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Abstract

The present work is a continuation of the previous papers writ-
ten by the author on the subject. In terms of the measurability
(or measurable quantities) notion introduced in a minimal length
theory, first the consideration is given to a quantum theory in the
momentum representation. The same terms are used to consider the
Markov gravity model that here illustrates the general approach to
studies of gravity in terms of measurable quantities.

1 Introduction. Measurable and Nonmea-

surable Quantities

This work is a direct continuation of the recently published papers [1],[2]
and is interlaced with these publications at some points. As shown in [1],
provided the theory involves the minimal length lmin as a minimal mea-
surement unit for the quantities having the dimensions of length, this
theory must not have infinitesimal spatial-temporal quantities dxµ because
the latter lead to the infinitely small length ds [3]

ds2 = gµνdxµdxν (1)

that is inexistent because of lmin.
Of course, in this case only measurable quantities are meant. As a math-
ematical notion, the quantity ds is naturally existent but, due to the in-
volvement of lmin, it is immeasurable.
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However it is well known that at high energies (on the order of the quantum
gravity energies) the minimal length lmin to which the indicated energies are
≪sensitive≫, as distinct from the low ones, should inevitably become appar-
ent in the theory. But if lmin is really present, it must be present at all the
≪Energy Levels≫ of the theory, low energies including. And this, in addition
to the above arguments, points to the fact that the mathematical formalism
of the theory should not involve any infinitesimal spatial-temporal quanti-
ties. Besides, some new parameters become involved, which are dependent
on lmin [4]–[13].
What are the parameters of interest in the case under study? It is obvious
that, as the quantum-gravitational effects will be revealed at very small
(possibly Planck’s) scales, these parameters should be dependent on some
limiting values, e.g., lP ∝ lmin and hence Planck’s energy EP .
This means that in a high-energy gravitation theory the energy-
or, what is the same, measuring scales-dependent parameters should
be necessarily introduced.
But, on the other hand, these parameters could hardly disappear totally at
low energies, i.e. for General Relativity (GR) too. However, since the well-
known canonical (and in essence the classical) statement of GR has no such
parameters [3], the inference is as follows: their influence at low energies is
so small that it may be disregarded at the modern stage in evolution of the
theory and of the experiment.
Still this does not imply that they should be ignored in future evo-
lution of the theory, especially on going to its high-energy limit.
But at the present time, the mathematical apparatus of both special and
general relativity theories (and of a quantum theory as well) is based on
the concept of continuity and on analysis of infinitesimal spatial-temporal
quantities. This is a corner stone for the Minkowski space geometry (MS)
and also for the Riemannian geometry (RG) [3].
However, this approach involves a problem when we proceed to a quantum
description of nature. Even at a level of the heuristic understanding, it is
clear that, as measuring procedures in a quantum theory are fundamental,
the description with the use of infinitesimal quantities is problematic be-
cause in its character the measuring procedure is discrete.
At a level of the mathematical formalism and physical principles, incom-
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patibility of both the Minkowski space geometry and Riemannian geometry
with the uncertainty principle is expected in any ≪format≫, in relativistic
and nonrelativistic cases. This problem is considered in greater detail in
the following section of this work.
Thus, if the matter concerns the measurable quantities only, the Quantum
Theory (QT) and Gravity formalism should be changed: at least, a new for-
malism should not involve the infinitesimal spatial-temporal quantities dxµ.
Naturally, because of the involved lmin (initially assuming that lmin ∝ lP )
new theories should involve new parameters associated with lmin. Presently,
such parameters are inexplicitly involved (for example, E/EP in a quantum
gravity phenomenology [4]).
But there is no need to discard the modern formalism of QT and Gravity,
since it is clear that at low energies it offers an excellent approximation,
experimentally supported to a high accuracy (see [5]). However, proceeding
from the above, a change-over to high energies is impossible as, by author’s
opinion, this formalism is used in an effort to combine uncombinable
things.
This work makes the arguments of [1],[2] more forcible on the one hand,
and presents a study of the additional parameters associated with the in-
volvement of lmin , in terms of which one can develop a new formalism for a
quantum theory and for gravity at all the scales energies too, on the other
hand.

One of the key problems of the modern fundamental physics (Quantum
Theory (QT) and Gravity (GR)) is framing of a correct theory associated
with the ultraviolet region, i. e. the region of the highest (apparently
Planck’s) energies approaching those of the Big Bang.
However, it is well known that at high energies (on the order of the quantum
gravity energies) the minimal length lmin to which the indicated energies are
≪sensitive≫, as distinct from the low ones, should inevitably become appar-
ent in the theory. But if lmin is really present, it must be present at all the
≪Energy Levels≫ of the theory, low energies including.
What follows from the existence of the minimal length lmin? When the
minimal length is involved, any nonzero measurable quantity having the
dimensions of length should be a multiple of lmin. Otherwise, its measure-
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ment with the use of lmin would result in the measurable quantity ς, so
that ς < lmin, and this is impossible.
This suggests that the spatial-temporal quantities dxµ are nonmeasurable
quantities because the latter lead to the infinitely small nonmeasurable
quantity length ds (1).
Of course, as a mathematical notion, the quantities dxµ, ds are naturally ex-
istent but one should realize that there is no way to express them in terms
of the minimal possible measuring unit lmin.
So, trying to frame a theory (QT and GR) correct at all the energy lev-
els using only the measurable quantities, one should realize that then the
mathematical formalism of the theory should not involve any infinitesimal
spatial-temporal quantities. Besides, proceeding from the acknowledged re-
sults associated with the Planck scales physics [4]–[13], one can infer that
certain new parameters dependent on lmin should be involved.
What are the parameters of interest in the case under study? It is obvious
that, as the quantum-gravitational effects will be revealed at very small
(possibly Planck’s) scales, these parameters should be dependent on some
limiting values, e.g., lP ∝ lmin and hence Planck’s energy EP .
This means that in high-energy QT and GR the energy- or, what
is the same, measuring scales-dependent parameters should be
necessarily introduced.
But, on the other hand, these parameters could hardly disappear totally at
low energies both in QT and in GR.
But, provided lmin exists, it must be involved at all the energy levels, both
high and low.
The fact that lmin is omitted in the formulation of low-energy QT and GR
and the theories give perfect results leads to two different inferences:

1.1. The influence of the above-mentioned new parameters associated with
lmin in low-energy QT and GR is so small that it may be disregarded at the
modern stage in evolution of the theory and of the experiment.

1.2. The modern mathematical apparatus of conventional QT and GR has
been derived in terms of the infinitesimal spatial-temporal quantities dxµ
which, as noted above, are nonmeasurable quantities in the formalism
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of lmin.

2 Main Motivation

In this Section the principal assumptions are introduced which have been
implicitly used previously in [1] and especially in [2].
It is well known that in a quantum study the key role is played by the
measuring procedure, its fundamental principle being the Heisenberg Un-
certainty Principle (HUP) [14],[15]:

∆x ≥ ~
∆p

(2)

(Note that the normalization ∆x∆p ≥ ~ is used rather than △x∆p ≥ ~/2.)
Now we can proceed to the following quite natural

Supposition 1

Any small variation (increment) ∆̃xµ of any spatial coordinate xµ of the
arbitrary point xµ, µ = 1, ..., 3 in some space-time system R may be realized
in the form of the uncertainty (standard deviation) ∆xµ when this coordinate
is measured within the scope of Heisenberg’s Uncertainty Principle (HUP)

∆̃xµ = ∆xµ,∆xµ ≃ ~
∆pµ

, µ = 1, 2, 3 (3)

for some ∆pµ ̸= 0.
Similarly, for µ = 0 for pair ≪time-energy≫ (t, E), the any small variation

(increment) value of time ∆̃x0 = ∆̃t0 may be realized in the form of the
uncertainty (standard deviation) ∆x0 = ∆t and then

∆̃t = ∆t,∆t ≃ ~
∆E

(4)

for some ∆E ̸= 0.
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Here HUP is given for the nonrelativistic case. In the relativistic case HUP
has the distinctive features [16] which, however, are of no significance for
the general formulation of Supposition 1, being associated only with par-
ticular alterations in the right-hand side of the second relation (3)as shown
later.
It is clear that at low energies E ≪ EP (momentums P ≪ Ppl) Suppo-

sition 1 sets a lower bound for the variations (increments) ∆̃xµ of any
space-time coordinate xµ.
At high energies E (momentums P ) this is not the case if E (P ) have no
upper limit. But, according to the modern knowledge, E (P ) are bounded
by some maximal quantities Emax, (Pmax)

E ≤ Emax, P ≤ Pmax, (5)

where in general Emax, Pmax may be on the order of Planck’s quantities
Emax ∝ EP , Pmax ∝ Ppl and also may be the trans-Planck’s quantities.
In any case the quantities Pmax and Emax lead to the introduction of the
minimal length lmin and of the minimal time tmin.
With this point of view, even at the ultimate (Planck’s) energies a minimal
≪detected≫ (i. e. measurable) space-time volume is, within the known
constants, restricted to

Vmin ∝ l4P . (6)

Consequently, ≪detectability≫ of the infinitesimal space-time volume

Vdxµ = (dxµ)
4 (7)

is impossible as this necessitates going to infinitely high energies

E → ∞. (8)

Because of this, it is natural to complete Supposition 1 with

Supposition 2

There is the minimal length lmin as a minimal measurement unit for
all quantities having the dimension of length, whereas the minimal time
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tmin = lmin/c –– as a minimal measurement unit for all quantities hav-
ing the dimension of time, where c is the speed of light.

lmin and tmin are naturally introduced as ∆xµ, µ = 1, 2, 3 and ∆t in (3),(4)
for ∆pµ = Pmax and ∆E = Emax.
For definiteness, we consider that Emax and Pmax are the quantities on the
order of the Planck quantities, then lmin and tmin are also on the order of
Planck’s quantities lmin ∝ lP , tmin ∝ tP .

3 Minimal Length and Measurability

In this Section particularly the results from Subsection 3.1 of [2] are used.
Now from the start we assume that the theory involves the minimal length
lmin as a minimal measurement unit for all quantities having the di-
mension of length.
Then it is convenient to begin our study not with HUP (2) but with its
widely known high-energy generalization – the Generalized Uncertainty
Principle (GUP) that naturally leads to the minimal length lmin [17]–
[29]:

∆x ≥ ~
∆p

+ α′l2P
∆p

~
. (9)

Here α′ is the model-dependent dimensionless numerical factor and lP is the
Planckian length.
Note also that initially GUP (9) was derived within a string theory [17]– [20]
and, subsequently, in a series of works far from this theory [21] – [27] it has
been demonstrated that on going to high (Planck’s) energies in the right-
hand side of HUP (2) an additional ≪high-energy≫ term ∝ l2P

△p
~ appears.

Of particular interest is the work [21], where by means of a simple gedanken
experiment it has been demonstrated that with regard to the gravitational
interaction (9) is the case.
As (9) – quadratic inequality, then it naturally leads to the minimal length
lmin = ξlP = 2

√
α′lP .

This means that the theory for the quantities with a particular dimension
has a minimal measurement unit. At least, all the quantities with such
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a dimension should be ≪quantized≫, i. e. be measured by an integer number
of these minimal units of measurement.
Specifically, if lmin – minimal unit of length, then for any length L we
have the ≪Integrality Condition≫ (IC)

L = NLlmin, (10)

where NL > 0 – integer.
What are the consequences for GUP (9) and HUP (2)?
Assuming that HUP is to a high accuracy derived from GUP on going to
low energies or that HUP is a special case of GUP at low values of the
momentum, we have

(GUP,∆p→ 0) = (HUP ). (11)

By the language of NL from(10), (11) is nothing else but a change-over to
the following:

(N∆x ≈ 1) → (N∆x ≫ 1). (12)

The assumed equalities in (2) and (9) may be conveniently rewritten in
terms of lmin with the use of the deformation parameter αa. This param-
eter has been introduced earlier in the papers [30]–[37] as a deformation
parameter on going from the canonical quantum mechanics to the quan-
tum mechanics at Planck’s scales (early Universe) that is considered to be
the quantum mechanics with the minimal length (QMML):

αa = l2min/a
2, (13)

where a is the measuring scale.

Definition 1.
Deformation is understood as an extension of a particular theory by inclu-
sion of one or several additional parameters in such a way that the initial
theory appears in the limiting transition [38].

Then with the equality (∆p∆x = ~) (9) is of the form

∆x =
~
∆p

+
α∆x

4
∆x. (14)
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In this case due to formulae (10) and (12) the equation (14) takes the
following form:

N∆xlmin =
~
∆p

+
1

4N∆x
lmin (15)

or

(N∆x −
1

4N∆x
)lmin =

~
∆p

. (16)

That is

∆p =
~

(N∆x − 1
4N∆x

)lmin

. (17)

From (15)–(17) it is clear that HUP (2) in the case of the equality appears
to a high accuracy in the limit N∆x≫ 1 in conformity with (12).
It is easily seen that the parameter αa from (13) is discrete as it is nothing
else but

αa = l2min/a
2 =

l2min

N2
a l

2
min

=
1

N2
a

. (18)

At the same time,from (18) it is evident that αa is irregularly discrete.
It is clear that from formula (17) at low energies (N∆x ≫ 1), up to a
constant

~2

l2min

=
~c3

4α′G
(19)

we have
α∆x = (∆p)2. (20)

But all the above computations are associated with the nonrelativistic case.
As known, in the relativistic case, when the total energy of a particle with
the mass m and with the momentum p equals [39]:

E =
√

p2c2 +m2c4, (21)

a minimal value for ∆x takes the form [16]:

∆x ≈ c~
E
. (22)

And in the ultrarelativistic case

E ≈ pc (23)
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this means simply that

∆x ≈ ~
p
. (24)

Provided the minimal length lmin is involved and considering the ≪Inte-
grality Condition≫ (IC) (10), in the general case for (22) at the energies
considerably lower than the Planck energies E ≪ EP we obtain the follow-
ing:

∆x = N∆xlmin ≈ c~
E
,

or

E ≈ c~
N∆x

. (25)

Similarly, at the same energy scale in the ultrarelativistic case we have

p ≈ ~/N∆x. (26)

Next under Supposition 2, we assume that there is a minimal measuring
unit of time

tmin = lmin/vmax = lmin/c. (27)

Then the foregoing formulae (2)–(16) are rewritten by substitution as fol-
lows:

∆x→ ∆t; ∆p→ ∆E; lmin → tmin;NL → Nt=L/c (28)

Specifically, (16) takes the form

(N∆t −
1

4N∆t
)tmin =

~
∆E

. (29)

And similar to (10), we get the ≪Integrality Condition≫ (IC) for any
time t:

t ≡ t(Nt) = Nttmin, (30)

for certain |Nt| ≥ 0 – integer.
According to (29), let us define the corresponding energy E

E ≡ E(Nt) =
~

|Nt − 1
4Nt

|tmin

. (31)
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Note that at low energies E ≪ EP , that is for |Nt| ≫ 1, the formula (31)
naturally takes the following form:

E ≡ E(Nt) =
~

|Nt|tmin

=
~

|t(Nt)|
. (32)

Definition 2 (Measurability)

1) Let us define the quantity having the dimensions of length L or time
t measurable, when it satisfies the relation (10) (and respectively (30)).

2) Let us define any physical quantity measurable, when its value is con-
sistent with points 1) of this Definition.

Thus, infinitesimal changes in length (and hence in time) are impos-
sible (to that indicated in Section 1) and any such changes are dependent
on the existing energies.
In particular, a minimal possible measurable change of length is lmin. It
corresponds to some maximal value of the energy Emax or momentum Pmax,
If lmin ∝ lP , then Emax ∝ EP ,Pmax ∝ PPl, where Pmax ∝ PPl, where PPl

is where the Planck momentum. Then denoting in nonrelativistic case
with △p(w) a minimal measurable change every spatial coordinate w
corresponding to the energy E we obtain

△Pmax(w) = △Emax(w) = lmin. (33)

Evidently, for lower energies (momentums) the corresponding values of
△p(w) are higher and, as the quantities having the dimensions of length
are quantized (10), for p ≡ p(Np) < pmax, △p(w) is transformed to

|△p(Np)(w)| = |Np|lmin. (34)

where |Np| > 1-integer so that we have

|Np −
1

4Np

|lmin =
~

|p(Np)|
. (35)
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In the relativistic case the formula (33) holds, whereas (34) and (35) for
E ≡ E(NE) < Emax are replaced by

|△E(NE)(w)| = |NE|lmin, (36)

where |NE| > 1-integer.
Next we assume that at high energies E ∝ EP there is a possibility only

for the nonrelativistic case or ultrarelativistic case.
Then for the ultrarelativistic case, with regard to (23)–(29), formula

(35) takes the form

|NE − 1

4NE

|lmin =
~c

E(NE)
=

~
|p(Np)|

, (37)

where NE = Np.
In the relativistic case at low energies we have

E ≪ Emax ∝ EP . (38)

In accordance with (21),(22) formula (34) is of the form

|△E(NE)(w)| = |NE|lmin =
~c

E(NE)
, |NE| ≫ 1− integer. (39)

In the nonrelativistic case at low energies (38) due to (35) we get

|△p(Np)(w)| = |Np|lmin =
~

|p(Np)|
, |Np| ≫ 1− integer. (40)

In a similar way for the time coordinate t, by virtue of formulas (30)–
(32), at the same conditions we have similar formulas (33),(34),(35)

△Emax(t) = tmin. (41)

For E ≡ E(Nt) < Emax

|△E(Nt)(t)| = |Nt|tmin, (42)
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where |NE| > 1-integer, so that we obtain

|Nt −
1

4Nt

|tmin =
~c

E(Nt)
. (43)

In the relativistic case at low energies

E ≪ Emax ∝ EP , (44)

in accordance with (21),(22), formula (34) takes the form

|△E(Nt)(w)| = |Nt|lmin =
~c

E(Nt)
, |Nt| ≫ 1− integer. (45)

Remark 1

Remark 1.1. It should be noted that the lattice is usually understood
as a uniform discrete structure with one and the same constant parameter
a (lattice pitch). But in this case we have a nonuniform discrete structure
(lattice in its nature), where the analogous parameter is variable, is a mul-
tiple of lmin,i. e.a = Nalmin, and also is dependent on the energies. Only in
the limit of high (Planck’s) energies we get a (nearly) uniform lattice with
(nearly) constant pitch a ≈ lmin or a = κlmin where κ is on the order of 1.

Remark 1.2. Obviously, when lmin is involved, the foregoing formulas
for the momentums p(Np) and for the energies E(NE), E(Nt) may certainly
give the highly accurate result that is close to the experimental one only at
the verified low energies: |Np| ≫ 1, |NE| ≫ 1, |Nt| ≫ 1. In the case of high
energies E ∝ Emax ∝ EP or, what is the same |Np| → 1, |NE| → 1, |Nt| → 1,
we have a certain, experimentally unverified, model with a correct low-
energy limit.

Remark 1.3. It should be noted that dispersion relations (21) are valid
only at low energies E ≪ EP . In the last few years in a series of works [40]–
[44] it has been demonstrated that within the scope of GUP the high-energy
generalization of (21)–Modified Dispersion Relations (MDRs)–is valid.
Specifically, in its most general form the Modified Dispersion Relation (for-
mula (9) in [44]) may be given as follows:

p2 = f(E,m; lp) ≃ E2 − µ2 + α1lpE
3 + α2l

2
pE

4 +O
(
l3pE

5
)
, (46)
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where in the notation of [44] the fundamental constants are c = ~ = kB = 1,
f is the function that gives the exact dispersion relation, and in the right-
hand side the applicability of the Taylor-series expansion for E ≪ 1/lP is
assumed. The coefficients αi can take different values in different quantum-
gravity proposals. m is the rest energy of a particle, and the mass parameter
µ in the right-hand side is directly related to the rest energy but µ ̸= m if
not all the coefficients αi are vanishing.
The general case of (MDRs) (46) in terms of the considerations given in
this section is yet beyond the scope of this paper and necessitates further
studies of the transition from low E ≪ EP to high E ≈ EP energies.
For now it is assumed that at low energies formula (21) is valid to within a
high accuracy, whereas at high energies, i.e. for |Np| → 1, |NE| → 1, |Nt| →
1, (21) should be replaced by (46). Besides, it is important that in this pa-
per, as distinct from [40]–[44], the author uses the simplest (earlier) variant
of GUP [17]–[27], involving a minimal length but not a minimal momentum.
Also note that references [40]–[44] give not nearly so complete a list of the
publications devoted to GUP (and, in particular, MDR) – a very complete
and interesting survey may be found in [41].

Remark 1.4. The papers [1],[2] point to the fact that the resolved
discrete theory is very close to the initial continuous one (lmin = 0) at low
energies E ≪ EP , i.e. at |Np| ≫ 1, |NE| ≫ 1.
In what follows all the considerations are given in terms of ≪measurable
quantities≫ in the sense of Definition 2 given in this Section. Specifically,
in Section 5 these terms are used to consider the Momentum Represen-
tation for a quantum theory.

4 Space-Time Lattice of Measurable Quan-

tities and Dual Lattice

So, provided the minimal length lmin exists, two lattices are naturally aris-
ing.

I.Lattice of the space-time variation – LatS−T representing, to within
the known multiplicative constants, the sets of nonzero integers Nw ̸= 0
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and Nt ̸= 0 in the corresponding formulas from the set (34)–(45) for each
of the three space variables w

.
= x; y; z and the time variable t

LatS−T
.
= (Nw, Nt), Nw ̸= 0, Nt ̸= 0− integers. (47)

Which restrictions should be initially imposed on these sets of nonzero in-
tegers?
It is clear that in every such set all the integers (Nw, Nt) should be suffi-
ciently ≪close≫, because otherwise, for one and the same space-time point,
variations in the values of its different coordinates are associated with prin-
cipally different values of the energy E which are ≪far≫ from each other.
Note that the words ≪close≫ and ≪far≫ will be elucidated further in this
text.
Thus, at the admittedly low energies (Low Energies) E ≪ Emax ∝ EP the
low-energy part (sublattice) LatS−T [LE] of LatS−T is as follows:

LatS−T [LE] = (Nw, Nt) ≡ (|Nx| ≫ 1, |Ny| ≫, |Nz| ≫ 1, |Nt| ≫ 1). (48)

At high energies (High Energies) E → Emax ∝ EP we, on the contrary, have
the sublattice LatS−T [HE] of LatS−T

LatS−T [HE] = (Nw, Nt) ≡ (|Nx| ≈ 1, |Ny| ≈ 1, |Nz| ≈ 1, |Nt| ≈ 1). (49)

II. Next let us define the lattice momentums-energies variation LatP−E

as a set to obtain
(px(Nx,p), py(Ny,p), pz(Nz,p), E(Nt)) in the nonrelativistic and ultrarelativis-
tic cases for all energies, and as a set to obtain
(Ex(Nx,E), Ey(Ny,E), Ez(Nz,E), E(Nt)) in the relativistic (but not ultrarel-
ativistic) case for low energies E ≪ EP , where all the components of the
above sets conform to the space coordinates (x, y, z) and time coordinate
t and are given by the corresponding formulas(33)–(45) from the previous
Section.
Note that, because of the suggestion made after formula (38) in the previous
Section, we can state that the foregoing sets exhaust all the collections of
momentums and energies possible for the lattice LatS−T .
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From this it is inferred that, in analogy with point I of this Section, within
the known multiplicative constants, we have

LatP−E
.
= (

1

Nw − 1
1/4Nw

,
1

Nt − 1
1/4Nt

), (50)

where Nw ̸= 0, Nt ̸= 0-integers from (47). Similar to (48), we obtain the
low-energy (Low Energy) part or the sublattice LatP−E[LE] of LatP−E

LatP−E[LE] ≈ (
1

Nw

,
1

Nt

), |Nw| ≫ 1, |Nt| ≫ 1. (51)

In accordance with (49), the high-energy (High Energy) part (sublattice)
LatP−E[HE] of LatP−E takes the form

LatP−E[HE] ≈ (
1

Nw − 1
1/4Nw

,
1

Nt − 1
1/4Nt

), |Nw| → 1, |Nt| → 1. (52)

Considering Remark 1 from the previous Section, it should be noted that,
as currently the low energies E ≪ Emax ∝ EP are verified by numerous
experiments and thoroughly studied, the sublattice LatP−E[LE] (51) is cor-
rectly defined and rigorously determined by the sublattice LatS−T [LE] (48).
However, at high energies E → Emax ∝ EP we can’t be so confident the
sublattice LatP−E[HE] may be defined more exactly.
Specifically, αa is obviously a small parameter. And, as demonstrated in
[45],[46], in the case of GUP we have the following:

[x⃗, p⃗] = i~(1 + a1α+ a2α
2 + ...). (53)

But, according to (18), |1/Na| =
√
αa, then, due to (53), the denominators

in the right-hand side of (52) may be also varied by adding the terms ∝
1/N2

w,∝ 1/N3
w...,∝ 1/N2

t ,∝ 1/N3
t ..., that is liable to influence the final result

for |Nw| → 1, |Nt| → 1.
The notions ≪close≫ and ≪far≫ for LatP−E will be completely determined
by the dual lattice LatS−T [LE] and by formulas (34)–(45).
It is important to note the following.
In the low-energy sublattice LatP−E[LE] all elements are varying
very smoothly enabling the approximation of a continuous theory.
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5 Measurable Quantities and Momentum Rep-

resentation.

For convenience, we denote the minimal length lmin ̸= 0 by ℓ.
Let us consider the above calculations using the formalism of the well-known
work [28]. Then GUP (Section 3.2) has the following form:

[x,p] = i~(1 + βp2), (54)

where (β > 0) and

β =
ℓ2

~2
. (55)

In the form of Section 3 in the present work, formula (7) from [28]

∆x∆p ≥ ~(1 + β(∆p)2 + β⟨p⟩2) (56)

with regard to (10),(15),(17), and (55) may be written as

~N∆x

(N∆x − 1
4N∆x

)
≥ ~(1 +

1

(N∆x − 1
4N∆x

)2
+
ℓ2

~2
⟨p⟩2). (57)

In the equality case this results in the following expression:

−~2(12N2
∆x + 1)

(4N2
∆x − 1)2ℓ2

=
−~2

ℓ2
(3 +

4

(4N2
∆x − 1)2

) = ⟨p⟩2. (58)

In this way at low energies E ≪ EP , i.e. at |N∆x| ≫ 1, ⟨p⟩2 is varying
practically continuously.
Next, hereinafter we use the formula (35) with the replacement of lmin = ℓ,
i. e. we have N∆x = Np and

|pN | =
~

|Np − 1
4Np

|ℓ
. (59)

We can write

ı~(1 + βp2) = ı~(1 +
ℓ2

~2
~2

(Np − 1
4Np

)2ℓ2
) = ı~(1 +

1

(Np − 1
4Np

)2
). (60)
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Let us introduce the following symbols:

∆ppN = pN − pN+1; ∆
−1
p ψ(pN) =

ψ(pN)− ψ(pN+1)

pN − pN+1

=

=
ψ(pN+1 +∆ppN)− ψ(pN+1)

∆ppN
. (61)

Then we suppose that only in the classical dynamics variations of mo-
menta (energies) have no lower bounds and we have dp. At the same time,
in a quantum dynamics, due to the limited spatial domains, these vari-
ations have both upper and lower bounds.
In this case, as distinct from [28], in the theory there is a minimum vari-
ation of the momentum ∆pmin that within the scope of the measura-
bility (Definition 2 in Section 3) takes the form

∆pmin ≡ p =
~
ℓ

1

(N− 1
4N

)
≈ ~
ℓN

. (62)

As in (61) at high |Np|, (|Np| ≫ 1), ∆ppN = pN − pN+1 ∝ ( 1
Np

− 1
Np+1

) =
1

Np(Np+1)
, it is clear that

Np(Np + 1) ≤ N or − 1

2
−
√

(
1

4
+N) ≤ Np ≤ −1

2
+
√

(
1

4
+N). (63)

Considering that Np – integer and N ≫ 1, it follows that

|Np| ≤ [
√
N]− 1 ≡ Ñ, (64)

where the square brackets [ ] in the right-hand side of (64) denote an integer
part of the number.
Next, due to (60),(61), an analog of formulae (11),(12) from [28] in the case
under study at low energies will be of the form

p.ψ(p) ⇒ pNψ(pN) =
~

(Np − 1
4Np

)ℓ
ψ(pN) ≈

~
Npℓ

ψ(pN),

x.ψ(p) ⇒ x.ψ(pN) = ı~(1 +
1

(Np − 1
4Np

)2
)∆−1

p ψ(pN) ≈

≈ ı~(1 +
1

N2
p

)∆−1
p ψ(pN). (65)
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The scalar product ⟨ψ|ϕ⟩ from [28]

⟨ψ|ϕ⟩ =
∫ +∞

−∞

dp

1 + βp2
ψ∗(p)ϕ(p) (66)

in the case of low energies 1 ≪ |N∆p| ≤ Ñ <∞ is replaced by the sum

⟨ψ|ϕ⟩ =
∫ +∞

−∞

dp

1 + βp2
ψ∗(p)ϕ(p) ⇒

⇒ ⟨ψ|ϕ⟩1≪|Np|≤Ñ =
∑

1≪|Np|≤Ñ

∆p(pN)ψ
∗(pN)ϕ(pN)

(1 + 1
(Np− 1

4Np
)2
)

≈

≈
∑

1≪|Np|≤Ñ

∆p(pN)ψ
∗(pN)ϕ(pN)

(1 + 1
N2

p
)

. (67)

And since |Np| ≫ 1 is a variable, in fact pN is continuously varying and,
proceeding from the above formulae, we can assume that to a high accuracy
the function ϕ(pN),(ψ

∗(pN)) is differentiable in terms of this variable.
On the other hand, at high energies, when for |Np| ≈ 1 the presentation
is fairly discrete, the scalar product (66) is replaced by the sum

⟨ψ|ϕ⟩ =
∫ +∞

−∞

dp

1 + βp2
ψ∗(p)ϕ(p) ⇒

⇒ ⟨ψ|ϕ⟩|Np|≈1 =
∑

|Np|≈1

∆p(pN)ψ
∗(pN)ϕ(pN)

(1 + 1
(Np− 1

4Np
)2
)

. (68)

We consider only two cases:

(a)1 ≪ |Np| ≤ Ñ, ≪Quantum Consideration, Low Energies≫

and
(b)|Np| ≈ 1,≪Quantum Consideration, High Energies≫.

The case (c)

Ñ ≪ |Np| <∞ (69)
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is omitted in this Section as it is associated with the ≪Classical Picture≫.

Then at all the energy scales ⟨ψ|ϕ⟩Np may be formally represented as follows:

⟨ψ|ϕ⟩Np = ⟨ψ|ϕ⟩1≪|Np|≤Ñ + ⟨ψ|ϕ⟩|Np|≈1. (70)

However, with the formalism and terms proposed in this work, and also
with the use of the formula (12) that in this case takes the form

(|Np| ≈ 1) → (1 ≪ |Np| ≤ Ñ), (71)

it seems more logical to consider the two components in (70) separately, the
first component originating in the process of the low-energy transition from
the second component as follows:

⟨ψ|ϕ⟩|Np|≈1
|Np|≫1⇒ ⟨ψ|ϕ⟩1≪|Np|≤Ñ. (72)

Clearly, the first part of formula (13) from [28] holds as well in the general
case for each of the components (70)

⟨(ψ|p)|ϕ⟩ = ⟨ψ|(p|ϕ)⟩ (73)

The second part of formula (13) from [28]

⟨(ψ|x)|ϕ⟩ = ⟨ψ|(x|ϕ)⟩ (74)

takes place (to a high accuracy) for the low-energy case 1 ≪ |Np| ≤ Ñ <
∞, i.e. for the first component in (70).
Indeed, in this case, due to the condition |Np| ≫ 1, we have

∆ppN ≈ dp; ∆−1
p ψ(pN) ≈ ∂pψ(pN)

or

lim
|Np|→∞,(Ñ→∞)

∆ppN = dp; lim
|Np|→∞,(Ñ→∞)

∆−1
p ψ(pN) = ∂pψ(pN). (75)
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Then in this (low-energy) case there exists the analog of formula (15) from
[28]

⟨ψ|(x|ϕ)⟩ =
∑

1≪|Np|≤Ñ−1

∆p(pN)

(1 + 1
N2

p
)
ψ∗(pN)i~(1 +

1

N2
p

)∆−1
p (ϕ(pN)) =

=
∑

1≪|Np|≤Ñ−1

∆p(pN)ψ
∗(pN)i~∆−1

p (ϕ(pN)) ≈

≈ ⟨(ψ|x)|ϕ⟩ =
∑

1≪|Np|≤Ñ−1

∆p(pN)(i~∆−1
p ψ(pN))

∗ϕ(pN). (76)

It is important to note the following:

R5.1) The operator x is defined in the case of low energies only for the
functional space ϕ(pN)1≪|Np|≤Ñ−1. Really, because of the existence of the

formula (61), the extreme point Np, (such that (Np + 1)(Np + 2) > N)
“moves” this operator beyond the domain under study ∆pmin = p. There-
fore, replacing Np 7→ Np+1, Np+1 7→ Np+2 in formula (63), one can easily

get the estimate of Ñ− 1 instead of Ñ as seen in (76).

R5.2) Despite the fact that the operator x is also defined at high ener-
gies, i.e. for ϕ(pN)|Np|≈1,in general the property (74) in this case has no
place for lack of formulae (75)

R5.3) In all the cases when we consider |Np| ≫ 1 (low energies) the ≪cut-
off≫ for some upper bound pmax,(pmax ≪ Ppl),1 ≪ Npmax < |Np|, p ̸= pmax

is determined by the initial conditions of the solved problem.

R5.4) It is clear that in the relativistic case ∆pmin = p leads to a minimal
variation in the energy

|∆Emin| = (∆p)minc =
p

N
c. (77)

R5.5) In this work a minimal variation of the momentum ∆pmin has

21



been introduced from the additional assumptions but, as shown in [47], a
minimal variationof the momentum may arise from the Extended Un-
certainty Principle (EUP) as follows:

∆xi∆pj ≥ ~δij[1 + β2 (∆xi)
2

l2
], (78)

where l is the characteristic, large length scale l ≫ lp and β is a dimension-
less real constant on the order of unity [47]. From (78) we get an absolute
minimum in the momentum uncertainty

∆pi ≥
2~β
l
. (79)

In [48] GUP and EUP are combined by the principle called the Symmetric
Generalized Uncertainty Principle (SGUP):

∆x∆p ≥ ~
(
1 +

(∆x)2

L2
+ l2

(∆p)2

~2

)
, (80)

where l ≪ L and l defines the limit of the UV-cutoff (not being such up to
a constant factor as in the case of GUP).Then

∆xmin = 2l/
√
1− 4l2/L2 = ℓ,

whereas L defines the limit for IR-cutoff i. e. we have a

∆pmin = 2~/(L
√

1− 4l2/L2).

R5.6) Of course, this paper is only the first step to resolve the Quantum
Theory in terms of the measurable quantities using Definition 2. It is
necessary to study thoroughly the low-energy case E ≪ EP and the
correct transition to high energies E ∝ EP . The author is planning to treat
these problems in his further works.

6 Gravity Markov’s Model in Terms of Mea-

surable Quantities

This heuristic model was introduced in the work [49] at the early eighties
of the last century. This model already considered by the author in his
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previous paper [46] is treated from the standpoint of the above-mentioned
arguments. In [49], it is assumed that ≪by the universal decree of nature
a quantity of the material density ϱ is always bounded by its upper value
given by the expression that is composed of fundamental constants≫ ([49],
p.214):

ϱ ≤ ϱp =
c5

G2~
, (81)

with ϱp as ≪Planck’s density≫.
Then the quantity

℘ϱ = ϱ/ϱp ≤ 1 (82)

is the deformation parameter as it is used in [49] to construct the follow-
ing of Einstein’s equations deformation or ℘ϱ-deformation ([49],formula
(2)):

Rν
µ −

1

2
Rδνµ =

8πG

c4
T ν
µ (1− ℘2

ϱ)
n − Λ℘2n

ϱ δ
ν
µ, (83)

where n ≥ 1/2, T ν
µ–energy-momentum tensor, Λ– cosmological constant.

The case of the parameter ℘ϱ ≪ 1 or ϱ ≪ ϱp correlates with the classical
Einstein equation, and the case when ℘ϱ = 1 – with the de Sitter Universe.
In this way (83) may be considered as ℘ϱ-deformation of the General Rela-
tivity.
As shown in [46], ℘ϱ-of Einstein’s equations deformation (83) is nothing else
but α-deformation of GR for the parameter αl at a = l from (13).
If ϱ = ϱl is the average material density for the Universe of the characteristic
linear dimension l, i.e. of the volume V ∝ l3, we have

℘l,ϱ =
ϱl
ϱp

∝ α2
l = ωα2

l , (84)

where ω is some computable factor.
Then it is clear that αl-representation (83) is of the form

Rν
µ −

1

2
Rδνµ =

8πG

c4
T ν
µ (1− ω2α4

l )
n − Λω2nα4n

l δ
ν
µ, (85)

or in the general form we have

Rν
µ −

1

2
Rδνµ =

8πG

c4
T ν
µ (αl)− Λ(αl)δ

ν
µ. (86)

23



But, as r.h.s. of (86) is dependent on αl of any value and particularly in
the case αl ≪ 1, i.e. at l ≫ ℓ, l.h.s of (86) is also dependent on αl of any
value and (86) may be written as

Rν
µ(αl)−

1

2
R(αl)δ

ν
µ =

8πG

c4
T ν
µ (αl)− Λ(αl)δ

ν
µ. (87)

Thus, in this specific case we obtain the explicit dependence of GR on the
available energies E ∼ 1/l, that is insignificant at low energies or for l ≫ ℓ
and, on the contrary, significant at high energies, l → ℓ.

(6.1.1)Low energies. Nonmeasurable case. In this case at low en-
ergies, using formula (13) in the limit ℓ = 0 for a = l, we get a continuous
theory coincident with the General Relativity.

(6.1.2)Low energies. Measurable case. In this case at low energies,
using formulas (13), (18) for ℓ ̸= 0, for a = l (and hence for Nl ≫ 1), we
get a discrete theory which is a ≪nearly continuous theory≫, practi-
cally similar to the General Relativity with the slowly (smoothly) varying
parameter αl(t), where t – time.

So, due to low energies and momentums (E ≪ EP , p ≪ PPl), the ≪con-
tinuous case≫ 6.1.1) (General Relativity) and the ≪discrete case≫ 6.1.2)
that is actually a ≪nearly continuous case≫.

(6.2)At high energies we consider the measurable case only. Then
it is clear that at high energies the parameter αl(t) is discrete and for the
limiting value of αl(t) = 1 we get a discrete series of equations of the form
(87)(or a single equation of this form met by a discrete series of solutions)
corresponding to αl(t) = 1; 1/4; 1/9; ...
As this takes place, T ν

µ (αl) ≈ 0, and in both cases 6.1.2) and 6.2) Λ(αl) is
not longer a cosmological constant, being a dynamical cosmological term.

Note that because of formula (20) given in Section 3,
√
αl(t) in cases (6.1.2)

and (6.2) is an element of the lattice LatP−E from Section 4. And in case
(6.1.2) it is an element of the sublattice LatP−E[LE], whereas case 6.2) is
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associated with the sublattice LatP−E[HE].
It seems expedient to make some important remarks:

R6.1) In formulae (71),(72) of section 5 in this work we have considered
the transition

Quantum Theory in High Energies (QTHE) ⇒
⇒ Quantum Theory in Low Energies (QTLE). (88)

However, according to the modern knowledge, the (quantum) gravity phase
begins only at very high energies at Planck’s scales, i.e. the case (a) from
Section 5 is inexistent, and hence it is more correct to consider the transition

Quantum Theory in High Energies (QTHE) ⇒
⇒ Classical Theory (Low Energies). (89)

And this corresponds to the case (c) that has been omitted from consider-

ation in Section 5 (69) with Ñ = 1

(|Np| ≈ 1) → (1 ≪ |Np| <∞). (90)

R6.2) Generally speaking, as (6.1.2) and (6.2) are associated with mea-
surable cases for low energies and high energies, respectively, all the
terms of the equation (87): Rν

µ(αl), R(αl), T
ν
µ (αl),Λ(αl) must be expressed

in terms of measurable quantities in view of Definition 2 from Section
3. But this problem still remains to be solved. In fact, it is reduced to the
construction of the following ≪measurable≫ deformations in the sense of
Definition 2 in Section 3 as follows:

lim
ℓ→0

(Rν
µ(αl ≪ 1), R(αl ≪ 1), T ν

µ (αl ≪ 1),Λ(αl ≪ 1)) →

→ (Rν
µ, R, T

ν
µ ,Λ) (91)

and

lim
(αl≈1)→(αl≪1)

(Rν
µ(αl ≈ 1), R(αl ≈ 1), T ν

µ (αl ≈ 1),Λ(αl ≈ 1)) →

→ lim
lmin→0

(Rν
µ(αl ≪ 1), R(αl ≪ 1)δνµ, T

ν
µ (αl ≪ 1),Λ(αl ≪ 1)) →

→ (Rν
µ, R, T

ν
µ ,Λ). (92)
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Here the first (91) is a pure low-energy limiting transition from the mea-
surable variant of gravity to the nonmeasurable one (or from a discrete
theory to a continuous theory), whereas the second (92) from the be-
ginning is associated with the measurable transition from high energies
to low energies and then is coincident with the first one.

7 Conclusion

7.1. The illustration considered in the preceding Section (Gravity Markov’s
Model) is universal considering the following:
First, using the formalism of this work, it is required to construct ameasur-
able deformation of the General Relativity (GR) at low energies (formula
(91)). This deformation is denoted in terms of Grav[LE]ℓ

Grav[LE]ℓ
ℓ→0⇒ GR. (93)

Next, we should construct the high-energy deformation (denoted in terms
of Grav[HE]ℓ), this time for Grav[LE]ℓ (the first arrow in the formula (92))

Grav[HE]ℓ
αl→0⇒ Grav[LE]ℓ. (94)

At the present time the majority of the proposed approaches to quantization
of gravity are associated with the construction of the following transition:

GR⇒Grav[HE]ℓ. (95)

But, by the author’s opinion, this is impossible. It seems that for correct
quantization of gravity one needs reversal of the arrow from (94)

Grav[LE]ℓ(αl ≈ 0, αl ̸= 0)
αl→1⇒ Grav[HE]ℓ(αl ≈ 1). (96)

The above results indicate that the low-energy ≪measurable≫ gravity vari-
ant Grav[LE]ℓ should be very close to GR but different at the same time.
The author is hopeful that the correct construction of a low-energy Gravℓ

close to GR allows for a more natural transition to quantum (Planck’s) grav-
ity. Besides, within the notion of measurability, gravity could be saved
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from some odd solutions, from wormholes in particular.

7.2. The situation is similar for a quantum theory too.
In the general case, based on the parameter αa (formula (18) of Section
3), this means that there exists the following correct limiting high-
energy transition:

lim
ℓ ̸=0,|Na|≫1

αa
High Energy⇒ lim

ℓ ̸=0,|Na|≈1
αa (97)

and there is no correct limiting high-energy transition

lim
ℓ=0

αa
High Energy⇒ lim

ℓ ̸=0,|Na|≈1
αa. (98)

The first of them corresponds to the transition from a measurable theory
at low energies to a measurable theory at high energies

QT [LE]ℓ
Na→1⇒ QT [HE]ℓ. (99)

Whereas the second

QT
Na→1⇒ QT [HE]ℓ (100)

(hereQT [LE]ℓ, QT [HE]ℓ, QT are quantum theories with the minimal length
ℓ ̸= 0 at low energies E ≪ Ep, at high energies E ≈ Ep, and the well-known
(continuous) quantum theory with lmin = 0).
However, the whole theoretical physics, where presently at low energies
E ≪ EP the minimal length ℓ is not involved at all (i. e. lmin = 0), is
framed around a search for the nonexistent limits (98),(correspondingly
(100).
Of course, in this case the low-energy ≪measurable≫ variant QT [LE]ℓ of
QT by its results will be very close to the initial theory QT , as indicated in
[1],[2], and Section 5 of the present work. But these theories are different
by nature: the first of them is discrete and the second one is continuous.
Nevertheless, it is clear that the main requirement in this case is associated
with the
≪Compatibility Principe ≫:
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at low energies the resolved variant QT [LE]ℓ must, to a high accuracy,
represent the well-known approved results of the corresponding continuous
theory QT .

These theories should be differing considerably at least on going to high
energies E ≈ Ep.
The hypothesis set by the author is that correct construction of the ≪mea-
surable≫ transition to high energies (formula (100)) should naturally lead
to solution of the ultraviolet divergences problem (initially in terms of the
finite measurable quantities).
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