ≈ 0.14645,  
or in the high-density phase with bulk density  
(3)  ρ+(1/8) = [1+√0.5]/2 ≈ 0.85355,  
or on the coexistence line of these two phases. Upon 
moving the double-chain defect along the network, 
keeping fixed the lengths of both the defect and the 
whole network, a position-induced phase change in the 
defect chains takes place. This change from the 
coexistence line to a low- or high-density phase is 
observed in the density profile of each of the chains 
forming the defect.  

In Fig. 4 we show our simulation results for the 
density distributions for a rather small system of fixed 
total length Ltot = L1 + L2,3 + L4 = 150 sites and fixed 
size of the double-chain section, L2 = L3 = 50. The 
ensemble averaging was performed over 200 
independent runs and after 3 000 000 Monte Carlo 
steps were omitted in order to ensure that the system 
had reached a stationary state. One can easily see the 
sharp change which the density profiles undergo when 
the position of the loop is shifted. As a reference, the 
results for the density profiles of the system with 
segments of equal length L1=L2,3=L4=50 are shown 
with red squares. Grey circles  
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Figure 4.  Simulation results: density profiles ρ  as a function of 
the scaled distance x = i/Lk, for the system with the (MC,CL,MC) 
phase structure, appearing when 0.75, 0.75α β= = . The 
symmetric case with L1=L2,3 =L4=50 is shown with red squares. 
The change of the density profiles in the double-chain section is 
clearly seen: when L1=25, L4=75 its shape is characteristic of the 
HD phase (blue circles); when L1=75 and L4=25 its shape is 
characteristic of the LD phase (green triangles). 

In the latter case the two branches of the defect section 
are on the coexistence line. However, when the head 

chain is shorter, e.g., when L1 = 25 and, respectively, 
L4=75, the density distribution in the double-chain 
section is typical for the HD phase (see the results 
shown with blue circles). In the opposite case, when 
the head chain is longer than the tail one, L1=75 and 
L4=25, the density distribution of the double chain-
section has the typical shape of the LD phase (shown 
with green triangles). 
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Figure 5.  Simulation results: Nearest-neighbor correlations Fcorr, in 
the (MC,CL,MC) phase state of the system, as a function of the 
scaled distance x = i/Lk, for different positions of the double-chain 
segment. 

The spatial behavior of the correlations between 
nearest-neighbor occupation numbers, shown in Figure 
5, is also typical for the corresponding phases. 

An explanation of the phenomenon can be given in 
terms of finite-size dependence of the effective 
injection and removal rates at the ends of the double-
chain defect. In the symmetric case, when L1 = L4, we 
observe α* ≈ β* and, in the thermodynamic limit, the 
defect chains should be on the coexistence line. This 
fact is demonstrated by the (almost) linear density 
profile, changing from ρ−(1/8) at the left end to ρ+(1/8) 
at the right end. Such a linear profile is known to result 
from a freely moving domain wall separating the low-
density and high-density regions. Due to the size 
dependence of the effective rates, on moving the defect 
to the left (i.e., when L1 decreases and L4 increases, so 
that L1 + L4 remains constant), α* increases and β* 

slightly decreases, thus the condition α* > β* becomes 
fulfilled and the chains C2,3 obtain a density profile, 
characteristic of the high-density phase. In the opposite 
case, on moving the defect to the right (i.e., when L1 
increases and L4 decreases, so that L1 + L4 is constant), 
α* slightly decreases and β* increases, so that the 
condition α* < β* takes place and the chains C2,3 obtain 



a density profile, characteristic of the low-density 
phase.  

It is interesting to note, that the average velocity of 
particles V, defined from the relation J = ρV, is higher 
(lower) in the low-density (high-density) phase than in 
the head and tail chains, for which VMC = 1/2.  Indeed, 
in the LD phase 
(4)   VLD = 1/[4 (1−√0.5)]  ≈ 0.85355, 
and in the HD phase 
(5)   VHD = 1/[4 (1+√0.5)]  ≈ 0.14645.  
Another notable observation is, that not only the bulk 
density of a single chain in the double-chain segment in 
the LD (HD) phase is lower (higher) than the bulk 
density of the head and tail chains, for which ρMC = 1/2, 
but the same relation holds for the sum of the bulk 
densities of both chains in the double-chain segment. 
Indeed, in the LD phase  
(6)  2ρ−(1/8)  = 1−√0.5 ≈ 0.29289,  
and in the HD phase 
(7)   2ρ+(1/8) = 1+√0.5 ≈ 1.7071.  
In general, for a multi-chain defect, consisting of n 
parallel identical chains, in the LD phase we obtain for 
the total bulk density of particles in the defect  
(8)  nρ±(1/4n)  = n [1± (1−n−1)1/2]/2  → 1/4  as  n → ∞. 
Therefore, the unlimited increase of the number of 
chains in the defect part, tends to lower the total bulk 
density of particles in it from 2ρ−(1/8) ≈ 0.29289 down 
to 0.25. This is a very interesting and useful property. 

IV. CONCLUSION 
A possible biochemical interpretation of the model, 

considered here, can be given in terms of molecular 
motors moving along linear biopolymers, such as actin 
filaments, microtubules, DNA and RNA molecules. 
Our model ignores the possibility of backward steps, 
as well as the initiation stage, the dissociation from the 
track and the sequence of intermediate biochemical 
states, for example, the arrival and binding of a fuel 
molecule. We have focused on the effect of a non-
trivial topology on the transport of hard-core particles. 
As pointed out by Pronina and Kolomeisky [26], the 
realistic description of cellular transport, requires also 
to include the possibility of motion on lattices with a 
more complex geometry. For example, there are 
indications, that the number of proto-filaments, that 
kinesins walk on, may vary in the microtubules. This 
indicates the existence of junctions and other lattice 
defects, which may be responsible for some human 
diseases. 

The network with a double-chain defect, considered 
by us, can be thought of as some sort of genetic 
malformation or defect, caused by radiation or some 

other source. Our main results concern the bulk 
density and the average velocity of particles in the 
defect chains, in the regime of maximum current 
through the whole network. One can imagine 
scenarios, when it is needed to minimize or maximize 
some of the above mechanical parameters, 
presumably, for engineering novel cellular behavior. 
Then some hints from models of traffic on tracks with 
parallel sections could be helpful.     

From the point of view of statistical physics, one is 
interested in a number of issues. A fundamental 
question concerns the “stability” of steady-state 
properties with respect to model modifications. Which 
changes of the microscopic model details will lead to 
changes of the macroscopic behavior? Also, while for 
equilibrium systems basic notions of universality and 
independence from dynamic details are well 
understood, only initial steps are taken towards 
extending these notions towards non-equilibrium 
systems and more specifically towards non-equilibrium 
steady states [35, 36]. 

We would like to conclude by pointing out that even 
though such simple models may not permit immediate 
comparisons with available experimental data, due to 
the significant amount of simplification and/or 
abstraction involved, they can still be quite useful in 
guiding future experimental work. 
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