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Abstract

It is known that invariance under Lorentz transformations is a fundamental principle underlying both relativity and

quantum field theory. It has been recently suggested that global Lorentz invariance is only an approximate symmetry of

nature that may be broken for subnuclear particles participating in high-energy interactions. In particular, several

research groups have argued that violation of Lorentz invariance may provide a satisfactory answer to anomalies

reported in the detection of ultrahigh energy cosmic rays (UHECR) and TeV-photon spectra. Since breaking of Lorentz

invariance amounts to a manifest violation of relativity, it is highly desirable to search for alternative explanations of

these anomalies. Our work suggests a possible solution that complies with relativity and is consistent with the Cantorian

geometry of space–time at high-energy scales.

� 2003 Published by Elsevier Ltd.
1. Introduction

It is generally expected that vacuum fluctuations and quantum gravity effects introduce large stochastic perturba-

tions in the space–time geometry at energy scales comparable to the Planck mass [2–9,30–32]. Although this observation

has been known since long time, it has not received any serious consideration due to the fact that the Planck mass

region is experimentally inaccessible with the current accelerator technology (MPl � 1028 eV). The situation has rapidly

changed in recent years with the realization that there are cosmic probes that can be affected in their propagation by the

fundamental structure of our Universe [8]. These probes are either ultrahigh energy cosmic rays (UHECR) or gamma

rays in the TeV range from very far and variable sources. It has been since recognized that cosmology may provide a

natural laboratory for testing contemporary theories on ultrahigh energy physics such as loop quantum gravity,

quantum foam models of space–time, string/M theories, non-commutative field theories and generalized statistical

mechanics (for details see Refs. [26–32] in [1], Refs. [27–33] in [2] and Ref. [3]).

At the same time, there is a growing body of theoretical arguments advocating that vacuum fluctuations at high-

energy scales convert the smooth topology of space–time continuum into an infinite dimensional hierarchical Cantor set

[30–32]. In this context, it appears that the physics of these cosmic probes may hold valuable clues regarding the un-

derlying geometry of space–time in high-energy interactions.

Detection of UHECR and TeV cosmic rays has revealed a series of discrepancies between theoretical predictions and

experimental observations, generically called threshold anomalies. Several research groups have argued that a satis-

factory resolution of these anomalies demands giving up the relativistic principle of Lorentz invariance (see Section 4).

Since breaking of Lorentz invariance amounts to a manifest violation of relativity, it is highly desirable to search for

alternative explanations of these anomalies. Specifically, the dynamic effect of large fluctuations in the interaction
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energy needs to be accounted for. The paper suggests a possible solution that complies with relativity and is consistent

with fractional dynamics and Cantorian geometry of space–time at high-energy scales. Motivation for using fractional

dynamics lies in the deep connection between complexity and the fractal topology of phase-space in high-energy in-

teractions. The approach fits the framework opened by fractional extensions of some equations of motion (Poisson [24],

Schrodinger [25], Dirac [26] and Klein–Gordon [27]). It is also a consolidation of ideas developed by author in [33,34].

The paper is organized in the following way: Section 2 gives a short description of Lorentz invariance and relativistic

mechanics. Review of the UHECR and TeV-photon spectra anomalies is carried out in Section 3. Section 4 deals with

specific models for Lorentz invariance violation and their implications. Fractional generalization of the Klein–Gordon

equation and Lorentz invariance are detailed in Sections 5 and 6. The energy–momentum conservation corresponding

to the fractional kinematics regime is discussed in Section 7. Numerical results and concluding remarks are presented in

the last two sections.
2. Lorentz invariance and relativistic mechanics

To make the paper self-contained we introduce below a brief account of Lorentz symmetry. For a more in-depth

discussion the reader is referred to [35] and [36].

The invariance of the laws of physics with respect to rotations and with respect to reference frames moving with a

constant speed relative to each other is generically called Lorentz invariance. Consider two arbitrary inertial frames (1)

and (2) with their coordinate axes oriented in the same direction, one frame moving relative to the other with the

velocity V along the x1-axis. Let x4 ¼ ct, xj (j ¼ 1, 2, 3) and x04 ¼ ct0, x0j represent the set of space–time coordinates of an
event recorded in (1) and (2) respectively. The space–time coordinates may be thought of as components of a four-

vector. They are related through the Lorentz transformation equations
x01 ¼ c x1

�
� V

c
x4

�
x02 ¼ x2
x03 ¼ x3

x04 ¼ c x4

�
� Vx1

c

�
ð1Þ
where c is the light speed in vacuum and
c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1� V 2

c2

q ð2Þ
Consider a relativistic free particle whose dynamics is specified in terms of energy ðEÞ and momentum p ¼ ðp1; p2; p3Þ. It
can be shown that the components of the energy–momentum four-vector ðE; p1; p2; p3Þ transform in the same way as the

components of the space–time four-vector. The invariant norms associated with the Lorentz transformation of space–

time and energy–momentum four-vectors are given by
x2 � c2t2 ¼ x02 � c2t02 ð3aÞ

E2 � p2c2 ¼ E02 � p02c2 ¼ m2
0c

4 ð3bÞ
in which m0 is the rest frame mass of the particle and x2 ¼ x21 þ x32 þ x23. Relation (3b) is referred to as the relativistic

dispersion relation. It is instructive to mention that (3b) is the basis for the derivation of the Klein–Gordon equation of

scalar free-field theory [37,38]. By substituting the energy and momentum operators E ! i�h o
ot and pj ! �i�h o

oxj in (3b)

one obtains
1

c2
o2

ot2

��
�r2

�
þ m2

0c
2

�h2

�
u ¼ 0 ð4Þ
in which uðjxj; tÞ represents the space-symmetric scalar field operator and r2 ¼ o2

ox2
1

þ o2

ox2
2

þ o2

ox2
3

. Our treatment is devel-

oped below in a classical framework where uðjxj; tÞ is interpreted as an ordinary two-dimensional function and where �h
and c are set to unity ð�h ¼ c ¼ 1Þ. To further simplify the formulation and without loss of generality we choose

throughout a 1+ 1 representation of space–time.
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3. Review of UHECR and TeV-photon anomalies

We briefly discuss in this section the two anomalies related to the detection of ultrahigh energy cosmic radiation

(UHECR) and gamma rays in the TeV range, as described in Refs. [1,4–9,14].

3.1. The UHECR anomaly

This anomaly involves the so-called photopion processes whereby ultrahigh energy protons (p) interact with the

cosmic microwave background photons ðcCBÞ and produce pions ðpÞ. The reaction may be symbolically represented as
pþ cCB ! pþ p ð5Þ
The expectation is that recording of UHECR protons having energies higher than the standard 5 · 1019 eV threshold

(the so-called GZK cutoff) is highly unlikely. Still some ground-based detectors have reported many hundreds of

UHECR protons with energies above the GZK threshold and about 20 protons above 1020 eV [1,4,14].

3.2. The TeV-photon anomaly

This anomaly refers to high-energy gamma rays ðcÞ propagating in the intergalactic space and colliding with infrared
background photons ðcIRÞ. The result of this interaction is the production of an electron–positron pair according to the
process
c þ cIR ! eþ þ e� ð6Þ
As in the first anomaly, gamma photons with energies higher than the extinction threshold of 20 TeV should have

disappeared from the detection signal. However, observations reported at HEGRA and other ground-based detectors

indicate the existence of gamma photons with a spectrum ranging up to 24 TeV, which is above the extinction threshold

[1,4,14].
4. Models and implications of Lorentz invariance violation

Various solutions have been proposed to resolve these anomalies. For example, recent work by Kachelrieb et al.

suggests a mechanism based on the emergence of new massive hadrons in proton–photon collisions [23]. The prevalent

view continues to be that the root cause of anomalies lies in the violation of Lorentz invariance and of the relativistic

dispersion relation (3b) [1–22]. Several authors have suggested that Lorentz invariance violation is a manifestation of

the short-distance structure of space–time that, in turn, may be accounted for by non-commutative field theories

[1,16,17].

Two main models have been put forward. They rely on deformations of the relativistic dispersion relations. Coleman

and Glashow have advocated the following extension of the relativistic dispersion relation [7]
E2
a ¼ p

!2

ac
2
a þ m2

ac
4
a ð7Þ
where ca 6¼ 1 is the maximum attainable velocity for the particle labeled by index a. Amelino-Camelia et al. have in-

troduced the dispersion relation [4,14]:
E2 ¼ p
!2 þ m2 þ jpjnþ2

Mn
Pl

ð8Þ
in which MPl is the Planck mass and n a positive exponent.

It can be shown that both (7) and (8) may be mapped into violations of either constancy of light speed in vacuum or

the equivalence principle of relativity [21]. In particular, the interval is not invariant to an arbitrary frame change

ðx; tÞ ! ðx0; t0Þ

E02 � c02p02 6¼ E2 � c2p2 ! x02 � c02t02 6¼ x2 � c2t2 ðColeman–GlashowÞ ð9Þ
or, for light-like particles
E02

p02
6¼ E2

p2
6¼ 1

x02

t02
6¼ x2

t2
6¼ 1

ð10Þ
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and, respectively
oE2

oðp2Þ 6¼ 1 ðAmelino-CameliaÞ ð11Þ
By postulating that Lorentz invariance is an approximate symmetry, both models amount to a manifest violation of

relativity. It is highly desirable, in this context, to search for alternative explanations of these anomalies. This is the task

of the next section where the key ingredients of our approach are introduced and developed.
5. Derivation of the fractional Klein–Gordon equation

We start with the observation that high-energy interactions are characterized by large fluctuations in momenta. In

general, strong and steady coupling between fluctuations and the interacting particles under study generates uncon-

trolled perturbations in the unitary time evolution and drives the transition from order to chaos.

It is known that the chaotic dynamics of Hamiltonian systems is best described as a fractional diffusion process

[28,29]. The space–time flow of the probability density function is encoded in a fractional differential equation de-

pending on two non-integer exponents ða; bÞ responsible for space and time derivatives of the probability distribution

function. According to this prescription, the ordinary space and time differentiation operators are extended to
o

ot
! ob

otb
o

ojxj !
oa

ojxja
ð12Þ
in which ob=otb is the Riemann–Liouville derivative of order 0 < b6 1 and oa=ojxja is the Riesz derivative of order

0 < a6 2 [28]. Bounding the intervals of the two exponents allows the correct interpretation of the probability density

function as a positive scalar. The choice 1 < b6 a6 2 is also acceptable from this standpoint, as discussed in [28].

Because, in general a 6¼ b, differentiation with respect to space and time breaks the dimensional symmetry between

these two independent observables. Restoring this symmetry requires introduction of a spatial and temporal mass scale

and use of non-dimensional coordinates according to the prescription
jx0j ¼ jxjMx

t0 ¼ tMt

o

ot
! Mb

t

ob

oðt0Þb

o

ojxj ! Ma
x

oa

ojx0ja

ð13Þ
The scalar field uðjxj; tÞ may be naturally interpreted as a probability density function
uðjx0j; t0Þ ¼ /2ðjx0j; t0Þ ð14Þ
where /ðjx0j; t0Þ represents the probability amplitude of locating the field at jx0j and t0.
Under these circumstances, (4) may be extrapolated to
M2b
t

o2b

oðt0Þ2b

 "
�M2a

x r2a
0

!
þ m2

0

#
u ¼ 0 ð15Þ
Furthermore, (15) can be cast into a symmetrical form by using the parameterization
Ma
x ¼ Mb

t ¼ M

m0
0 ¼

m0

M

ra
0 ¼

oa

ojx0ja

ð16Þ
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which leads to
o2b

oðt0Þ2b

 "
�r2a

0

!
þ ðm0

0Þ
2

#
u ¼ 0 ð17Þ
Proceeding by analogy with (4) we perform the generalized operator substitution:
Eb ! i
ob

oðt0Þb

jpja ! �i oa

ojx0ja
ð18Þ
which yields in turn the fractional Klein–Gordon equation
h
� E2b þ jpj2a þ ðm0

0Þ
2
i
u ¼ 0 ð19Þ
The correspondence rules (18) are motivated by the following Fourier transform formulas [28,39]:
o2b

oðt0Þ2b
uðjx0j; t0Þ!Ft ð�iEÞ2bUðjpj;EÞ

o2a

ojx0j2a
uðjx0j; t0Þ!Fx � jpj2aUðjpj;EÞ

uðjx0j; t0Þ!Fx;tUðjpj;EÞ

ð20Þ
where Ft and Fx stand for transform operators with respect to time and space. The resulting dispersion relation
E2b ¼ jpj2a þ ðm0
0Þ

2 ð21Þ
is an obvious generalization of the ordinary relativistic dispersion corresponding to a ¼ b ¼ 1.
6. Fractional generalization of Lorentz invariance

Consider now the massless relativistic case m0
0 ¼ 0. The fractional Klein–Gordon equation reads
o2b

oðt0Þ2b

"
�r2a

0

#
u ¼ 0 ð22Þ
The first order moments of space and time computed from (22) are given by [29]
jx0j2a
D E

¼ const:� ðt0Þ2b ð23Þ
It is seen from (21) and (22) that, in contrast with theories based on Lorentz invariance violation, the principle of

constancy of light speed is preserved here since
oE2b

oðp2aÞ ¼ 1 ð24Þ
and, for any pair of arbitrary frames ðx0; t0Þ; ðx00; t00Þ
jx00j2a
D E
ðt00Þ2b

¼
jx0j2a
D E
ðt0Þ2b

¼ const: ð25aÞ
which is a natural generalization of (3a).

It can be also seen from (21) and (23) that the following space–time and energy–momentum substitutions do not

alter the form of Lorentz transformations (1) and their norms (3)
jx0frj ¼ jx0ja

t0fr ¼ ðt0Þb

jpjfr ¼ jpja

Efr ¼ Eb

ð25bÞ
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We wish to elaborate on this point in greater detail. Consider, as before, two inertial frames (1) and (2) and let X 0
fr and

T 0
fr stand for the space–time coordinates locating the origin of frame (2) measured relative to (1). X 0

fr and T 0
fr are defined

according to (25b). The generalized Lorentz transformations for space–time coordinates take the form
x00fr ¼ cfrðx0fr � Vfrt0Þ
t00fr ¼ cfrðt0fr � Vfrx0frÞ

ð26Þ
where Vfr is the equivalent relative fractional velocity between the two frames, that is
Vfr ¼
X 0
fr

T 0
fr

ð27Þ
and
cfr ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V 2
fr

p ð28Þ
In an analogous manner, from (21) and (25b) we obtain
E2
fr � p2fr ¼ E02

fr � p02fr ¼ ðm0
0Þ

2 ð29Þ
There is a straightforward connection between the first two relations in (25b) and the formal definition of the Hausdorff

dimension in fractal sets theory. It follows that the two exponents a; b naturally coincide with the fractal dimensions of

the underlying Cantorian space–time manifold [28,29]. We shall make use of this property in Section 9.
7. Fractional balance of energy and momentum

Let us now return to the UHECR and TeV-photon spectra anomalies introduced in Section 3. Consider the head on

collision between a soft photon having energy e and momentum k
!
and a high-energy particle of energy E1 and mo-

mentum p1. The process leads to the creation of two particles with energies E2;E3 and momenta p
!
2; p

!
3, respectively

[1,4,14]. The high-energy collision channels corresponding to both anomalies occur on small space–time intervals. For

sufficiently small space–time intervals, the irreversible character of fractional diffusion may be neglected. Then the

conservation of energy and momentum requires
Eb
1 þ eb ¼ Eb

2 þ Eb
3

pa
1 � ka ¼ pa

2 þ pa
3

ð30Þ
Taking into account that, according to (21), the generalized photon dispersion relation is
eb ¼ ka ð31Þ
we obtain from (30) and (31)
Eb
1 þ ½E2b

1 � ðm0
1Þ

2�1=2 ¼ Eb
2 þ ½E2b

2 � ðm0
2Þ

2�1=2 þ Eb
3 þ ½E2b

3 � ðm0
3Þ

2�1=2 ð32Þ
The above relation may be specialized for the two paradoxes as described below:
7.1. The UHECR anomaly

In this case
m0
1 ¼ m0

2 ¼ m0
proton ¼

940� 106

M

m0
3 ¼ m0

p ¼ 140� 106

M

p1 ¼ pproton ¼
3� 1020

M

ð33Þ
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In addition, direct generalization of [1]
p2
pp

¼ mproton

mp
ð34aÞ
yields
pa
2

pa
p

¼
m0
proton

m0
p

ð34bÞ
Under these circumstances (32) turns into
Eb
1 þ ½E2b

1 � ðm0
protonÞ

2�1=2 ¼ Eb
2 þ ½E2b

2 � ðm0
protonÞ

2�1=2 þ Eb
p þ ½E2b

p � ðm0
pÞ

2�1=2 ð35Þ
in which, from (21)
p2a1 ¼ E2b
1 � ðm0

protonÞ
2

p2ap ¼ E2b
p � ðm0

pÞ
2

ð36Þ
7.2. The TeV-photon anomaly

Here we have
m0
1 ¼ m0

c ¼ 0

E2 ¼ E3

E1 ¼ Ec ¼
20� 1012

M

m0
2 ¼ m0

e ¼
0:511� 106

M

ð37Þ
in addition, the following approximation holds [15]
E2 �
Ec

2
ð38Þ
(32) becomes accordingly
Eb
c ¼ Ec

2

� �b

þ Ec

2

� �2b
"

� ðm0
eÞ

2

#1=2
ð39Þ
where
p2a2 ¼ p2a3 ¼ Ec

2

� �2b

� ðm0
eÞ

2 ð40Þ
We seek the set of ða; bÞ pairs that simultaneously satisfy the system of Eqs. (35), (36), (39) and (40), falling in the range

0 < b6 1 and 0 < a6 2. Since the number of equations exceeds two, we can only obtain solutions in the least square

sense. These solutions minimize the error residuals corresponding to (35) and (39) [40]. Details on the least-squares

analysis are presented in the next section.
8. Numerical results

Eqs. (35), (36), (39) and (40) were solved in numerical form using the software package MathCad [40]. The mass

scale M was chosen to be variable spanning the range from 1012 eV (¼ 1 TeV) to an energy bound close to the Planck

mass, namely 1024 eV. The range was divided in six equal increments of 100 eV.

The algorithm employed for running the solver in MathCad requires specification of initial ‘‘guess’’ values for the

unknowns a; b. This input provides MathCad a place to start searching for solutions. Five random guess values were

assigned to each energy increment. The table and the graph shown below display the average of the five solutions found

for each mass scale as functions of logM .
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Data table

logM Alpha Beta

12 0.236 0.155

14 0.210 0.139

16 0.164 0.238

18 0.116 0.184

20 0.185 0.197

22 0.201 0.739

24 0.249 0.821
9. Discussion and concluding remarks

Examination of the above data suggests that fractional kinematics contained in (21), (30) and (32) leads to a fairly flat

graph for a and a monotonical graph for b aboveM � 1020 eV. It is found that a is reasonably close to /3 ¼ 0:236067977
where / ¼

ffiffi
5

p
�1
2

is the golden mean, which plays a distinctive role in the KAM theory of transition to chaos and in the

Eð1Þ model of El Naschie. /3 is the difference between the expectation value for the Hausdorff dimension of space–time in

the Eð1Þ model and D ¼ 4, the dimension of space–time at low energy scales [30–32]. Therefore
a � /3 ¼< dc > �D ð41Þ
We caution that these findings are preliminary and require further independent confirmation. In particular, as pointed

out in (1), the experimental data needs to be refined and consolidated. Computations presented in this work have used

the highest energy values for UHECR and TeV-photons available from current data.
References

[1] Chen S-X, Yang Z-Y. Available from: arxiv:hep-th/0211237.

[2] Bartolami O. Available from: arxiv:hep-ph/0301191.



E. Goldfain / Chaos, Solitons and Fractals 20 (2004) 427–435 435

ARTICLE IN PRESS
[3] Beck C. Physica 2002;305A:209, Available from: arxiv: cond-mat/0110007 and arxiv: cond-mat/0301354.

[4] Amelino-Camelia G, Piran T. Phys Rev D 2001;64:036005.

[5] Carmona JM, et al. Available from: arxiv:hep-th/0207158.

[6] Mestres LG. Available from: arxiv: physics/9704017.

[7] Coleman S, Glashow SL. Phys Rev D 1999;59:116008.

[8] Aloisio R et al. Phys Rev D 2000;62:053010, Available from: arxiv: astro-ph/0210402.

[9] Bertolami O, Carvalho CS. Phys Rev D 2002;61:103002.

[10] Sato H. Available from: arxiv: astro-ph/0005218 and arxiv: astro-ph/0304100.

[11] Kifune T. Astrophys J 1999;518:L21.

[12] Kluzniak W. Available from: arxiv: astro-ph/9905308.

[13] Protheroe RJ, Meyer H. Phys Lett B 2000;493:1.

[14] Amelino-Camelia G. Int J Mod Phys D 2002;11:35.

[15] Stecker FW. Available from: arxiv: astro-ph/0304527;

Stecker FW, Glashow SL. Astropart Phys 2001;16:97.

[16] Carmona JM, Cortes JL. Available from: arxiv:hep-th/0207158;

Phys Rev D 2001;65:025006.

[17] Calmet X, Wohlgenannt. Phys Rev D 2003;68:025016.

[18] Jacobson T, et al. Available from: arxiv:gr-qc/0303001.

[19] Grishkan YuS, et al. Available from: arxiv: astro-ph/0203279.

[20] Biermann PL. In: AIP Conference Proceedings, International Workshop Metepec, Puebla, Mexico, 2000.

[21] Halprin A, Kim HB. Available from: arxiv:hep-ph/9905301.

[22] Gonzalez-Mestres L. Available from: www.icrc.1999.utah.edu/~icrc1999/root/vol1/h1_3_16.pdf.

[23] Kachelrieb M et al. Phys Rev D 2003;68:043005.

[24] Derrienic M, Lin M. Israel J Math 2001;123:93–130.

[25] Laskin N. Available from: arxiv:quant-ph/0206098.

[26] Raspini A. Fizika B (Zagreb) 2000;9(2):49–54.

[27] Barci DG, et al. Available from: arxiv:hep-th/9606183.

[28] Zaslavsky GM. Physica D 1994;76:110;

Saichev AI, Zaslavsky GM. Chaos 1997;7(4):753.

[29] Zaslavsky GM, Edelman M. Available from: arxiv.org/PS_cache/nlin/pdf/0112/0112033.pdf.

[30] El Naschie M. Chaos, Solitons & Fractals 2003;17:631–8.

[31] El Naschie M. Chaos, Solitons & Fractals 2003;17:797–807.

[32] El Naschie M. Chaos, Solitons & Fractals 2003;18:401–20.

[33] Goldfain E. Chaos, Solitons & Fractals 2003;17:811–8.

[34] Goldfain E. On the relationship between Hamiltonian chaos and classical gravity. Chaos, Solitons & Fractals 2003;20:187–94.

[35] Barut AO. Electrodynamics and classical theory of fields and particles. New York: Dover; 1980.

[36] Corben HC, Stehle P. Classical mechanics. New York: Dover; 1977.

[37] Messiah A. Quantum mechanics. New York: Dover; 1999.

[38] Hatfield B. Quantum field theory of point particles and strings. Westview Press; 1992.

[39] Podlubny I. Fractional differential equations. Academic Press; 1999.

[40] MathCad is a mathematics software package from MathSoft Inc. 101 Main Street, Cambridge, MA 02142, USA.

http://www.icrc.1999.utah.edu/~icrc1999/root/vol1/h1_3_16.pdf

	On a possible evidence for Cantorian space-time in cosmic ray astrophysics
	Introduction
	Lorentz invariance and relativistic mechanics
	Review of UHECR and TeV-photon anomalies
	The UHECR anomaly
	The TeV-photon anomaly

	Models and implications of Lorentz invariance violation
	Derivation of the fractional Klein-Gordon equation
	Fractional generalization of Lorentz invariance
	Fractional balance of energy and momentum
	The UHECR anomaly
	The TeV-photon anomaly

	Numerical results
	Discussion and concluding remarks
	References


