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Computation of the p° order low-energy constants with tensor sources
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We present the results of computing the p? and p® order low-energy constants of the chiral
Lagrangian with tensor sources for both two and three flavors pseudoscalar mesons. This is a
generalization of our previous work on calculating the p* and p® order coefficients of the chiral
Lagrangian without tensor sources in terms of the quark self-energy X(p?). We find that some p°
order operators with tenor sources used in the literature are related to each other with the help of
some epsilon relations. There leaves 100 independent terms for n-flavor, 94 terms for 3-flavor, and
67 terms for 2-flavor cases. We also find that the odd-intrinsic-parity chiral Lagrangian with tensor
sources can not exist.

PACS numbers: 12.39.Fe, 11.30.Rd, 12.38.Aw, 12.38.Lg

I. INTRODUCTION

In the low-energy region, conventional perturbation theory is ineffective for the strong interaction. If we focus on
the pseudoscalar mesons (7, K, ), chiral perturbation theory provides us an effective way to deal with the system.
It can be applied not only to the strong interaction, but also to the weak and electromagnetic interactions. It was
first introduced by Weinberg @] The idea was to expand the meson part Lagrangian in terms of powers of external
momenta. Then, Gasser and Leutwyler @, ] extended it to the p* order, and built up the path integral formalism
which enables us to compute the various Green’s functions of the light-quark scalar, pseudoscalar, vector and axial
vector currents in terms of the chiral Lagrangian. The formulation was generalized to the p® order later. The form of
the normal (or even parity) part of the p® order chiral Lagrangian had been gotten in @ﬁ, and soon the anomalous
(or odd parity) part’s form [7, [§]. A latest and general review can be found in [9]. Unfortunately, the antisymmetric
tensor currents were missed in the series works started from Gasser and Leutwyler. Although this may be partly
due to the fact that tensor currents do not appear in the Standard Model (SM) Lagrangian, as discussed in Ref. ﬂE],
researches of hadron matrix elements and the study of interactions beyond SM may need the tensor currents. Further,
antisymmetric tensor currents not only generate the conventional 1™~ vector mesons, but also the more exotic 117~
mesons. Therefore, the study of the antisymmetric currents can involve both of them and their interactions. More
importantly, for the structure of the general currents 1)I', the 4 x 4 matrices I' generally have 16 degrees of freedoms
and ones usually choose 16 y-matrices of 1,75, Y., Yu¥s5, 0 to represent these freedoms. This implies that I' can be
expanded in terms of the 16 y-matrices, and one is used to name the currents according to their y-matrices structures.
Due to this incompleteness of the «-matrices structures, just scalar, pseudo scalar, vector and axial vector currents
can not give the most general bilinear light-quark currents. Merely adding the tensor currents, we can get the set of
the currents completely. Then the results of the Green’s functions among currents are general. Five years ago, the
form of chiral Lagrangian involving tensor currents had been discussed firstly in Ref. HE] The results are the normal
parts with tensor sources can start at the p* order, and both the p* and p® order chiral Lagrangian with tensor sources
were obtained. But the odd-intrinsic-parity parts with tensor sources only starts at the p® order. Based on these
results, more progresses are coming B]

Within the chiral perturbation theory, when the orders of the momentum expansion increase, the number of the
independent terms rise rapidly. For example, in the three flavors case, the p* order Lagrangian has 10 terms plus 2
contact terms, but in the pb order, which is 90 plus 3 contact terms. These independent terms cause large number of
unknown low-energy constants (LECs), a summary of the numerical results of the LECs can be found in [14], which
makes the discussions of the chiral Lagrangian high-momentum-order effects more and more difficult and complex,
contrasting to adding tensor sources mentioned above. Originally, the LECs are fixed via the experiment data. Now,
because of the more and more LECs in the higher order and the lack of enough experiments data, we can no longer
solely rely on the insufficient experiment data to determine these LECs. Calculations of LECs from various models
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or underlying QCD then develop and become popular. In fact, not only the experiment data, but the theoretical
calculations are also needed. Via them, we can check the correctness of the models or the theory appearing in the
computation. As one of the members in the community of calculating LECs, we have calculated the p* order LECs
in ﬂﬂ, |E]7 and then the p® order in ﬂﬂ, @], including the normal and the anomalous parts, two and three flavors
cases. In this paper, we will extend our work to the tensor sources and calculate all the LECs up to the p® order.

This paper is organized as follows: In Section [[I, we review our previous calculations on p? to pb order LECs and
adding the tensor sources. In Section [[TI], we collect the differences of conventions between our paper and Ref. ﬂﬁ] and
discuss the possible dependent operators. In Section [V] we give our p* order results with tensor sources, and Section
[Vl presents our p6 order results. Section [VIlis a summary.

II. THE CALCULATIONS ON p*> TO p° ORDER LECS WITH TENSOR SOURCES

We have calculated the p? to p® order normal part’s LECs without tensor sources in Ref. ﬂﬂ] Using the same
method, we can also deal with the tensor-source part. For convenience, we give a short introduction here, but adding
tensor sources.

The difference from Ref. ﬂﬂ] is the external tensor sources t*”. Adding them in the original external sources
vk at, s, p denoted as scalar, pseudoscalar, vector and axial vector sources, we get the complete sources set as follows

J =9+ dvs — s+ ipys + ot (1)

From the original QCD, the lagrangian can be written as the QCD Lagrangian, E(OQCD, plus the external sources part,
and the generating functional reads

Z[J]

/ DY DYDUDIYDA,, exp {z / d*z[Lcp + ww]}

/ DU exp {z / d*zLenpr(U, J) } / DU et (2)

where ¢, ¥ and A, are light-quark, heavy-quark and gluon fields, U is the pseudoscalar meson field, Lcnpr is the
chiral Lagrangian, and Seg is the effective action. Because this form of chiral Lagrangian is explicit U dependence in
the high momentum orders, and is hard to investigate |4, %due to its complex U and J structures, we are used to
make the chiral rotation to simplify the Lagrangian as

Jo = [QPg + QT PL][J +id][Q0Pr + QT PL] = §, + deyvs — so + ipays + oty (3)

1-— 1
v=0, =1 pp=—2 (4)

To separate the tensor sources to the even and odd parities, t/, we need the following tensor chiral projectors as
Ref. [1]

1
PR = (99" = g g +ie ), (5)
1
v v v v . v
Pp = (PR = 2 (g"g" = g"gh — e ), (6)
= 1(t’“’ + ") tH = l(W —t") (7)
vt Tl 20 7
B = PRy, + PR, (8)
—_ 1 v 7/ v 174 17 v
Ot = SOt = 2oy, = Sop (1 =1 ys) = 0, )
1/ 1 v v
P = i(tljr _tli 75)' (10)

To obtain the Eq.(l), we have used the v matrix identity,

1
s = 2N, (1)



and we introduce ##¥ for the future calculation convenience. After this operation, our symbols have the simple
relations as [5, [10] (see Appendix [A]). Using the same method in [17, [19], we can obtain the effective action Seg
introduced in Eq.([@) from the first principle of QCD,

Se = —iN, mn[ia + Jo = Hae] 4+ iN.Tr nfid) + Jo] — iN.Tr nfid) + J] + NeTr[®q 115, ] (12)

1
n! Fc)

4 4 1 _Z-)n(Nch)n ! 0'1 / o1p1 / OnPn /
+N, Z d*zy - dia, T GO (w2, 2 ) RO (0, @) - B (o, 2,) + O
Eq.(@) is the same as Eq.(1) in [17], but Jq, the external source J including currents and densities after Goldstone
fields dependent chiral rotation €2, includes the tensor sources. ®q. and Ilg. are two-point rotated quark Green’s func-

tion and the interaction part of two-point rotated quark vertices in the presence of the external sources, respectively;
Il is defined by

o 1 50 po
o (w,y) = ﬁ(lﬂn( 2)U6(y)) = —il(id + Jo — ac) 7117 (y, ), va(e) = [Qa) P+ QN (@) Prly (), (13)
with subscript . denoting the classical field. Ggllj,’jgs (x1,2), -+ @y, ) is the effective gluon n-point Green’s function

including gluon and heavy quark contributions and g is the strong coupling constant of QCD. It can be shown that
the last two terms in the r.h.s. of Eq.([[2) are independent of pseudoscalar meson field U or 2 and therefore are just
irrelevant constants in the effective action. While the second and third terms are anomalous part contributions, since
they represent the variations of the path integral measure of the light quark field ¥. The remaining first term is called
the normal part contributions which relies on Ilg.. The ®q. and Ig. are related by the first equation of (I3]) and
determined by

A\n+1 N 2 S
[(I)QC H ap + Z/d $1d4 Ind4 / %GPPI{“P (I yvxlvxla o axnvx'/n,)
1
X(I)?lt:pl (zl, I/l) T q)?;épn (Ina I;z) = O(F)v (14)

where Z is a Lagrangian multiplier which insures the constraint tr;[y5®%.(z, )] = 0. Eq.(d) is the Schwinger-Dyson
equation (SDE) in the presence of the rotated external source. In Ref.[15], we have assumed the ansatz solution of

(@) approximately by
g0 (z,y) = [S(V,))7P8% (@ — y) Vi =0 —ivfy(x) (15)

x x

where ¥ is the quark self-energy which satisfies SDE (I4)) with vanishing rotated external source. Under the ladder
approximation, this SDE in Euclidean space-time is reduced to the standard form of

S(?) - sca(n) [ A2l d By, (16

where C2(R) is the second order Casimir operator of the quark representation R. In our cases, quark is belonging to
the SU(N,) fundamental representation, therefore Co(R) = (N2 — 1)/2N,, and in the large N, limit, we will neglect
the second term of it. a,(p?) is the running coupling constant of QCD which depends on N, and the number of quark
flavors. With these approximations, the action ([I2]) of the chiral Lagrangian becomes

Set ~ —iN.Trfid + Jo — S(V2)] + iN,Tr nfid + Jo] — iN,Tr nfid + J] + O(Ni) . (17)

c

We have proved that the normal parts of the second and the third terms are cancel each other ﬂﬂ] Then in large N,
limit, for normal part we only need to calculate the first term.

Seit ~ —iNTrInfid + Jo — D(V")] (18)

Because in Minkovski space, it is not convenient to perform the compuation, we take the Wick rotation to change
Eq.([I8) to Euclidean Space, with the metric tensor g = diag(1,1,1,1).

$O|M—>—i$4|E, $1|M—>£L'Z|M,

Ol = 7Y, Y = iy B, Yslm = Vsl E,



solm — —sale, palm — —palE,
to,00lm — —to,a4|E, taijlm — tajl e, to,0ilm — itouilE, ta.iolm — ito,ialE- (19)

vy, agy transform as z#, and g ,,,, are considering as (axial) vector-(axial) vector combined. With the help of Schwinger
proper time method M], the real part of the Trln[- - -] in Euclidean space-time can be written as

ReTrIn[@ — i — idoYs — s +ipays — am,t_g“y +2(=V?)]
ReTrIn[D — 0, 4" + X(—=V?)]

1 _ _
~ $Trln [[DT — O B £ (=YD = 0, B+ 5(~V2)]]

1
= §Tr In[O + N]
L AT 04N
= —— lim —Tre (remove const term)
2A—00 1 T
A
R <dr 4 —7(O+N)
= ——Algr;o N ?/d x trp(zle |) (20)
AZ
D=§- i¢£2 - i¢Q'75 — 50 +1ipa7s. (21)

Where a cutoff A is introduced into the theory to regularize the possible ultraviolet divergences. O is the old operator
without tensor sources in ﬂﬂ], and N is the new operator with tensor sources

O = [DF +%(=V?)][D + %(-V?)], (22)
N = V;\Fé”’y)‘a“” - tg”l’v;a‘“"ﬁ Fidg bl o s + ity o s + sath o + T sqa
ipaly” oy — T paot s — L=V )EY 0" — I S(=T,)0" + B B 0. (23)

If we calculate Eq.(20) directly, it is not explicitly chiral covariant for each terms in the calculation. In order to
recover the chiral covariant form to get the LECs, we must collect the relevant terms together by hand, which consumes
too much time. Fortunately, we had found a method keeping the chiral covariance at each step of the low-energy
expansion computation, and used it to obtain the normal part LECs without tensor sources succesfullyﬂﬂ]. We
introduce it here briefly. Use the relations

k4 iV = eiVeor (k“ + (Y, ({%))e_ﬁw'% 7 o)
A A R\ 8 Y L\l A A B
o (V0L (9, (V) (92, Vg ogaq o
+ﬁﬁ‘i7 V0. (V0. (V. (Vo Valloog 00 o205 + 0(). (25)

Substitute ([24)) into the integrand in (20)), we change it to
trf<I|e—T(O(in)+N(iVm))|$>

'k [ AR o NG _
=tr¢ " " ik —7(0(iV4)+N(iVy)) k —ikex
r’/(2w)4/(2w)46 (k'le ke
4 = —
:trf/(d—ke_T(O(k‘f‘in)—i—N(k-i-in))

/ d’k efr(eﬁw'%o“(kﬂ%e”“'%+eﬁm'%N(kﬂ'%e*ﬁm'%)

4 = ~ —_ ~ — _
:trf/ (d k eV g5 o= T(OR+IY)+N (k+iV)) , ~ iV

:trf/ d°k o~ (OUe+iV)+N (k+i¥)) (26)



Where O is the original exponent without tensor sources, which can be found in Eq.(14) and (15) in Ref.[17], and N
is the new operator with tensor sources

N = —i(k* + F) A o™ it (B 4 FN) oA 4 iaythy v o vs + it 1 ayo™™ v s + St o + i 5001
+ipathy ot s — it oot s — S([E + FHP2) Y o — tHS([KE 4+ FR2)o + 18 00, (27)

O = 0~ iV}, 0 — 5[V, [V, 010p0} + L[5, [V, 9, Ol o3
i =5 —o

P

x)

1—0’ = — —V
+—[V0, V0, [V, [V, 0|07 040300 —

o Vo [V, ONNaag o oRag + O(p"). (28)

T

Where O = (@, 5, p,1%)T and O = (aé,sSz,pgz,fgg‘ﬁ)T. With Eq.(20) and (26), we get

. . . . _ 1 . < dr d*k
ReTrIn[d — ig, — id,7s — so + ipays — oty +S(=V?)] = —3 j&gréo L /d4$/ 2n)? tr PP 1 (29)
Az

B can be found in Eq.(17) of Ref.[17], and B, = —7N. Expending Eq.([2J) in terms of momentum powers, theoretically,
we can get all order of the chiral Lagrangian. Before giving our result, we need to discuss the difference between our
paper and Ref.[10].

IIT. CONVENTION DIFFERENCES AND INDEPEDENT OPERATORS

To match our original results and for convenience of our computation, we make the following changes in this paper.

e To match Ref.[5] and our original results in Ref.[17], we define

i
X+, = vuXi - §{Xq:7uu}u (30)
comparing with

X+,u = vuXiu (31)
in Ref. HE] Where x4, x— and u, are analogous to sq,po and aq in our symbol (see details in Appendix [A]).

e To match the coefficients’ dimensions in a given order, i.e., all the coefficients in a given order have the same
dimensions, we change ¢/ in Table 2 in ﬂ%] to Bot'”, analog of 7" defined in h] But [10] times bo, a
parameter is the analog of By for tensor fields. Because by is hard to be calculated, we use By instead of by.
Now, all the coefficients in the p? order are dimensionless, and in the p® order, their dimensions are GeV~2.

e Ref. HE] does not consider the epsilon relations

My, = —6gM, (32)
oduv AP o9 A Up wp VA
7 egs™P = —2gM7g"P 4 2gMP 9", (33)
Ea,uv)\eapa'é _ _g,upgvcrg)\é + g,upgvég)\cr _ g,ucrgvég)\p
+guagupgA5 _ gu6gupg)\a + gu6guag>\p' (34)

Combining with Eq.(5.3) in [10],

Cuapts? = itx (35)

one can reduce t_t_ — t ¢ty and t_ty — t1t_, i.e., changing even t_ to corresponding ¢, and exchanging the
order of ¢4 and ¢_. For example

1
tiytﬂu)\ = §gy>\tipt+,up - ti)\tJﬁ#’“, (36)



So even t_ terms and some (---t_---t,---) 1 terms are not independent ones. We substitute the epsilon
relations in Y;, 7 = 23 — 30, 53, 56, 81, 83, 89,91, 93,104, 105, 109 — 111, find that the most of these terms can lead
new relations, except Yig5. From Yio5, we get

1 8
Y30 = —VYa5 + - Yi19. (37)
nf 3

We list all the new relations in Appendix [Bl All the terms in the 1.h.s of (BI) are considered being dependent,
and being reduced. We find that totally, there are 20 additional dependent operators in n flavors case, 19 in
3 flavors and 11 in 2 flavors cases, leave 100 independent operators for n flavors, 94 for 3 flavors, and 67 for
2 flavors. In Section IV of Ref. ﬂﬂ], we have found a result that without quark self-energy, all the coefficients,
except contact terms, must vanish. Now in the present work, if we similarly ignore the quark self-energy, without
relation ([B2)-(BH), we can not obtain these zero results. Instead, with relation (32)-(35), we do reproduce the
vanishing result. This shows the importance of relation (B2)-(B5) in the computation.

e Also, with (32)-(3h), adding B8]
et VA = — det(g™®), =, A\p o =p VN (38)

one can remove all the epsilon in chiral Lagrangian as following. Firstly, even epsilon can be changed to g, ,
and odd epsilon can be reduce to one. Secondly, in one epsilon terms, one can change ¢4 to ¢t_ or t_ to t; with
the help of (B3], leave only two epsilon. Finally, using [B2)-(34) and (B8], all the epsilon can be removed. In
other words, there does not exist the odd-intrinsic-parity part with tensor sources.

IV. THE p* ORDER CHIRAL LAGRANGIAN WITH TENSOR SOURCES

Using the same method as Ref.[17], we can expand the exponent in Eq.[29) to the order p*. Ref.[10] had given us
the p* order Lagrangian of form

4
£4,t =AM\ <tiuf+wj> — iA2<tiVuHu,,> + Aj <tiut;ru> =+ A4<ti’j>2 = Z A X, (39)
n=1

Considering that our computation is done under large N, limit, if we only expand Eq.(29), but do not consider the
equations of motion,

v =5 (- 52, (10)

terms in the chiral Lagrangian with two and more traces vanish. To avoid unnecessary complicities, in this paper we
only write down those terms with one trace in the calculation

3
v . v v 1 1
Lyt = Mtry [t+7Q)H,,ti7Q] + idotry [GQ7MG/Q)Vti7Q] + )\3tI'f[VQ)HVti7Q] + O(N) = E Ann + O(N) (41)
n=1

Expanding Eq.([29), We get the analytic results as

& dT d4]€ 2 2
= - —7(k*+3X3) (o9, 2y2

m=vo [T e (—2r252), (12)
AZ
> q d*k

Ay = Nc/ —T/ Lo TEHED (119728, 4 47%k2E, + 87083, (43)
L7 (2m)
> q d*k

A3 = Nc/ —T/ Lo 7D (9725, 9722w, (44)
27 ) (2m)

A

I To avoid the confusion of our symbol with that used in Ref. ]7 for more convenience both in the calculation and in the result, we use
symbols both try[---] in the calculation and (- --) in the result to represent the operation of taking the flavor trace.



and the relation betweens \,, and A,, are

1
Al — 2—.BQA37 (45)
1 1
A2 = —4—'30)\2—2—'30)\3, (46)
1
Ay = B—gxl, (47)
Ay = 0. (48)

In Table[ll we list our p* order LECs with tensor sources for cutoff A :1000i}88MeV. The 10% variation of the cutoff
is considered in our calculation to examine the effects of cutoff dependence and the result change can be treat as the
error of our calculations. The results are taken the values at A = 1GeV. The superscript is the difference caused at
A = 1.1GeV and the subscript is the difference caused at A = 0.9GeV, i.e.2,

Ap A=1.1Gev—An, A=1GeV

An,A:lGeV . (49)

An A=0.9Gev —An A=1Gev

TABLE I: The obtained values of the p* order coefficients. The definition has some difference from HE] The details
can be found in Section [II}

n 10°A.(ny = 3) 10°A,(n; = 2)

1 12.8970:56 13.03,0:52 (50)
2 —1159719% —11.7s
3 —4.057052 4187052

To compare with our original results, the parameters we use to get Table [l are the same as Ref. ﬂﬂ] We choose
the running coupling constant from Ref. ﬂﬂ] to solve Eq.(d]), and get the quark self-energy the same as FIG. 2 in
Ref. ﬂﬁ], but adding two-flavor case. Except the quark self-energy, we need another input parameter Fy, the p? order
coefficient in chiral Lagrangian. We choose Fjy = 87MeV to get F; about 93MeV ﬂﬂ]

V. THE p® ORDER CHIRAL LAGRANGIAN WITH TENSOR SOURCES

Continuing our process in Section [[¥] we can obtain the p® order results directly. Before listing our results, we first
introduce the existing results. Ref. m] had given us the p% order Lagrangian as follows,

117
Z KZYH + 3 contact terms n flavors

n=1
110

6 tensor sources = /d4:1: Z CT0O,, + 3 contact terms three flavors . (51)

n=1
75

Z cI'P, + 3 contact terms  two flavors

n=1

SCH'

Here, we use the symbol Y,,, O,,, P,, to denote n, three and two flavors’ independent monomials, which can be found
in Table 2 in Ref.[10], and K1, CT cI' for their coefficients. As the reasons in Section [Tl and Appendix Bl some of

n’-n

them are not independent. But we use the same numbers. If one monomial is not independent, we just neglect it.

2 Notice that A with subscript n, A,, means the p* order coefficients in Eq.([3d), but A without subscript is the cutoff in our calculation
introdued in Eq.(20)



In our calculation, expanding Eq.([20) as the p* order, we only get one trace terms without the equation of motion

Seff'pﬁ,tcnsorsourccs = / |:Z Zthf + O (N >:| . (52)

O,, are the p°® order operators we could get in our calculation, and Z! are the corresponding coefficients. For those
operators with more than one derivatives, for example Ogg = d, V¥ udktﬁm the derivatives are arranged in such a
way that each of Vo ,” and t4 o, has a derivative and we do not put two derivatives in one operator. We list all
operators in Table Il With the help of computer, we can get the coefficients Z1, listing in Appendix [C] Making the

TABLE II: The p% order operators O,

n On n On n On
1 i{aq,uab, ag,pao g 27 iaq,u[dvaq,x, A"t 53 iV {drab, t&-
2 iag,uag,y(agag’kt‘ﬁ’g + ag’kaé’zti?ﬂ) 28 16, udvaq,x, d”tgj\Jr] 54 iVQ,W{dAag\)7 t’i”yﬂ}
3 iagyuagyya‘éag,,\t’ﬁﬂ 29 taq,u[dvaq,x, dkti'fg] 55 salduaq,., t"g)]
4 iaQ,an,yaﬂy)\G/gt:}’Q 30 iaQYM{dyt+7Q7y)\7tli?Q} 56 ipg[tiljﬂ7 dHaQ,V]
5 aq,uab[dyaax, 7] 31 iag,{dut!] o 170} 57 iVau Vet
6 aouan.(daot?g —t" o d’ad) |32 iag,, {d"ty 0.0, 10} 58 Vet o %
7 aquaow(diag, ,\t“’\ —tv de“ag\z) 33 iag,uan,.{th"g, s} 59 iV, ut" Q/\t”A
8  aquaqu(daabtg —t" AdAaé) 34 iag,useanuth’qg 60 iVo,u{pe, "o}
9 aQ)HQQ,y(d/\aQtE’Q — t,QAd’\ag) 35 idﬂag[duag’htﬁg] 61 Vg)uy{til:m sa}
10 aq,.a0, V{dwg, o} 36 iduaq,,d ag g 62 itout! o 10
11 aq,u(d"aq,vao \t” Q +dyaq AamﬁM ) |37 iduag,y[d”agmt’fgﬂ] 63 ito,ut” QAt”A
12 aqu(dvabagat”g + dl,ag,,\agt’iyﬂ) 38 iduagyyd,\aétﬁ‘r’y\ﬂ 64  sotiouwth’y
13 ag,udyaﬁag’kt’fﬂ 39 VQ,HV(Q?ZQQ’Ati):Q — tiyﬂkaéag) 65 SQt,,Q,M,,t’fjﬂ
14 ag,uagm,g,mti’\’g 40 Vo, (QQ,/\agtii\Q — tiyﬂkaé’zaé) 66 dquudkti’\’Q
15 aguant o 190 41 Vo,u{aaxad, 7o} 67  duVound“tq
16 aQ,HaQ,yti’Q)\ti?Q 42 VQ,W(agti@Aaé aq At+ Qag) 68  d.Vaad'th "“A
17 aguabht— ot 43 Vo,uvao ! qag 69 ciuzt+,gzyclw+,Q
18 ao, a0, t" th“ 44 iagult o ,d"pe)l 70 dutyauad“t?g
19 aauaut’ ot 45 agult" o ,d"sql 71 dutyouad g
20 aou(t o aoxtPa —tomabt,) |46 idualy {t— o 0} 72 dut” , ditDg
21 aqut+.uaant g 47 idyag{t" ot 73 dut_ouadM g
22 agu(t” o aoxt”g —taaabt™,) |48 idpao {t7 o, 0} T4 duto ouad’ty
23 agut— a.uaht g 49 Vo, {al, dat"o} 75 aquan {t" g, pat
24 iao,[d" ao,dy, 1) 50 Vo {aor, "t} 76 aoupaantt
25 iaq,uldval, dato) 51 iVo,u{aox, d "o} 77 ipa{ty.au, "o}
26 iag,uldvad, drat') 52 iVa,uw{d"agx, 2}

use of Table[[V] the relation of our coefficients Z! and K can be obtained directly, listed in Appendix [Dl Combining
Appendix Bl [T [D] and using the parameters in Section [Vl we obtain both two and three flavors coefficients ¢ and
CT and list them in Table [Tl As the p* order, we write down the values at A = 1GeV, and use the superscript and
subscript denote the difference caused at A = 1.1GeV and A = 0.9GeV.

T T T T
Cra=1.16ev—Cn a=1Gev Cn,A=1.1GeV ~ Cn,A=1GeV
cT cr (53)
n,A=1GeV n,A=1GeV .
cT —cT cT —cT
n,A=0.9GeV Y n A=1GeV n,A=0.9GeV ~ Cn A=1GeV

Because of Appendix [Bl some terms are not independent, we denote their coefficients by a symbol ”—". In Ref. ﬂﬁ],
coefficients are multiplied by suitable power of by to make them with the same dimensions. Since we can not find a
simple way to obtain by. Instead of by, we use By to match the dimensions.



TABLE III: The obtained values of the p order LECs. CI' denote the three flavors coefficients, and ¢ denote two
flavors. n is the number of independent monomial in HE] with some difference. Some monomials are not

independent, we denote their coefficients by a symbol ”—” The details can be found in Section [Tl
i 10°GeV2C!  j 10°GeVic] | i 10°GeV2C] j 10°GeVic] | i 10°GeVC! j 10°GeVic]
1 0687013 38 9.047020 22 63105 75 000799 50  0.007999
2 —12.72798% 1 —16.037}:22(39 —3.23703% 23 —8.981080| 76 -

3 558.07 2 07280340 -3.64702% 77T —4.04703% 51 —3.97H0 %
4 289702 41 0.00599 78 —9.2470580 52 —9.6970-53
5 0.0079% 42 498°9% 24 5.0070%| 79 1454708 53 14.8070%]
6  0.0010:00 43 —5.771058 25 —5.82709% | 80 0.003¢:00

7 —0.8370%9 3 —0.857009 |44 —11.08T578 26 —11.181578 | 81 —22.86F33% 54 —23.2313°52
8 —0.247000 4 —0.22700045  0.00T000 27 0.001500 | 82 - 55 -

9 3.5610% 5 3.87.013(46 —0.013038 28 —0.257037| 83 —20.237%17 56 —21.13F32%
10 —14.0672%0 6 —14.677222 147 —40.617530 29 —41.2175%5 | 84 — 57 —

11 328,032 7  3.35 023 |48 - 30 - 85 0.00f500 58  0.001900
12 000799 49 000199 31 0.0019%9| 86 -

13 0.005900 50  0.001000 32  0.001000| 87  38.66,335 59 38.487530
14 0.0019:00 51 - 33 - 88  1.37,045 60 1.51.030
15 0.0079:% 52 3117008 34 3.067042| 89 —252701 61 —2.487013
16 0.0025:00 53 —8.3610705 35 —8.3510%5| 90 —8.6970%5 62 —8.4370%0
17 0.001900 8  0.001000(54  5.68,0qs 36  5.96,0¢s| 91 4.99703 63 5147032
18 0.00f500 9 0.001000 (55  2.42F59% 37 2187095 | 92 14.917993 64 1512003
19 - 10 - 56 472047 38 4.92707%| 93 —16.107135 65 —16.09715%
20 - 11 - 57 0.005000 94 0.005000

21 - 12 - 58 0.0010:55 95 0.0070%

22 - 59 0.005:05 96  0.0010%

23 - 60  0.001000 97 - 66 -

24 — 61 0.0050:00 98  19.83.%19% 67  20.50; %355
25 - 13 - 62 1505006 39 1.50500:| 99 0.005500 68 0.001000
26 —4.13%072 14 —417F000 163 17.67 15, 40 17.897173 100 0.00T900 69  0.00%0:00
27 o 15 _ 64 —6.33}%;%% 41 —6.46}%;%% 101 0.00f5:90 70 0.00%9:00
28 0.005509 16 0.001050(65 —6.747035 42 —6.827015 102 —

29 0.001500 17 0.0010:00 |66  0.0010:00 43 0.0010:00 | 103 -

30 3.0405 18 472995167  —3.837037 44 —3.94%0:50 | 104 -

31 0.005000 19 0.00190 |68 —0.317035 45 —1.28%022 (105  5.18;0%0 71 531.0%;
32 0.0070% 69 7167032 46 7147030106 3501079 72 3.08708
33 0.005909 70 0.005000 47 0.001005 (107 —5.81753) 73 —5.64702%
34 0737008 20 0497982 | 71 0.001005 48 0.927005 (108 6.07; 0% 74 6.05.0747
35 880709 21 862790 |72 0.00190 109 657,04 75 6.63,04
36 0.005000 73 —0.627001 110 0.0055:00

37 0.0050:0 74 - 49 —

Ref.ﬂﬁ] told us that operators contributing to the odd-intrinsic-parity part with tensor fields start from the p®
order, and we show in Section [IIl that the the odd-intrinsic-parity parts with tensor fields can not exist. So we have
gotten all the LECs to the p® order, with scalar, pseudoscalar, vector, axial vector and tensor sources, including
the normal and anomalous parts, two and three flavors cases. We found that in our method, all the contact terms’
coefficients are divergent, except H; in the p* order normal part.

The calculation process is too complicated, to avoid some possible mistakes, the expansion in Eq.([29) and most of
other calculations are done by computer. To check the correctness of our results, we examine them in some alternative



ways. Firstly, because these results contain the original results in ﬂﬂ], if we switch off the tensor sources, as a check,
we must recover the original results. Secondly, some terms in Table [[Il have two parts, we calculate them separately.
C, P and hermitian invariance constrain the two parts’ coefficients equal(or with a minus sign). Our analytical results
for the separate part must give the same coefficients. Thirdly, ﬂﬂ] told us that if we switch off the quark self-energy,
all the LECs, except the contact terms’, must be zeros. This is a strong restriction to our results. We found that this
restriction can be realized only when we using the new relations given in Appendix [Al With all above examinations,
we are confident of the reliability of our numerical results for LECs.

VI. SUMMARY

To summarize our result: we extend our previous computation for LECs in Ref., ] to the case with tensor
sources, and obtain all the p? and p® order LECs involving the tensor sources in the normal part of the chiral
Lagrangian. We find that the operators given in the Ref.ﬂE] are not all independent ones due to some relations
among epsilon. Adding these relations, we can reduce 20 operators for n-flavor, 19 for 3-flavor case, and 11 for
2-flavor case, left 100 independent operators for n-flavor, 94 for 3-flavor, and 67 for 2-flavor case. Our LECs are
presented with numerical values, both for two and three flavors cases. We also find that the the odd-intrinsic-parity
parts chiral Lagrangian with tensor sources can not exist. So, until the p® order, we have already given all the
LECs values. Although, when obtaining these values, we have made many approximations. As the first step of
estimation for the value of these LECs, these results not only offer us the sign and order of magnitude , but also the
quantitative information of LECs. Via the improvement in the computation procedure, we expect more precise results
can be obtained in the future. Another coming research is applying the present chiral Lagrangian with tensor sources,
adding the known LECs to various low energy (m, K,7) processes. We hope more physical results can be obtained.
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Appendix A: relations among our symbols and those used in Ref. [@]

To help in understanding the mutual relation among the definition of symbols in our formulation and those in
Ref.[10], we give a comparison in Table [Vl

TABLE IV: Comparisons between the symbols introduce in Ref.[10] (first and third columns) and corresponding
ones defined in the present paper (second and fourth columns).

Ref. [10] Present paper Ref. [10] Present paper
s d* x" 4iBod"pa — 4iBosaap — 4iBoagsa
U Q i 2VEY = 2i(afag — agag)
u 2ag, VA i 2dMVEY — 2id* (abat, — abaly)
X X fe —2(d"ag, — d”ag,)
X+ 4Boso VA —2(d*d"afy, — d*d”al)
XY 4Bod'sq + 4Bopaagy + 4Boagpa | hHY 2(d*ag + d¥ap)
X— 4iBopa IR —ivh
[ th'y t "y

10



Appendix B: new relations

In this appendix, we list the new relations, when using the epsilon relations in Section [TIl The Lh.s. of (Bl are
considered being dependent, and being reduced.

1

Yoz = §Y9 - Yo
1

You = §Y9 - Y

Yo = Yi0—Yi3
1

Yo = §Y14 —Yis
1

Yor = §Y16 —Yis
1

Yo = §Y16 - Yi7

Yo = Y19 — Yoo
Y30 = Ya1 — Yoo

1 8
Y3, = —Y- =Y
32 N, 35+3 119

1 1 1
Y53 = —§Y11+§Y12+§Y51—Y52+Y90

1
Y56 = §Y54—Y55

4
Y1 = §Y119
Yss = 1Y ! Y- Y5
83 = 5136~ 3 38 82
Y9 = Yas
Y91 = Yoo
Yo3 = Yoo
Yios = 4Y
104 = 319
Yiog = 1Y ! Y- Yi
109 = 5¥36 2N, 38 106

1 1 1
Yiig = _§YS2+§Y92+§Y106+YN7
Yiii = 1Y+ 1Y—i—lY +1Y +1Y + Y] (B1)
= e IN, 38 T 5 ¥s2 + 5 ¥02 + 5106 108

Appendix C: Z, coefficients
[ 10 40 2 8
zl = [ dK —107'32164—?7'41@22;@4—?742%—§T5k42k—275k22i—§7522},

[ 8 40 8
dE | + 10775 — o7 k% — ?742§ +27°k?5} + 57522},

40 2 8
dK | — 10735, + 474 k2%, + §T4Ez — §T5k4zk —27°K%%% — 57522},

40
3

dK | — 10738, 4+ 274k%%), +

N
Ny
I
— e — —

2 8
TN+ TR S - 277K - 57522},
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Appendix D: ZT and K!’s relations

This appendix list the relations between our coefficients, Z7, and the coefficients in Ref.[10], K. Some coefficients
vanish, because of the new relations in Appendix [Bl
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K3
Ky

KI =
Kg
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Ky
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Kiy
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Kiy
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Kig
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