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In this paper we deal with several issues in the localisation of the Unruh-Dewitt detector model.
In its original formulation as a pointlike detector, the Unruh-DeWitt model has been used to study
extensively the physics of quantum fields in presence of accelerations or curved backgrounds. Natural
extensions of the model have tried to take into account the spatial profile of such detectors but all
of them have met a series of problems in their spectral response which render them useless to
study some of the most interesting physical scenarios. This paper analyses the spectral response of
spatially smeared Unruh-DeWitt detectors, discusses the kind of spatial profiles which are useful for
the study of relevant scenarios and study in which cases the Unru-DeWitt model can be effectively
used to describe atoms interacting with the EM field.

I. INTRODUCTION

The Unruh-DeWitt model describes a monopole de-
tector coupled to a massless scalar field, moving in the
four-dimensional Minkowski space. Since its inception,
it has been used to study the response of detectors ex-
periencing acceleration, to provide a proof for the Unruh
effect, and particularly as one of the main tools to probe
dynamics of entanglement in the context of the recent
field of Relativistic Quantum Information (RQI).

Usually, the detector is considered a quantum system
with two internal states, ground state |g〉 and excited
state |e〉, with Ω being (taking ~ = 1) the energy differ-
ence between the two levels. The detector is then coupled
to the real massless scalar field φ according to the follow-
ing interaction Hamiltonian:

Hint = λ ξ(τ)µ(τ)φ(x(τ)) (1)

where λ is the coupling strength, ξ is a switching function
which activates during the interaction time , µ(τ) the
monopole momentum operator and x(τ) the worldline of
the atom.

In spite of the differences between this monopole-scalar
field interaction and QED (for instance in the behaviour
at very extreme frequencies which may quantitatively
vary), it qualitatively models the matter-radiation inter-
action in some specific settings [1] (see section V for fur-
ther details), while it very accurately models the interac-
tion of internal degrees of freedom of atoms with phonon
fields (for example the spin-phonon interaction of ions in
a Coulomb crystal, collective excitations of Bose-Einstein
condensates [2] and other solid state and analog systems.

This detector has been commonly analysed under the
pointlike approximation, i.e. it has no extension and it in-
teracts with the field only in the exact geometric point of
the space-time where it is placed. While this assumption
–which will always be an approximation since any phys-
ical detector has a finite size– seems to be valid in many
scenarios, it is not valid in general even for physically
interesting scenarios, and is particularly problematic in
some specific settings that we will discuss below. Also,

it presents UV divergences as any pointlike interaction
and cannot be guaranteed to hold for any context where
we consider several detectors undergoing relativistic mo-
tion where the pointlike approximation may be violated
from some reference frames. Moreover, additional prob-
lems with the pointlike nature of the detector arise. For
instance, there are various regularisation schemes which
yield different transition probabilities [3].

For all these reasons, and keeping in mind that any
realistic particle detector has a finite size, it is impor-
tant to model and understand particle detectors that
present a spatial smearing. However, previous localisa-
tion models presented a series of issues when it comes to
analysing non-vacuum field states. In this note we intend
to provide a pedagogical description of the use of a spa-
tially smeared Unruh-DeWitt model and we will discuss
how to overcome the problems of these particle detectors
when analysing signals by means of a small but essential
modification of the spatial profiles employed in the past.
We will also analyse how to implement it for spatially
smeared uniformly accelerated detectors and to what ex-
tent an Unruh DeWitt detector is a reliable model of
electromagnetic atomic transitions.

The paper is organised as follows: in section II we
present the localisation issues of the canonical Unruh-
DeWitt detector employed in the literature. In section III
we propose a way around these difficulties by modifying
the spatial profile of the smeared Unruh-DeWitt detector.
In section IV we discuss how to use these detectors to
analyze arbitrary signals in accelerated settings. Section
V shows how to relate the spatial profile of the Unruh-
DeWitt model to the wavefunctions of physical systems
under standard QED interactions. Finally, section VI
contains our conclusions.

II. LOCALISATION ISSUES OF THE
UNRUH-DEWITT DETECTOR

The first Unruh-DeWitt localization model was intro-
duced by Schlicht [3] to solve the problems with the non-
equivalence of regulators derived from the pointlike na-
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ture of the detector. In particular, he proposed a lo-
calised spatial profile for the detector (which for compu-
tational convenience was chosen to be Lorentzian). This
localisation model was further studied by Langlois [5]
first, and then by Satz and Louko [6, 7], who envisioned
a more general scheme which allowed general spatial pro-
files to be considered undergoing arbitrary movement
throughout spacetime. In these works the interaction
Hamiltonian is defined as follows:

HI = g

∫ ∞
0

dk√
2ω(2π)3

∫
dx F (x)

(
σ+eiΩt + σ−e−iΩt

)
×
(
a†ke
−i(k·x−ωt) + ake

i(k·x−ωt)
)

(2)

Where F (x) is the spatial smearing of the detector that
is supposed, for simplicity and without loss of generality,
at rest and centred in x = 0, and Ω represents the fre-
quency gap of the two-level system, in other words, the
transition energy between the ground and excited state
of the detector. The detector is supposed to be tuned
to this frequency, i.e. it is more likely that the detector
absorbs field quanta of this frequency than anything else,
as we will discuss below. In the case that the detector is
point-like F (x) = δ(x), this model becomes the standard
Unruh-Dewitt detector introduced in [8].

Previous works dealing with the localised Unruh-
Dewitt model just considered the behavior of the detector
interacting with the Minkowski vacuum, which is known
to have equivalent behavior for all frequencies [6, 7]. In
that respect, the problems of the model dealt with in this
manuscript have not been studied yet. We will discuss
below how they can build up when one tries to process
physical signals and photon wavepackets with such a de-
tector.

For most recent analyses [3, 5–7] a real symmetric pro-
file function was chosen. In particular, the spatial profile
used for most calculations was a Lorentzian. To illustrate
here the problem in the most simple way we will consider
a Gaussian profile, but all results apply equivalently to
the Lorentzian case or to any other spatial profile.

From the Hamiltonian (2), the integral over x takes
the form of a trivial Fourier transform

HI = g

∫ ∞
0

dk√
2ωk(2π)3

(
σ+eiΩt + σ−e−iΩt

)
×
(
F̂ (k)a†ke

iωkt + F̂ (−k)ake
−iωkt

)
(3)

where we have made the dispersion relation explicit ωk =
c|k| and

F̂ (k) =

∫
dx F (x)e−ik·x (4)

is the Fourier transform of the spatial profile.

We can rewrite the Hamiltonian in a way in which the

resonant and anti-resonant terms are made explicit:

HI = g

∫
dk√

2ωk(2π)3

[
F̂ (k)

(
a†kσ

−ei(ωk−Ω)t + H.c.
)

+F̂ (−k)
(
a†kσ

+ei(ωk+Ω)t + H.c.
)]

(5)

The time evolution operator is computed as the time
ordered exponential of the Hamiltonian. When integrat-
ing over times, the exponential factors in the Hamiltonian
above are highly oscillating except when ωk = c|k| ≈ ±Ω
(stationary phase). This is the mathematical reason why
a detector is tuned to the frequency of the energy gap
between the ground and the excited state, as it is very
well known from the study of the matter-radiation inter-
actions [1, 9]. In plain words, if we want to stimulate
the transition between ground and excited state we have
to ’beam’ the detector with radiation tuned to the nat-
ural frequency of the transition (on resonance). Other-
wise, the probability of transition quickly decreases with
the detuning between this natural frequency and the fre-
quency of the radiation stimulating the transition.

Here is the issue. If we choose F (x) to be a localised
smooth function such as a Gaussian or a Lorentzian,
which is the case for most realistic atoms , the frequency
profile F (k) will be a localised function centred in k = 0.
Being this so, its evaluation at Ω/c will give a negligible
value, for Ω sufficiently large.

The reason why this issue does not arise in electronic
transitions for atoms at rest is because, for most cases,
Ω is small enough. For instance, electronic transitions in
the hydrogen atom have an Ω in the visible range of the
spectrum, whereas the Fourier transform of the spatial
profile has a width of ∼ a−1

0 , which extends up to the
X-ray spectrum.

However, when we consider accelerated detectors, the
gap frequency Ω very soon leaves the support of the de-
tector frequency profile. This is so, even if we compensate
the Doppler shift of the wavepacket so that it is always
peaked at a frequency ≈ Ω (from the perspective of the
detector), where we would expect the resonance at every
time. If the spatial profile function does not have infor-
mation about the energy gap between the ground and
excited state of the detector, the response of the detector
to the resonance frequency (the frequency which, by far,
mostly contributes to the estimated transition from the
ground and excited state) will be exponentially damp-
ened by the Gaussian or Lorentzian tails. That implies
that an accelerated detector would be, in practical terms,
incapable of detecting a wavepacket centred on its natural
frequency. If we are to analyse signals with Unruh-Dewitt
detectors, the model should be accordingly modified to
avoid this issue.

To illustrate the problem let us consider the most sim-
ple 1-D case, and a detector with a Gaussian spatial pro-
file. We can take F (x) to be a normalised Gaussian pro-
file with characteristic length L:

F (x) =
1

L
√

2π
exp

(−x2

2L2

)
(6)
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And so its Fourier Transform F̂ (k) will be a Gaussian
localised around k = 0

F̂ (k) = exp

(−k2L2

2

)
(7)

Any frequencies such that ωk � 0 would be exponen-
tially dampened in the integral over k by the weight F̂ (k).
In particular, if Ω >> 0, the stationary phase contribu-
tion ωk = ±Ω will be zero due to F (±Ω/c) ≈ 0, effec-
tively cancelling any non-trivial time evolution.

So, as it is illustrated in fig. 1, if Ω� cL−1 the detec-
tor will not ever detect any signal even if it is a powerful
pulse tuned to the transition frequency. Therefore, in
order to be able to study relativistic settings, some mod-
ifications must be made to the model.
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Figure 1. A highly localised F̂ (k) centred in 0 would prac-
tically suppress the possibility of detection for the resonance
frequencies to which the detector is most responsive, k =
±Ω/c. This results in a vanishing transition probability no
matter what frequency we use to illuminate the detector.

One could argue that if the detector is very small with
respect of the wavelength to which it is tuned (as it is

the case of atoms), the Gaussian profile F̂ (k) may cover
the resonance regions. However, as seen in figure 2, if
we analyze the probability of transition as a function of
the frequency of the radiation with which the detector
interacts, its spectral response will be asymmetric in the
detuning between the detector natural frequency and the
frequency of the radiation stimulating the transition ∆ =
ωk − Ω.

In other words, if the transition frequency is Ω and
the radiation stimulating the transition is detuned from
the energy gap of the detector by a small factor δ, the
probability of transition will be positively weighed by
F̂ (k) if ωk = Ω− δ, and dampened if ωk = Ω + δ.

Although a similar asymmetry occurs in realistic
atomic transitions (as detailed in section V), the effect is
so small that it can be neglected in most circumstances.
In practice, no such effects are observed neither in atomic
detectors nor in any other settings where quantum sys-
tems (like harmonic oscillators) are coupled to quantum
fields.

When the size of the detectors increases as to become
comparable with the wavelength to which they are tuned,
e.g. quantum microwave antennas (for example flux or
charge qubits in cQED), Rydberg atoms and cavity based

detectors [10, 11], the detector response is also symmet-
ric in frequencies so the use of the Unruh DeWitt detec-
tor presented above to model those scenarios (where the
spatial profile is related to the natural dimension of the
detector) can be problematic.
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Figure 2. A not-so localised F̂ (k) centred in 0 would intro-
duces an asymmetry in the detection of frequencies ωk = Ω±δ
k = ±Ω/c

III. MODULATED OSCILLATIONS IN THE
SPATIAL PROFILE

In most realistic settings, the spectral response func-
tion of two level emitters is symmetric with respect to
the resonance frequency, thus a small detuning should
produce similar effects no matter if it is positive or nega-
tive. Also, as we discussed above, if the two level system
size is comparable with the wavelength it is tuned to,
the localized Unruh-DeWitt model employed in the lit-
erature will dramatically fail to detect anything, even if
it is the case of an intense pulse of radiation centred in
the natural frequency of the detector’s transition.

Taking these issues into account, we propose a modifi-
cation of the way in which the Unruh-Dewitt detector is
spatially smeared. We will do so by feeding the spatial
profile with information about the resonance frequency.
For that matter, we will introduce a spatial profile which
is strongly localized by a function S(x), modulated by in-
ternal oscillations associated with the frequency the two
level system is tuned to.

If the spatial profile is

F (x) = S(x) cos

(
Ωx

c

)
(8)

then the spectral profile would be

F̂ (k) =
1

2

[
Ŝ(k − Ω/c) + Ŝ(k − Ω/c)

]
(9)

which is a localised profile in frequencies around the two
resonance regions. If we take S(x) to be the Gaussian
profile (6) then

F̂ (k) =
1

2

(
e

1
2 (k−Ω/c)2L2

+ e−
1
2 (k+Ω/c)2L2

)
(10)
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Figure 3. A localised F̂ (k) can be not centered in 0 by in-
troducing a oscillating term in the spatial profile seen in the
inset. The figure shows symmetric detection zones may ap-
pear centered in the frequencies k = ±Ω/c

which, as seen in figure 3, covers symmetrically the reso-
nance regions.

By doing this we have the desired spectral response no
matter the value of Ω, and the detector is spatially lo-
calized around x = 0 with a characteristic proper length
L.

IV. ACCELERATED DETECTORS

In order to provide a complete description of the lo-
calised detector model proposed in this note, in this sec-
tion we will describe how to use this model to analyse
arbitrary signals with a spatially smeared uniformly ac-
celerated detector.

There is a well known problem with accelerating rigid
bodies: the proper distance between two points of a solid
accelerating with the same relativistic acceleration in-
creases with time, eventually destroying the solid when
the internal tension it supports is overrun by the rela-
tivistic effects.

The reasonable hypothesis for a physical detector is
that it has to keep internal coherence. This means that
the internal forces that keep the detector together will
prevent it from being further smeared due to relativistic
effects up to some reasonable acceleration regimes. That
means that, effectively, every point of the detector will
accelerate with a different acceleration in order to keep
up with the rest of its points. The natural formalism to
treat this detector is the use of the well-known Fermi-
Walker coordinates [3, 12].

Thus, the interaction Hamiltonian of a smeared uni-
formly accelerated rigid detector is

HI(t) = g

∫
dk√

2ωk(2π)

∫
dχ F (χ)

(
σ+eiΩτ + σ−e−iΩτ

)
(
a†ke

i(ωkt(χ,τ)−kx(χ,τ)) + ake
−i(ωkt(χ,τ)−kx(χ,τ))

)
(11)

where χ = (χ, 0, 0) and τ are the Fermi-Walker coordi-
nates associated with the trajectory of the detector.

These coordinates have the particularity that at ev-
ery point on the trajectory x(τ) = (ct(τ), x(τ), 0, 0)
the hyperplane which is orthogonal to the 4-velocity
u(τ) = (cṫ(τ), ẋ(τ), 0, 0) is the three-dimensional space
which consists of all the events which are simultaneous
to x(τ), where simultaneity is judged from the comov-
ing inertial frame. We assume that we move only in one
direction, so that χ1 = χ, χ2 = y = 0, χ3 = z = 0.

If we attach a dreibein to every such hyperplane

eχ1
= (c−1ẋ(τ), ṫ(τ), 0, 0)

eχ2
= (0, 0, 1, 0), eχ3

= (0, 0, 0, 1), (12)

we can characterise every event xe in a neighborhood of
the trajectory with (τe,χe).

These coordinates guarantee a rigid detector (where
rigidity means that its 3-geometry as seen from its own
momentary rest system is unchanged in the course of
proper time). In contrast, in a Rindler frame (standard
approach for pointlike detectors) every point of the de-
tector accelerates with a different proper acceleration, so
they cannot account for rigid detectors that have internal
coherence. In the F-W frame the detector will accelerate
coherently, so this models very well what would happen
to an accelerated rigid-body.

The change of coordinates between the inertial system
to the Fermi-Walker frame is given by

x(τ,χ) = x(τ) + χiei(τ), t(τ,χ) = t(τ) +
χie0

i

c
(13)

For the uniformly accelerated observer, the trajectory
(parametrised in terms of comoving time) is

x(τ) =

[
c2

a
sinh

(aτ
c

)
,
c2

a
cosh

(aτ
c

)
, 0, 0

]
(14)

The only relevant component of the dreibein is

eχ1 =
[
sinh

(aτ
c

)
, cosh

(aτ
c

)
, 0, 0

]
(15)

So, directly from (13) we read the change of coordinates

t(τ, χ) =
( c
a

+
χ1

c

)
sinh

(aτ
c

)
x(τ, χ) =

[(
c2

a
+ χ1

)
cosh

(aτ
c

)
, χ2, χ3

]
(16)

Within this scheme we compute the probability of ex-
citation of an accelerated detector responding to an ar-
bitrary signal. In first order perturbation theory,

P = |g|2
∫ τ

τ0

dτ ′
∫ τ

τ0

dτ ′′ eiΩ(τ ′−τ ′′) 〈y|Ψ(τ ′′)Ψ(τ ′) |y〉
(17)

Ψ(τ)=

∫
F (χ) dkdχ√

2c|k|(2π)
〈y|
(
ake

i(k·x(χ,τ)−c|k|t(χ,τ))+H.c.
)
|y〉

(18)
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|y〉 is a general superposition of plane-wave field modes
corresponding to a Minkowskian-shaped wavepacket pre-
pared in the lab that we want to analyse with our detector

|y〉 =

(∫
dk y(k)a†k

)
|0〉 (19)

Let us evaluate the time-correlation function
Wy(τ ′, τ ′′) ≡ 〈y|Ψ(τ ′′)Ψ(τ ′) |y〉. The two χ inte-
grals can be rewritten in terms of Fourier transforms
greatly simplifying the expression of Wy(τ ′, τ ′′). To do
this we first note that

kx(χ, τ)− c|k|t(χ, τ) = L(k, τ)

(
χ+

c2

a

)
L(k, τ) = k cosh

(aτ
c

)
− |k| sinh

(aτ
c

)
(20)

Now if we define G±(k, τ) = F̂ [±L(k, τ)], where F̂ (k) is
the Fourier transform of F (χ) as in (4), we can rewrite
Wx(τ ′, τ ′′) =

=

∫
ȳ(k)y(κ)dkdκ

2(2π)c
√
|k||κ|

G+(k, τ ′′)G−(κ, τ ′)ei
c2

a [L(κ,τ ′)−L(k,τ ′′)])

+

∫ |y(κ)|2dkdκ
2(2π)c|k| G

+(k, τ ′)G−(k, τ ′′)ei
c2

a [L(k,τ ′′)−L(k,τ ′)]

+

∫
ȳ(k)y(κ)dkdκ

2(2π)c
√
|κ||k|

G+(κ, τ ′)G−(k, τ ′′)ei
c2

a [L(k,τ ′′)−L(κ,τ ′)]

which can be further simplified if F (k) = F (−k) (true
for a Gaussian or Lorentzian profile), then we get G+ =
G− = G (although in general G(k) 6= G(−k)), and if the
frequency profile of the signal y(ω) we want to analyse is
chosen to be real, we can rewrite Wx(τ ′, τ ′′) =

=

∫
y(k)y(κ)dkdκ

(2π)c
√
|k||κ|

G(k, τ ′′)G(κ, τ ′)cos
[L(κ, τ ′)−L(k, τ ′′)

ac−2

]
+

∫
[y(κ)]2dkdκ

2(2π)c|k| G(k, τ ′)G(k, τ ′′)ei
c2

a [L(k,τ ′′)−L(k,τ ′)],

providing an operative expression for the response of a
localized accelerated detector to a given signal.

V. THE UNRUH DEWITT DETECTOR TO
MODEL EM TRANSITIONS

An Unruh-DeWitt detector is an ad-hoc model com-
monly used to study academic problems in field theory
and noninertial settings. The model is built specifically
for its useful properties and simplicity. While desirable
traits are good guidelines for model building, one should
always keep the physics in mind. This section is con-
cerned with the build up of a smeared Unruh-DeWitt
detector out from first principles and standard QED in-
teractions.

First, note that the simple scalar field model (1) cannot
be directly used to relate the Unruh-DeWitt model to

electromagnetic phenomena due to the vector character
of the photon field. The vector version of an Unruh-
DeWitt interaction with a smeared field operator would
be

HI =
∑

λ=+,−

∫
dx λ[F (x)σ+ + F ∗(x)σ−] ·A(x) (21)

where we have omitted any switching function, as the
electromagnetic interaction cannot be switched, and
where σ− is the two-level system lowering operator, as
is common in the literature. We have also allowed for
a complex profile function. The detector is assumed to
be inertial; we discuss the treatment of an accelerated
Unruh-DeWitt detector in appendix IV.

The physical system the Unruh-DeWitt detector tries
to emulate is that of a two-level atom coupled to a quan-
tum field through a dipolar interaction. The Hamiltonian
for such a system is well-known and it is simply

HQED
I = epD ·A(x, 0)

= pD ·
∑

λ=+,−

∫
dp√
2p

[
εp,λa

†
p,λe

−ipx + ε∗p,λap,λe
ipx
]
,

(22)

where pD is the detector momentum and in the last two
equalities we assume a (1+1)-dimensional setting. In this
setting, pD is itself an operator, the momentum operator
of the valence electron of the two-level system. There is
a simple way to relate (22) to (21); we simply write down
the operator in (22) in terms of field operators and atomic
Pauli matrices. There are four possible matrix elements
for the pDA(x, 0) operator in terms of the relevant wave-
functions, Ψg(x) for the ground state and Ψe(x) for the
excited state of the detector, which can be neatly written
into matrix form as,

HQED
I = αI + βσz + γσx + δσy,

α = e
∑

λ=+,−

∫
dp√
2p

[
a†p
Gλgg(p) +Gλee(p)

2
+ H.c.

]
,

β = e
∑

λ=+,−

∫
dp√
2p

[
a†p
Gλgg(p)−Gλee(p)

2
+ H.c.

]
,

γ = e
∑

λ=+,−

∫
dp√
2p

[
a†p
Gλge(p) +Gλeg(p)

2
+ H.c.

]
,

δ = e
∑

λ=+,−

∫
dp√
2p

[
a†p
Gλge(p)−Gλeg(p)

2i
+ H.c.

]
,

(23)

with

Gλij(p) =

∫
dx e−ipxεp,λ · (Ψ∗i (x)[−i∇Ψj(x)]). (24)
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If we performed the same calculation with the interac-
tion (21), we would have obtained

Gλij(p) = [δigδje + δieδjg]

∫
dx e−ipxεp,λ · F (x). (25)

We have thus expressed the physical interaction hamil-

tonian HQED
I in the language of (21). If for a moment

we only consider the σx and σy terms, we may compare
directly to (21). From (24) and (25) we find that the two
Hamiltonians are equivalent with a smearing function

F (x) = −iΨ∗e(x)∇Ψg(x). (26)

We have thus made a first connection between (21) and
the physics - we got our smearing function in terms of the
atomic wavefunctions of the two-level system. Note that
the terms with I and σz do not vanish and can never do
so unless Ψe = Ψg = 0.

So while the smearing function is indeed determined
in a simple way from the physics of the system, we still
have two terms not included in the original Unruh De
Witt model.

Dealing with α is easiest as it can be reabsorbed into
the free field Hamiltonian HF,

HF + α =

∫
dp

[
(|p|a†pap +

1√
2p

(
a†p
Gλgg(p) +Gλee(p)

2

+ap
Gλgg(p)∗ +Gλee(p)∗

2

)]
(27)

and so defining new modes

bp = ap +
e

(2p)3/2
[Gλgg(p) +Gλee(p)] (28)

and neglecting the usual infinite zero-point contribution,
we deal with the α term. We only have to substitute the
ap in terms of the bp in γ, which amounts to the addition
of a constant term to γ,

αγ =
e2

4
<
{∫

dp

p
[Gλgg(p)∗ +Gλee(p)∗)(Gλge(p) +Gλeg(p)]

}
.

(29)

This will induce an extra αγσx term in the Hamiltonian,
which will be relevant or not depending on how αγ com-
pares with Ω, the detector system gap. As αγ/e is typ-
ically of order 1 or less, this term will not be important
if we are in a perturbation theory regime where the cou-
pling e is assumed to be small. The same considerations
apply to αδ. The analogous correction to β,

αβ =
e2

4
<
{∫

dp

p
[Gλgg(p)∗ +Gλee(p)∗)(Gλgg(p)−Gλee(p)]

}
,

(30)

can be reabsorbed into Ω.

Dealing with β is a more challenging matter. We can-
not do the same as before because even though we could
make the Hamiltonian look like that of a free field plus
an Unruh- De Witt interaction, the detector and field op-
erators would not commute and hence even without the
interaction the theory would not be a free theory.

There is one special circumstance in which β vanishes:
in systems with a strong spin interaction, so that the
gap comes from the spin dependence of the energy levels.
This could happen, for instance, in states of an atom
within a strong magnetic field. In this case the atomic
wavefunctions of the ground and excited states are the
same and therefore β = 0 exactly. The energy gap would
be ~Ω = µBB. The coupling constant to the electric field
is ≈ ed where d is a typical dimension of the atom, so
in order to be in perturbation theory regime we require
electric fields of order E < µBB/ed.

As a particular example, consider the smearing func-
tion for a hydrogen atom in its 1s state subjected to a
magnetic field. According to (26), it is

F (x) = −ie
−r/a0

πa4
0

ur. (31)

Note in particular that the Fourier transform of this func-
tion is peaked at 0, so it will not be useful to study the
quantum effects of acceleration, as argued above.

VI. CONCLUSIONS

We have discussed that in order to respond to a given
frequency, the spatial profile cannot be chosen arbitrarily.
Some information about the spectral response of the de-
tector must be fed to the spatial profile, or otherwise the
detector will not have the expected behaviour and may
dramatically fail to detect radiation on resonance with
the two-level system transition. We have also related the
spatial profile of the detector system with physical prop-
erties of the detector.

To solve the problems, we suggest to introduce a spa-
tial oscillation of the profile, which will make the detector
tune to the resonance frequency regardless of its size and
configuration.

Not all the spatial profiles for the Unruh-DeWitt model
would be compatible with the experimental response
of accelerated particle detectors: the existence of some
monopole (or dipolar) momentum that couples the atom
to the field with a given characteristic transition fre-
quency requires those oscillations introduced in the spa-
tial profile to reproduce spectra centred in the character-
istic transition frequency of the detector If one thinks of
that profile as being something like a charge distribution,
then those oscillations would be the responsible for the
appearance of the momentum that correctly couples it to
the field.

Completing our proposal, we have explained how to use
this formalism while calculating the probability of detec-
tion of a wavepacket for an accelerated detector and we
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have related the smeared Unruh-DeWitt model to the
usual p ·A form of the QED interaction coupling atoms
to the electromagnetic field. We find that this interaction
can indeed be rewritten as an smeared Unruh-DeWitt in-
teraction and provide an explicit expression for the spa-
tial profile of the detector, which is associated with the
electronic wavefunction of the relevant orbitals, although
this profile is complex in general.

Finally note that, in parallel with this work, an anal-
ysis of the transition rates of smeared Unruh-Dewitt de-
tectors coupled to different kinds of physical field modes

and undergoing different relativistic motion is being car-
ried out by Lee and Fuentes, and it is scheduled to appear
elsewhere simultaneously with this manuscript [4].
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