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Abstract

Expander graphs are widely used in communication problems and construction of error

correcting codes. In such graphs, information gets through very quickly. Typically, it is

not true for social or biological networks, though we may find a partition of the vertices

such that the induced subgraphs on them and the bipartite subgraphs between any pair

of them exhibit regular behavior of information flow within or between the vertex subsets.

Implications between spectral and regularity properties are discussed.
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1 Introduction

We want to go beyond the expander graphs that – for four decades – have played an important
role in communication networks; for a summary, see e.g., Chung [8] and Hoory et al. [14].
Roughly speaking, the expansion property means that each subset of the graph’s vertices has
“many” neighbors (combinatorial view), and hence, information gets through such a graph very
“quickly” (probabilistic view). We will not give exact definitions of expanders here as those
contain many parameters which are not used later. We rather refer to the spectral and random
walk characterization of such graphs, as discussed, among others by Alon [1], and Meila and
Shi [17].
The general framework of an edge-weighted graph will be used. Expanders have a spectral
gap bounded away from zero, where – for a connected graph – this gap is defined as the
minimum distance between the normalized Laplacian spectrum (apart from the trivial zero
eigenvalue) and the endpoints of the [0,2] interval, the possible range of the spectrum. The
larger the spectral gap, the more our graph resembles a random graph and exhibits quasi-
random properties, e.g., the edge densities within any subset and between any two subsets of
its vertices do not differ too much of what is expected, see the Expander Mixing Lemma 1 of
Section 2. Quasi-random properties and spectral gap of random graphs with given expected
degrees are discussed in Chung and Graham [9], and Coja-Oghlan and Lanka [11].
However, the spectral gap appears not at the ends of the normalized Laplacian spectrum in
case of generalized random or generalized quasi-random graphs that, in the presence of k ≥ 2
underlying clusters, have k eigenvalues (including the zero) separated from 1, while the bulk of
the spectrum is located around 1, see e.g., [6]. These structures are usual in social or biological
networks having k clusters of vertices (that belong to social groups or similarly functioning
enzymes) such that the edge density within the clusters and between any pair of the clusters is
homogeneous.
Our conjecture is that k so-called structural eigenvalues (separated from 1) in the normalized
Laplacian spectrum are indications of such a structure, while the near 1 eigenvalues are re-
sponsible for the pairwise regularities. The clusters themselves can be recovered by applying
the k-means algorithm for the vertex representatives obtained by the eigenvectors correspond-
ing to the structural eigenvalues (apart from the zero). For the k = 2 case we will give an
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exact relation between the eigenvalue separation (of the non-trivial structural eigenvalue from
the bulk of the spectrum) and the volume regularity of the cluster pair that is obtained by
the k-means algorithm applied for the coordinates of the transformed eigenvector belonging
to the non-trivial structural eigenvalue, see Theorem 1 of Section 3. To eliminate the trivial
eigenvalue-eigenvector pair, we shall rather use the normalized modularity spectrum of [7] that
plays an important role in finding the extrema of some penalized versions of the Newman-Girvan
modularity introduced in [18]. Theorem 2 of Section 4 gives an estimation for the extent of
volume-regularity of the different cluster pairs in the k > 2 case based on the spectral gap and
the k-variance of the vertex representatives.

In [10, 16], the authors give algorithms – based on low rank approximation – to find a regular
partition if k is known and our graph comes from a generalized random graph model with
k clusters. Without knowing k, there are constructions – like [13] – based on refinement of
partitions and leading to a very fine partition with number of clusters depending merely on the
constant ruling the regularity of the cluster pairs. On the contrary, our purpose is to estimate
the extent of the regularity of the cluster pairs by means of spectral gaps and eigenvectors.
The estimations given are relevant only in the presence of a large spectral gap (between some
structural and the other eigenvalues) and special classification properties of the eigenvectors
corresponding to the structural eigenvalues, see Theorem 2 of Section 4. In this case, the
algorithm is straightforward via k-means clustering.

2 Preliminaries and statement of purpose

Let G = (V,W) be a graph on n vertices, where the n × n symmetric matrix W has non-
negative real entries and zero diagonal. Here wij is the similarity between vertices i and j,
where 0 similarity means no connection/edge at all. A simple graph is a special case of it with
0-1 weights. Without loss of generality

n
∑

i=1

n
∑

j=1

wij = 1 (1)

will be supposed. Hence, W is a joint distribution, with marginal entries

di =

n
∑

j=1

wij , i = 1, . . . , n

which are the generalized vertex degrees collected in the main diagonal of the diagonal degree
matrix D = diag (d), d = (d1, . . . , dn)

T . In [4, 5] we investigated the spectral gap of the nor-
malized Laplacian LD = I−D−1/2WD−1/2, where I denotes the identity matrix of appropriate
size.

Suppose that our graph is connected (W is irreducible). Let 0 = λ1 < λ2 ≤ · · · ≤ λn ≤ 2
denote the eigenvalues of the symmetric normalized Laplacian LD with corresponding unit-
norm, pairwise orthogonal eigenvectors u1, . . . ,un. Namely, u1 = (

√
d1, . . . ,

√
dn)

T =
√
d. In

the random walk setup D−1W is the transition matrix (its entry in the (i, j)-th position is the
conditional probability of moving from vertex i to vertex j in one step, given that we are in i)
which is a stochastic matrix with eigenvalues 1 − λi and corresponding eigenvectors D−1/2ui

(i = 1, . . . , n). “Good” expanders have a λ2 bounded away from zero, that also implies the
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separation of the isoperimetric number

h(G) = min
U⊂V : Vol (U)≤ 1

2

w(U,U)

Vol (U)
, (2)

where for X,Y ⊂ V : w(X,Y ) =
∑

i∈X

∑

j∈Y wij is the weighted cut between X and Y , while
Vol (U) =

∑

i∈U di is the volume of U ⊂ V . In view of (1), Vol (V ) = 1, this is why the
minimum is taken on vertex sets having volume at most 1

2 . In [5], we proved that

1

2
λ2 ≤ h(G) ≤ min{1,

√

2λ2}, (3)

while in the λ2 ≤ 1 case the stronger upper estimation

h(G) ≤
√

λ2(2− λ2)

holds. (We remark that λ2 ≤ n
n−1 always holds.)

If a network does not have a “large” λ2 (compared to the natural lower bound), or equivalently
– in view of the above inequalities – it has a relatively “small” isoperimetric number, then the
2-partition of the vertices giving the minimum in (2) indicates a bottleneck, or equivalently, a
low conductivity edge-set between two disjoint vertex clusters such that the random walk gets
through with small probability between them, but – as some equivalent notions will indicate –
it is rapidly mixing within the clusters. To find the clusters, the coordinates of the transformed
eigenvector D−1/2u2 will be used. In [4], we proved that for the weighted 2-variance of this
vector’s coordinates

S2
2(D

−1/2u2) ≤
λ2

λ3
(4)

holds. For a general 2 ≤ k ≤ n, the notion of k-variance – in the Analysis of Variance sense – is
the following. The weighted k-variance of the k-dimensional vertex representatives x1, . . . ,xn

comprising the row vectors of the n× k matrix X is defined by

S2
k(X) = min

Pk∈Pk

S2
k(Pk,X) = min

Pk=(V1,...,Vk)

k
∑

a=1

∑

j∈Va

dj‖xj − ca‖2, (5)

where ca = 1
Vol (Va)

∑

j∈Va
djxj is the weighted center of cluster Va (a = 1, . . . , k) and Pk denotes

the set of k-partitions of the vertices. We remark that S2
2(D

−1/2u1,D
−1/2u2) = S2

2(D
−1/2u2),

since D−1/2u1 = 1 is the all 1’s vector.
The above results were generalized for minimizing the normalized k-way cut

fk(Pk, G) =

k−1
∑

a=1

k
∑

b=a+1

(

1

Vol (Va)
+

1

Vol (Vb)

)

w(Va, Vb) = k −
k

∑

a=1

w(Va, Va)

Vol (Va)
(6)

of the k-partition Pk = (V1, . . . , Vk) over the set of all possible k-partitions. Let

fk(G) = min
Pk∈Pk

fk(Pk, G)

be the minimum normalized k-way cut of the underlying weighted graph G = (V,W). In fact,
f2(G) is the symmetric version of the isoperimetric number and f2(G) ≤ 2h(G). In [5] we
proved that

k
∑

i=1

λi ≤ fk(G) ≤ c2
k

∑

i=1

λi, (7)
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where the upper estimation is relevant only in the case when S2
k(u1, . . . ,uk) is small enough

and the constant c depends on this minimum k-variance of the vertex representatives.
The normalized Newman-Girvan modularity is defined in [7] as the penalized version of the
Newman-Girvan modularity [18] in the following way. The normalized k-way modularity of
Pk = (V1, . . . , Vk) is

Qk(Pk, G) =

k
∑

a=1

1

Vol (Va)

∑

i,j∈Va

(wij − didj) =

k
∑

a=1

1

Vol (Va)
[w(Va, Va)−Vol 2(Va)]

=
k

∑

a=1

w(Va, Va)

Vol (Va)
− 1 = k − 1− fk(Pk),

(8)

and
Qk(G) = max

Pk∈Pk

Qk(Pk, G)

is themaximum normalized k-way Newman-Girvan modularity of the underlying weighted graph
G = (V,W). For given k, maximizing this modularity is equivalent to minimizing the normal-
ized cut and can be solved by the same spectral technique. In fact, it is more convenient to

use the spectral decomposition of the normalized modularity matrix BD = I − LD −
√
d
√
d
T

with eigenvalues β1 ≥ · · · ≥ βn, that are the numbers 1− λi with eigenvectors ui (i = 2, . . . , n)
and the zero with corresponding unit-norm eigenvector

√
d. In [5, 7], we also show that a

spectral gap between λk and λk+1 is an indication of k clusters with low inter-cluster connec-
tions; further, the intra-cluster connections (wij) between vertices i and j of the same cluster
are higher than expected under the hypothesis of independence (in view of which the vertices
are connected with probability didj). In the random walk framework, the random walk stays
within the clusters with high probability.
Conversely, minimizing the above modularity will result in clusters with high inter- and low
intra-cluster connections. In [7], we proved that

min
Pk∈Pk

Qk(Pk, G) ≥
k

∑

i=1

βn+1−i. (9)

The existence of k “large” (significantly larger than 1) eigenvalues in the normalized Laplacian
spectrum, or equivalently, the existence of k negative eigenvalues (separated from 0) in the
normalized modularity spectrum is an indication of k clusters with the above property. In the
random walk setup: the walk stays within the clusters with low probability.
These two types of network structures are frequently called community or anti-community
structure. These are the two extreme cases, when fk(Pk, G) is either minimized or maximized,
and the optimization gives k clusters with either strong intra-cluster and weak inter-cluster
connections, or vice versa. Some networks exhibit a more general, still regular behavior: the
vertices can be classified into k clusters such that the information-flow within them and between
any pair of them is homogeneous. In terms of random walks, the walk stays within clusters
or switches between clusters with probabilities characteristic for the cluster pair. That is,
if the random walk moves from a vertex of cluster Va to a vertex of cluster Vb, then the
probability of doing this does not depend on the actual vertices, it merely depends on their
cluster memberships, a, b = 1, . . . , k.
In this context, we examined the following generalized random graph model, that corresponds
to the ideal case: given the number of clusters k, the vertices of the graph independently belong
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to the clusters; further, conditioned on the cluster memberships, vertices i ∈ Va and j ∈ Vb

are connected with probability pab, independently of each other, 1 ≤ a, b ≤ k. Applying the
results [6] for the spectral characterization of some noisy random graphs, we are able to prove
that the normalized modularity spectrum of a generalized random graph is the following: there
exists a positive number θ < 1, independent of n, such that there are exactly k − 1 so-called
structural eigenvalues of BD that are greater than θ − o(1), while all the others are o(1) in
absolute value. It is equivalent that LD has k eigenvalues (including the zero) separated from
1.
The k = 1 case corresponds to quasi-random graphs and the above characterization corresponds
to the eigenvalue separation of such graphs, discussed in [9]. The authors also prove some
implications between the so-called quasi-random properties. For example, for dense graphs,
“good” eigenvalue separation is equivalent to “low” discrepancy (of the induced subgraphs’
densities from the overall edge density).
For the k ≥ 2 case, generalized quasi-random graphs were introduced by Lovász and T. Sós [15].
These graphs are deterministic counterparts of generalized random graphs with the same spec-
tral properties. In fact, the authors define so-called generalized quasi-random graph sequences
by means of graph convergence that also implies the convergence of spectra. Though, the spec-
trum itself does not carry enough information for the cluster structure of the graph, together
with some classification properties of the structural eigenvectors it does. We want to prove
some implication between the spectral gap and the volume-regularity of the cluster pairs, also
using the structural eigenvectors.
The notion of volume regularity was introduced by Alon et al. [2]. We shall use a slightly
modified version of this notion.

Definition 1 Let G = (V,W) be weighted graph with Vol (V ) = 1. The disjoint pair (A,B) is
α-volume regular if for all X ⊂ A, Y ⊂ B we have

|w(X,Y )− ρ(A,B)Vol (X)Vol (Y )| ≤ α
√

Vol (A)Vol (B), (10)

where ρ(A,B) = e(A,B)
Vol (A)Vol (B) is the relative inter-cluster density of (A,B).

Our definition was inspired by the Expander Mixing Lemma stated e.g., in [14] for regular graphs
and in [8] for simple graphs in the context of quasi-random properties. Now we formulate it for
edge-weighted graphs on a general degree sequence. We also include the proof as a preparation
for the proof of Theorem 1 of Section 3.

Lemma 1 (Expander Mixing Lemma for Weighted Graphs) Let G = (V,W ) be a
weighted graph and suppose that Vol (V ) = 1. Then for all X,Y ⊂ V :

|w(X,Y )−Vol (X)Vol (Y )| ≤ ‖BD‖ ·
√

Vol (X)(1−Vol (X))Vol (Y )(1 −Vol (Y ))

≤ ‖BD‖ ·
√

Vol (X)Vol (Y ),

where ‖BD‖ is the spectral norm of the normalized modularity matrix of G.

Proof Let X ⊂ A, Y ⊂ B and 1U ∈ R
n denote the indicator vector of U ⊂ V . Further,

x := D1/21X and y := D1/21Y .
We use the spectral decomposition D−1/2WD−1/2 =

∑n
i=1 ρiuiu

T
i , where ρi = 1 − λi (i =

2, . . . , n) are eigenvalues of BD and ρ1 = 1 with corresponding unit-norm eigenvector u1 =
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√
d = D1/21. We remark that u1 is also an eigenvector of BD corresponding to the eigenvalue

zero, hence ‖BD‖ = maxi≥2 |ρi|. Let x =
∑n

i=1 xiui and y =
∑n

i=1 yiui be the expansions
of x and y in the orthonormal basis u1, . . . ,un with coordinates xi = xTui and yi = yTui,
respectively. Observe that x1 = Vol (X), y1 = Vol (Y ) and

∑n
i=1 x

2
i = ‖x‖2 = Vol (X),

∑n
i=1 y

2
i = ‖y‖2 = Vol (Y ). Based on these,

|w(X,Y )−Vol (X)Vol (Y )| = |
n
∑

i=2

ρixiyi| ≤ ‖BD‖ · |
n
∑

i=2

xiyi|

≤ ‖BD‖ ·

√

√

√

√

n
∑

i=2

x2
i

n
∑

i=2

y2i

≤ ‖BD‖ ·
√

Vol (X)(1−Vol (X))Vol (Y )(1 −Vol (Y ))

≤ ‖BD‖ ·
√

Vol (X)Vol (Y ),

where we also used the triangle and the Cauchy-Schwarz inequalities.

We remark that the spectral gap of G is 1− ‖BD‖, hence – in view of Lemma 1 – the density
between any two subsets of “good” expanders is near to what is expected. On the contrary, in
the above definition of volume regularity, the X,Y pairs are disjoint, and a “small” α indicates
that the (A,B) pair is like a bipartite expander, see e.g., [8].

In the next section we shall prove the following statement for the k = 2 case: if one eigenvalue
jumps out of the bulk of the normalized modularity spectrum, then clustering the coordinates
of the corresponding transformed eigenvector into 2 parts (by minimizing the 2-variance of its
coordinates) will result in an α-volume regular partition of the vertices, where α depends on
the spectral gap.

We may go further: if k − 1 (so-called structural) eigenvalues jump out of the normalized
modularity spectrum, then clustering the representatives of the vertices – obtained by the
corresponding eigenvectors in the usual way – into k clusters will result in α-volume regular
pairs, where α depends on the spectral gap (between the structural eigenvalues and the bulk
of the spectrum) and the k-variance of the vertex representatives based on the eigenvectors
corresponding to the structural eigenvalues. In Section 4, we give an estimation for α in the
k ≥ 2 case; further, we extend the estimation to the clusters themselves.

3 Eigenvalue separation and volume regularity (k=2 case)

Theorem 1 Let G = (V,W) is an edge-weighted graph on n vertices, with generalized de-
grees d1, . . . , dn and D = diag (d1, . . . , dn). Suppose that Vol (V ) = 1. Let the eigenvalues of
D−1/2WD−1/2, enumerated in decreasing absolute values, be

1 = ρ1 > |ρ2| = θ > ε ≥ |ρi|, i ≥ 3.

The partition (A,B) of V is defined so that it minimizes the weighted 2-variance of the coor-
dinates of D−1/2u2, where u2 is the unit-norm eigenvector belonging to ρ2. Then the (A,B)

pair is O(
√

1−θ
1−ε )-volume regular.
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Proof We use the notations of Lemma 1’s proof. Let X ⊂ A, Y ⊂ B. Fort short, x :=
D1/21X , y := D1/21Y , a := D1/21A, b := D1/21B. With ρ := ρ(A,B) and M := W − ρddT ,

|w(X,Y )− ρVol (X)Vol (Y )| = |1T
XM1Y | = |xT (D−1/2WD−1/2 − ρ

√
d
√
d
T
)y|. (11)

Using the spectral decomposition D−1/2WD−1/2 =
∑n

i=1 ρiuiu
T
i and the fact that u1 =

√
d =

D1/21, we can write (11) as

|(1− ρ)x1y1 + ρ2x2y2 +

n
∑

i=3

ρixiyi|, (12)

where x =
∑n

i=1 xiui and y =
∑n

i=1 yiui is the expansion of x and y in the orthonormal basis
u1, . . . ,un with coordinates xi = xTui and yi = yTui, respectively.
First we will prove that 1 − ρ is governed by ρ2; more precisely, |1 − ρ| ≤ |ρ2| + ε. Applying
the arguments of Lemma 1 and the above formulas for the special A,B ⊂ V yields

Vol (A)Vol (B) · (ρ− 1) = w(A,B) −Vol (A)Vol (B) =

= aT (D−1/2WD−1/2 −
√
d
√
d
T
)b = ρ2a2b2 +

n
∑

i=3

ρiaibi,
(13)

where a =
∑n

i=1 aiui and b =
∑n

i=1 biui is the expansion of a and b in the orthonormal basis
u1, . . . ,un, respectively. The separation of A and B is based on the vector D−1/2u2 which has
both negative and positive coordinates, since u2 is orthogonal to u1 of all positive coordinates.
With formulas, a + b = u1, and hence, a2 + b2 = uT

1 u2 = 0. (If it is the eigenvalue λ2 of the
normalized Laplacian that is the farthest from 1, then the corresponding eigenvector, our u2, is
also called “Fiedler-vector” as the two-partition of the vertices into two loosely connected parts
was based on the signs of its coordinates in the early paper of Fiedler [12]). If θ is much larger
than ε, the first term in the last formula of (13) – apart from a term of O(|ε|) – will dominate
the sign of ρ− 1 which is therefore opposite to the sign of ρ2.
Therefore, we will distinguish between two cases.

• If λ2 < 1 − ε, then ρ2 = 1 − λ2 > ε > 0, and in view of the inequalities between
the minimum normalized cut and the smallest positive normalized Laplacian eigenvalue
(apply (7) for the k = 2 case):

ρ ≥ f2(G) = min
U⊂V

w(U, Ū)

Vol (U)Vol (Ū)
≥ λ2 = 1− ρ2, (14)

therefore 1 − ρ ≤ ρ2, as 1 − ρ is also positive due to the considerations before. Further,
the estimation, due to (4),

S2
2(D

−1/2u2) ≤
λ2

λ3
≤ 1− ρ2

1− ε
=

1− θ

1− ε
(15)

also follows.

• If 1− ε ≤ λ2 ≤ n
n−1 , then – provided 1

n−1 ≤ ε – it is the eigenvalue λn that is the farthest
from 1, and hence, greater than 1 + ε. Consequently, −ε < ρ2 = 1 − λn < 0, and hence,
by (8) and (9):

ρ2 + ρneg ≤ Q2((A,B),W) = (2− 1)− f2((A,B),W) = 1− ρ,
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where ρneg = min{1 − λn−1, 0}, and |ρneg| < ε. Note, that in this case 1 − ρ is negative
that yields |1 − ρ| ≤ |ρ2| + ε. Now the optimum A,B is obtained by minimizing the
2-variance of the coordinates of the transformed eigenvector D−1/2u2 (now u2 belongs to
λn and ρ2 at the same time) for which the following relation – like (4) – can be proved:

S2
2(D

−1/2u2) = O(
2− λn

2− λn−1
) = O(

βn + 1

βn−1 + 1
) = O(

1 − θ

1 − ε
), (16)

where β’s are eigenvalues of the normalized modularity matrix. Indeed, in lack of domi-
nant vertices, there is a relation between the largest and smallest normalized Laplacian
eigenvalues of G and G, respectively, where the complement graph G = (V,W) is defined
such that wij = 1− wij (i 6= j) and wii = 0 (i = 1, . . . , n).

If the two largest absolute value eigenvalues of the normalized modularity matrix are of
different sign, then we are able to find a gap at least θ − ε between eigenvalues of the
same sign.

Therefore, (12) can be estimated from above with

|ρ2| · |x1y1 + x2y2|+ εx1y1 +max
i≥3

|ρi| · |
n
∑

i=3

xiyi|. (17)

As for the second term, εx1y1 = εVol (X)Vol (Y ), so it does not need further treatment.
Using the Cauchy-Schwarz inequality, the last term can be estimated from above with

ε

√

√

√

√

n
∑

i=3

x2
i

n
∑

i=3

y2i ε

√

√

√

√

n
∑

i=2

x2
i

n
∑

i=2

y2i ≤ ε
√

Vol (X)(1−Vol (X))Vol (Y )(1−Vol (Y )) ≤ ε
√

Vol (X)Vol (Y ),

since x1 = Vol (X), y1 = Vol (Y ) and
∑n

i=1 x
2
i = ‖x‖2 = Vol (X),

∑n
i=1 y

2
i = ‖y‖2 = Vol (Y ).

The first term is reminiscent of an equation for the coordinates of orthogonal vectors. Therefore,
we project the vectors u1, u2 onto the subspace F = Span {a,b}. In fact, u1 = a + b, and
hence, u1 ∈ F . The vector u2 can be decomposed as

u2 =
uT
2 a

Vol (A)
a+

uT
2 b

Vol (B)
b+ q, (18)

where q is the component orthogonal to F . For the squared distance ‖q‖2 between u2 and
F , in [4], we proved that it is equal to the weighted 2-variance S2

2(D
−1/2u2) and in (15) we

estimated it from above with 1−θ
1−ε . (In the ρ2 = 1 − λn case similar upper estimation works

using (16)). Let s2 denote this minimum 2-variance of the coordinates of D−1/2u2 (in both
cases).
To estimate a1b1+a2b2 = (uT

1 a)(u
T
1 b)+(uT

2 a)(u
T
2 b), the problem is that the pairwise orthogo-

nal vectors u1,u2 and a,b are not in the same subspace of Rn as, in general, u2 /∈ F . However,
by an argument proved in [4], we can find orthogonal, unit-norm vectors ũ1, ũ2 ∈ F such that

‖u1 − ũ1‖2 + ‖u2 − ũ2‖2 ≤ 2s2, (19)

where, in view of u1 ∈ F , ũ1 = u1. Let r := u2 − ũ2. Since ũT
1 a, ũ

T
2 a and ũT

1 b, ũ
T
2 b are

coordinates of the orthogonal vectors a,b in the basis ũ1, ũ2,

(ũT
1 a)(ũ

T
1 b) + (ũT

2 a)(ũ
T
2 b) = 0,
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and because of ũT
2 a+ ũT

2 b = ũT
2 u1 = 0,

ũT
2 a = −ũT

2 b =
√

Vol (A)Vol (B) =: c.

Therefore,

|(uT
1 a)(u

T
1 b) + (uT

2 a)(u
T
2 b)| = |Vol (A)Vol (B) + [(ũ2 + r)Ta][(ũ2 + r)Tb]|

= |Vol (A)Vol (B) + [c+ rTa][−c+ rTb]| = |c(−rTa+ rTb) + (rTa)(rTb)|
≤ |c|

√

‖r‖2‖b− a‖2 +
√

‖r‖2‖a‖2
√

‖r‖2‖b‖2

≤
√

Vol (A)Vol (B)(|r‖+ ‖r‖2) ≤
√

Vol (A)Vol (B)(
√
2s+ 2s2),

using (19) and the fact that ‖b− a‖2 = 1.
Now we estimate x1y1 + x2y2 = (uT

1 x)(u
T
1 y) + (uT

2 x)(u
T
2 y). Going back to (18) we have

uT
2 x =

uT
2 a

Vol (A)
aTx+

uT
2 b

Vol (B)
bTx+ qTx =

Vol (X)

Vol (A)
uT
2 a+ qTx,

and similarly,

uT
2 y =

uT
2 a

Vol (A)
aTy +

uT
2 b

Vol (B)
bTy + qTy =

Vol (Y )

Vol (B)
uT
2 b+ qTy,

that in view of ‖q‖2 = s2 yields

x1y1 + x2y2 = |(uT
1 x)(u

T
1 y) + (uT

2 x)(u
T
2 y)| =

|Vol (X)Vol (Y ) + (
Vol (X)

Vol (A)
uT
2 a+ qTx)(

Vol (Y )

Vol (B)
uT
2 b+ qTy)|

≤ |Vol (X)Vol (Y ) + (
Vol (X)

Vol (A)
uT
2 a)(

Vol (Y )

Vol (B)
uT
2 b)|

+ |(qTx)(
Vol (Y )

Vol (B)
uT
2 b) + (qTy)(

Vol (X)

Vol (A)
uT
2 a) + (qTx)(qTy)|

≤ Vol (X)

Vol (A)

Vol (Y )

Vol (B)
|Vol (A)Vol (B) + (uT

2 a)(u
T
2 b)|

+ ‖q‖‖x‖Vol (Y )

Vol (B)
‖u2‖‖b‖+ ‖q‖‖y‖Vol (X)

Vol (A)
‖u2‖‖a‖+ ‖q‖2‖x‖‖y‖

≤
√

Vol (A)Vol (B)(
√
2s+ 2s2) + ‖q‖

√

Vol (X)
Vol (Y )

Vol (B)

√

Vol (B)

+ ‖q‖
√

Vol (Y )
Vol (X)

Vol (A)

√

Vol (A) + ‖q‖2
√

Vol (X)
√

Vol (Y )

=
√

Vol (A)Vol (B)(
√
2s+ 2s2) + ‖q‖

√

Vol (X)
√

Vol (Y )(

√

Vol (Y )
√

Vol (B)
+

√

Vol (X)
√

Vol (A)
+ ‖q‖)

≤
√

Vol (A)Vol (B)[(
√
2s+ 2s2 + s(2 + s)] =

√

Vol (A)Vol (B)[(
√
2 + 2)s+ 3s2]

≤
√

Vol (A)Vol (B)(
√
2 + 5)s.

Summarizing, the second and third terms in (17) are estimated from above with
ε
√

Vol (X)Vol (Y ) ≤ ε
√

Vol (A)Vol (B). Because of ε < θ, by an easy calculation it follows
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that it is less than
√

1−θ
1−ε . Therefore, the constant α of the (A,B) pair’s regularity is O(

√

1−θ
1−ε ).

Remark 1 The statement has relevance only if θ is much larger than ε. In this case the
spectral gap between the largest absolute value eigenvalue and the others in the normalized
modularity spectrum indicates a regular 2-partition of the graph that can be constructed based
on the eigenvector belonging to the structural eigenvalue.

4 Analysis of Variance setup (the k > 2 case)

Theorem 2 Let G = (V,W) is an edge-weighted graph on n vertices, with generalized de-
grees d1, . . . , dn and D = diag (d1, . . . , dn). Suppose that Vol (V ) = 1. Let the eigenvalues of
D−1/2WD−1/2, enumerated in decreasing absolute values, be

1 = ρ1 > |ρ2| ≥ · · · ≥ |ρk| > ε ≥ |ρi|, i ≥ k + 1.

The partition (V1, . . . , Vk) of V is defined so that it minimizes the weighted k-variance of the
vertex representatives obtained as row vectors of the n×k matrix X of column vectors D−1/2ui,
where ui is the unit-norm eigenvector belonging to ρi (i = 1, . . . , k). With the notation s2 =
S2
k(X), the (Vi, Vj) pairs are 2(

√
2s + ε)-volume regular (i 6= j) and for the clusters Vi (i =

1, . . . , k) the following holds: for all X,Y ⊂ Vi we have that

|w(X,Y )− ρ(Vi)Vol (X)Vol (Y )| ≤ 2(
√
2s+ ε)Vol (Vi), (20)

where ρ(Vi) =
w(Vi,Vi)
Vol 2(Vi)

is the relative intra-cluster density of Vi.

Proof Denoting by u1, . . . ,uk the eigenvectors belonging to the so-called structural eigen-
values ρ1, . . . , ρk, the representatives r1, . . . , rn of the vertices are row vectors of the matrix
X = (x1, . . . ,xk), where xi = D−1/2ui (i = 1, . . . , k) and the trivial x1 = 1 (belonging to
ρ1 = 1) can be omitted, see (5). The minimum k-variance S2

k(X) of the k-dimensional (actu-
ally, (k−1)-dimensional) representatives is as small as s2. Suppose that the minimum k-variance
is attained by the k-partition (V1, . . . , Vk) of the vertices.

By an easy analysis of variance argument of [5, 6] it follows that

s2 =

k
∑

i=1

dist2(ui, F ),

where F = Span {D1/2z1, . . . ,D
1/2zk} with the so-called normalized partition vectors z1, . . . , zk

of coordinates zji = 1
Vol (Vi)

if j ∈ Vi and 0, otherwise (i = 1, . . . , k). Note that the vectors

D1/2z1, . . . ,D
1/2zk form an orthonormal system. By [4, 5] we can find another orthonormal

system v1, . . . ,vk ∈ F such that

k
∑

i=1

‖ui − vi‖2 ≤ 2s2.
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With these vectors, we construct the following k-rank approximation of the matrix
D−1/2WD−1/2 =

∑n
i=1 ρiuiu

T
i : it is approximated by

∑k
i=1 ρiviv

T
i with the following ac-

curacy (in spectral norm):

‖
n
∑

i=1

ρiuiu
T
i −

k
∑

i=1

ρiviv
T
i ‖ ≤

k
∑

i=1

|ρi|·‖uiu
T
i −viv

T
i ‖+‖

n
∑

i=k+1

ρiuiu
T
i ‖ ≤

√

√

√

√

k
∑

i=1

sin2 σi+ε ≤
√
2s+ε,

(21)
where σi is the angle between ui and vi, and for it, sin σi

2 = 1
2‖ui − vi‖ holds, therefore

sin2 σi = (2 sin
σi

2
cos

σi

2
)2 =

1

4
‖ui − vi‖2(4− ‖ui − vi‖2), i = 1, . . . , k.

Hence, the above difference can be estimated from above with
√
2s+ ε in spectral norm.

Based on these considerations and the fact that the cut norm is less than or equal to the spectral
norm, the densities to be estimated in the defining formula (10) of volume regularity can be
written in terms of stepwise constant vectors in the following way. The vectors yi := D−1/2vi

are stepwise constants on the partition (V1, . . . , Vk), i = 1, . . . , k. The matrix
∑k

i=1 ρiyiy
T
i is

therefore a symmetric block-matrix on k × k blocks belonging to the above partition of the
vertices. Let w̃ab denote its entries in the (a, b) block (a, b = 1, . . . , k). Using (21), the following
approximation of the matrix W is performed:

‖W−D(

k
∑

i=1

ρiyiy
T
i )D‖ = ‖D1/2(D−1/2WD−1/2−

k
∑

i=1

ρiviv
T
i )D

1/2‖ ≤ ‖D‖1/2(
√
2s+ε)‖D‖1/2.

Therefore, the entries of W – for i ∈ Va, j ∈ Vb – can be decomposed as

wij = didjw̃ab + ηij ,

where the cut norm and spectral norm of the n × n symmetric error matrix E = (ηij) is at
most ‖D‖(

√
2s + ε). But we will restrict the error matrix to Va × Vb: its entries are ηij ’s for

i ∈ Va, j ∈ Vb, and zeros otherwise. Denoting the restricted matrix by Eab, and the restricted
diagonal matrices by Da and Db, respectively, the following finer estimation holds:

‖Eab‖� ≤ | Da‖1/2 · ‖Db‖1/2 · (
√
2s+ ε) ≤

√

Vol (Va)Vol (Vb)(
√
2s+ ε).

Consequently, for a, b = 1, . . . , k:

|w(X,Y )− ρ(Va, Vb)Vol (X)Vol (Y )| =

∣

∣

∣

∣

∣

∣

∑

i∈X

∑

j∈Y

(didjw̃ab + ηabij )−
Vol (X)Vol (Y )

Vol (Va)Vol (Vb)

∑

i∈Va

∑

j∈Vb

(didjw̃ab + ηabij )

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

i∈X

∑

j∈Y

ηabij − Vol (X)Vol (Y )

Vol (Va)Vol (Vb)

∑

i∈Va

∑

j∈Vb

ηabij

∣

∣

∣

∣

∣

∣

≤ 2(
√
2s+ ε)

√

Vol (Va)Vol (Vb),

that gives the required statement both in the a 6= b and a = b case.

Remark 2 In the k = 2 case, the estimate of Theorem 1 has the same order of magnitude

as that of Theorem 2, since s2 = O(
√

1−θ
1−ε ). The statement has only relevance for an integer
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k ∈ [2, n) such that there is a remarkable spectral gap between θ := |ρk| and |ρk+1| in the
normalized modularity spectrum, i.e., the so-called structural eigenvalues ρ1, . . . , ρk are far apart
from zero, while the others are in an ε distance from zero, in absolute value. This is a necessary
condition for s2 to be “small”. As it is not sufficient, instead of θ and ε, the estimation of
Theorem 2 is given in terms of s and ε. Indeed, by perturbation results of spectral subspaces for
symmetric matrices [3], s2 itself can be estimated from above by the spectral gap between the k
structural and the other eigenvalues when ρ2, . . . , ρk have the same sign (the situation of strong
community or anti-community structure).
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