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Abstract

We propose a simple model unifying two major approaches to the analysis of large mul-
ticomponent systems: interacting particle systems (IPS) and couple map lattices (CML)
and show that in the weak interaction limit depending on fine properties of the interaction
potential this model may demonstrate both condensation/synchronization and indepen-
dent motions. Note that one of the main paradigms of the CML theory is that the latter
behavior is supposed to be generic. The model under consideration is related to dynamical
networks and sheds a new light to the problem of synchronization under weak interactions.

1 Introduction

At present there are two major approaches to the analysis of large multicomponent systems:
Interacting Particle Systems (IPS) and Coupled Map Lattices (CML). Ideas and especially
methods used in these approaches are strikingly different and it is hard to find a single arti-
cle which discuss their connections on a reasonably serious level. Nevertheless in this paper
we present a simple mathematical model enjoying interpretations in terms of both of these
approaches which helps a lot in its study.

Let X be a compact subset of Rd equipped with the Euclidian metric ρ(·, ·) and let (T ,X) :=⊗N
i (T,X) be a direct product of N copies (in general 0 < N ≤ ∞) of the measurable nonsin-

gular dynamical system (T,X,B, µT ). Consider also a family of measurable maps Qε : X → X
to which we shall refer as interactions. The parameter ε ≥ 0 here measures how far the map
Qε is from the identical map, namely ε := supx∈X ρ(Qεx, x), where ρ(x, y) := maxi ρ(xi, yi).

Now a CML is defined as a composition of the direct product map and the interaction:
T ε := T ◦Qε and the system without interactions can be formally written as T 0 ≡ T .

A typical example of interactions considered in the literature is the so called “diffusive
coupling”:

(Qεx)i := εxi +
1− ε
|Ji|

∑
j∈Ji

xj, (1.1)

where the summation is taken over “neighboring elements” Ji of the local unit i. The for-
mula (1.1) indicates that speaking about a CML one usually has in mind a certain structure or
topology of connections, say a fixed ordered graph of interactions (see e.g. [1, 2, 5, 7, 8, 9, 10,
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11, 17]). Another possibility is to consider a dynamic setup allowing a dynamical switching of
connections. Some results in this direction were ob6ained in [16] (in the case of time-varying
couplings) and in [12]. In what follows we propose a simple model of a dynamical switching and
show that in the weak interaction limit depending on fine properties of the interaction potential
this model may demonstrate both condensation/synchronization and independent motions.

Motivated by the idea of the interaction between the local systems induced by (somewhat
artificial)1 “collisions” introduced in [12] we interpret the CML as follows. A configuration

T
t

εx := xt = {xti} at time t ≥ 0 is associated to the collection of identical particles with unit
masses located at points xti ∈ X which wander in the common domain X independently until
they come close enough to each other. As an example one can think about a billiard type
system. The interaction occurs only when the particles are coming ε-close to each other and
consists in the attraction to the local common center of gravity.

Assume that (X,B,m, ρ) is a compact convex Lebesgue metric space X ∈ Rd. For a
configuration x ∈ X and each index i denote by Ji = Ji(x) := {j : ρ(xi, xj) ≤ ε} the set of
indices of particles “interacting” with the i-th one.2 Then we define the i-th coordinate of the
interaction map as follows:

(Qεx)i := γxi +
1− γ
|Ji|

∑
j∈Ji

xj. (1.2)

The parameter γ ∈ [0, 1] and if γ = 0 only the second summand, corresponding the “center of
gravity” of particles belonging to the ε-neighborhood of the point xi, survives in the expression
above. Therefore the physical meaning of the interaction under study is that the i-th particle
is moved in the direction of the center of gravity of particles belonging to the ε-neighborhood
of the i-th particle.

If γ ∈ (0, 1) we say that the interaction is soft, γ = 0 corresponds to the situation when a
particle jumps directly to the center of gravity, which we call rigid by contrast. Finally γ = 1
nullifies the interaction.

Our main results may be formulated as follows. Let the (T,X,B, µT ) be a weakly mixing
measurable dynamical system and let µT be its only Sinai-Bowen-Ruelle (SBR) measure (see
definitions and discussion in Section 2). These assumptions are enough for the case of rigid
interactions, but to study soft interactions one inevitably needs some additional smoothness
type assumptions for the local map (see Section 4).

Theorem 1.1 For each N ∈ Z+ there are constants εT > 0, γT > 0 such that ∀ 0 ≤ ε <
εT , 0 ≤ γ < γT the CML (T ε, X) has a SBR measure µ (which does not depend on ε), is
supported by the “diagonal” of X, and whose projections to each “coordinate” coincide with µT .
If N = 2 this SBR measure is unique.

This result demonstrates that arbitrary weak interactions of a CML with a “generic” local
map may demonstrate discontinuity at 0 of the SBR measure µε considered as a function on
ε. Previously such results were known only for “wild” examples of local maps having periodic
turning points type singularities, see e.g. [2, 1]. From the point of view of interacting particle
systems this theorem can be interpreted as a kind of a condensation phenomenon when particles
are gathering together under dynamics.

In the opposite case when γ is close to 1 we observe a more “classical” effect, namely under
some reasonably general technical assumptions specified in Section 5 the only SBR measure of

1The interaction discussed in [12] resembles more closely the exchange of velocities between colliding particles
rather than the collision itself. The latter is modelled by a prior arrangement of non-overlapping “traps” for
pairs of particles.

2Later we shall consider some other choices of the set Ji.
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the CML converges weakly to the direct product measure as ε → 0. Bassicaly we need that
the action of the transfer operator corresponding to the local map in a suitable Banach space
of signed measures be quasi-compact, i.e. can be decomposed into a sum of a θ-contracting
operator (with θ < 1) and a finite dimensional projector.

Theorem 1.2 For each N ∈ Z+ there is ε′T > 0 such that ∀ 0 ≤ ε < ε′T and each γ ∈ (2Nθ, 1]

the CML (T ε, X) has a unique SBR measure µε,γ
ε→0−→ µT := µT ⊗ . . .⊗ µT︸ ︷︷ ︸

N

.

From the interacting particles interpretation this result tells that in this case weak interac-
tions lead to independent particles motions. Thus soft interactions demonstrate very different
and more “classical” effects in comparison to the rigid interactions. Note that here one may
consider not only particles of different masses but even the local maps need not be identical.

To understand better the nature of the phenomena under study let us consider the behavior
of the CML in more detail and under a bit different point of view which is more closely related
to the IPS approach.

We say that a synchronization or condensation with the basin Y takes place in the CML
(T ε, X) if lim sup

t→∞
max
i,j

ρ(xti, x
t
j) = 0 for each configuration x ∈ Y . Similarly a desynchronization

with the basin Y means that lim inf
t→∞

max
i,j

ρ(xti, x
t
j) > 0 for each x ∈ Y . We say also that a

certain property with the domain A and a probabilistic measure ν is ν-global if ν(A) = 1.
In words, the synchronization means that the dynamics converges to the diagonal D :=

{x ∈ X : xi = xj ∀i, j}, while the desynchronization corresponds to the absence of such
convergence. We refer the reader to [15] for the discussion of various physical aspects of the
synchronization.

Let us start with the rigid case. The following statement formulated in terms of the
de/synchronization not only clarifies the situation but also gives some additional insight about
the dynamics.

Theorem 1.3 Under the assumptions of Theorem 1.1 ∀ε > 0 the synchronization with the open
basin Y of positive product measure µT takes place. Moreover for N = 2 this synchronization
is µT -global. On the other hand, for N ≥ 3 there is an analytic local map T for which the
desynchronization with an open positive product measure µT basin takes place.

It is worth note that our numerical simulations show that for all 1D and 2D mixing maps
that we tried for all initial particle configurations the global synchronization was observed.
This is especially striking because first one might expect the synchronization only for almost
all initial particle configurations, and second even for the cases where we are able to prove the
desynchronization we do not see it in the numerical experiment. The explanation is that arbi-
trary small round-off errors may change the behavior of a chaotic dynamical system drastically
(see e.g. [1]) and they are responsible in this case as well.

The proof of Theorem 1.3 is based on the following observations. If two particles are coming
ε-close to each other, then after the interaction their positions coincide. Therefore if N = 2
we only need to show that for almost all 2-particle configurations their trajectories will hit
simultaneously the ε-neighborhood of the diagonal D. To prove the latter statement one uses
that outside of this ε-neighborhood there are no interactions and hence it is enough to check
the same statement for the direct product system (T ,X,B, µT ), which in turn follows from the
weak mixing of the local map.

One is tempted to extend this construction directly for the case N > 2 along the following
lines. First, if the trajectory of an initial configuration hits an ε-neighborhood of the diagonal D
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(as in the case N = 2) then after the interaction the synchronization takes place: all particles
will share the same position. Second, additionally to the previous argument one considers
multiple (triple, etc.) collisions between particles (which occur near secondary diagonals of X)
expecting that each collision reduces the number of unmatched particles.

Unfortunately, there are two fundamental obstacles to this naive approach. First, a single
collision of n > 2 particles does not necessarily imply that they will share the same location
after the collision. Indeed, assume that we have n > 2 particles uniformly distributed along a
circle of radius rn = ε

2
/ sin(π/n). Then in the ε-neighborhood of each particle there are two

neighbors located at distance ε. Therefore after the interaction instead of coming to a single
common center of gravity, the particles will be again uniformly distributed along a circle of
only a slightly smaller (provided n� 1) radius r′n := r(1 + 2 cos(2π/n))/3, e.g. r′4 = r4/3 and
r′5 ≈ r5 × 0.539. Observe that we do not assume any smoothness of the local map T , and thus
after the next application of T neighboring points might become arbitrary far from each other.

The second and even more important obstacle is that even a single collision changes the
trajectory of a particle and one cannot apply (at least directly) arguments related to ergodic
properties of the original local system (T,X,B, µ). Moreover after each decrease of the number
of unmatched particles one needs to check that the system is still in a “general position” in
order to use again the mixing property.

The result about the desynchronization shows that the smoothness of the map T does not
cure these pathologies even in the simplest setting. In a sense the doubling map turns out to
be the “worst” local one-dimensional map for our problem.

Now we turn to the analysis of soft interactions. The most striking difference to the rigid
case is that results of Theorem 1.1 or 1.3 are no longer available without some assumptions on
the smoothness of the local system. Nevertheless Theorem 4.1 (Section 4) shows that if the
local map is Lipschits continuous then we recover results of condensation type when 0 < γ � 1.

To study the opposite case when 0 < 1 − γ � 1 one needs to apply the transfer operators
technics for suitable Banach spaces of signed measures. These matters will be discussed in
Section 5 using a multidimensional version of the Lasota-Yorke inequality. The idea here is
to consider the action of interactions as weak perturbations to the dynamics of each of local
systems. This perturbative approach is well known but in our case there is an additional
problem related to the fact that in distinction to the already studied situations the transfer
operator related to the interaction might make a large contribution to the strong norm dpending
on the total number of particles in the configuration.

One might argue that if ε = 1 and γ � 1 then we recover the usual weakly intearcting CML
setup. The assumption that ε� 1 makes the already weak interactions to occur very rare and
thus should preserve the “almost” direct structure of the invariant measure. Unfortunaly this
“soft” argument does not work because the local structure of interactions leads to the creation
of small regions where the “variation” of a measure might become arbitrary large under the
action of interactions (see Section 5).

Additionally to the closeness in space the interaction might depend on the closeness in the
“lattice position”. To be precise one considers the graph of interactions and assumes that it
is locally finite, i.e. the degree of each vertex is finite. The degrees need not to be uniformly
bounded. This allows to consider infinite systems, discussed briefly in Section 6 (see also a
mean field approach in this Section).

A few words about notation. We use a convention that for a Borel setA and a (signed/complex)
measure µ the restriction of the measure µ to the set A is denoted by µ|A and µ(ϕ) :=

∫
ϕ dµ.

The bar notation x is used to mark variables describing the CML. Note also that | · | is used for
very different objects throughout the paper and we follow the convention that in the case of a
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subset of integers |J | means its cardinality, in the case of an interval - its length, in the case of
a function |ϕ| := ess supx |ϕ(x)|, and in the case of a (signed/complex) measure |µ| stands for
its weak norm, while ||µ|| stands for the strong norm (see Section 5.1).

2 Direct product systems: basic ergodic constructions

Here we give a short description of standard definitions an constructions from ergodic theory
which are necessary for the proof of our results.

Recall that a measure µ is T -invariant if and only if µ(ϕ ◦ T ) = µ(ϕ) for any µ-integrable
function ϕ : X → R1.

A measurable function ϕ : X → R1 is called invariant with respect to a dynamical system
(T,X,B, µ) (or simply T -invariant), if ϕ = ϕ◦T almost everywhere with respect to the measure
µ.

A dynamical system (T,X,B, µ) is ergodic if each T -invariant function is a constant µ-a.e.
A dynamical system (T,X,B, µ) is weak mixing if

1

n

n−1∑
k=0

|µ(T−kA ∩B)− µ(A)µ(B)| n→∞−→ 0 ∀A,B ∈ B.

A direct product of a pair of dynamical systems (T ′, X ′,B′, µ′) and (T ′′, X ′′,B′′, µ′′) is a new
dynamical system (T ′⊗T ′′, X ′⊗X ′′,B′⊗B′, µ′⊗µ′′), where the map T ′⊗T ′′ : X ′⊗X ′′ → X ′⊗X ′′
is defined by the relation T ′ ⊗ T ′′(x′, x′′) := (T ′x′, T ′′x′′), while all other objects are standard
direct product of spaces, σ-algebras and measures respectively.

By AN we denote the direct product of N identical sets A ∈ B, and by (T⊗N , XN ,BN , µN)
– the direct product of N identical copies of a dynamical system (T,X,B, µ).

Theorem 2.1 Let a dynamical system (T,X,B, µ) satisfy the weak mixing property. Then for
any positive integer N <∞, measurable set A ∈ BN with µN(A) > 0 and for almost any (with
respect to the measure µN) collection x := {x1, x2, . . . , xN} ∈ XN there exists a moment of time

t ≥ 0 such that T
t
x ∈ A.

Proof. Let a dynamical system (τ, Y,BY , ν) be ergodic. Then for any pair of measurable
sets A,B ∈ BY with ν(A)ν(B) > 0 there exists a positive integer κ = κ(A,B) < ∞ such that
τκA ∩ B 6= ∅. Indeed, assume that this is not true, i.e. τnA ∩ B = ∅ for any positive integer
n. Consider a measurable set A∞ :=

⋃
n∈Z+

τnA. Then ν(A∞) ≥ ν(A) > 0 and A∞ ∩ B = ∅.
Therefore the indicator function of a measurable set A∞ of positive ν-measure is τ -invariant
but is not a constant a.e. which contradicts to the ergodicity.

Therefore it is enough to show that the dynamical system (T⊗N , XN ,BN , µN) is ergodic.
For that we shall take advantage of the fact that the weak mixing property is preserved under
the direct product of weak mixing dynamical systems (see e.g. [13]). To complete the proof its
remains to note that the weak mixing implies ergodicity. tu

It is of interest that one cannot weaken the conditions of Theorem 2.1 replacing the weak
mixing of the original dynamical system by the ergodicity. The problem is that the direct
product of ergodic dynamical systems needs not to be ergodic as well: consider a direct product
of two identical irrational unit circle rotations. On the other hand, the weak mixing condition
is not necessary as well (see [4] for an example of a nonergodic dynamical system for which
every open neighborhood A of the diagonal of X ×X satisfies the claim of Theorem 2.1).
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In what follows we often deal with the ε-neighborhood of the diagonal D of X ≡ XN which
we denote by Dε. It is not difficult to calculate the Lebesgue measure of this set but the product
measure µ(Dε) may vary sensitively with µ. To estimate it we use the techniques of measurable
partitions.

Recall that a measurable partition of (X,B) is a collection ∆ := {∆i}, ∆i ∈ B such that
∆i ∩∆j = ∅, ∩i ∆i = X. The diameter of a partition is the largest diameter of its elements.

Lemma 2.1 For each 0 < ε and a probabilistic measure µ we have 0 < µ(Dε) ≤ 1, moreover
supµ µ(Dε) = 1. Assume now that ∀ε > 0 there exists an partition of X of diameter ε with

cardinality nε ≤ Cε−d. Then infµ µ
N(Dε) ≥ (Cε−d)−N+1.

Proof. Let ∆ be a finite partition of X of diameter ε > 0. Since X is compact such
partitions always exist. Denote ai := µ(∆i) then

∑
i ai = µ(X) = 1. Observe now that

∆N
i := ∆i × . . .×∆i︸ ︷︷ ︸

N

⊂ Dε. Therefore the lower estimate of µ(Dε) follows from the trivial

inequality µ(Dε) ≥
∑

i(µ(∆i))
N =

∑
i a

N
i > 0.

Now let µ be concentrated at a single point x ∈ X, i.e. µ({x}) = 1. Then obviously
µ(Dε) ≡ 1 ∀ε > 0.

It remains to prove the lower estimate under the additional assumption about the cardinality

of the partition ∆. Consider a power average SN({ai}) :=
(

1
nε

∑nε

i=1 a
N
i

)1/N

of nε nonnegative

entries ai. It is known that SN(·) is monotonous on the nonnegative parameter N . Thus
SN({ai}) ≥ S1({ai}) ≡ 1

nε
. Therefore µ(Dε) ≥

∑
i(µ(∆i))

N =
∑

i a
N
i = nε(SN({ai}))N ≥

nε(S1({ai}))N = n−N+1
ε . tu

Lemma 2.2 Let A ⊂ X with µ(A) = 0. Then µ((T )−1A) + µ((Qε)
−1A) = 0 ∀ε, γ ≥ 0.

Proof. The fact that µ((T )−1A) = 0 follows from the nonsingularity of the local map T .
If ε = 0 the interaction does not occur and hence Q0 is an identical map. Therefore it is

enough to consider ε > 0. ∀N ∈ Z+ and ∀x ∈ XN
the interaction map Qε may be written as

a nonsingular linear map. However the matrix defining this map depends on the “grouping”
Ji(x). Nevertheless for the finite number N of particles the total number of various “grouping”
is finite and hence Qε may have only a finite number of nonsingular representations. tu

A map T : X → X induces the transfer operator T ∗ acting in the space of signed measures
(generalized functions) M on X by the formula T ∗µ(A) := µ(T−1A) for each A ∈ B and
µ ∈M. From this point of view a measure µ is T -invariant if and only if T ∗µ = µ.

A probabilistic measure µT ∈ M is called the Sinai-Bowen-Ruelle (SBR) measure for the
dynamical system (T,X,B) and a reference measure m (say Lebesgue measure on X) if there
exists an open subset Y ⊆ X such that for each probabilistic measure µ ∈M absolutely contin-
uous with respect to m and such that µ(Y ) = 1 we have weak convergence 1

n

∑n−1
t=0 T

∗tµ
n→∞−→ µT .

The set Y is called the basin of attraction for the measure µT . Obviously an SBR measure is
T -invariant.

There are also different approaches for the definition of the SBR measure and we refer the
reader to [5] for their discussion and conditions under which those approaches agree with each
other.
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3 Rigid interactions

3.1 Proof of Theorem 1.3

Let N = 2. Consider the ε-neighborhood of the diagonal Dε in X. By Lemma 2.1 µ(Dε) > 0.
Therefore by Theorem 2.1 for µ-a.a. x ∈ X there exists the first moment of time 0 ≤ t(x) <∞
such that T

t(x)
x ∈ Dε. Denote the set of full µ-measure for which this holds by Xε.

By the definition of the rigid interaction, QεDε ⊆ D while Qεx ≡ x if x /∈ Dε. Therefore

∀x ∈ Xε, t ∈ {0, . . . , t(x) − 1} we have T
t

εx ≡ T
t
x and T

t(x)

ε x ∈ D which proves the global
synchronization if N = 2.

Local synchronization for an arbitraryN ≥ 2 follows from the invariance of the ε-neighborhood
of the diagonal with respect to the dynamics. However, if N ≥ 3 the observation that

T
t

εx ≡ T
t
x ∀t ∈ {0, . . . , t(x)− 1} does not hold.

It remains to show that when N ≥ 3 even the analyticity of the map T does not guarantee
the global synchronization.

Lemma 3.1 Let X := S1 (unit circle), the local system be governed by the doubling map
Tx := {2x} and let N = 3. Then ∀ 0 < ε � 1 the desynchronization with the domain of
positive Lebesgue measure occurs.

Proof. Let xi ∈ X, i ∈ {1, 2, 3} and denote a := x2−x1, b := x3−x2. Denote by A the subset
of X for which 0 < a, b ≤ ε and a + b > ε. Under the interaction the coordinates xi will be
changed to x′i such that the distances between them will become equal to a′ := (a+ 2b)/6 and
b′ := (2a+ b)/6. Applying the doubling map we get the new pair of distances a′′ := (a+ 2b)/3
and b′′ := (2a+ b)/3. Since 0 < a′′, b′′ ≤ ε and a′′ + b′′ = a+ b > ε the new configuration again
belongs to the set A. Now the observation that the product Lebesgue measure m(A) = ε2/2 > 0
finishes the proof. tu

The extension of Lemma 3.1 for the case when dim(X) > 1 is straightforward. Moreover,
the discussion after the formulation of Theorem 1.3 demonstrates that for large N the local
map demonstrating the desynchronization may be chosen o(1/N)-close to identical for each
ε > 0.

3.2 Proof of Theorem 1.1

One might think that Theorem 1.1 is a direct consequence of Theorem 1.3. Indeed by Theo-
rem 1.3 a.a. trajectories of our CML ∀ε > 0 after a finite number of iterations hit the diagonal.
Hence any forward invariant set of T ε belongs to the diagonal D and obviously the analysis of
the invariant measures may be restricted to the “one-dimensional” dynamics on the diagonal.
On the other hand, we do not assume that the T -invariant measure µ is unique and hence
typically there is a subset Y ⊂ X on untypical points leading to statistics different from µ.
Still the µ-measure of this exceptional set is zero. Therefore using that number of iterations
before to hit the diagonal is finite (but not uniformly bounded) and the result of Lemma 2.2
we deduce that the set of µ-“typical” points is of full µ-measure.
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3.3 The closest rigid interactions

As usual only the particles from the ε-neighborhood of xi will be included to Ji(x), but now
we consider a special (simplified) choice of

Ji(x) := {j : ρ(xi, xj) ≤ ε, ρ(xi, xj) = min
xk 6=xi

ρ(xi, xk)},

i.e. this collection contains only the closest particles to the i-th one. We shall refer to this
choice of Ji(x) as the closest interaction. Note that the set of configurations x for which
maxi |Ji(x)| > 2 has Lebesgue measure 0.

Theorem 3.1 Let the (T,X,B, µ) be a weakly mixing measurable DS and µ be its only SBR
measure. Assume also that the interaction is rigid with the above choice of Ji(x). Then for
each N ∈ Z+, ε > 0 the µ-global synchronization takes place.

Proof. For a configuration x ∈ X denote by `(x) the minimum distance between particles in
x. Observe that for µ-a.a. configurations each Ji(x) consists of at most one particle and the
minimal distance is achieved at a single pair of particles. By the definition of the interaction
if `(x) ≤ ε these two particles may interact only between themselves and hence their positions
after the interaction will coincide with the common center of gravity.

On the other hand, if `(x) > ε no interactions occur and one may use the same argument
as in the proof of Theorem 1.3 to show that µ-a.s. this effect takes place.

To finalize the inductive construction, observe that for each particle the matching with some
other particles takes place after a finite number of time steps and hence by Lemma 2.2 the µ
measure of “non generic” initial configurations leading to the non-uniqueness of `(x) is zero. tu

4 Soft interactions. Case 0 ≤ γ � 1

In this Section we study the intermediate case when 0 < γ < 1. It is easy to see that if γ is
close enough to 1 then we are basically in the same situation as in the case of rigid interactions.

Theorem 4.1 Let the (T,X,B, µ) be a weakly mixing measurable DS and µ be its only SBR
measure. Assume also that there is a constant 0 < Λ < 1/γ such that ρ(Tx, Ty) ≤ Λρ(x, y) ∀x, y ∈
X Then the claims of Theorems 1.1 and 1.3 hold true.

Proof. Let x ∈ Dε. Then ρ(xi, xj) ≤ ε ∀i, j and hence all “particles” do interact with each
other. Denote by z their common center of gravity. Then (Qεx)i := γxi+(1−γ)z which implies
that

ρ((Qεx)i, (Qεx)j) ≤ γρ(xi, xj) ∀i, j.
Thus QεDε ⊆ Dγε.

On the other hand TDε ⊆ DΛε by the assumption on the map T . Therefore

T ◦QεDε ⊆ DΛγε ⊆ Dε.

Moreover,

ρ((T
t

εx)i, (T
t

εx)j) ≤ (Λγ)tρ(xi, xj)
t→∞−→ 0 ∀i, j.

The completion of the proof follows exactly to the same arguments as in the case of rigid
interactions. tu
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Corollary 4.1 Let ΛT be the modulus of the largest Lyapunov multiplier of the map T . Then
the claims of Theorems 1.1 and 1.3 hold true if and only if γ < γ0 := 1/ΛT .

Proof. The direct statement follows from the argument above applied to Dε/ΛT
rather than

to Dε. To prove the inverse statement one observes that the modulus of the largest Lyapunov
multiplier of the map T ◦Qε cannot be smaller than ΛTγ > 1. tu

Remark. Despite the similarity between the case under consideration and the case of rigid
interactions there is an important difference in that once x ∈ Dε all “particles” will immediately
form a cluster on the next time step in the rigid case, while an infinite number of iterations is
nessasary for this in the soft case.

5 Soft interactions. Case 0 < 1− γ � 1

Since γ = 1 correspond to the absence of interactions (and thus the SBR measure of the
multicomponent system is equal to the direct product of local SBR measures) one expects to
observe a kind of phase transition when the parameter γ grows from 0 to 1. In what follows
we shall study what happens when the parameter γ becomes very close to 1.

In the Introduction we already mentioned that for our purpose it is enough to assume that
the local transfer operator T ∗ be quasi-compact in a suitable Banach space of signed measures.
This means that T ∗ may be represented as a sum of a contraction and a compact operator.
Below we shall show that this property is satisfied e.g. for the so called piecewise-expanding
maps.

To this end we need to introduce a proper Banach space of signed measures and to describe
their properties.

5.1 Transfer-operator approach and BV measures

Recall that X is a unit N -dimensional Eucledian cube equipped with the standard Borel σ-
algebra B ≡ BN . The map T : X → X induces the transfer operator T

∗
acting in the space of

signed measures (generalized functions) M on X by the formula T
∗
µ(A) := µ(T

−1
A) for each

A ∈ B and µ ∈M.
Starting from [6, 3] the approach to the analysis of transfer operators in terms of the so

called dual norms proved to be efficient and became popular. To introduce the dual norms in
the space of signed measures (generalized functions) on X we start with spaces of test-functions

F := {ϕ ∈ C1(X) : |ϕ| ≤ 1}, F0 := {ϕ ∈ C1(X) : |ϕ| ≤ 1, ϕ|
∂X

= 0},
FL := {ϕ ∈ L(X) : |ϕ|∞ ≤ 1}.

The following are two versions of the “variation” of a signed measure:

V(µ) := max
i

sup
ϕ∈F

µ(∂iϕ), V0(µ) := max
i

sup
ϕ∈F0

µ(∂iϕ).

The latter functional gives the variation of the density of the measure µ with respect to the
Lebesgue measure, while the former also gives the variation of this density but considered as
a function from RN taking zero value outside of X. An important advantage of the above
definition of the variation is that in the case of a measure having the direct product structure
properties of its variation can be easily obtained from their one-dimensional counterparts.
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Therefore we shall give proofs only for one-dimensional statements and refer the reader e.g. to
[11] for the multidimensional setting.

Define also the L1-norm of the (signed) measure:

|µ| := sup
ϕ∈FL

µ(ϕ)

which we shall call the weak norm.

Lemma 5.1 (a) V(µ|Y ) ≤ V(µ);

(b) V0(µ|Y ) ≤ V(µ|Y ) ≤ 2V0(µ|Y ) + 2|µ|Y |/m(Y );

(c) if Y is a proper rectangle3 then |µ|Y | ≤ 1
2
m(Y ) V(µ), in particular, |µ| ≤ 1

2
V(µ).

Proof. (a) V(µ|Y ) = supϕ∈F µ|Y (ϕ) ≤ supϕ∈F µ(ϕ) = V(µ).
(b) For ϕ ∈ F set ϕ0 := x(ϕ(x) − ϕ(1)) + (1 − x)(ϕ(x) − ϕ(0)). Then |ϕ0| ≤ 2|ϕ| and

since ϕ0(0) = ϕ0(1) = 0 we obtain that 1
2
ϕ0 ∈ F0. Therefore µ(ϕ′) = µ(ϕ0 + (ϕ(1)− ϕ(0))) ≤

2V0(µ) + 2|µ|, which proves the inequality for the case Y = X. The general case can be proven
similarly.

(c) Decompose the signed measure µ|Y := µ+−µ− into positive and negative components and
set Y± := supp(µ±). The function ϕ(x) := m(Y+∩ [0, x])−m(Y−∩ [0, x])− 1

2
m(Y ) is continuous

on X and |ϕ| ≤ 1
2
m(Y ). On the other hand, by definition |µ|Y | = µ(ϕ′) ≤ 1

2
m(Y )V(µ) since

2ϕ/m(Y ) ∈ F is a valid test-function. tu

Therefore the functional V(µ) is actually a norm (which we denote by ||µ||) and is equivalent
to a more common strong norm V0(µ) + |µ|. Therefore we shall refer to || · || as a strong norm.
Note also that for the Lebesgue measure V(m) = 2. The set of (signed) measures µ with
||µ|| <∞ we shall call measures of bounded variation and denote this set by BV.

Using this terminology we may rewrite Theorem 1.2 claiming the convergence to the direct
product measure as follows.

Theorem 5.1 Let the map T have the only one SBR measure µT , and let there are constants
0 ≤ θ < 1 ≤ Θ <∞ such that

||T ∗µ|| ≤ θ||µ||+ Θ|µ| (5.1)

for each µ ∈BV. If 2Nθ/γ < 1 then for each 0 ≤ ε � 1 the CML (T ε, X) has the only one

SBR measure µε
ε→0−→ µT – the direct product of the local SBR measures.

To give a specific model satisfying to our assumptions consider the class of piecewise ex-
panding maps. Let X := [0, 1] and τ : [0, 1] → [0, 1] be a piecewise C2-smooth map, i.e. there
is a finite partition of X into intervals Xi on each of which the map τ is bijective, C2-smooth,
and infx |τ ′(x)| ≥ λ > 0, β1(τ) := 2

λmini |Xi| , β2(τ) := supx |(1/τ ′(x))′| < ∞. Such maps are

called λ-expanding. Set β(τ) := β1(τ) + β2(τ).

Lemma 5.2 (Lasota-Yorke inequality) Let the maps τ1, τ2, . . . , τN be λ-expanding, τ stands for
their direct product, and let β(τ) := maxi β(τi). Then

||τ ∗µ|| ≤ 2

λ
||µ||+ β(τ) |µ|. (5.2)

3i.e. a direct product of n intervals.
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Figure 1: Local structure of the map τ (left). Decomposition of the test-function (right).

Proof. First observe that from Lemma 5.1,(b) it follows that for each ϕ ∈ F

µ(ϕ′) ≤ 2|ϕ|
(

V0(µ) +
1

|Xi|
|µ|
)

(5.3)

As (ϕ ◦ τ)′(x) = ϕ′(τ(x)) · τ ′(x) for each x ∈ X \ (∪i∂Xi), we have

τ ∗µ(ϕ′) = µ(ϕ′ ◦ τ) = µ((ϕ ◦ τ)′/τ ′) = µ(((ϕ ◦ τ)/τ)′)− µ((ϕ ◦ τ) · (1/τ)′).

To estimate the first term we apply (5.3), while the second term is bounded by β2(τ) |µ|. tu

Corollary 5.3 Under the assumptions of Lemma 5.2 there exists a probabilistic τ -invariant
measure µτ .

Proof. Choose k ∈ Z+ large enough such that λk > 2. Denote r := 2/λk < 1 and let µ ∈ BV
be a probabilistic measure. Then for each n ∈ Z+ we have:

||τ ∗nk(µ)|| ≤ rn||µ||+ β(τ)

1− r
|µ|.

Thus the sequence µn := τ ∗nkµ satisfies the conditions of the embedding of BV to the set of
measures having absolutely continuous densities with respect to Lebesgue measure, which we

denote by L1, and, hence, there exists the limit point of this sequence, i.e. µni

i→∞−→ µ∞ ∈ BV

with ||µ∞|| ≤ β(τ)
1−r |µ|. On the other hand, being a limit point of this sequence the measure µ∞

satisfies the relation τ ∗µ∞ = µ∞ and thus is τ -invariant. tu

Corollary 5.4 The transfer operator corresponding to the map τ under an additional assump-
tion of the uniqueness of SBR measures for each map τi satisfies the conditions of Theorem 5.1
with θ := 2/λ and Θ := β(τ).

Consider now a more specific family of piecewise C2-smooth maps τ : X → X. For a
given positive integer n let 0 ≤ a1 < a′1 ≤ a2 < a′2 ≤ . . . ≤ an < a′n ≤ 1 and set Ai :=
[ai, a

′
i], i ∈ {1, 2, . . . , n}, A := ∪iAi, and B := X \ A. These intervals define a partition of X.
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Then we define τx :=

{
τix := αix+ ci if x ∈ Ai
x otherwise

, where τiAi ⊆ Ai, αi > 0 ∀i. Fig. 1 (left)

demonstrates the shape of τ in a neighborhood of an interval Ai.
We shall be interested in the properties of the transfer-operator τ ∗ when |A| � 1. Due to

this restriction the application of Theorem 5.2 gives an estimate with the second term going
to infinity as the diameter of the partition goes to zero. In order to overcome this difficulty we
develop a new approach to estimate the norm of the transfer operator in this case.

Lemma 5.5 ||τ ∗µ|| ≤ (n+ 1 +
∑

i
1
αi

) ||µ||, and |µ− τ ∗µ| ≤ 1
2
(n+ 2 +

∑
i

1
αi

) m(A) ||µ||.

Proof. The idea used in the proof of Lemma 5.1,(b) is to interpolate linearly between the values
of the test-function at boundary points of the partition {Xi} and to estimate the contribution
of this interpolation into the integral against the weak norm, rather than the strong one. In the
case under consideration the lengths of the intervals of monotonicity might be arbitrary small
which does not allow to apply his trick. Instead we shall treat each interval of monotonicity
separately extending the test-function by two constants equal to the values at boundary points
outside of the interval (see Fig. 1 (right)).

Observe that for each i the function τi(x) can be extended as a linear function to the whole
X. For a test-function ϕ ∈ F and a (signed) measure µ we have

τ ∗µ(ϕ′) = µ(ϕ′ ◦ τ) = µ|B(ϕ′) +
∑
i

µ|Ai
(ϕ′ ◦ τ)

= µ|B(ϕ′) + µ|A(ϕ′)− µ|A(ϕ′) +
∑
i

µ|Ai
(ϕ′ ◦ τ)

= µ(ϕ′) +
n∑
i

(
µ|Ai

(ϕ′ ◦ τ)− µ|Ai
(ϕ′)

)
.

Let x ∈ Ai then ϕ′ ◦ τ = (ϕ ◦ τ)′ · (τ ′i)−1 = 1
αi

(ϕ ◦ τ)′ and ϕ ◦ τ ∈ F is a valid test-function.

Therefore µ|Ai
(ϕ′ ◦ τ) ≤ 1

αi
V(µ). Summing up all contributions from the integrations over Ai

we get

τ ∗µ(ϕ′) ≤

(
1 + n+

∑
i

1

α i

)
||µ||

since µ|Ai
(ϕ′) ≤ ||µ|| ∀i by Lemma 5.1.

To estimate |µ − τ ∗µ| observe that the measures differ only on the intervals Ai. Set ν :=
µ− τ ∗µ and A := ∪iAi. Then

|ν| = |ν|A| ≤
1

2
m(A)V(ν) ≤ 1

2
m(A)(||µ||+ ||τ ∗µ||)

≤ 1

2
m(A)

(
n+ 2 +

∑
i

1

αi

)
||µ||.

tu

It might seem that the multiplier (n+ 1 +
∑

i
1
αi

) is overpessimistic, but the trivial example

of the Lebesgue measure m on X immediately shows that ||τ ∗m|| = 2(n + 1 +
∑

i
1
αi

) while
||m|| = 2.

As we shall see the argument used in this proof is the key point in the proof of Theorem 5.1.
Apart from this Lemma 5.5 allows to apply the operator approach to a new class of small but
discontinuous perturbations.
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Theorem 5.2 Let T : X → X be a λ-expanding map with λ > 1 having a unique SBR measure
µT and let τ be a piecewise linear map described above with |A| = δ and a given collection of
slopes {αi} such that 2(n + 1 +

∑
i

1
αi

) < λ. Then for each 0 < δ � 1 the dynamical system

(τ ◦ T,X) has a unique smooth invariant measure µδ
δ→0−→ µT .

Proof. Combining results of Lemmas 5.2, 5.5 we get

||(τ ◦ T )∗µ|| ≤ (n+ 1 +
∑
i

1

αi
) ||Tµ||

≤

(
n+ 1 +

∑
i

1

αi

)
2

λ
||µ||+

(
n+ 1 +

∑
i

1

αi

)
β(τ)|µ|.

Therefore we are in a position to apply Corollary 5.3 to the map τ ◦T which yields the existence
of the probabilistic invariant measure µδ ∈ BV.

On the other hand, by Lemma 5.5

|µ− τ ∗µ| ≤ Cδ||µ||

which by the now standard perturbation argument (see e.g. [1, 6]) implies the convergence

µδ
δ→0−→ µT . tu

To finish this preparatory part let us formulate an estimate of the action of the transfer
operator of a contracting affine map which can be proven by a direct inspection.

Lemma 5.6 Let X be the N-dimensional unit cube and let τ(x) := Gx + H be an affine
map from X into itself such that `(Gξ) ≥ α`(ξ) for each ξ ∈ RN and any norm `(·). Then
||τ ∗µ|| ≤ 1/α||µ||.

5.2 Proof of Theorem 5.1

One is tempted to argue as follows. Assume that the parameter ε is of order of the diameter of
the set X. Then each pair of particles is interacting between themselves and we are coming to
the well known mean field interaction model. One can show that when γ goes to 1 the only SBR
measure of the mean field model converges to the direct product measure, i.e. the subsystems
behave independently. Now the decrease of ε leads only to the decrease of the frequency of
interactions between particles. Thus already “almost” independent particle are becoming even
more independent. In fact the situation is much more complicated. The point is that the
existence of a large number of small islands in the phase space where different combinatorial
types of interactions actually take place leads to a severe amplification of the variation of a
measure under the action of the operator Q

∗
ε. Consider this in detail.

The definition of the map Qε implies that configurations x ∈ X whose coordinates have
pair distances larger than ε are fixed points of the map Qε. On the remaining part of the phase
space X consisting of a large (of order 2N) number of disjoint components of small Lebesgue
measure the map Qε is linear and contracting in each of them. Thus the structure of the multi-
dimensional map Qε is very similar to the one-dimensional map τ considered in Lemma 5.5.
Therefore we shall use basically the same strategy for the proof.

For a given test-function ϕ ∈ F we need to evaluate the functional maxiQ
∗
εµ(∂iϕ).
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Fix some index i and for each subset J of different integers belonging to the set {1, 2, . . . , N}
and containing the index i define a set

AJ := {x ∈ X : |xi − xj| ≤ ε ∀j ∈ J, |xi − xk| > ε ∀k /∈ J},

and let A := ∪|J |>1AJ , B := X \A. Then the interaction with the i-th particle occurs only for
x ∈ A and the sets A,B define a finite partition of X.

We have

Q
∗
εµ(∂iϕ) = µ(∂iϕ ◦Qε) = µ|B(∂iϕ ◦Qε) +

∑
|J |>1

µ|AJ
(∂iϕ ◦Qε)

= µ|B(∂iϕ) + µ|A(∂iϕ)− µ|A(∂iϕ) +
∑
|J |>1

µ|AJ
(∂iϕ ◦Qε)

= µ(∂iϕ) +
∑
|J |>1

(
µ|AJ

(∂iϕ ◦Qε)− µ|AJ
(∂iϕ)

)
Denote by ϕ′ the vector of partial derivatives of ϕ, by Q

′
ε the matrix of partial derivatives of

the map Qε, and by (qij) the matrix inverse to the matrix Q
′
ε (i.e. (qij) = (Q

′
ε)
−1). Then

(∂iϕ) ◦Qε = ((ϕ ◦Qε) · (Q
′
ε)
−1)i =

∑
j

∂j(ϕ ◦Qε) · qji

=
∑
j

∂j(ϕ ◦Qε · qji)−
∑
j

ϕ ◦Qε · ∂jqji.

Denoting ϕij := ϕ◦Q ·qij ∈ C1 we rewrite the expression for the action of the transfer-operator
on a measure restricted to AJ as follows:

µ|AJ
(∂iϕ ◦Qε) ≤

∑
j

sup
x
|ϕji(x)| ·V(µ) +

∑
j

sup
x
|∂jqji(x)| · |µ|.

The interaction inside of each region AJ is described by a linear function and thus the last term
is equal to zero for x ∈ AJ .

In general the prefactor
∑

j supx |ϕji(x)| can be estimated as∑
j

sup
x
|ϕji(x)| ≤

∑
j

sup
x
|((Q′ε)−1)ji|.

In our case the upper estimate can be done explicitly. Observe that for a given set AJ the
restriction of the map Qε to AJ is a linear map (which we denote by L) has a very simple
structure. Namely, considering only “interacting coordinates” one can rewrite this map as
an affine map Ly := Gy + H with G := γ + 1−γ

n
E. Here n stands for the number of the

“interacting coordinates” and all entries of the n × n matrix E are ones. It is easy to check
that `(Gξ) ≥ γ`(ξ) for any norm `(·) and ξ ∈ Rn and the equality is achieved on a vector ξ
having the only one nontrivial coordinate. Therefore using Lemma 5.6 and setting α := γ we
get ||L∗µ|| ≤ 1/γ. Thus the prefactor can be estimated from above as 1/γ uniformly on J .

Now using that the number of different collections J cannot exceed 2N we get

||Q∗εµ|| ≤
2Nθ

γ
||µ||.
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Combining this result with the Lasota-Yorke type inequality (5.1) for the direct product map
we estimate the strong norm of the action of the transfer-operator of the CML as

||T ∗εµ|| ≤ θ||Q∗εµ||+ Θ|Q∗εµ| ≤
2Nθ

γ
||µ||+ Θ|µ|.

Now using again the same trick as in the proof of Lemma 5.5 we show that the measures T
∗
εµ

and T
∗
µ are close in the weak (L1) norm for small enough ε > 0.

For a collection of indices I introduce a set

BI := {x ∈ X : ∀i1 ∈ I ∃i2, . . . , ik ∈ I : |xij − xij+1
| ≤ ε, min

i∈I,j /∈I
|xi − xj| > ε}.

In words, the configurations from the set BI satisfy the condition that all I-particles (i.e. those
with indices from I) are connected by ε-chains, while all others are far enough.

The sets {BI} define a finite partition of X and the map Qε differs from the identical map
only on the sets BI with |I| > 1. Thus the signed measure ν := Qεµ− µ is supported only on
the sets BI with |I| > 1. Denote B̃I := {x ∈ X : |xi − xj| ≤ ε|I| ∀i, j ∈ I}. Obviously B̃I is
a proper rectangle and BI ⊆ B̃I ∀I. Applying Lemma 5.1(c) we get

|ν| = |ν |∪|I|>1BI
| =

∑
|I|>1

|ν |BI
| ≤

∑
|I|>1

|ν |B̃I
|

≤ 1

2

∑
|I|>1

|B̃I |(||µ||+ ||Q
∗
εµ||)

≤ 1

2

∑
|J |>1

(ε|I|)|J |
(

1 +
2Nθ

γ

)
||µ|| ε→0−→ 0.

The completion of the proof follows the same perturbation argument as in the proof of
Theorem 5.2. tu

6 Generalizations

1. General interaction potential. So far we have considered local interactions based on
a somewhat non-physical model of attraction. Indeed, normally by the attraction one means
something more close to the gravitation law. In order to include these more general local
interactions (excluded by (1.2)) consider an “interaction potential” U : X → R and set Uε(x) :=
U(x/ε). Then one defines the following generalization of the dynamically switching interactions:

(Qεx)i := γxi +
1− γ
|Ji|

∑
j∈Ji

xj · Uε(xj − xi). (6.1)

The interaction in (1.2) corresponds to the potential U(x) defined by the indicator function
1[−1,1] of the interval [−1, 1]. Assuming that U(x) ≥ 0 and making some regularity type
assumptions on the potential one recovers all results obtained in Theorems 1.1 and 1.2.

2. Random local dynamics. It worth notice that the dynamics of the local units of the
multicomponent system under consideration needs not to be deterministic. Indeed, it might be
defined by a stochastic Markov chain satisfying the weak mixing condition (in Theorem 1.1)
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and some additional assumptions about the induced operator acting in the space of signed
measures (in Theorem 1.2).

3. Infinite particle systems. Strictly speaking our definition of the interaction does not allow
to consider infinite particle systems since the notion of the center of gravity is not well defined
in this case. To overcome this difficulty one may assume that there exists a certain locally
finite4 graph of interactions and that the dynamical switching occurs only between neighboring
elements in this graph. This means that the sets Ji satisfy the property that only elements J
connected to i may belong to them. All our results can be extended to this setup.

Another and potentially more promising approach (at least in the “independent phase”) is
to consider a mean field approximation scheme. Let µ be a probability distribution describing
the position of a particle (and assume that it is the same for all particles). If a given particle
is located at a point x ∈ X then the mean field approximation allows to calculate the center
of gravity of the particles in the ε-neighborhood Bε(x) of this point as 1

µ(Bε(x))

∫
Bε(x)

ydµ(y).

Therefore one rewrites the interaction as

Qε,γ,µx := γx+
1− γ

µ(Bε(x))

∫
Bε(x)

ydµ(y).

Denoting (for a given µ) by Q∗ε,γ,µ the induced action of the map Qε,γ,µ in the space of signed
measures we obtain the description of the mean field approximation in this space:

T ∗ε,γµ := Q∗ε,γ,T ∗µT
∗µ. (6.2)

In distinction to the transfer operators considered in the previous Sections the operator T ∗ε,γ is
nonlinear which complicates its analysis a lot.

In the simplest case when X := S1 and Tx := 2x it is easy to show that the Lebesgue
measure is T ∗ε,γ-invariant for all ε, γ and that any measure uniformly distributed on a periodic
trajectory is invariant for small enough ε > 0. Nevertheless the analysis of stability of these
measures (i.e. the construction of the analogue of the SBR measure) is a much more delicate
task. Even in this simple example one needs to develop a special technique to study properties
of the nonlinear transfer operator. Therefore this analysis will be discussed in a separate
publication
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