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The field of study of complex systems holds that the dynamics of complex systems are founded
on universal principles that may used to describe a great variety of scientific and technological
approaches of different types of natural, artificial, and social systems. Authors have suggested that
earthquake dynamics and neurodynamics can be analyzed within similar mathematical frameworks,
a claim further supported by recent evidence. The purpose of this paper is to suggest a shift in
emphasis from the large to the small in the search for a dynamical analogy between seizure and
earthquake. Our analyses focus on a single epileptic seizure generation and the activation of a single
fault (earthquake) and not on the statistics of sequences of different seizures and earthquakes. A
central property of the epileptic seizure / earthquake generation is the occurrence of coherent large-
scale collective behaviour with very rich structure, resulting from repeated nonlinear interactions
among the constituents of the system, respectively firing neurons and opening cracks. Consequently,
in this paper, we apply the Tsallis nonextensive statistical mechanics as it proves an appropriate
framework in order to investigate universal principles of their generation. For completeness reasons
we also use entropic measures as well as tools from information theory. The obtained results seems
to support the claim that epileptic seizures can be considered as “quakes on the brain”.
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I. INTRODUCTION

a phenomenon or a thing that is “complex”, one gener-

In the last 15 years, the study of complex systems has
emerged as a recognized field in its own right, although,
a good definition of what a complex system is has proven
elusive. The very concept of complexity is nowadays fre-
quently used yet poorly defined -at least quantitatively
speaking- and its study has embraced a great variety of
scientific and technological approaches of all types of nat-
ural, artificial, and social systems. When one considers

ally associates it with something that is “hard to sepa-
rate, analyze or solve”. Instead, we refer to “a complex
system” as one whose phenomenological laws, which de-
scribe the global behaviour of the system, are not nec-
essarily directly related to the “microscopic” laws that
regulate the evolution of its elementary parts. In other
words, “complexity” is the emergence of a non-trivial be-
haviour due to the interactions of the subunits that form
the system itself. The statistical features of complex sys-



tems are generally not dependent on the details of the
interacting subunits that form the system. Another rel-
evant ingredient of a complex system is that topological
disorder within the system will generally introduce new,
surprising effects, different than those one would expect
from the simple “microscopic” evolution rules.

The field of study of complex systems holds that the
dynamics of complex systems are founded on universal
principles that may used to describe disparate problems
ranging from particle physics to economies of societies
[8]. This is a basic reason for our interest in complexity
[75, 77, 78, 86, 87]. Empirical evidence has been mount-
ing that supports the possibility that a number of systems
under study in disciplines as diverse as physics, biology,
engineering, and economics may have certain quantita-
tive features that are intriguingly similar. Picoli et. al.
[65] reported similarities between the dynamics of geo-
magnetic signals and heartbeat intervals. de Arcange-
lis et al. [3] presented evidence for universality in solar
flare and earthquake occurrence. Kossobokov and Keilis-
Borok [49] have explored similarities of multiple fractur-
ing on a neutron star and on the Earth, including power-
law energy distributions, clustering, and the symptoms
of transition to a major rupture. Sornette and Helmstet-
ter [75] have presented occurrence of finite-time singu-
larities in epidemic models of rupture, earthquakes, and
starquakes. Abe and Suzuki [1] have shown that Internet
shares common scale-invariant features with earthquakes,
in its temporal behaviours. Fukuda et al. [29] have re-
ported similarities between communication dynamics in
the Internet and the automatic nervous system. Peters et
al. [63] have shown that the rain events are analogous to
a variety of nonequilibrium relaxation processes in Na-
ture such as earthquakes and avalanches. A corollary
is that transferring ideas, methods and insights from in-
vestigations in hitherto disparate areas will cross-fertilize
and lead to important new results.

Epileptic seizures and pre-seismic electromagnetic
(EM) emissions rooted in the activation of a single fault
are complex phenomena, which have highly intricate clus-
ter and hierarchical structures, spatial and temporal cor-
relation with feedback, self-organization and connection
diversity. Authors have suggested that earthquake dy-
namics and neurodynamics can be analyzed within simi-
lar mathematical frameworks [37, 71]. Characteristically,
driven systems of interconnected blocks with stick-slip
friction capture the main features of earthquake process.
These models, in addition to simulating the aspects of
earthquakes and frictional sliding, may also represent
the dynamics of neurological networks [37]. Hopfield [38]
proposed a model for a network of N integrate-and-fire
neurons. In this model, the dynamical equation of k**
neuron, see equation 28 in [38] is based on the Hodgekin-
Huxley model for neurodynamics and represents the same
kind of mean field limit that has been examined in con-
nection with earthquakes (EQs) [71].

Recently, Osorio et al. [60] in a pioneering work
have shown that a dynamical analogy supported by five

scale-free statistics (the Gutenberg-Richter distribution
of event sizes, the distribution of intervals, the Omori
laws, and the conditional waiting time until the next
event) exists between seizures and earthquakes. More
precisely, the authors performed the analysis using: (i)
81 917 earthquakes between 1984-2000 available in the
Southern California Seismic Network catalogue; and (ii)
16.032 seizures from continuous multiday voltage record-
ings directly from the brains of 60 human subjects
with mesial temporal and frontal lobe pharmacoresistant
epilepsy undergoing surgical evaluation at the University
of Kansas Medical Center between 1996 and 2000.

It might be better though if the comparison between
seizures and earthquakes is performed at the level of a
single fault / seizure activation. In this direction, the
present work attempts to examine whether a unified the-
ory may exist for the ways in which firing neurons / open-
ing cracks organize themselves to produce a single epilep-
tic seizure / earthquake. The presented investigation is
developed in two stages. First, we examine the data in
terms of multidisciplinary statistical analysis methods,
aiming to discover common “pathological” symptoms of
transition to a large seismic or epileptic shock. Then,
we examine the existence of dynamical correspondences
between seizure and earthquake generation by means of
scale-free statistics, namely, a common hierarchical orga-
nization that results in power-law behaviour over a wide
range of values of some parameter such as event energy
or waiting time. We concentrate on the question whether
the corresponding power-laws, if any, share the same ex-
ponent.

This paper is organized as follows. In the next section,
we refer to the data collection. In Sec. 3 we introduce the
essential concepts of nonextensive statistical mechanics.
In Sec. 4, we briefly describe Tsallis entropy, T-entropy,
approximate entropy, Block entropies, Fisher information
and R/S analysis. In Sec. 4, we present the methods of
statistical analysis which are applied to the data. The
application of various measures of organization or infor-
mation content in the epileptic and preseismic time series
under study is presented in Sec. 5. In Sec. 6 we establish
the hypothesis that a dynamical analogy can be found be-
tween epileptic seizure and activation of a single fault by
means of Gutenberg-Richter law. In Sec. 7 we examine
the existence of analogies in terms of nonextensivity. Fol-
lowing, dynamical analogy by means of waiting times is
investigated in Sec. 8. In Sec. 9, we study the role of the
coupling strength (or heterogeneity). The main results of
the present work are discussed and summarized in Sec.
10.

II. DATA COLLECTION

Electroencephalograms (EEG) are brain signals pro-
vides us with information about the mean brain electrical
activity, as measured at different sites of the head. EEGs
not only provide insight concerning important character-



istics of the brain activity but also yield clues regarding
the underlying associated neural dynamics. The process-
ing information by the brain is reflected in dynamical
changes in this electrical activity.

Electromagnetic seismograms are EM signals which
provide us with information about the fracture induced
electromagnetic activity. Electromagnetic seismograms
not only provide insight concerning important character-
istics of the underlying fracture process but also yield
clues regarding the associated fracture dynamics.

A. Human EEGs

The used data have been offered by Andrzejak et al.
[2]. Two sets, denoted “A” and “E”, respectively, each
containing 100 single-channel EEG segments of 23.6sec
duration, were employed for this study. Set “A” is com-
prised of EEGs of healthy volunteers. Set “E” contain
seizure activities. The segments fulfil the criterion of
stationarity [2]. After 12 bit analog-to-digital conver-
sion, the data were written continuously onto the disk of
a data acquisition computer system at a sampling rate of
173.61 Hz. Band-pass filter settings were 0.53-40 Hz (12
dB/oct.).

B. Rat EEG

Adult Sprague-Dawley rats were used to study the
epileptic seizures in EEG recordings [45, 52]. The rats
were anaesthetized with an i.p. injection of Nembutal
(sodium pentobarbital, 65 mg/kg of body weight), and
mounted in a stereotaxic apparatus. An electrode was
placed in epidural space to record the EEG signals from
temporal lobe. The animals were housed separately post-
operatively with free access to food and water, allow 2-3
days to recover, and handled gently to familiarize them
with the recording procedure. FEach rat was initially
anaesthetized with a dose of pentobarbital (60 mg/kg,
i.p.), while constant body temperature was maintained
(36.5-37.5°C) with a piece of blanket. The degree of
anaesthesia was assessed by continuously monitoring the
EEG, and additional doses of anaesthetic were adminis-
tered at the slightest change towards an awake pattern
(i.e., an increase in the frequency and reduction in the
amplitude of the EEG waves). Then, bicuculline i.p.
injection was used to induce the rat epileptic seizures.
EEG signals were recorded using an amplifier with band-
pass filter setting of 0.5-100 Hz. The sampling rate was
200 Hz, and the analogue-to-digital conversion was per-
formed at 12-bit resolution. The seizure onset time is de-
termined by visual identification of a clear electrographic
discharge, and then looking backwards in the record for
the earliest EEG changes from baseline associated with
the seizure. The earliest EEG change is selected as the
seizure onset time. The interval between the seizure onset

time and injection time are considered as the maximum
prediction duration or extended pre-ictal phase.

C. Pre-seismic EM emissions

A question effortlessly arises whether there is a signal
available which can be used to monitor the evolution of
a single fault activation process, in analogy to the EEG
which is used to monitor the evolution of a single seizure
activation process. Such a signal exists. Fracture in-
duced EM fields allow a real-time monitoring of damage
evolution in materials during mechanical loading. Crack
propagation is the basic mechanism of material failure.
EM emissions in a wide frequency spectrum ranging from
kHz to MHz are produced by opening cracks, which can
be considered as the so-called precursors of general frac-
ture. The radiated EM precursors are detectable both at
a laboratory and geological scale [22, 23, 26, 30, 31, 34—
36, 51, 55, 58, 84, 90].

As it is said, “Electromagnetic seismograms” are
fracto-electromagnetic signals which provide us with in-
formation about the fracture induced electromagnetic ac-
tivity [10-12, 14-16, 18-21, 42, 44, 46, 61].

The different stages of the earthquake preparation pro-
cess are reflected in different stages of the emerged EM
activity. Indeed, an important feature, observed both at
laboratory and geophysical scale, is that the MHz radi-
ation precedes the kHz one [18]. The remarkable asyn-
chronous appearance of these precursors indicates that
they refer to different stages of earthquake preparation
process. Moreover, it implies a different mechanism for
their origin. The following two stage model of EQ gen-
eration by means of pre-fracture EM activities has been
proposed [10-12, 14, 15, 23, 42, 44, 46, 61]:

(i) The pre-seismic MHz EM emission is thought to be
due to the fracture of the highly heterogeneous system
that surrounds the family of large high-strength entities
distributed along the fault sustaining the system. The
temporal evolution of a MHz EM precursor, which be-
haves as a second order phase transition, reveals tran-
sition from the phase from non-directional almost sym-
metrical cracking distribution to a directional localized
cracking zone that includes the backbone of strong asper-
ities (symmetry breaking) [10]. The identification of the
time interval where the symmetry breaking is completed
indicates that the fracture of heterogeneous system in
the focal area has been obstructed along the backbone
of asperities that sustain the system: The siege of strong
asperities begins. However, the prepared EQ will occur
if and when the local stress exceeds fracture stresses of
asperities. Consequently, the appearance of a really seis-
mogenic MHz EM anomaly does not mean that the EQ
is unavoidable.

(i) It has been suggested that the lounge of the kHz
EM activity shows the fracture of asperities sustaining
the fault. Thus, our analysis based on the study of the
recorded kHz EM seismograms.



We mainly refer to preseismic kHz EM activities asso-
ciated with the: Athens (Greece) earthquake (M = 5.9)
that occurred on September 7, 1999 [10, 19, 23, 44, 46,
61], and L’Aquila (central Italy) earthquake (M = 6.3)
that occurred on April 6, 2009 [12, 14, 15]. These signals
have been recorded with a sampling rate of 1 sample/sec.

IIT. FUNDAMENTALS OF NONEXTENSIVE
STATISTICAL MECHANICS

Perhaps two of the most vivid and richest examples
of the dynamics of a complex system at work are the
behaviour of brain / earth crust during the epileptic
seizure / earthquake generation. A central property of
their generation is the occurrence of large-scale collec-
tive behaviour with a very rich structure, resulting from
repeated nonlinear interactions among the constituents,
namely, firing neurons / opening cracks, of the system.
Consequently, the nonextensive statistical mechanics [83]
is the appropriate framework in order to investigate the
process of launch of the two shocks under study.

The thermodynamical concept of entropy was intro-
duced by Clausius in 1865. A few years later, it was
shown by Boltzmann that this quantity can be expressed
in terms of the probabilities associated with the mi-
croscopic configurations of the system. We refer to
this fundamental connection as the Boltzmann-Gibbs
(BG) entropy, namely (in its discrete form) Spg =
—k Zzl piIn(p;), where k is the Boltzmann constant,
and p; the probabilities corresponding to the W micro-
scopic configurations (hence Zzl p; = 1). This entropic
form, further discussed by Gibbs, Neumann and Shan-
non, and constituting the basis of the celebrated BG
statistical mechanics, is additive. Indeed, for a system
composed of any two (probabilistically) independent sub-
systems, the entropy Spg of the sum coincides with the
sum of entropies. If, on the contrary, the correlations
between the subsystems are strong enough, then the ad-
ditivity of Spg is lost, being therefore incompatible with
classical thermodynamics. In such a case, the many and
precious relations described in textbooks of thermody-
namics become invalid. Along a line which will be shown
to overcome this difficulty, and which consistently en-
ables the generalization of BG statistical mechanics, it
was proposed by Tsallis in 1988 [82, 83] the entropy.
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p; are the probabilities associated with the microscopic
configurations, W is their total number, and k is Boltz-
mann’s constant. The value ¢ = 1 corresponds to the
standard, extensive, BG statistics.

The value of g is a measure of the nonextensivity of
the system reflected in the following additivity rule:

Sq(A+ B) = 5q(A) +54(B) + (1 = q)54(A)S¢(B). (2)

The index g appears to characterise universality classes
of nonadditivity, by phrasing this concept to what is done
in the standard theory of critical phenomena. Within
each class, one expects to find infinitely many dynamical
systems [83].

We clarify that the parameter ¢ itself is not a measure
of the complexity of the system but measures the degree
of nonextensivity of the system. It is the time variations
of the Tsallis entropy for a given ¢ (S,) that quantify
the dynamic changes of the complexity of the system.
Lower S, values characterise the portions of the signal
with lower complexity.

IV. STATISTICAL ANALYSIS METHODS

One of the objectives of the present work is to ex-
amine whether common “pathological” features charac-
terise both epileptic seizures and preseismic EM activity.
An anomaly in a recorded time series is defined as a de-
viation from normal (background) behaviour. In order
to develop a quantitative identification of an emerged
shock, tools of information theory and concepts of en-
tropy rooted in extensive and nonextensive statistical
mechanics can be used in order to recognize significant
change in the statistical pattern. Entropy and informa-
tion are seen to be complementary quantities, in a sense:
entropy drops have as counterpart information peaks,
both indicating a more ordered state / lower complex-
ity. A part of the employed measures (Tsallis entropy,
Fisher Information, T-entropy, Block-entropies) are used
here in the context of symbolic dynamics. Other mea-
sures (approximate entropy, R/S analysis) refer to the
raw data. In the following, for the scale of complete-
ness and for later use, a short introduction to symbolic
dynamics is provided. It is important to note that one
cannot find an optimum organization or complexity mea-
sure. Thus, a combination of some such quantities which
refer to different aspects, such as structural or dynamical
properties, is the most promising way.

A. Fundamentals of symbolic dynamics

Symbolic time series analysis is a useful tool for mod-
elling and characterisation of nonlinear dynamical [89]. It
is a way of coarse-graining or simplifying the description
[33].

In the framework of symbolic dynamics, time series are
transformed into a series of symbols by using an appro-
priate partition which results in relatively few symbols.
After symbolization, the next step is the construction of
sequences of symbols (“words” in the language of sym-
bolic dynamics) from the series of symbols by collecting
groups of symbols together in temporal order.



To be more precise, the simplest possible coarse-
graining of a time series is given by choosing a thresh-
old C (usually the mean value of the data considered)
and assigning the symbols “1”7 and “0” to the sig-
nal, depending on whether it is above or below the
threshold (binary partition). Thus, we generate a sym-
bolic time series from a 2-letter (A = 2) alphabet
(0,1), e.g. 0110100110010110.... We read this sym-
bolic sequence in terms of distinct consecutive “blocks”
(words) of length n = 2. In this case one obtains
01/10/10/01/10/01/01/10/ . ... We call this reading pro-
cedure “lumping”. The number of all possible kinds of
words is A" = 22 = 4, namely 00, 01, 10, 11. The re-
quired probabilities for the estimation of an entropy, poo,
Po1, P10, P11 are the fractions of the blocks (words) 00, 01,
10, 11 in the symbolic time series, namely, 0, 4/16, 4/16,
and 0, correspondingly. Based on these probabilities we
can estimate, for example, the probabilistic entropy mea-
sure Hg introduced by [73],

Hs = —Zpi Inp; (3)

where p; are the probabilities associated with the mi-
croscopic configurations.

In a symbolic time series of W symbols, {A4;},i =
1,2,...,W, one can read it by words of length L =
n, (n <W). For each word length, there are A" pos-
sible combinations of the symbols that may be found in
a word, here \" = 2" | since A = 2. The probability

of occurrence p§") of the j — th combination of symbols

(j =1,2,..,2") in a word of length n, can be denoted
as:

#of the j — th combination found in words of length n

total#tof words of length n (by lumping)
(4)
Based on these probabilities we can estimate, the prob-
abilistic entropy or information measures.

B. Tsallis entropy

The Tsallis entropy for the word length n, S,(n),is

on
Sy () = k—— 13 [p"]° (5)
q—1 =

Broad symbol-sequence frequency distributions pro-
duce high entropy values, indicating a low degree of or-
ganization. Conversely, when certain sequences exhibits
high frequencies, low values are produced, indicating a
high degree of organization.

We clarify that the real Tsallis entropy corresponds
to the optimal partition. The optimal partition is the
one that maximizes the Tsallis-entropy. The correspond-
ing entropy-like quantities for the other partitions are

pseudo-Tsallis entropies. For this purpose, the thresh-
old C is initially fixed to the mean value of the data in
the particular time window under study. For the corre-
sponding symbolic sequence we estimate the associated
“pseudo-Tsallis entropy”. We repeat the above proce-
dure by changing the threshold C' around the mean value.
Our analysis indicates that the optimal partition corre-
sponds always to a threshold not very far from the mean
value of the segment [46].

C. Fisher Information

Fisher Information was first introduced by Fisher [25]
as a representation of the amount of information that can
be extracted from a set of measurements (or the “qual-
ity” of the measurements) [56]. Moreover, it is a power-
ful tool to investigate complex and non-stationary signals
[53, 80]. It allows to accurately describe the behaviour
of dynamic systems, and to characterise the complex sig-
nals generated by these systems [53, 88]. It has been
used as a measure of the state of disorder of a system
or phenomenon, behaving inversely to entropy, i.e., when
order increases, entropy decreases, while Fisher Informa-
tion increases [27, 56]. Furthermore, Fisher Information
presents the so called “locality” property in contrast to
the “globality” of entropy (or Shannon’s information), re-
ferring to the sensitivity of Fisher Information in changes
in the shape of the probability distribution correspond-
ing to the measured variable, not presented by entropy
[24, 28, 56].

The Symbolic Fisher Information Measure (SFIM),
I (n), for the word length n, is defined in terms of the

probability of occurrence pg-n) of the j — th combination
of symbols (j = 1,2,...,2") in a word of length n of Eq.
(4), as [69]:

oy [y ]
L) = Z [pgﬂ (ja } ()

j=1 D;

D. T-entropy of a string

T-entropy is a novel grammar-based complexity / in-
formation measure defined for finite strings of symbols
[13, 81]. It is a weighted count of the number of produc-
tion steps required to construct a string from its alpha-
bet. Briefly, it is based on the intellectual economy one
makes when rewriting a string according to some rules.
An example of an actual calculation of the T-entropy for
a finite string is given in [13, 46].



E. The Shannon-like n-block entropies

Block entropies, depending on the word-frequency dis-
tribution, are of special interest, extending Shannon’s
classical definition of the entropy of a single state [73]
to the entropy of a succession of states [59]. Shannon
n-block entropies (conditional entropy, entropy of the
source, Kolmogorov-Sinai entropy) measure the uncer-
tainty of predicting a state in the future, provided a his-
tory of the present state and the previous states [14].

(i) The Shannon n-block entropies

Following Shannons approach [73] the n-block entropy,
H(n), is given by

27L
H(n) =~y p{" np}™ (7)
j=1

The H(n) is a measure of uncertainty and gives the av-
erage amount of information necessary to predict a sub-
sequence of length n.

(ii) The Shannon n-block entropy per letter

This entropy is defined by

H(n)

" =

(8)

This entropy may be interpreted as the average uncer-
tainty per letter of an n-block.

(iii) The conditional entropy

From the Shannon n-block entropies we derive the con-
ditional (dynamic) entropies by the definition

hp=H(n+1)— H(n). (9)

The conditional entropy h,, measures the uncertainty of
predicting a state one step into the future, provided a
history exists of the preceding n states.

Predictability is measured by conditional entropies.
For Bernoulli sequences we have the maximal uncertainty

hyn, = log(\). (10)

Therefore we define the difference

rn = log(\) — hy, (11)

as the average predictability of the state following a
measured n-trajectory. In other words, predictability is
the information we get by exploration of the next state
in comparison to the available knowledge. We use, in
most cases, A\ as the base of the logarithm. Using this
base, the maximal uncertainty /predictability is one [14].
In general our expectation is that any long-range mem-
ory decreases the conditional entropies and improves our
chances for prediction.

(iv) The entropy of the source

A quantity of particular interest is the entropy of the
source, defined as

h= lim hgy = lim A" (12)
n—oo n—oo

The limit entropy h is the discrete analog of
Kolmogorov-Sinai entropy. It is the average amount of
information necessary to predict the next symbol when
being informed about the complete pre-history of the sys-
tem. Since positive Kolmogorov-Sinai entropy implies
the existence of a positive Lyapunov exponent, it is an

important measure of chaos.

F. Approximate entropy

Related to time series analysis, the approximate en-
tropy ApEn provides a measure of the degree of irreg-
ularity or randomness within a series of data (of length
N). ApEn was pioneered by Pincus as a measure of
system complexity [66]. It was introduced as a quantifi-
cation of regularity in relatively short and noisy data. It
is rooted in the work of Grassberger and Procaccia [32]
and has been widely applied to biological systems [67, 68].
The approximate entropy examines time series for simi-
lar epochs: more similar and more frequent epochs lead
to lower values of ApEn. In summary, ApEn is a “reg-
ularity statistics” that quantifies the unpredictability of
fluctuations in a time series. The presence of repetitive
patterns of fluctuation in a time series renders it more
predictable than a time series in which such patterns are
absent. A time series containing many repetitive patterns
has a relatively small ApFEn; a less predictable (i.e., more
complex) process has a higher ApEn. An example of an
actual calculation of the approximate entropy is given in

[46].

G. R/S analysis

The Rescaled Range Analysis (R/S), which was intro-
duced by Hurst [40], attempts to find patterns that might
repeat in the future. Briefly, there are two main variables
used in this method, namely, the range of the data, R,
as it is measured by the highest and lowest values in the
time period, and the standard deviation of the data S.
R/ S is expected to show a power-law dependence on the
bin size n:

R(n)/S(n) ~ nt, (13)

where H is the Hurst exponent. The range 0.5 <
H < 1 (indicates persistency, which means that if the
amplitude of the fluctuations increases in a time inter-
val it is likely to continue increasing in the next interval.
The range 0 < H < 0.5 indicates antipersistency, which
means that if the amplitude of the fluctuations increases
in a time interval it is likely to continue decreasing in the



next interval. An example of an actual calculation of the
approximate entropy is given in [14].

V. APPLICATION OF STATISTICAL
ANALYSIS METHODS TO DATA

In this section, we examine the epileptic and preseismic
time series in terms of the above mentioned multidisci-
plinary statistical procedure, aiming to discover possi-
ble common “pathological” symptoms of transition from
the normal (“healthy” stage) to a significant seismic or
epileptic rat or human shock (“pathological” stage). We
show that similar distinctive symptoms accompany the
appearance of the biological and geophysical crises under
study, which sensitively recognize and discriminate each
of them from the corresponding background “noise”: the
transition from antipersistent to persistent behaviour and
sift to a significantly higher organization indicates the
onset of two crises. The appearance of a high organiza-
tion dynamics which is simultaneously characterised by a
positive feedback mechanism is consistent with the emer-
gence of a catastrophic phenomenon.

A way to examine transient phenomena in a time-series
is to analyze it into a sequence of distinct time windows
of short duration and compute the various measures of
the degree of organisation/information content in each
one of them.

A. Comparison between epileptic seizures of rats
and preseismic electromagnetic emissions

Fig. 1 shows an EEG signal of a rat, recorded dur-
ing an evoked seizure, along with its analysis in terms
of Tsallis entropy, Approximate entropy, T-entropy, and
Fisher Information. Three distinct phases of signal have
been identified by all the employed metrics. The first
(blue) part is the normal state, before the applied injec-
tion. It is followed by the pre-ictal (green) phase and
then by the actual seizure (red) phase.

Tsallis entropy in its symbolic form for word length
5 and ¢ = 1.7 (see Sec. 4) shows that the underly-
ing process becomes progressively more organized as one
moves from the normal state to the seizure state. Ap-
proximate entropy further verifies the previous result by
detecting more similar and more frequent epochs as one
moves to the seizure part of the signal, while T-entropy
also agree detecting the lowest number of required steps
to construct the corresponding symbolic array during the
seizure phase of the signal. Accordingly, Fisher Informa-
tion, shows that higher information content, than that
of the normal phase, can be detected in both the subse-
quent phases, but the maximum information content is
within the seizure phase.

Fig. 2 shows the same analyses as those reported for
the rat seizure (Fig. 2) for the 10 kHz preseismic EM time
series associated with the Athens earthquake. Three dis-
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FIG. 1: The upper part depicts a rat EEG containing
an evoked seizure. The arrow shows the time of
injection. The blue, green and red parts refer to the
normal, pre-ictal and seizure epochs, correspondingly.
The next sub-figures show the temporal evolution of
Tsallis entropy, Fisher information, Approximate
entropy and T-entropy, respectively, using fixed
windows of 1024 samples each.

tinct parts can be identified by all the employed metrics,
as it is happened in the case of the rat EEG. The first
(blue) part is the background noise. The second (green)
and third (red) parts refer to two distinct stages of the
preseismic EM activity [10, 16, 20, 44, 46, 61].

All the entropic and information measures show that
the underlying process becomes progressively more orga-
nized. The green epoch of the EM precursor behaves as
the pre-ictal phase of the rat EEG (Fig. 1), namely, it
is characterised by a population of EM events sparsely
distributed in time with noteworthy higher order of or-
ganization content in comparison to that of the noise.
The abruptly emerged two strong EM bursts A and B,
which are included in red epoch, are characterised by a
significantly higher organization and information content
in comparison to those of the green epoch. We observe
a strong analogy in terms of order of organization be-
tween the two abruptly emerged strong EM bursts and
the abruptly emerged rat seizure.

Remark I It should be noted here that the Tsal-
lis entropy calculations presented in Figs 1 and 2
were performed using non-overlapping windows of 1024
points without check of stationarity, considering that
the window length is small enough to provide preudo-
stationarity conditions. Fig. 3 presents the Tsallis en-
tropy calculation solely on the population of the windows
which were proven to be stationary. The results shown
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FIG. 2: The upper part depicts the EM time series
associated with the Athens earthquake recorded by the
10 kHz magnetic sensor. The blue part refers to the
background noise. The green and red parts refer to the
two distinct epochs of the emerged preseismic EM
activity (see text). The next sub-figures show the
temporal evolution of Tsallis entropy, Fisher
information, Approximate entropy and T-entropy,
respectively, using fixed windows of 1024 samples each.

in Fig. 3 are the same to those presented in Fig. 2.

Remark II: We refer to the above mentioned proposal
that the two strong EM bursts which present the high-
est order of organization and maximum information con-
tent, correspond to the epileptic rat seizure. The first
EM burst contains approximately 20% of the total EM
energy received and the second one the remaining 80%
[19]. On the other hand, the fault modelling of the
Athens EQ, based on information obtained by radar in-
terferometry, predicts two faults: the main fault seg-
ment is responsible for 80% of the total energy released,
while the secondary fault segment for the remaining 20%
[19]. The last surprising experimental correlation sup-
ports the hypothesis that the two strong kHz EM bursts
were sourced in the nucleation of the impending earth-
quake [10, 19, 44, 46, 61]. This experimental evidence
justifies our proposal.

Remark III: We underline that the green and red
epochs of the EM precursor (see Fig. 2) are charac-
terised by antipersistency and persistency, correspond-
ingly [10, 16, 20, 44, 46]. In direct analogy, the rat EEG
also follows the aforementioned crucial scheme: the pre-
ictal phase shows antipersistent behaviour (H < 0.5),
while the phase of seizure is characterised by persistency
(H > 0.5) (Fig. 4). This scheme has been also verified in
terms of fractal spectral analysis [17, 45, 52]. The above
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FIG. 3: EM time series recorded by the 10kHz sensor
associated with the Athens EQ (upper graph). Tsallis
entropy (bottom graph), for the population of the
non-overlapping data windows of 1024 samples each,
which are proved to be stationary. The nonextensive
parameter ¢ = 1.8 was used (see sec. 7).

mentioned results enhance the proposal that the green
pre-ictal phase of rat EEG (Fig. 1) corresponds to the
initial green epoch of the emerged EM precursor.
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FIG. 4: Rat EEG containing an evoked seizure (upper

graph), showing the time of injection. The lower part

depicts the temporal evolution of the Hurst exponent

obtained through R/S analysis, using fixed windows of
1600 samples each.

B. Comparison between human epileptic seizures
and preseismic electromagnetic emissions

In the prospect to examine the repeatability of the re-
sults that concern this field of research, we focus on the
comparison between human EEGs [2] and EM precursors
associated with large earthquakes.

In Fig. ba we present four human EEG signals anal-
ysed in terms of Tsallis entropy and Fisher information



using fixed windows of 1024 samples each. The blue
graphs refer to a sequence of two healthy EEGs included
in the set “A”, while the red ones to a sequence of two
epileptic seizures included in the set “B” [2]. The results
of this analysis reveal that the patient EEGs are dis-
tinguished by a higher order of organization and higher
information content than the healthy ones.
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FIG. 5: (a) The upper part depicts a sequence of two
healthy human EEGs and a sequence of two human
epileptic seizures. The healthy EEGs are blue coloured
whereas the patient EEGs are red coloured. In the
lower parts the temporal evolution of Tsallis entropy
and Fisher information is presented. (b) depicts a
zoomed version of the four EEGs used.

In Fig. 6 we present the above analysis applied to the
kHz EM precursor associated with the Methoni (Greece)
earthquake which occurred on February 14, 2008 with
magnitude M = 6.7. Herein we mention that the EM
precursor (red part) was stopped approximately 4 days
before the earthquake occurrence. The blue part refers
to the background noise. The analysis in terms of Tsal-
lis entropy and Fisher information shows that the EM
precursor (red part) is distinguished by a higher order of

organization along with a higher information content in
respect to the background noise. We note that the two
human epileptic seizures and the EM precursor, follow a
persistent behaviour.

N
=}
S
=)

1000 b

magnetic
field (a.u)

=)

S ‘ ‘ ‘ ‘ ‘ PO g7
S -f o ® ° ° o

g p®f e g o o8 @ e

i) @ o o®, 09 Cp00, ol po

2 o5y = e Fare \Mnk:%,{q"p::‘ i
~ ° 0 N o © 0, ° 9

3 ca »

o o L]

3

ion  rgallis

word length = 7

Fisher I

FIG. 6: In the upper part the emerged EM precursor
(red time series) in the case of the Methoni earthquake
is presented. This precursor ceased about 4 days before
the earthquake occurrence. The blue time series refers
to the background noise. In the lower parts depict the

temporal evolution of Tsallis entropy and Fisher
information.

The same correspondence between seizure and fault ac-
tivation is verified by the comparison between the four
human EEG signals depicted in Fig. 5b and the pre-
seismic EM emissions recorded prior to the L’Aquila EQ
[12, 14, 15] in terms of block entropies. Figs. 7 and 8
show the analyses in terms of block entropies for the
four human EEGs and four selective windows of EM
time series associated with the L’Aquila earthquake, re-
spectively. All metrics, show that the “healthy” (black)
windows, present higher entropy values and thus higher
degree of randomness than the “patient” (red) windows
which are clearly more organized. This is valid both for
the EEG signals and the EM signals.

It should be stressed out that the validity of these re-
sults is not limited to the two individual cases of hu-
man seizures presented above; the observed significant
increase of the order of organization is a coherent finding
among numerous cases. Indeed, the higher degree of or-
ganization of the patient EEGs in relation to the healthy
ones, is verified by analyzing 100 healthy and 100 hu-
man patient EEGs included in the sets “A” and “E” [2].
Methods used for this analysis include: Tsallis Entropy
(Fig. 9), Approximate and T-entropy (Fig. 10).

Remark: As expected, our results depend upon the
Tsallis g-value. Fig. 9 clearly illustrates the superior-
ity of the g-values restricted in the range 1 < ¢ < 2
to magnify differences of the order of organization be-
tween healthy and patient EEGs. It is worth mentioning
that the nonadditive g-parameters that clearly quantify
the degree of organization in the EEG time series, are in
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FIG. 7: Block entropies for the four human EEGs of
Fig. 5b. The healthy EEGs which are black colored are
characterised by higher complexity/lower predictability

in respect to that of the epileptic seizures (red
coloured).

full agreement with the upper limit ¢ < 2 obtained from
several studies involving the Tsallis nonadditive frame-
work [42]. Moreover, this ranging of the ¢- parameter
is in harmony with an underlying sub-extensive system,
q > 1, verifying multiple interactions and information
transitions at work during the emergence of the seizure.
In Section 7 we show that the system under study is
characterised by g ~ 1.6.

In the following sections we examine the existence of
dynamical correspondences between seizure and earth-
quake generation by means of scale-free statistics,
namely, a common hierarchical organization that results
in power-law behaviour over a wide range of values of
some parameter such as event energy or waiting time.
We concentrate on the question of whether the corre-
sponding power-laws, if any, share the same exponent.

VI. DYNAMICAL ANALOGY BY MEANS OF
“GUTENBERG-RICHTER LAW”

The best known scaling relation for earthquakes is the
Gutenberg-Richter (G-R) magnitude-frequency relation-
ship

log N(> m) = a — bm, (14)

where N(m >) is the cumulative number of earth-
quakes with a magnitude greater than m occurring in
a specified time and area included many faults. The pa-
rameters b and «, are constants. The constant « is a
measure of the regional level of seismicity. This rela-
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FIG. 8: Block entropies for the four selective windows
of EM time series associated with the L’Aquila
earthquake. The black curves refer to the EM

background noise while the red curves refer to the three
distinct EM bursts emerged prior to L’Aquila
earthquake. We observe that these three EM precursors
are characterised by lower complexity /higher
predictability in respect to that of the back ground
noise.

tion is valid for earthquakes both regionally and glob-
ally. In parallel, the probability density function for hav-
ing an earthquake energy E is denoted by the power-law
P(E) ~ E=5 where B ~ 1.4 — 1.6.

The probability of an event (seizure or earthquake)
having energy F is proportional to =2, where B ~ 1.5—
1.7 [60]. We examine whether the sequences of electrical
pulses / EM pulses included in a single seizure / single
EM precursor also follow a power-law P(E) ~ E~B with
a similar exponent.

Fig. 11 shows that the energies, E, of the electrical
pulses included in the single rat seizure depicted in Fig. 1
follows the power-law N (> E) ~ E~%62 or equivalently,
the power-law N(E) ~ E~—162,

We refer to the case of the kHz EM precursor associ-
ated with the Athens earthquake (Fig. 2, upper panel).
It has been shown that the cumulative number N (> A)
of pre-seismic EM pulses having amplitudes larger than A
follows the power-law N (> A) ~ A7962 [43]. The prob-
ability of an EM-pulse having energy F is proportional
to E~1-31 [16].

The above mentioned results indicate the following pe-
culiarity of dynamical correspondence between seizures
and earthquakes. The sequences of: (i) fracto-EM-pulses
included in single EM-precursor associated with the ac-
tivation of a single fault, (ii) electric pulses included in a
single seizure, (ii) different earthquakes occurred in areas
included many faults, and (iv) different seizures, follow
the power-law P(E) ~ E~B with a rather similar B-
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“A” and “B” set, correspondingly [2], for different
values of g. The healthy EEGs are black colored while
the patient EEGs are red coloured.

exponent. Notice, in general, differences in constituting
elements (organic vs inorganic), in scale, and in other
properties between the earth and brain may account for
dissimilarities in the values of exponents [60].

The reported dynamical analogy in [60] between
seizures and earthquakes by means of energy is extended
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up to the scale of laboratory seismicity. Acoustic / EM
emission in rocks has been studied as a model of natural
seismicity. Rabinovitch et al. [70] have recently stud-
ied the fractal nature of EM radiation induced by rock
fracture. The analysis of the pre-fracture EM time series
reveals that the cumulative distribution function of the
amplitudes follows the power N (> A) ~ A=%62 namely,
the distribution function of the amplitudes follows the
power-law P(E) ~ E~131. Petri et al. [64] have per-
formed the statistical analysis of acoustic emission time
series in the ultrasonic frequency range, obtained exper-
imentally from laboratory samples subjected to external
uni-axial elastic stress. They found a power-law scaling
behaviour in the acoustic emission energy distribution
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FIG. 11: The distribution of energies, E, of the
electrical pulses included in the rat seizure depicted in
Fig. 1 follows the power-law N (> E) ~ E~0:62,

with B = 1.3 £ 0.1. Houle and Sethna [39] found that
the crumpling of paper generates acoustic pulses with a
power-law distribution in energy with B = 1.3 — 1.6.

In the next section, we further examine dynamical
analogies between seizures and earthquakes in terms of a
nonextensive model for earthquake dynamics.

VII. A NONEXTENSIVE
“GUTENBERG-RICHTER LAW?”

A model for earthquake dynamics consisting of two
rough profiles interacting via fragments filling the gap
has been recently introduced by Sotolongo-Costa and
Posadas [76]. The motion of the fault planes can be hin-
dered not only by the overlapping of two irregularities
of the profiles, but also by the eventual relative position
of several fragments. Thus, the mechanism of trigger-
ing earthquakes is established through the combination
of the irregularities of the fault planes, on one hand, and
the fragments between them, on the other hand. The
fragments size distribution function comes from a nonex-
tensive Tsallis formulation, starting from first principles,
i.e., a nonextensive formulation of the maximum entropy
principle. This nonextensive approach leads to a G-R
type law for the magnitude distribution of EQs. Silva et
al. [74] have subsequent revised this model considering
the current definition of the mean value, i.e., the so-called
g-expectation value. The revised model

log [N (> M)] =

o (0o (55) ()] o
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also provides an excellent fit to seismicities. In Eq.
(15) N is the total number of earthquakes, Nxjs the
number of earthquakes with magnitude larger than M,
and M = loge. « is the constant of proportionality be-
tween the earthquake energy, €, and the size of fragment.
Notice, the g-values are distributed within the range of
(1.6—1.8) [54, 74, 76, 79] in various seismic regions under
study.

The nonextensive formula (15) also describes the de-
tected EM precursors associated with the activation of
a single fault [19, 61]. This finding further supports the
self-affine nature of fracture and faulting. We briefly fo-
cus on this point.

The notion of “EM-earthquakes” The background
(noise) level of the EM time series A(t;) is Anpise =
500mV.  We regard as amplitude A of a candi-
date “fracto-electromagnetic emission” the difference
Afem(t;) = A(ti) — Anoise- We consider that a se-
quence of k successively emerged “fracto-electromagnetic
emissions” Ajfen, (t;), @ = 1,...,k represents the EM en-
ergy released, ¢, during the damage of a fragment. We
shall refer to this as an “electromagnetic earthquake”
(EM-EQ). Since the squared amplitude of the fracto-
electromagnetic emissions is proportional to their energy,
the magnitude M of the candidate EM-EQ is given by
the relation

M =loge ~ log (Z [Afem(ti)]z) ; (16)

It has been shown that Eq. (15) provides an excellent
fit to the sequence of pre-seismic “EM-EQs” associated
with the activation of a single fault [15, 42, 61], incor-
porating the characteristics of nonextensivity statistics
into the distribution of the detected precursory EM-EQs.
Herein, N(M >) the number of “EM-EQs” with magni-
tude larger than M, and « the constant of proportion-
ality between the EM energy released and the size of
fragment. The best-fit parameters for this analysis are
given by ¢ ~ 1.80.

Importantly, it has been shown that the Tsallis-based
energy distribution function (Eq. 15) is also able to de-
scribe solar flares and magnetic storms, as well. The best-
fit for this analysis is given by a g-parameter value equal
1.82 and 1.84, correspondingly [4]. It is very interesting
to observe the similarity in the g-values for: (i) seismic-
ities generated in various large geographic areas, (ii) the
precursory sequence of “EM-EQs” associated with the
activation of a single fault, (iii) solar flares, and (iv) mag-
netic storms. A common characteristic in the dynamics
of the above-mentioned four phenomena is that the en-
ergy release is basically fragmentary, i.e., the events be-
ing composed of elementary building blocks. The energy
release is basically fragmentary in the case of epileptic
seizure, as well. Therefore, we examine whether the for-
mula (15) also describes the distribution of energy of the
electric fluctuations included in a single seizure.

Fig. 12a shows that the distribution of magnitudes of
electric pulses included in the 100 seizures of the “E” set



[2] is also described by the formula (15). The best-fit
parameter for this analysis is given by ¢ = 1.573. Figs.
12b shows the same application for a single human seizure
(¢ = 1.526), correspondingly.

Though intriguing to some extent, the above men-
tioned results reveal that the obtained formula (15) is
not a mere artefact, and suggests that a more exhaustive
study of the aforementioned biological and geophysical
shocks in terms of nonextensive statistics is needed to
give a deeper interpretation of their generation.

In summary, the existence of dynamical analogy be-
tween earthquake dynamics and neurodynamics has been
supported by the analysis by means the of nonextensive

Eq. (15).

VIII. DYNAMICAL ANALOGY IN TERMS OF

WAITING TIMES

Power-law correlations in both space and time are at
least required in order to verify dynamical analogies be-
tween different catastrophic events. Hence, one can ask
how the EM fluctuations included in a single EM precur-
sor and electrical fluctuations included in a single epilep-
tic seizure correlate in time. We investigate the afore-
mentioned temporal clustering in terms of burst lifetime
(duration) and waiting time 7 (time interval between two
successive electric events) focusing on a potential power-
law distribution.

In [60], the probability-density-function for intervened
intervals 7 were calculated for a population of differ-
ent seizures and earthquakes. Both statistics follow a
power-law distribution ~ 1/(71+#), however, with differ-
ent slopes, namely, (8 ~ 0.1) for earthquakes and 8 ~ 0.5
for interseizure intervals.

We refer to the pre-seismic EM activity associated with
the Athens earthquake (see Fig. 2 upper panel). The
analysis reveals that the waiting times until the next EM
fluctuation display a power-law distribution ~ 1/7,16
(see Fig. 13a). The same power-law is followed by the
distribution of lifetimes (Fig. 13b). We note that Vespig-
nani et al. [85] measured a corresponding exponent ~ 1.6
via acoustic signals from laboratory samples subjected to
an external stress. We observe a similarity of critical ex-
ponents associated with the description of the population
of: (i) EM fluctuations included in a single EM precur-
sor rooted in the activation of a individual fault, and (ii)
different seizures [60]. This finding further enhances the
proposal that a dynamical analogy exists between frac-
ture phenomena and seizures.

IX. THE ROLE OF THE COUPLING
STRENGTH (OR HETEROGENEITY)

Osorio et al. [60], have examined the role of the cou-
pling strength (or heterogeneity) in the dynamical be-
haviour of the excited brain. As shown in the generic
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phase diagram of Fiq. 6 of their work, for very weak cou-
pling and large heterogeneity, the dynamics are incoher-
ent; increasing the coupling strength (and/or decreasing
the heterogeneity) leads to the emergence of intermedi-
ate coherence and of a power-law critical regime. Further
increase in coupling strength (and / or decreases in het-
erogeneity) force the system towards strong coherence
or synchronization and periodic behaviour. The generic
phase diagram leads to the prediction that, if the de-
gree of the coupling strength (or of the heterogeneity)
between threshold oscillators is manipulated, transitions
between the criticality and synchronized regimes will not
only occur but will be coextensive.

The rat seizure shown in Fig. 1 presents the above
mentioned situation. Indeed, Fig. 14a depicts the vari-
ation of logG(> M) = N(M >)/N vs M, where G(>
M) = N(M >)/N is the relative cumulative number of
electric pulses included in this single seizure with magni-
tude larger than M. We observe that the epileptic elec-
tric pulses with magnitude around 6 violate the nonex-
tensive formula (15) forming a characteristic “shoulder”.
This finding is inductive of the existence of a “character-
istic” size (magnitude) in the distribution of M. We un-
derline that this characteristic “shoulder” has been also
appeared in the distribution of seizure energies of rats
(see Fig. 7 in [60]). Fig. 14b refers to the distribu-
tion of the waiting times of the emerged electric pulses
is depicted. We observe that the data seem to form a
“shoulder”, as it is happened in the distribution of the
magnitudes (Fig. 14a). This formation of a “shoulder”
is more clear in Fig. 14c, where the distribution of life-
time (duration) of the emerged epileptic electric pulses is
depicted.

The above mentioned results verify the proposal that
transitions between the criticality and synchronized
regimes will not only occur but could be coextensive.

X. DISCUSSION & CONCLUSIONS

Epileptic seizures and pre-seismic electromagnetic
(EM) emissions are characteristic complex phenomena.
They are complex in the sense that there are a great
many apparently independent agents (firing neurons /
opening cracks) interacting with each other and it is the
richness of these interactions that allows the system as a
whole to undergo self-organization. Another key feature
of these phenomena is non-linearity and feedback loops in
which small changes can have striking effects that cannot
be understood simply by analysing the individual com-
ponents. That is, the whole is more than the sum of its
(reductionist) parts [62].

The field of study of complex systems holds that the
dynamics of complex systems are founded on universal
principles that may be used to describe disparate prob-
lems. Complexity theory is influencing fields as diverse
as physics, cosmology, chemistry, geography, climate re-
search, zoology, biology, evolutionary biology, cell biol-
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FIG. 12: We used Eq. 15 to fit the distribution of the magnitudes of electric events included in (a) the sequence of
100 seizures belonging to the “E” set [2], (b) a single human seizure included in the set “E”.

ogy, neuroscience, clinical medicine, management, and
economics [62]. The strong analogies between earthquake
dynamics and neuro-dynamics have been drawn by nu-
merous authors suggesting the applicability of analysis
within similar mathematical frameworks. In this frame,
the main objective of the present work was to examine
whether a unified theory could really exist for the ways
in which firing neurons / opening cracks organize them-
selves to produce a single epileptic seizure / earthquake.

The main contribution of this paper is to suggest a shift
in emphasis from “large” to “small”, in terms of scale,
in the search for a dynamical analogy between seizure
and earthquake. Our analyses examine a single epilep-
tic seizure generation and the activation of a single fault
(earthquake) and not the statistics of sequences of differ-
ent seizures and earthquakes, as in previous studies [75].
A central property of the epileptic seizure / earthquake
generation is the occurrence of coherent large-scale col-
lective behaviour with very rich structure, resulting from
repeated nonlinear interactions among the constituents
of the system, respectively firing neurons and opening
cracks. Consequently, the Tsallis nonextensive statisti-
cal mechanics has been found to be an appropriate frame-
work in order to investigate dynamical analogies between
epileptic and seismic crises. For completeness reasons we

have also used entropic measures as well as tools from
information theory.

The analytical approach employed in this paper has
unfolded in two stages. First, we examined the data in
terms of multidisciplinary statistical analysis methods,
aiming to discover common “pathological” symptoms of
transition to a significant seismic or epileptic shock. By
monitoring the temporal evolution of the degree of or-
ganization in EEG rat and human time series and pre-
seismic EM time series associated with the activation
of a single fault (earthquake), we observed similar dis-
tinctive features revealing significant reduction of com-
plexity during their emergence. These alternations were
shown with Tsallis entropy and further enhanced a by
T-entropy, approximate entropy, and Shannon block en-
tropies and Fisher information. Interestingly, the tran-
sition from anti-persistent to persistent behaviour indi-
cates the onset of the two crises under study. We note
that the same pathological symptoms characterise the
emergence of magnetic storms [4-7]. Secondly, we ex-
amined the existence of dynamical correspondences be-
tween a single seizure and a single earthquake generation
by means of scale-free statistics, namely, a common hier-
archical organization that results in power-law behaviour
over a significant range of values of some parameters such



102 [ o\
\
o N(T )= 7 16+02
o w w
\
"
v o
}A

~y ‘we

£ \

=z 107} o\

\
' L]
(1]
L] \ L] L]
\
\ L]
L ] -\t- L]
\
10° 0 ‘1 . Lz
10 10 10
Tw(sec)

15

10 -
R Y
\
-1.6+02
N =
.- N(Td) T
°\ o
\
A%
A
t‘? 101» ‘l.-'
2 e,
\ L]
} LN
L] \-
\
- ‘ L J
L ] \ll. LN J L] L]
\
\
0 1 \ »-
10 0 1 2
10 10 10
rd(sec)

FIG. 13: The figure refers to the precursory kHz EM activity associated to Athens earthquake. (a) The waiting
times until the next EM fluctuation display the power-law distribution ~ 1/71:¢. (b) The time durations (livetime)
of the emerged EM events, follows the power-law distribution ~ 1/71:6.

0
0s 10°F . s .
e shoulder 10 ...
g = 1.660 + 0.006 . .
_l I . ..
. ....
~ ~15f 102t o .o..,. ) ., shoulder
s = .\:{.:.. w7 ..
A S "o, o - .
o -2r = h 4 f=d ° 4 ®
g z ° Z 5%
D M . o Fo,
< Mt o5
-2.5F .“'- “
;
w0y it 10' “
-3f K
wss. e
. conmmam o ee m
_35 cosmmenmm o - e
. . L L . 10° . - ‘2 10° - ‘1
1 2 3 4 " 5 6 7 8 9 10 10 10 10 10
TW(SEC) T d(sec)
(a) (b) (©)

FIG. 14: The distributions of the magnitudes (a), of the electric pulses included in the rat seizure of Fig 1 (b)
waiting times (c), and life-times. The arrow indicates the characteristic “shoulder” (see text). This evidence
indicates that transitions between the criticality and synchronized regimes have been occurred [60].

as event energy or waiting time. We concentrate on the
question whether the corresponding power-laws, if any,
share the same exponent. Examining the data in terms
of conventional and nonextensive dynamic scale-free laws
we found that the magnitudes / energies and waiting
times of the included EM pulses / electric pulses in a
single EM precursor / single seizure follow a power-law
distribution with a rather similar exponent. This find-
ing is extended to the laboratory seismicity by means
of acoustic emission, as well. Differences in constituting

elements (organic vs inorganic), in scale and other phys-
ical properties between the earth and brain may account
for small dissimilarities in exponents of the statistics [60].
These findings enhance the existence of dynamical analo-
gies between the two complex phenomena under study.
Importantly, similar power-law distributions are followed
by sequences of different natural earthquakes and differ-
ent seizures. This result supports the self-affine nature
of earthquake / seizure generation.

It has been proposed that if the degree of the coupling



strength (or of the heterogeneity) between threshold os-
cillators is manipulated, transitions between the critical-
ity and synchronized regimes will not only occur but will
be coextensive. This feature has also been recognized by
means of nonextensive and conventional scaling laws in
the case of rat epilepsy.

A promising concept developed early on [47, 57] and
extended in the last decade views a large earthquake
as the culmination of a preparatory phase during which
smaller earthquakes smooth out the stress field and ex-
press the long-range correlation of stresses that could be
associated with the large runaway [48, 50]. This corre-
sponds to viewing a large earthquake as a kind of dy-
namical critical point [9, 41], in which accelerated seis-
mic release results from a positive feedback of the seismic
activity on its release rate [72]. Accumulated evidence
support that seizures can be also viewed as dynamical
critical points; the approach of “intermittent criticality”
offers a possible common scenario for the development of
severe epileptic and seismic shocks [17]. The generation
of magnetic storms also seems to follow the aforemen-
tioned approach [5] .

Future tests of the seizure-earthquake analogy should
also involve the question of seismic localization (faults)
versus seizure focus/epileptogenic zone as conventionally
defined [60]. There are already arguments implying that
the main seismic / epileptic shock occurrence is accom-
panied by the appearance of a preferred direction of ele-
mentary activities [17].

The study of EM precursory activity refers to earth-
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quakes that have occurred in land or near coast-line, they
are shallow and have a magnitude of approximately 6 or
higher [16-18, 44, 46]. However, EQs that meet all these
conditions do not occur frequently. Thus, there is an
inherent limitation in this research field, in terms of the
amount of data (precursory EM recordings from different
EQs) that can be used for the investigation of patterns
and distinctive features of preseismic EM activity. The
case is quite different in the study of EEGs related to
epileptic seizures, as: (i) it is known a priori that data
recorded relates to a diagnosed epileptic case, (ii) there
is a surplus in terms of quantity and diversity of data
available for analysis, and subsequently (iii) it is possible
to perform controlled laboratory analysis.

On these grounds, this paper comes to propose that
as long as similar properties and common distinctive fea-
tures can be found in the two types of extreme events,
it may be possible to draw on identified dynamic analo-
gies in order to utilize transferable ideas and methods.
Results and insights from the study of epileptic seizures
may provide useful approaches that can feed back into
the analysis of preseismic EM activity and enhance our
ability to identify potential precursory EM patterns.

In summary, the obtained results support the claim
that epileptic seizures might be considered as “quakes of
the brain”.
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