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Abstract

This paper continues a study of gravity within the scope of the
measurability notion introduced by the author in his previous works.
Based on the earlier results, it is shown that the Strong Principle
of Equivalence(SPE) of General Relativity may be reformulated
in terms of measurable quantities and is valid in this case at low en-
ergies far from the Planck’s. Next, the possibility for generalization
SPE of a measurable analog of gravity in the ultraviolet (Planck)
energy region is analyzed.

1 Introduction

This paper is a continuation of a study into a quantum theory and gravity
in terms of the measurability notion, initiated in [1]–[9], with the aim to
form the above-mentioned theories proceeding from the variations (incre-
ments) dependent on the existent energies.
These theories should not involve the infinitesimal variations dt, dxi, dpi, dE, i =
1, ..., 3 and, in general, any abstract small quantities δt, δxi, δE, δpi, ....
In work [10] in the general form it is demonstrated that all the basic in-
gredients of General Relativity (GR) have their measurable analogs, the
way to derive every term in a measurable variant of the Einstein equations
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is presented. Passage of the measurable analog of GR to the ultravio-
let (Planck) region is considered, showing that it is quite natural from the
viewpoint of the methods and approaches developed in [10].
This paper directly follows from [10]. Here it is demonstrated that a mea-
surable analog of the Strong Principle of Equivalence(SPE) is valid,
i.e., SPE may be formulated entirely in terms of measurable quantities
at low energies E ≪ Ep.
Note, as in GR only low energy regions E ≪ Ep are considered, it is im-
plied that SPE is valid in GR just in this energy region. The region of high
energies E ≈ Ep belongs to Quantum Gravity that has not be formed by
now.
Nevertheless, in terms of the measurability notion, we can perform an ini-
tial analysis of the possible generalization of SPE to the Planck (quantum-
gravity) region. This is the principal object of the work.
The structure of this paper is as follows. Section 2 briefly outlines the nec-
essary preliminary information from [1]–[9]. At the same time, for better
understanding, some aspects are elucidated and supplemented. In partic-
ular, of importance are Remark 2.3.–Remark 2.5.. In Section 3, pro-
ceeding from the results of Section 4 in [10], it is indicated that the Strong
Principle of Equivalence (SPE) may be reformulated in terms of the
measurability notion at low energies E ≪ Ep and is valid in this case.
In Section 4, within the scope of the space-time foam notion, the possi-
bility for generalization of SPE for a measurable analog of gravity in the
ultraviolet (Planck) region is analyzed.

2 Necessary preliminary information

Let us briefly consider the earlier results [1]–[9] laying the basis for this
study.
It is assumed that there is a minimal (universal) unit for measurement of
the length ℓ corresponding to some maximal energy Eℓ =

~c
ℓ
and a universal

unit for measurement of time τ = ℓ/c. Without loss of generality, we can
consider ℓ and τ at Plank’s level, i.e. ℓ = κlp, τ = κtp, where the numerical
constant κ is on the order of 1. Consequently, we have Eℓ ∝ Ep with the
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corresponding proportionality factor.
Then we consider a set of all nonzero momenta

P = {pxi
}, i = 1, .., 3; |pxi

| ̸= 0. (1)

¿From this set we can isolate a set of the Primarily Measurable momenta
characterized by the property

pxi

.
= pNi

=
~
Niℓ

, (2)

where Ni is an integer number and pxi
is the momentum corresponding to

the coordinate xi.
From these formula it is not unreasonable to propose the following definition:

Definition 1. Primary Measurability
1.1. Any variation in ∆xi for the coordinates xi and ∆t of the time t is
considered primarily measurable if

∆xi = N∆xi
ℓ,∆t = N∆tτ, (3)

where N∆xi
̸= 0 and N∆t ̸= 0 are integer numbers.

1.2. Let us define any physical quantity as primary or elementary mea-
surable when its value is consistent with point 1.1 of this Definition.

So, from Definition 1. it directly follows that all the momenta satisfy-
ing 2) are the Primarily Measurable momenta.
Then we consider formula (2) and Definition 1. with the addition of the
momenta px0

.
= pN0 =

~
N0ℓ

, where N0 is an integer number corresponding to
the time coordinate (N∆t in formula (3)).
For convenience, we denote Primarily Measurable Quantities satisfying
Definition 1. in the abbreviated form asPMQ.
It is clear that PMQ is inadequate for studies of the physical processes. To
illustrate, the space-time quantities

τ

Nt

= pNtc
ℓ2

c~
ℓ

Ni

= pNi

ℓ2

~
, 1 = 1, ..., 3, (4)
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where pNi
, pNtc are Primarily Measurable momenta, up to the fundamen-

tal constants are coincident with pNi
, pNtc and they may be involved at any

stage of the calculations but, evidently, they are not PMQ in the general
case.
Thus, it is reasonable to use Definition 2.

Definition 2. Generalized Measurability
We define any physical quantity at all energy scales E ≤ Eℓ as general-
ized measurable or, for simplicity, measurable if any of its values may
be obtained in terms of PMQ specified by points 1.1,1.2 of Definition 1.

Remark 2.1 What is the main difference between Primarily Measur-
able Quantities (PMQ) and Generalized Measurable Quantities
(GMQ)? PMQ defines variables which may be obtained as a result of
an immediate experiment. GMQ defines the variables which may be cal-
culated based on PMQ, i.e. based on the data obtained in previous clause.

The main target of the author is to form a quantum theory and gravity
only in terms of measurablequantities (or of PMQ).
Now we consider separately the two cases.

A) Low Energies, E ≪ Eℓ.
In P we consider the domain PLE ⊂ P (LE is abbreviation of ”Low Ener-
gies”) defined by the conditions

PLE = {pxi
}, i = 1, .., 3;Pℓ ≫ |pxi

| ̸= 0, (5)

where Pℓ = Eℓ/c–maximal momentum.
In this case the formula of (2) takes the form

Ni =
~

pxi
ℓ
, or (6)

pxi

.
= pNi

=
~
Niℓ

|Ni| ≫ 1,
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where the last row of the formula (6) is given by the requirement (5).
As the energies E ≪ Eℓ are low, i.e. (|Ni| ≫ 1), primary measurable
momenta are sufficient to specify the whole domain of the momenta to a
high accuracy PLE.
It is clear that

[Ni] ≤ Ni ≤ [Ni] + 1, (7)

where [ℵ] defines the integer part of ℵ. Then |Ni|−1 falls within the in-
terval with the finite points |[Ni]|−1 and |[Ni] + 1|−1 (which of the num-
bers is greater or smaller, depends on a sign of Ni). In any case we have
|N−1

i − [N−1
i ]| ≤ |([Ni] + 1)−1 − [Ni]

−1| = |([Ni] + 1)[Ni]|−1.
Thus, the difference between pNi

and p[Ni] is negligibly small. Therefore,
the primary measurable momenta pNi

, (|Ni| ≫ 1) are sufficient to specify
the whole domain of the momenta to a high accuracy PLE.
This means that in the indicated domain a discrete set of primary measur-
ablemomenta pNi

, (i = 1, ..., 3) from formula (6) varies almost continuously,
practically covering the whole domain.
That is why further PLE is associated with the domain of primary mea-
surable momenta, satisfying the conditions of the formula (5) (or (6)).
Of course, all the calculations of point A) also comply with the primary
measurable momenta pNtc

.
= pN0 in formula (4). Because of this, in what

follows we understand PLE as a set of the primary measurable momenta
pxµ = pNµ , (µ = 0, ..., 3) with |Nµ| ≫ 1.

Remark 2.2. It should be noted that, as all the experimentally involved
energies E are low, they meet the condition E ≪ Eℓ, specifically for LHC
the maximal energies are ≈ 10TeV = 104GeV , that is by 15 orders of mag-
nitude lower than the Planck energy ≈ 1019GeV . But since the energy Eℓ is
on the order of the Planck energy Eℓ ∝ Ep, in this case all the numbers Ni

for the corresponding momenta will meet the condition min|Ni| ≈ 1015,i.e.,
the formula of (6). So, all the experimentally involved momenta are con-
sidered to be primary measurable momenta,i.e. PLE at low energies
E ≪ Eℓ.

In this way in the proposed paradigm at low energies E ≪ Ep any mo-
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mentum with pxµ , µ = 0, ...3 takes the form pxµ = pNµ , where Nµ – integer
with the property |Nµ| ≫ 1.
Further for the fixed point xµ we use the notion pxµ = pNxµ

or pxµ = pN∆xµ
.

Naturally, the small variation ∆pxµ at the point pxµ = pNxµ
of the momen-

tum space PLE is represented by the primary measurable momentum
pN ′

xµ
with the property |N ′

xµ
| ≫ |Nxµ |.

The problem is as follows: is any possibility that ∆pxµ is infinitesimal? For
the special point pxµ = pNxµ

the answer is negative.
Indeed, the ”nearest” points to pNxµ

are pNxµ−1 and pNxµ+1.
It is obvious that

|pNxµ
− pNxµ−1| = |pNxµ (Nxµ−1)|,

|pNxµ
− pNxµ+1| = |pNxµ (Nxµ+1)|. (8)

It is easily seen that the difference |pNxµ (Nxµ+1)|−|pNxµ (Nxµ−1)| for |Nxµ | ≫ 1
is infinitesimal, i.e., to within a high accuracy, we have |pNxµ (Nxµ+1)| =
|pNxµ (Nxµ−1)|. And a small variation of |∆pxµ | at the point pxµ = pNxµ

has
a minimum that equals |pNxµ (Nxµ+1)|. Clearly, with an increase in |Nxµ |, we
can obtain no matter how small |pNxµ (Nxµ+1)|.
So, in the proposed paradigm at low energies E ≪ Ep a set of the primarily
measurable PLE is discrete, and in every measurement of µ = 0, ..., 3 there
is the discrete subset Pxµ ⊂ PLE:

Pxµ

.
= {..., pNxµ−1, pNxµ

, pNxµ+1, ...}. (9)

In this case, as compared to the canonical quantum theory, in continuous
space-time we have the following substitution:

dpµ 7→ ∆pNxµ
= pNxµ

− pNxµ+1 = pNxµ (Nxµ+1);

∂

∂pµ
7→ ∆

∆pµ

,
∂F

∂pµ

7→
∆F(pNxµ

)

∆pµ

=
F(pNxµ

)− F(pNxµ+1)

pNxµ
− pNxµ+1

=
F(pNxµ

)− F(pNxµ+1)

pNxµ (Nxµ+1)

.(10)

It is clear that for sufficiently high integer values of |Nxµ |, formula 10) re-
produces a continuous paradigm in the momentum space to any preassigned
accuracy.
Similarly for sufficiently high integer values of |Nt| and |Ni

.
= Nxi

| , the
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quantities τ/Nt, ℓ/Nxi
from formula (4) may be arbitrary small.

Hence, for sufficiently high integer values of |Nt| and |Ni
.
= Nxi

|, the
quantities τ/Nt, ℓ/Nxi

are nothing but a measurable analog of the small
quantities δxi, δt and the infinitesimal quantities dxi, dt, i.e. δxµ, and dxµ,
µ = 0, ..., 3.
As follows from formula (4), for sufficiently high integer values of |Nxµ |, µ =
0, ..., 3, the primarily measurable momenta Pxµ (formula (9)) represent
ameasurable analog of small (and infinitesimal) space-time increments in
the space-time variety M ⊂ R4.
Because of this, for sufficiently high integer values of |Nxµ |, the space-time
analog of formula (10) is as follows:

dxµ 7→ ℓ

Nxµ

;

∂

∂xµ

7→ ∆

∆Nxµ

,
∂F

∂xµ

7→ ∆F(xµ)

∆Nxµ

=
F(xµ)− F(xµ + ℓ/Nxµ)

ℓ/Nxµ

. (11)

Now we formulate the principle of correspondence to a continuous theory.

Principle of Correspondence to Continuous Theory (PCCT).

At low energies E ≪ Ep (or same E ≪ Eℓ) the infinitesimal space-time
quantities dxµ;µ = 0, ..., 3 and also infinitesimal values of the momenta
dpi, i = 1, 2, 3 and of the energies dE form the basic instruments (“con-
struction materials”) for any theory in continuous space-time. Because of
this, to construct the measurable variant of such a theory, we should find
the adequate substitutes for these quantities.
It is obvious that in the first case the substitute is represented by the quanti-
ties ℓ/Nxµ , where |Nxµ | – no matter how large (but finite!) integer, whereas
in the second case by pNxi

= ~
Nxiℓ

; i = 1, 2, 3; ENx0
= c~

Nx0ℓ
, where Nxµ –

integer with the above properties µ = 0, ...3.
In this way in the proposed approach all the primary measurable mo-
menta pNxµ

, |Nxµ | ≫ 1 are small quantities at low energies E ≪ Eℓ and
primary measurable momenta pNxµ

with sufficiently large |Nxµ | ≫ 1 be-
ing analogous to infinitesimal quantities of a continuous theory.
As, according to Remark 2.2, all the momenta at low energies E ≪ Ep,
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to a high accuracy, may be considered to be the primary measurable
momenta, from formula (4) we derive that at low energies the primary
measurable momenta pNxµ

generate measurable small space-time varia-
tions and at sufficiently high |Nxµ | – infinitesimal variations.

B)High Energies, E ≈ Ep.
In this case formula (2) takes the form

Ni =
~

pxi
ℓ
, or (12)

pxi

.
= pNi

=
~
Niℓ

|Ni| ≈ 1.

where Ni is an integer number and pxi
is the momentum corresponding to

the coordinate xi. The discrete set pNi

.
= pNxi

is introduced as primary
measurable momenta.
The main difference of the case B)High Energies from the case A) Low
Energies is in the fact that at High Energies the primary measurable
momenta are inadequate for theoretical studies at the energy scales E ≈ Ep.
This is easily seen when we consider, e.g., the Generalized Uncertainty Prin-
ciple (GUP) [11]–[20], that is an extension of Heisenberg’s Uncertainty Prin-
ciple (HUP) [22],[21], to (Planck) high energies

∆x ≥ ~
∆p

+ α′l2p
△p

~
(13)

where α′ is a constant on the order of 1.
Obviously, (13) leads to the minimal length ℓ on the order of the Planck
length lp

∆xmin = 2
√
α′lp

.
= ℓ. (14)

In his earlier works [7],[9] the author, using simple calculations, has demon-
strated that for the equality in (13) at high energies E ≈ Ep, (E ≈ Eℓ) the
primary measurable space quantity ∆x = N∆xℓ, where N∆x ≈ 1 is an
integer number, results in the momentum ∆p(N∆x, GUP ):

∆p
.
= ∆p(N∆x, GUP ) =

~
1/2(N∆x +

√
N2

∆x − 1)ℓ
. (15)
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It is clear that for N∆x ≈ 1 the momentum ∆p(N∆x, GUP ) is not a pri-
mary measurable momentum.
On the contrary, at low energies E ≪ Ep, (E ≪ Eℓ) the primary measur-
able space quantity ∆x = N∆xℓ, where N∆x ≫ 1 is an integer number, due
to the validity of the limit

lim
N∆x→∞

√
N2

∆x − 1 = N∆x, (16)

leads to the momentum ∆p(N∆x, HUP ):

∆p
.
= ∆p(N∆x, HUP ) =

~
1/2(N∆x +

√
N2

∆x − 1)ℓ
≈ ~

N∆xℓ
=

~
∆x

. (17)

It is inferred that, for sufficiently high integer values of N∆x the momentum
∆p(N∆x, HUP ) within any high accuracy may be considered to be the pri-
mary measurable momentum.
This example illustrates that primary measurable momenta are insuffi-
cient for studies in the high-energy domain E ≈ Ep and we should use the
generalized measurable momenta.

As noted above, the main target of the author is to construct a quantum
theory at all energy scales E ≤ Eℓ in terms of measurable quantities.
In this theory the values of the physical quantity G may be represented by
the numerical function F in the following way [8]:

G = F(Ni, Nt, ℓ) = F(Ni, Nt, G, ~, c, κ), (18)

where Ni, Nt–integers for general form from the formula (2) and at high
energies E ≈ Eℓ from the formula (12) and G, ~, c are fundamental con-
stants. The last equality in (18) is determined by the fact that ℓ = κlp and

lp =
√
G~/c3.

If Ni ̸= 0, Nt ̸= 0 (nondegenerate case), then it is clear that (18) can be
rewritten as follows:

G = F(Ni, Nt, ℓ) = F̃((Ni)
−1, (Nt)

−1, ℓ) (19)

Then at low energies E ≪ Eℓ, i.e. at |Ni| ≫ 1, |Nt| ≫ 1, the function

F̃ is a function of the variables changing practically continuously, though
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these variables cover a discrete set of values. Naturally, it is assumed that
F̃ varies smoothly (i.e. practically continuously). As a result, we get a
model, discrete in nature, capable to reproduce the well-known theory in
continuous space-time to a high accuracy, as it has been stated above.
Obviously, at low energies E ≪ Eℓ the formula (19) is as follows:

G = F(Ni, Nt, ℓ) = F̃((Ni)
−1, (Nt)

−1, ℓ) = (20)

= F̃p(pNi
, pNtc , ℓ),

where pNi
, pNtc are primary measurable momenta.

Remark 2.3. What is the main point of this Section?
At low energies E ≪ Ep we replace the abstract small and infinitesimal
quantities δxµ, dxµ, δpµ, dpµ incomparable with each other, by the specific
small quantities ℓ/Nxµ , pNxµ

, which may be made however small at suffi-
ciently high |Nxχ |, still being ordered and comparable. It is very important
that the quantities ℓ/Nxµ , pNxµ

are directly associated with the existing ener-

gies; for |N ′
xµ
| > |Nxµ | the momentum p|N ′

xµ |
< p|Nxµ | and p|N ′

xµ |
corresponds

to lower energy than p|Nxµ | . The same is true for the space variations

ℓ/N
′
xµ
, ℓ/Nxµ .

Remark 2.4.
At low energies E ≪ Ep we should emphasize the difference between the
primary measurable momenta pNxµ

∈ PLE and the space-time quantities
ℓ/Nxµ corresponding to them in accordance with formula (4).
The first, that is pNxµ

, in accordance with Remark 2.2. represent the whole
set of the momenta PLE at low energies E ≪ Ep in terms of measurable
quantities, whereas the second, ℓ/Nxµ, represent only the measurable small
variations of space-time quantities. Because of this, any point pNxµ

∈ PLE

is associated with the fixed measurable minimal variation ∆pNxµ
from for-

mula (10). At the same time, for a point with the space-time coordinates
x

.
= {xµ} such measurable minimal variation is dependent on the number

|Nxµ | according to formula (11).
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Remark 2.5.
Finally, according to Definition 1., in the relativistic case the primary
measurable energy is of the form

E =
~c
N0ℓ

,N0
.
= Nx0 , (21)

where N0 is an integer number, and at low energies E ≪ Ep it is obvious
that N0 ≫ 1.
Then at low energies E ≪ Ep from Remark 2.2. it follows naturally that
primary measurable energies, to a high accuracy, cover the whole low-
energy spectrum. Then, considering that the formula
E2 = p2c2 +m2c4 low energies E ≪ Ep [23],[24] to a high accuracy is valid
in terms of measurable quantities and all components of the vector p are
the primary measurable momenta, we can found the mass m in terms of
the measurability notion as follows:

m2 =
~2

c2
(

1

N2
0 ℓ

2
−

∑
1≤i≤3

1

N2
i ℓ

2
). (22)

3 Space-TimeMetrics in Measurable Format

and Strong Principle of Equivalence at Low

Energy

The principal result of this section is based on Section 4 in [10] and we give
all the required information from [10].
According to the above-mentioned results, the measurable variant of grav-
ity should be formulated in terms of the small measurable space-time
quantities ℓ/N∆xµ or same primary measurable momenta pN∆xµ

.
Let us consider the case of the random metric gµν = gµν(x) [25],[26], where
x ∈ R4 is some point of the four-dimensional space R4 defined in mea-
surable terms. The phrase ”some point of the four-dimensional space R4

defined in measurable terms” means that all variations at the indicated
point are determined in terms of measurable quantities (formula (18)–
(20)). Specifically, as mentioned above, all small measurable variations,
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according to formula (4), take the from ℓ/N∆xµ ∝ pN∆xµ
, where pN∆xµ

are
primary measurable momenta and |N∆xµ| ≫ 1.
Now, any such point x

.
= {xχ} ∈ R4 and any set of integer numbers {N∆xχ}

dependent on the point {xχ} with the property |N∆xχ| ≫ 1 may be corre-
lated to the bundle with the base R4 as follows:

BNxχ

.
= {xχ,

ℓ

N∆xχ

} 7→ {xχ}. (23)

It is clear that lim
|N∆xχ |→∞

BN∆xχ
= R4.

Then as a canonically measurable prototype of the infinitesimal space-time
interval square [25],[26]

ds2(x) = gµν(x)dx
µdxν (24)

we take the expression

∆s2{N∆xχ}(x)
.
= gµν(x, {N∆xχ}) ℓ2

N∆xµN∆xν

. (25)

Here gµν(x, {N∆xχ}) – metric gµν(x) from formula (32) with the property
that minimal measurable variation of metric gµν(x) in point x for coordi-
nate χ has form

∆gµν(x, {N∆xχ})χ = gµν(x+ ℓ/N∆xχ , {N∆xχ})− gµν(x, {N∆xχ}), (26)

Let us denote by ∆χgµν(x, {N∆xχ}) quantity

∆χgµν(x,N∆xχ) =
∆gµν(x,N∆xχ)χ

ℓ/N∆xχ

. (27)

It is obvious that in the case under study the quantity ∆gµν(x, {N∆xχ})χ
is a measurable analog for the infinitesimal increment dgµν(x) of the
χ-th component (dgµν(x))χ in a continuous theory, whereas the quantity
∆χgµν(x,N∆xχ) is a measurable analog of the partial derivative ∂χgµν(x).
In this manner we obtain the (23)-formula induced bundle over the metric
manifold gµν(x):

Bg,N∆xχ

.
= gµν(x, {N∆xχ}} 7→ gµν(x). (28)
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Referring to formula (4), we can see that (25) may be written in terms of
the primary measurable momenta (pN∆xi

, pN∆x0
)
.
= pN∆xχ

as follows:

∆s2N∆xχ
(x) =

ℓ4

~2
gµν(x, {N∆xχ})pN∆xµ

pN∆xν
. (29)

Considering that ℓ ∝ lP (i.e., ℓ = κlP ), where κ = const is on the order of
1, in the general case (29), to within the constant ℓ4/~2, we have

∆s2N∆xχ
(x) = gµν(x, {N∆xχ})pN∆xµ

pN∆xν
. (30)

As follows from the previous formulae, the measurable variant of General
Relativity should be defined in the bundle Bg,N∆xχ

Remark 3.1
According to (25)–(27), a measurable analog of the metric gµν(x, {N∆xχ})
is differing from gµν(x) by the value of a ”minimal” interval and by mini-
mal variations of gµν(x, {N∆xχ}). However, the components gµν(x, {N∆xχ})
themselves are coincident with gµν(x).

For convenience, apart from formula (25), we use the equivalent formula

∆s2{N∆xχ}(x)
.
= gµν(x, {N∆xχ})

ℓ2

N∆xµN∆xν

, (31)

that is a measurable analog of the formula

ds2(x) = gµν(x)dxµdxν (32)

Since it has been demonstrated that the metric components in continuous
and measurable cases are the same, they may be used to raise and to lower
the indices in the measurable case as well. Specifically, instead of a set of
the quantities gµν(x, {N∆xχ}), N∆xχ , ℓ/N∆xµ , pN∆xµ

, we can use the set
gµν(x, {N∆xχ}), N∆xχ , ℓ/N∆xµ , pN∆xµ

.

Measurability and Strong Principle of Equivalence in Low
Energies
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We can easily show that because the energies are low (E ≪ Ep or same
|N∆xχ | ≫ 1), the Strong Principle of Equivalence (SPE) ([27],p.69) is
valid in terms of measurable quantities.
Indeed, let x0 .

= (x0
µ), µ = 0, .., 3 be some fixed point of the space-time

variety M ⊂ R4, with the metric gµν(x) i.e. x0 ∈ M.
According to SPE, in continuous space-time the point x0 has a sufficiently
small neighborhood, where the metric gµν(x) is equivalent to the Minkowskian
metric ηµν(x); ||ηµν || = Diag (−1, 1, 1, 1) .
We denote this neighborhood as X0(gµν).
Without loss of generality, we can calculate X0(gµν) for each of the coordi-
nates µ = 0, .., 3 symmetric relative to x0, i.e., we have

X0(gµν)
.
= [(x0

µ − aµ < xµ < x0
µ + aµ)

.
= |xµ − x0

µ| < aµ, (33)

µ = 0, .., 3; aµ > 0].

Then we can easily find integer N∆x0
µ
; |N∆x0

µ
| ≫ 1 sufficiently high in abso-

lute value so that

|xµ − x0
µ| =

ℓ

|N∆x0
µ
|
≪ aµ. (34)

As noted above, for sufficiently high |N∆x0
µ
|, the metric gµν(x), to however

high accuracy, is considered to be the measurable metric gµν(x, {N∆xχ})
. As with an increase in |N∆x0

µ
| the quantity ℓ/|N∆x0

µ
| is varying practi-

cally continuously, the metric gµν(x) to however high accuracy could be
considered the measurable metric for

|xµ − x0
µ| ≤

ℓ

|N∆x0
µ
|
. (35)

Since the neighborhood of the point x0 assigned by the condition (35) is
fully lying about the point specified by the condition (33), in this neighbor-
hood the metric gµν(x) is equivalent to the Minkowskian metric ηµν(x) in
continuous space-time.
But, in turn, ηµν(x) can be represented, to however high accuracy, for the
integer number N

′
∆xχ

; |N ′
∆xχ

| ≫ 1 sufficiently high in absolute value, in the

form of measurable metrics ηµν(x, {N ′
∆xχ

}).
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So, within the concept ofmeasurability, the Strong Principle of Equiv-
alence (SPE) may be formulated as follows:

Definition 3.1. Measurable Variant of SPE at Low Energies.
For sufficiently small measurable neighborhood of the point x0, (the term
”measurable neighborhood” means that all points of this neighborhood arise
from x0 by means of measurable variations), the measurable metric
gµν(x, {N∆xχ}), with the integer number N∆xχ sufficiently high in absolute
value, is equivalent to the measurable Minkowskian metric ηµν(x, {N ′

∆xχ
})

with the integer N
′
∆xχ

sufficiently high in absolute value. In other words, in a

sufficiently small measurable neighborhood of the point x0 we can obtain,
to however high accuracy, the equivalence of the two measurable metrics

gµν(x, {N∆xχ}) ≡ ηµν(x, {N ′

∆xχ
}). (36)

It is clear that, taking maximal absolute values from both sets N∆xχ and
N

′
∆xχ

, |N∗
∆xχ

| = Max{|N∆xχ |, |N
′
∆xχ

|}, we can have for (36) the coincident

sets {N∆xχ} and {N ′
∆xχ

}:

gµν(x, {N∗
∆xχ

}) ≡ ηµν(x, {N∗
∆xχ

}). (37)

Remark 3.2
Again without loss of generality, we can takes as a sufficiently small mea-
surable neighborhood of the point x0 the neighborhood X0(gµν) specified
by formula (33).
It is clear that, as the energies under study are low (E ≪ Ep), we have
aµ = Naµℓ and Naµ ≫ 1. Of course, the quantity aµ = Naµℓ is not necessar-
ily primarily measurable, i.e., the number Naµ is not necessarily integer.
But we can always make it so, taking, instead of the number Naµ , its integer
part [Naµ ]. Then the primarily measurable quantity aµ = [Naµ ]ℓ is also
satisfying the condition specified in formula (33).

The condition ”sufficiently small measurable neighborhood” indicates that
the numbers Naµ should set the upper bound as follows:

1 ≪ Naµ ≪ Nµ(g
µν), (38)
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where the high positive number Nµ(g
µν), (i.e. Nµ(g

µν) ≫ 1) is dependent
on the metric gµν .
For complete consideration of SPE at low energies E ≪ Ep in terms of
measurability notion, we should study the coordinate transformations of
a continuous theory in terms of measurable quantities.
Let us consider any coordinate transformation xµ = xµ (x̄ν) of the space–
time coordinates in continuous space—time. Then we have

dxµ =
∂xµ

∂x̄ν
dx̄ν . (39)

As mentioned at the Section 2 (formula (10)),in terms ofmeasurable quan-
tities we have the substitution

dxµ 7→ ℓ

N∆xµ

; dx̄ν 7→ ℓ

N̄∆x̄ν

, (40)

where N∆xµ , N̄∆x̄ν – integers (|N∆xµ | ≫ 1, |N̄∆x̄ν | ≫ 1) sufficiently high in
absolute value, and hence in the measurable case (39) is replaced by

ℓ

N∆xµ

= ∆µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν )

ℓ

N̄∆x̄ν

. (41)

Equivalently, in terms of the primary measurable momenta we have

pN∆xµ
= ∆µν(x

µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν ) pN̄∆x̄ν
, (42)

where ∆µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν )

.
= ∆µν(x

µ, x̄ν , pN∆xµ
, pN̄∆x̄ν

) – correspond-
ing matrix represented in terms of measurable quantities.
It is clear that, in accordance with formula (40), in passage to the limit we
get

lim
|N∆xµ |→∞

ℓ

N∆xµ

= dxµ =

= lim
|N̄∆x̄ν |→∞

∆µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν )

ℓ

N̄∆x̄ν

=
∂x̄µ

∂xν
dxν . (43)

Equivalently, passage to the limit (43) may be written in terms of the pri-
mary measurable momenta pN∆xµ

, pN̄∆x̄ν
multiplied by the constant ℓ2/~.
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How we understand formulae (40)–(43)?
The initial (continuous) coordinate transformations xµ = xµ (x̄ν) gives the
matrix ∂xµ

∂x̄ν . Then, for the integers sufficiently high in absolute value N̄∆x̄ν , |N̄∆x̄ν | ≫
1, we can derive

ℓ

N∆xµ

=
∂xµ

∂x̄ν

ℓ

N̄∆x̄ν

, (44)

where |N∆xµ | ≫ 1 but the numbers for N∆xµ are not necessarily integer.
Still, as noted above, the difference between ℓ/N∆xµ and ℓ/[N∆xµ ] (and
hence between pN∆xµ

and p[N∆xµ ]
) is negligible.

Then substitution of [N∆xµ ] for N∆xµ in the left-hand side of (44) leads to re-
placement of the initial matrix ∂xµ

∂x̄ν by the matrix ∆µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν )

represented in terms of measurable quantities and, finally, to the formula
(41). Clearly, for sufficiently high |N∆xµ |, |N̄∆x̄ν | , the matrix ∆µν(x

µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν )
may be selected no matter how close to ∂xµ

∂x̄ν .
Similarly, in the measurable format we can get the formula

dx̄µ =
∂x̄µ

∂xν
dxν (45)

and correspondingly the matrix ∆̃µν(x̄
µ, xν , 1/N̄∆xµ , 1/N∆xν ) with the prop-

erty

ℓ

N̄∆xµ

= ∆̃µν(x̄
µ, xν , 1/N̄∆xµ , 1/N∆xν )

ℓ

N∆xν

, (46)

Thus, any coordinate transformation may be represented, to however high
accuracy, by themeasurable transformation (i.e., written in terms ofmea-
surable quantities), where the principal components are the measurable
quantities ℓ/N∆xµ or the primary measurable momenta pN∆xµ

.
From this it follows that all the components necessary for the formulation
of a measurable variant of SPE at low energies E ≪ Ep are available – all
of them are represented in terms of the measurability notion, making the
above definition of a measurable variant of SPE at low energies E ≪ Ep

correct.
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4 Measurability in Gravity and Strong Prin-

ciple of Equivalence at All Energy Scales

In this section, based on the results from [10], within the scope of the
space-time foam notion we perform an initial analysis of the possibility for
generalization of SPE in a measurable analog of gravity to the ultraviolet
(Planck) energy region.
As directly follows from the first part of Section 3, specifically from formulae
(25)–(27), the principal components involved in gravitational equations of
General Relativity have measurable analogs [10].
In particular, the Christoffel symbols [25],[26]

Γα
µν(x) =

1

2
gαβ(x)

(
∂ν gβµ(x) + ∂µ gνβ(x)− ∂β gµν(x)

)
(47)

have the measurable analog [10]

Γα
µν(x,Nxχ) =

1

2
gαβ(x,Nxχ) (∆νgβµ(x,Nxχ) + ∆µgνβ(x,Nxχ)−

−∆βgµν(x,Nxχ)). (48)

Similarly, for the Riemann tensor in a continuous theory we have [25],[26]:

Rµ
ναβ(x) ≡ ∂αΓ

µ
νβ(x)− ∂βΓ

µ
να(x) + Γµ

γα(x) Γ
γ
νβ(x)− Γµ

γβ(x) Γ
γ
να(x). (49)

With the use of formula (48), we can get the corresponding measurable
analog, i.e. the quantity Rµ

ναβ(x,Nxχ) [10].
In a similar way we can obtain the measurable variant of Ricci tensor,
Rµν(x,Nxχ) ≡ Rα

µαν(x,Nxχ) , and the measurable variant of Ricci scalar:
R(x,Nxχ) ≡ Rµν(x,Nxχ) g

µν(x,Nxχ) [10].
So, for the Einstein Equations (EU) in a continuous theory [25],[26]

Rµν −
1

2
Rgµν −

1

2
Λ gµν = 8 π GTµν (50)

we can derive theirmeasurable analog, for short denoted as (EUM)Einstein
Equations Measurable [10]:

Rµν(x,Nxχ)−
1

2
R(x,Nxχ) g

µν(x,Nxχ)−
1

2
Λ(x,Nxχ) g

µν(x,Nxχ) =

= 8 π GTµν(x,Nxχ), (51)
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where G – Newton’s gravitational constant.
For correspondence with a continuous theory, the following passage to the
limit must take place for all the points x:

lim
|Nxχ |→∞

Λ(x,Nxχ) = Λ, (52)

where the cosmological constant Λ is taken from formula(50).
Moreover, for high |Nxχ|, the quantity Λ(x,Nxχ) should be practically in-
dependent of the point x, and we have

Λ(x,Nxχ) ≈ Λ(x
′
, N

′

x
′
χ
) ≈ Λ, (53)

where x ̸= x
′
and |Nxχ| ≫ 1, |N ′

x
′
χ
| ≫ 1.

Actually, it is clear that formula (52) reflects the fact that (EUM) given by
formula (51) represents deformation of the Einstein equations (EU) (50)
in the sense of the Definition given in [28] with the deformation parameter
Nxχ , and we have

lim
|Nxχ |→∞

(EUM) = (EU). (54)

We denote this deformation as (EUM)[Nxχ ]. Since at low energies E ≪ EP

and to within the known constants we have ℓ/Nxχ = pNxχ
, the following

deformations of (EU) are equivalent to

(EUM)[Nxχ ] ≡ (EUM)[pNxχ
]. (55)

So, on passage from (EU) to the measurable deformation of (EUM)[Nxχ ]
(or identically (EUM)[pNxχ

]) we can find solutions for the gravitational
equations on the metric bundle Bg,Nxχ

.
= gµν(x, {Nxχ}) (formula (28)) given

by formula (25) [10].

What are the advantages of this approach?

4.1. First, as |Nxχ| ≫ 1, from the above formulae it follows that the
metric gµν(x, {Nxχ}) belonging to Bg,Nxχ

and representing a solution for
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(EUM)[Nxχ ], to a high accuracy, is a solution for the Einstein equations
(EU) in a continuous theory. Besides, formula (54) shows that at sufficiently
high |Nxχ| this accuracy may be however high. In this way the Principle
of Correspondence to Continuous Theory (PCCT) (Section 2) to a
continuous theory takes place.

4.2. We replace the abstract infinitesimal quantities dxµ, incomparable
with each other, by the specific small quantities ℓ/Nxµ which may be made
however small at sufficiently high |Nxχ|, still being ordered and compara-
ble. Because of this, we can compare small values of the squared intervals
∆s2{Nxχ}

(x) from formula (25). Possibly, this will help to recover the causal-

ity property for all solutions in (EUM)[Nxχ ] without pathological solutions
in the form of the Closed Time-like Curves (CTC), involved in some models
of General Relativity [29]–[32].

4.3. Finally, this approach from the start is quantum in character due to
the fact that the fundamental length ℓ is proportional to the Planck length
ℓ ∝ lP and includes the whole three fundamental constants, the Planck
constant ~ as well. Besides, it is naturally dependent on the energy scale:
sets of the metrics gµν(x, {Nxχ}) with the lowest value |Nxχ | correspond to
higher energies as they correspond to the momenta {pNxχ

} which are higher
in absolute value. This is the case for all the energies E.
However, minimal measurable increments for the energies E ≈ EP are not
of the form ℓ/Nxµ because the corresponding momenta {pNxχ

} are no longer
primary measurable, as indicated by the results in Section 2.
So, in the proposed paradigm the problem of the ultraviolet generalization
of the low-energy measurable gravity (EUM)[Nxχ ] (formula (51)) is actu-
ally reduced to the problem: what becomes with the primary measurable
momenta {pNxχ

}, |Nxχ| ≫ 1 at high Planck’s energies.
In a relatively simple case of GUP in Section 2 we have the answer. And,
using the fact that (EUM)[Nxχ ] ≡ (EUM)[pNxχ

] (55), based on the results
of Section 2, we can construct a correct high-energy passage to the Planck
energies E ≈ Ep [10]

(EUM)[pNxχ
, |Nxχ | ≫ 1] 7→ (EUM)[pNxχ

(GUP ), |Nxχ| ≈ 1], (56)
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where pNxχ
(GUP ) = ∆p(∆xχ, GUP ) according to formula (15) of Section

2. In this specific case, we can construct the natural ultraviolet generaliza-
tion (EUM)[pNxχ

, |Nxχ | ≫ 1]
.
= (EUM)[pNxχ

]. The theoretical calculations
(EUM)[pNxχ

(GUP ), |Nxχ | ≈ 1] derived at Planck’s energies are obviously
discrete,measurable, and represent a high-energy deformation in the sense
of the [28] measurable gravitational theory (EUM)[pNxχ

, |Nxχ| ≫ 1].

Strong Principle of Equivalence in Measurable Variant at All
Energy Scales

The Equivalence Principle (weak or strong) in its initial form has been
formulated for a low-energy gravitational theory, i.e. for the energies E ≪
Ep in continuous space-time [27].There is nothing similar for the energies
E ≈ Ep.
However, in the proposed approach (or in the present paradigm) we go from
continuous space-time to the measurable discrete space-time but in such
a way that at low energies E ≪ Ep the introduced measurable discrete
space-time is close to the continuous space-time, enabling the author to
form a measurable analog of the Strong Principle of Equivalence at
Low Energies in Section 3.
The basic parameters used to form the measurability notion for all the
energy scales are the integer numbers Nxµ , µ = 0, ..., 3 (or identically Nxµ).
At low energies E ≪ Ep these numbers satisfy the condition |Nxµ | ≫ 1. As
it has been demonstrated above, the corresponding primarily measurable
momenta pN∆xµ

(and space-time variations ℓ/N∆xµ) are adequate to form a
measurable variant of gravity at these energy scales.
At high energies E ≈ Ep (same E ≈ Eℓ) (case B) from Section 2), due
to the fact that for |Nxµ | ≈ 1 a theory in terms of measurable quantities
becomes really discrete, the primarily measurable momenta pN∆xµ

, in
line with formula (15), are inadequate for the correct examination of this
case.
In the general case the transition from high E ≈ Ep to low energies for
a measurable variant of gravity is given by reversal of the arrow from
formula (56):

(EUM)[pNxχ
, |Nxχ| ≈ 1] 7→ (EUM)[pNxχ

, |Nxχ| ≫ 1], (57)
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where pNxχ
for |Nxχ | ≈ 1 the generalized measurable (or simply mea-

surable) momenta are so that we have

pNxχ
, (|Nxχ| ≈ 1)

|Nxχ |≈1→|Nxχ |≫1
⇒ pNxχ

, (|Nxχ| ≫ 1). (58)

The momenta in the right-hand part of formula (58),i.e. pNxχ
, (|Nxχ | ≫ 1),

are the primary measurable momenta at low energies E ≪ Ep.
In Section 2 it is shown that the momenta pNxχ

(GUP ), |Nxχ| ≈ 1 specified
by formula (15) just satisfy the conditions of (57),(58). But it is obvious that
in the general case at the energies E ≈ Ep the momenta pNxχ

, (|Nxχ | ≈ 1,
meeting the conditions (57),(58), may be of a more complex form. For ex-
ample, the form of GUP may be more complex than that considered in the
survey work [38]. In this case on passage to quantum gravity the formulas
(56)–(58) are still valid.
In all the cases for a measurable variant of gravity the transition to
the ultraviolet (i.e quantum) region may be realized by substitution of
ℓ2

~ pN∆xµ
, |N∆xµ | ≈ 1 in Section 3 for the quantities ℓ/N∆xµ = ℓ2

~ pN∆xµ
, |N∆xµ | ≫

1; by the corresponding corrections of formulae (25)–(31) from Section
3, of all the components necessary for derivation of gravitational equa-
tions in a measurable variant Γα

µν(x,Nxχ), R
µ
ναβ(x,Nxχ), ..., and of formu-

lae (48),(50),... from this Section.
It is clear that, provided at high energies E ≈ Ep in the measurable case
some analog of the Strong Principle of Equivalence (SPE)is involved,
its formulation should be radically different from (SPE) in the measur-
able case at low energies E ≪ Ep considered in Section 3 for the two main
reasons given below.

4.4A. As at high energies E ≈ Ep (and hence at |N∆xµ | ≈ 1) a mea-
surable variant of gravity represents a discrete theory, where the notion of
locality is senseless, we should involve the minimal primarily measurable
spatial neighborhood and the minimal generalized measurable spatial
variations ℓ2

~ pN∆xµ
, |N∆xµ | ≈ 1 for the arbitrary point x

.
= {xµ} (with the

naturally selected finite bounds of the numbers N∆xµ).

4.4B. Besides, it is obvious that at high energies E ≈ Ep the space cur-
vature becomes great and this space in any measurable neighborhood of
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the random point x is far from the flat space with the Minkowskian metric
ηµν(x).

As follows from remarks 4.4A. and 4.4B., when for a measurable vari-
ant of gravity there is some form of an analog of the Strong Principle
of Equivalence (SPE) at high energies E ≈ Ep , its correct formulation
should be completely coordinated with the transitions from high to low en-
ergies given in formulae (57), (58). In other words, on going from high to
low energies, this high-energy analog of SPE should conform to SPE at
low energies E ≪ Ep for a measurable variant of gravity considered in
Section 3.
In accordance with the modern understanding of the problem, at high ener-
gies E ≈ Ep the space geometry, due to high Space-Time Quantum Fluctu-
ations (STQF), represents the ≪space-time foam≫(stf) [33],[34]. The notion
of ≪space-time foam≫ was introduced by J. A. Wheeler about 60 years ago
for the description and investigation of physics at Planck’s scales (Early
Universe). Actually, because of high quantum fluctuations of the metric
gµν , the space has a quantity of geometries. Despite the fact that in the last
time numerous works have been devoted to physics at Planck’s scales within
the scope of this notion, by this time still their no clear understanding of
stf as it is.
Still, some models based on micro-black holes are very interesting and fairly
promising. In particular, the models studied in [35]–[37] and based onmicro-
black holes, i.e. black holes with a Schwarzschild radius of several Planck’s
units of length.
Without loss of generality, it may be considered that all the micro-black
holes considered as ”constituent parts” of stf are Schwarzschild’s black
holes.
It should be noted that the case of micro-black holes with the Schwarzschild
metric in terms of measurable quantities has been already studied by the
author in his papers [7], [9]. In these papers, within the scope of validity
of the Generalized Uncertainty Principle (GUP) of Section 2, in terms of
the measurability notion the gravitational equations at the event horizon
surface of these holes have been derived and their basic thermodynamic
characteristics (temperature, entropy) have been obtained.
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It is obvious that these holes form a discrete finite set, provided their
Schwarzschild radii rmbh are considered primarily measurable quantities:

rmbh = Nrmbh
ℓ,Nrmbh

≈ 1, (59)

where Nrmbh
is an integer number.

Proceeding from all the above, a measurable variant of the Strong Prin-
ciple of Equivalence at high energies E ≈ Ep for stf based on the geom-
etry of Schwarzschild’s micro-black holes may be formulated as follows.

In a sufficiently small primarily measurable neighborhood of any spa-
tial point x at the Planck scale the geometry of stf is equivalent to the
geometry of some micro-black hole with the Schwarzschild metric and with
the corresponding Schwarzschild radius rmbh satisfying formula (59).

As, in accordance with GUP of Section 2, we have

p(N∆xi
, GUP ) =

~

1/2(N∆xi
+
√
N2

∆xi
− 1)ℓ

, i = 1, ..., 3, (60)

on passage from high energies E ≈ Ep to low energies E ≪ Ep, formula (58)
is apparently valid and we can, to a high accuracy, obtain at low energies
the primarily measurable momenta p(N∆xi

), |N∆xi
| ≫ 1 and a measur-

able variant of the Strong Principle of Equivalence at Low Energies
from Section 3.
In the process it is assumed that formula (57) is valid by default, i.e. pas-
sage from stf at high energies E ≈ Ep to low energies E ≪ Ep leads to the
large-scale space-time structure and to Einstein Equations.
As noted in point 4.3., in a simple case of GUP considered in Section 2 pas-
sage to quantum gravity in a measurable variant of General Relativity
is represented by formula (56). However, GUP may be of a more complex as
compared to the considered in the survey work [38]. In this case on passage
to quantum gravity the formula (56) is still valid.
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5 Conclusion

Thus, in this paper it has been demonstrated that the Strong Principle of
Equivalence (SPE) may be correctly formulated in terms of measurable
quantities, i.e. for a measurable analog of gravity (or same measurable
variant of gravity) at low energies E ≪ Ep. Besides, it has been shown
that, within the scope of the specific models for Space-Time Foam, SPE
may be also valid for a measurable variant of gravity and at the Planck
scales, or at high energies E ≈ Ep.
Since at the present time no direct or indirect experiments at the scales
on the order of Planck’s scales (i.e. at the energies associated with the
quantum gravity scales) are known, all theoretical studies in this field are
to some or other extent speculative. Nevertheless, considering that gravity
should be formulated with the use of the same terms at all the energy scales,
it must be governed by the particular unified principles the formulation of
which varies depending on the “available” energies. Because of this, the
results from Section 4 seem to be important. Of course, these results are
tentative and may be corrected during further studies of gravity in terms
of the measurability notion. But they give the main idea and define the
trend towards the derivation of a measurable variant of gravity: framing
of a correct gravitational theory at all the energy scales, with the use of a
set of discrete parameters p(N∆xµ) for all nonzero integer values of N∆xµ ,
that is close to the General Relativity at low energies E ≪ Ep and is a new
(discrete) theory at high energies E ≈ Ep.
As noted in Section 4 (formula (54)) and in the earlier papers of the author,
the above derivation of a measurable variant of gravity may be realized
proceeding from the notion of the deformation of a physical theory intro-
duced in [28]:

Deformation is understood as an extension of a particular theory by inclu-
sion of one or several additional parameters in such a way that the initial
theory appears in the limiting transition.

Denoting a measurable variant of gravity at low energies E ≪ Ep (that is
yet incompletely derived) by Grav[LE,meas]ℓ, we obtain that the above-
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mentioned deformation is nothing else but the following mapping:

Grav[LE,meas]ℓ
ℓ→0⇒ GR, (61)

where the deformation parameters are primarily measurable momenta
p(N∆xµ), |N∆xµ | ≫ 1 (or the corresponding space-time variations ℓ/N∆xµ).
Then Einstein Equations Measurable (EUM) at low energies E ≪ Ep in
Section 3 (formula (51)) is a low-energy deformation deformation of Ein-
stein Equations (EU) in General Relativity (GR) as indicated by formula
(54).
Considering that Grav[LE,meas]ℓ and GR are very close but not identical,
the author’s hypothesis is as follows:

we can frame a measurable variant of gravity Grav[LE,meas]ℓ, within
the scope of which there is possibility for the effective solution of several
problems at the joint of General Relativity and Quantum Theory: the above-
mentioned Closed Time-like Curves (CTC) problem [29]–[32], black hole
radiation problem, Hawking’s Information Paradox [39] –[41], etc..
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