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Abstract

In this paper the author formulates a gauge field theory in terms
of the measurability notion introduced in his previous works and
performs a comparative analysis of passage to high energies for grav-
ity and gauge theories. It has been found that measurability in
gravity is in close association with quantum fluctuations of the space-
time geometry (or at high energies with the ”space-time foam”)
introduced by J.A.Wheeler. It is demonstrated that at low energies
E ≪ Ep, in terms of measurable quantities, we can correctly define
the Least Action Principle and Noether’s Theorem.

1 Introduction

This paper is a continuation of the previous author’s works devoted to the
subject, especially [1]–[5]. The principal idea of the above-mentioned works
is as follows. The majority of the researchers are of the opinion that at
very high energies (Early Universe) there is the minimal length ℓ presumed
to be on the order of the Planck length ℓ ∝ lp, though not necessarily.
Consequently, at the corresponding high energies the theory (understood as
Quantum Theory of matter fields and Gravity) is discrete.
At the present time these theories are defined in the continuous space-time
paradigm but are associated with serious problems, in particular with the
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(ultraviolet and infrared) divergences.
On the other hand, if the minimal length ℓ exists, it should be existent at all
the energy (both low and high) scales, and the theories should be initially
discrete. But the modern mathematical apparatus of these theories based
on the use of the abstract infinitesimal variations dt, dxi, dpi, dE, i = 1, ..., 3
prevents from seeing this clearly.
It is obvious that, when ℓ exists, all variations in a physical system, ir-
respective of the energies, should be expressed in terms of ℓ and hence a
theory should not involve the above-mentioned abstract infinitesimal varia-
tions. Though with the use of new terms, at low energies a theory becomes
discrete, it is very close to the initial theory formulated in the continuous
space-time. Actually, discreteness is revealed at high energies only. Besides,
all infinitesimal variations in a system will be dependent on the existent en-
ergies.
The main instrument for realization of the idea put forward by the author
is the notion of measurability, initially defined in [2]and also in Section 2
of this paper. In [3] in terms of this notion the author presents a detailed
study of the spherically symmetric horizon spaces and black holes with the
Schwarzschild metric at low energies E ≪ Ep and at high energies E ≈ Ep.
In [4],[5], within the scope of the measurability concept, gravity has been
studied in the general case at low energies to show that in this case there is
a possibility for the correct transition to high (Planck’s) energies. Gravity
in this case is understood as General Relativity.
The present paper contains the following recently obtained results.
In terms of the measurabilitynotion, the author formulates a gauge field
theory and performs a comparative analysis of the transition to high en-
ergies for gravity and gauge theories. By him, it has been found that
the measurability in gravity is in close association with quantum fluctua-
tions of the space-time geometry (or at high energies with the ”space-time
foam”)introduced by J.A.Wheeler. It is demonstrated that at low energies
E ≪ Ep, in terms of measurable quantities, the Least Action Principle
and Noether’s Theorem may be defined quite correctly.
The proposed approach is still in progress and, because of this, the author
presents here some part of the earlier obtained results for better under-
standing: see Subsection 3.1 [4],[5], and Subsection 5.2 (beginning from this
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subsection to the formula (68))[5]. In Section 2 the basic definitions and
mathematical terms used are given which inevitably have intersections with
other publications. It should be noted,however, that the section includes
some new, more accurate definitions which are not at variance with the
earlier results but clarify them. For example, in [1]–[3] the Uncertainty
Principle was initially used for definition of the measurability notion. In
subsequent papers (for instance, [4],[5]) the author has found the measur-
ability definition without the use of this principle.
All other results in the present work are absolutely new.

2 Previous Information and Some Supple-

ments

It is assumed that there is a minimal (universal) unit for measurement of
the length ℓ corresponding to some maximal energy Eℓ =

~c
ℓ
and a universal

unit for measurement of time τ = ℓ/c. Without loss of generality, we can
consider ℓ and τ at Plank’s level, i.e. ℓ ∝ lp, τ = κtp, where the numerical
constant κ is on the order of 1. Consequently, we have Eℓ ∝ Ep with the
corresponding proportionality factor.
2.1. The primarily measurable space-time quantities (variations) are
understood as the quantities ∆xi and ∆t taking the form

∆xi = N∆xi
ℓ,∆t = N∆tτ, (1)

where N∆xi
, N∆t are integer numbers. Further in the text we use both

N∆xi
, N∆t and the equivalent Nxi

, Nt.

2.2. Similarly, the primarily measurable momenta are considered as
a subset of the momenta characterized by the property

pxi

.
= pNxi

=
~

Nxi
ℓ
, (2)

where Nxi
is a nonzero integer number and pxi

is the momentum corre-
sponding to the coordinate xi.
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2.3. Finally, let us define any physical quantity as primary or elemen-
tary measurable when its value is consistent with point 1.1,1.2 of this
Definition and formulae (1), (2).
Then we consider formula (2) and Definition 1. with the addition of the
momenta px0

.
= pN0 =

~
Nx0ℓ

, where Nx0 is an integer number corresponding

to the time coordinate (N∆t in formula (1)).
For convenience, we denote Primarily Measurable Quantities satisfying
2.1–2.3 in the abbreviated form as PMQ. Also, for the Primarily Mea-
surable Momenta we use the abbreviation PMM.

First, we consider the case of Low Energies, i.e. E ≪ Ep.
It is obvious that all the nonzero integer numbers Nxi

, Nt (or same Nxµ ;µ =
0, ..., 3) from formulae (1),(2) should satisfy the condition |Nxµ | ≫ 1. It is
clear that all the momenta pi at low energies E ≪ Ep meet the condition
pi = ~/(Niℓ), where |Ni| ≫ 1 but is not necessarily an integer. With regard
for smallness of ℓ and for the condition |Ni| ≫ 1, we can easily show that
the difference 1/(Niℓ)− 1/([Ni]ℓ), (~/(Niℓ)− ~/([Ni]ℓ)) is negligible and in
this way all momenta in the region of low energies E ≪ Ep may be taken
as PMM with a high accuracy.

Comment*.
Then it should be noted that, as all the experimentally involved energies E
are low, they meet the condition E ≪ Eℓ, specifically for LHC the maximal
energies are ≈ 10TeV = 104GeV , that is by 15 orders of magnitude lower
than the Planck energy ≈ 1019GeV . But since the energy Eℓ is on the order
of the Planck energy Eℓ ∝ Ep, in this case all the numbers Ni for the corre-
sponding momenta will meet the condition min|Ni| ≈ 1015,i.e., the formula
of (2).

It is assumed that a theory we are trying to resolve is a deformation of
the initial continuous theory.

Comment**.
The deformation is understood as an extension of a particular theory by in-
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clusion of one or several additional parameters in such a way that the initial
theory appears in the limiting transition [6].

Then it should be noted that PMQ is inadequate for studies of the physical
processes. In fact, among PMQ, we have no quantities ≪capable≫ to give
the infinitesimal quantities dxµ, µ = 0, ..., 3 in the limiting transition in a
continuous theory.
Therefore, it is reasonable to use notion of Generalized Measurability
We define any physical quantity at all energy scales as generalized mea-
surable or, for simplicity, measurable if any of its values may be obtained
in terms of PMQ specified by points 1.1–1.3.
The generalized measurable quantities will be denoted as GMQ.
Note that the space-time quantities

τ

Nt

= pNtc
ℓ2

c~
ℓ

Ni

= pNi

ℓ2

~
, 1 = 1, ..., 3, (3)

where pNi
, pNtc are Primarily Measurable momenta, up to the funda-

mental constants, are coincident with pNi
, pNtc and they may be involved at

any stage of the calculations but, evidently, they are not PMQ, but they
are GMQ.
So, in the proposed paradigm at low energies E ≪ Ep a set of the PMM
is discrete, and in every measurement of µ = 0, ..., 3 there is the discrete
subset Pxµ ⊂ PMM:

Pxµ

.
= {..., pNxµ−1, pNxµ

, pNxµ+1, ...}. (4)

In this case, as compared to the canonical quantum theory, in continuous
space-time we have the following substitution:

∆pµ 7→ dpµ,∆pNxµ
= pNxµ

− pNxµ+1 = pNxµ (Nxµ+1);

∆

∆pµ

7→ ∂

∂pµ

;
∆F(pNxµ

)

∆pµ

=
F(pNxµ

)− F(pNxµ+1)

pNxµ
− pNxµ+1

=
F(pNxµ

)− F(pNxµ+1)

pNxµ (Nxµ+1)

. (5)
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And

ℓ

Nxµ

7→ dxµ;

∆

∆Nxµ

7→ ∂

∂xµ

,
∆F(xµ)

∆Nxµ

=
F(xµ + ℓ/Nxµ)− F(xµ)

ℓ/Nxµ

. (6)

It is clear that for sufficiently high integer values of |Nxµ|, formulae (5),(6)
reproduce a continuous paradigm in the momentum space to any preas-
signed accuracy. However, at low energies E ≪ Eℓ a set of PMM clearly is
not a space. Considering this, the formulae at low energies offer the Cor-
respondence to Continuous Theory (CCT).

It is important to make the following remarks in medias res:

Remark 2.1.
In this way any point {xµ} ∈ M ⊂ R4 and any set of integer numbers high
in absolute values {Nxµ} are correlated with a system of the neighborhoods
for this point (xµ ± ℓ/Nxµ). It is clear that, with an increase in |Nxµ|, the
indicated system converges to the point {xµ}. In this case all the ingredi-
ents of the initial (continuous) theory the partial derivatives including are
replaced by the corresponding finite differences.

Remark 2.2.
As long as ℓ is a minimal measurable length and τ is a minimal measur-
able time, values of all observable quantities should agree with this condi-
tion, i.e., their expressions should not involve the lengths l < ℓ and the times
t < τ (and hence the momenta p > pℓ and the energies E > Eℓ). Because of
this, values of the length ℓ/Ni and of the time ℓ/Nt from formula (3) could
not appear in expressions for observable quantities, being involved only in
intermediate calculations, especially at the summation for replacement of
the infinitesimal quantities dt, dxi; i = 1, 2, 3 on passage from a continuous
theory to its measurable variant.
We can assume that at low energies E ≪ Eℓ all the observable quantities
are PMQ.
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At High Energies, E ≈ Ep, the primary measurable momenta are
inadequate for studies of the theory at these energies.
Indeed, as it has been shown in [3]– [5], the Generalized Uncertainty Prin-
ciple (GUP) [7]–[14], that is generalization of the Heisenberg Uncertainty
Principle (HUP)

∆x ≥ ~
∆p

+ α′l2p
∆p

~
, (7)

where α′ is a constant on the order of 1, leading to the minimal length ℓ on
the order of the Planck length ℓ

.
= 2

√
α′lp, at high energies inevitably results

in the momenta ∆p(N∆x, GUP ) which are not primarily measurable:

∆p
.
= ∆p(N∆x, GUP ) =

~
1/2(N∆x +

√
N2

∆x − 1)ℓ
. (8)

It is clear that for N∆x ≈ 1 the momentum ∆p(N∆x, GUP ) is not a pri-
mary measurable momentum.

It should be noted that, using relations (7), it is easy to obtain a simi-
lar relation for the energy - time pair at least for the ultrarelativistic case
E ≈ pc [15]. Indeed, (7) gives

∆x

c
≥ ~

∆pc
+ α′l2p

∆p

c~
, (9)

then

∆t ≥ ~
∆E

+ α′ l
2
p

c2
∆pc

~
=

~
∆E

+ α′t2p
∆E

~
. (10)

Here, from E ≈ pc it follows that the difference between ∆E and ∆(pc) can
be neglected, i.e. ∆E = ∆(pc) = ∆pc. Inequality (10) gives analogously
to (7) the lower boundary for time ∆t ≥ 2tp determining the fundamental
time

∆tmin = 2
√
α′tp = τ. (11)

Starting in (10) at the primarily measurable ”small times” ∆t = N∆tτ
(N∆ – small integer number), we can, in analogy with (8), derive a formula
for ∆E at high energies E ≈ Ep.

∆E
.
= ∆E(N∆t, GUP ) =

~c
1/2(N∆t +

√
N2

∆t − 1)τ
. (12)
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Naturally, formula (8) represents only a particular case of variations in the
generalized measurable momenta at high energies E ≈ Ep. Suppose, we
know that in the general case at high energies E ≈ Ep minimal variations
of momenta are given by a set of the generalized measurable quantities
pNxµ

, where we have the integer numbers Nxµ , |Nxµ | ≈ 1. Then it is rea-
sonable to assume that minimal variations of ”coordinates” at high energies
are given by the following formula:

lH(pNxµ
)
.
=

ℓ2

~
pNxµ

, (13)

where pNxµ
are the above-mentioned generalized measurable momenta

at high energies.

The main target of the author is to form a quantum theory and gravity
only in terms of generalized measurable quantities (or of PMQ).
In conclusion of this Section it may be stated its the principal result is as
follows.

Remark 2.3 At low energies far from the Planck energies E ≪ Ep we
replace the space-time manifold M ⊆ R4 by the lattice-like model (de-
noted by LattLE{Nxµ}

M, where the upper index LE is the abbreviation for

”Low Energies”), with the nodes taken at the points {xµ} ∈ M so that all
the edges belonging to {xµ} have the size ℓ/Nxµ ,where Nxµ - integers hav-
ing the property |Nxµ| ≫ 1. As the edge lengths ℓ/Nxµ , within a constant
factor, are coincident with the primarily measurable momenta (formula
(3)),the model LattLE{Nxµ}

M is dynamic and dependent on the existing ener-

gies. In this case all the main attributes of a Quantum Theory in the man-
ifold M have their adequate analogs on the above-mentioned lattice-like
model LattLE{Nxµ}

M, giving the low-energy deformation of Quantum Theory

in terms of paper [6].

Remark 2.4 At high Planck’s energies E ∝ Ep, the lattice-like model
LattLE{Nxµ}

M is replaced by the lattice-like model LattHE
{Nxµ}

M (the upper in-

dex HE is the abbreviation for ”High Energies”), the edges with the lengths
ℓ/Nxµ are replaced by those with the lengths lH(pNxµ

) from formula (13)
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which, within a constant factor, are coincident with the generalized mea-
surable momenta pNxµ

, where Nxµ-integer numbers having the property

|Nxµ| ≈ 1. In this way LattHE
{Nxµ}

M also represents a dynamic model that is

dependent on the existing energies and may be the basis for the construc-
tion of a correct variant of the high-energy deformation in Quantum Theory.

Let us call the lattice-like model LattLE{Nxµ}
M from Remark 2.3 the low-

energy ℓ/Nxµ-deformation of space-time manifold M.
Correspondingly let us call the lattice-like model LattHE

{Nxµ}
M from Re-

mark 2.4 the high-energy lH(pNxµ
)-deformation of space-time manifold

M.

Remark 2.5
Finally, when at low energies E ≪ Ep we lift restrictions on integrality of
Nxµ , from formulae (5),(6) it directly follows that in this case we have a
continuous analog of the well-known theory with the only difference: all the
used small quantities become dependent on the existent energies and we
can correlate them.
In this way formula (6) may be written as

dxµ ↔ ℓ

Nxµ

→ ℓ

[Nxµ ]
,

∂

∂xµ

↔ ∆

∆Nxµ

→ ∆

∆[Nxµ ]

(14)

where |Nxµ | ≫ 1 is a sufficiently large number that varies continuously. It
is clear that in formula (14) the first arrow corresponds to the continuous
theory with a specific selection of values of the infinitesimal quantities dxµ.
As noted above, the difference ℓ/Nxµ − ℓ/[Nxµ ] is negligible and hence the
second arrow corresponds to passage from the initial continuous theory to a
similar discrete theory. Of course, formula (5) may be rewritten in the like
manner.
In what follows, formula (14) plays a crucial part in derivation of the results
and is greatly important for their understanding.
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3 Coordinate Transformations and Poincare

Group in Measurable Case

3.1 General Form of Coordinate Transformations in
Measurable Format

According to the results from the previous section, the measurable vari-
ant of gravity at low energies E ≪ Ep should be formulated in terms of
the measurable space-time quantities ℓ/N∆xµ or primary measurable
momenta pN∆xµ

.
Let us consider the case of the random metric gµν = gµν(x) [16],[17], where
x ∈ R4 is some point of the four-dimensional space R4 defined in measur-
able terms. Now, any such point x

.
= {xχ} ∈ R4 and any set of integer

numbers {Nxχ} dependent on the point {xχ} with the property |Nxχ| ≫ 1
may be correlated to the ”bundle” with the base R4 as follows:

BNxχ

.
= {xχ,

ℓ

Nxχ

} 7→ {xχ}. (15)

It is clear that lim
|Nxχ |→∞

BNxχ
= R4.

As distinct from the normal one, the ”bundle” BNxχ
is distinguished only

by the fact that the mapping in formula (15) is not continuous (smooth)
but discrete in fibers, being continuous in the limit |Nxχ| → ∞.
Then as a canonically measurable prototype of the infinitesimal space-time
interval square [16],[17]

ds2(x) = gµν(x)dx
µdxν (16)

we take the expression

∆s2Nxχ
(x)

.
= gµν(x,Nxχ)

ℓ2

NxµNxν

. (17)

Here gµν(x,Nxχ) – metric gµν(x) from formula (16) with the property that
minimal measurable variation of metric gµν(x) in point x has form

∆gµν(x,Nxχ)χ = gµν(x+ ℓ/Nxχ , Nxχ)− gµν(x,Nxχ), (18)
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Let us denote by ∆χgµν(x,Nxχ) quantity

∆χgµν(x,Nxχ) =
∆gµν(x,Nxχ)χ

ℓ/Nxχ

. (19)

It is obvious that in the case under study the quantity ∆gµν(x,Nxχ)χ is a
measurable analog for the infinitesimal increment dgµν(x) of the χ-th com-
ponent (dgµν(x))χ in a continuous theory, whereas the quantity ∆χgµν(x,Nxχ)
is a measurable analog of the partial derivative ∂χgµν(x).
In this manner we obtain the (15)-formula induced bundle over the metric
manifold gµν(x):

Bg,Nxχ

.
= gµν(x,Nxχ) 7→ gµν(x). (20)

Referring to formula (3), we can see that (17) may be written in terms of
the primary measurable momenta (pNi

, pNt)
.
= pNµ as follows:

∆s2Nxµ
(x) =

ℓ4

~2
gµν(x,Nxχ)pNxµ

pNxν
. (21)

Considering that ℓ ∝ lP (i.e., ℓ = κlP ), where κ = const is on the order of
1, in the general case (21), to within the constant ℓ4/~2, we have

∆s2Nxµ
(x) = gµν(x,Nxχ)pNxµ

pNxν
. (22)

As follows from the previous formulae, the measurable variant of General
Relativity should be defined in the bundle Bg,Nxχ

.
Let us consider any coordinate transformation xµ = xµ (x̄ν) of the space–
time coordinates in continuous space—time. Then we have

dxµ =
∂xµ

∂x̄ν
dx̄ν . (23)

As mentioned at the beginning of this section, in terms of measurable
quantities we have the substitution

dxµ 7→ ℓ

N∆xµ

; dx̄ν 7→ ℓ

N̄∆x̄ν

, (24)
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where N∆xµ , N̄∆x̄ν – integers (|N∆xµ| ≫ 1, |N̄∆x̄ν | ≫ 1) sufficiently high in
absolute value, and hence in the measurable case (23) is replaced by

ℓ

N∆xµ

= ∆µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν )

ℓ

N̄∆x̄ν

. (25)

Equivalently, in terms of the primary measurable momenta we have

pN∆xµ
= ∆µν(x

µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν ) pN̄∆x̄ν
, (26)

where ∆µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν )

.
= ∆µν(x

µ, x̄ν , pN∆xµ
, pN̄∆x̄ν

) – correspond-
ing matrix represented in terms of measurable quantities.
It is clear that, in accordance with formula (3), in passage to the limit we
get

lim
|N∆xµ |→∞

ℓ

N∆xµ

= dxµ =

= lim
|N̄∆x̄ν |→∞

∆µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν )

ℓ

N̄∆x̄ν

=
∂x̄µ

∂xν
dxν . (27)

Equivalently, passage to the limit (27) may be written in terms of the pri-
mary measurable momenta pN∆xµ

, pN̄∆x̄ν
multiplied by the constant ℓ2/~.

How we understand formulae (24)–(27)?
The initial (continuous) coordinate transformations xµ = xµ (x̄ν) gives the
matrix ∂xµ

∂x̄ν . Then, for the integers sufficiently high in absolute value N̄∆x̄ν , |N̄∆x̄ν | ≫
1, we can derive

ℓ

N∆xµ

=
∂xµ

∂x̄ν

ℓ

N̄∆x̄ν

, (28)

where |N∆xµ | ≫ 1 but the numbers for N∆xµ are not necessarily integer.
Then using the formula (14) from Remark 2.5 and substitution of [N∆xµ ]
for N∆xµ in the left-hand side of (28) leads to replacement of the initial
matrix ∂xµ

∂x̄ν by the matrix ∆µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν ) represented in terms

of measurable quantities and, finally, to the formula (25). Clearly, for suf-
ficiently high |N∆xµ|, |N̄∆x̄ν | , the matrix ∆µν(x

µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν ) may
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be selected no matter how close to ∂xµ

∂x̄ν .
Similarly, in the measurable format we can get the formula

dx̄µ =
∂x̄µ

∂xν
dxν . (29)

and correspondingly the matrix ∆̃µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν ) instead of the

matrix ∆µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν ).

Thus, any coordinate transformations may be represented, to however high
accuracy, by themeasurable transformation (i.e., written in terms ofmea-
surable quantities), where the principal components are the measurable
quantities ℓ/N∆xµ or the primary measurable momenta pN∆xµ

.

3.2 Poincare Invariance and Its Specialities in Mea-
surable Consideration

It is obvious that all the derivations for general coordinate transformations
and for a random metric are valid for the Lorentz transformations and
Minkowskian metric.
Actually, according to the preceding subsection, a canonically measurable
prototype of the relativistic infinitesimal space-time interval square

ds2 = ηµνdx
µdxν . (30)

is given by

∆s2Nxχ
(x)

.
= ηµν(x,Nxχ)

ℓ2

NxµNxν

, (31)

where ηµν is the Minkowskian metric

||ηµν || = ||ηµν || = Diag (1,−1,−1,−1) . (32)

Here the integers Nxχ naturally satisfy the condition |Nxχ | ≫ 1, components
of the measurable Minkowskian metric ηµν(x,Nxχ) are ”close” to ηµν ,i.e.
we have

lim
(|Nxχ |)→∞

ηµν(x,Nxχ) = ηµν . (33)
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Without loss of generality, we can assume that ηµν(x,Nxχ) = 0, µ ≠ ν.
Returning to Subsection 3.1, we suppose that g ∈ LG is a random element
of the Lorentz Group (LG) acting linearly in space time with the coordi-
nates x̄. g is represented by the matrix (gµν).
Applying to the case of plane geometry under consideration all argumen-
tations from Subsection 3.1., specifically Remark 2.5 and hence formulae
(28) and (25), we get the following:

ℓ

N∆xµ

= gµν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν )

ℓ

N̄∆x̄ν

. (34)

Here, with the symbols used, we have N∆xχ

.
= Nxχ , N̄∆x̄χ

.
= N̄x̄χ and

lim
|N̄x̄ν |→∞

gµν(x
µ, x̄ν , 1/Nxµ , 1/N̄x̄ν ) = gµν . (35)

From formula (34) it follows that large integer numbers |N̄x̄ν | generate large
integer |Nxµ|. As follows from (35) and Remark 2.5, at sufficiently large
integers |N̄x̄ν |, |Nxµ |, however the accuracy, we have the equality

gµν(x
µ, x̄ν , 1/Nxµ , 1/N̄x̄ν ) = gµν , (36)

and also the equality

ηµν(x̄, N̄x̄χ)
ℓ2

N̄x̄µN̄x̄ν

= ηµν(x,Nxχ)
ℓ2

NxµNxν

, (37)

where

lim
|N̄x̄χ |→∞

ηµν(x̄, N̄x̄χ) = lim
|Nxχ |→∞

ηµν(x,Nxχ) = ηµν . (38)

In this way we can obtain the relativistic invariance in a measurable form
for flat case, i.e. for Minkowskian space-time.
It is clear that translations in time and space add nothing new to these
calculations and hence all the above arguments are valid for the Poincare
group as well.

Remark 3.1. Any space-time coordinate xµ e can express in terms of
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measurable quantities, no matter how high the accuracy. This trivially
follows from the fact that any real number may be approximated by ratio-
nal numbers to the accuracy however high.

Remark 3.2. Note that in this section we have studied only the problem
of actions associated with the group of general coordinate transformations
and the Poincare group in space-time at low energies E ≪ Ep in terms of
measurable quantities, without reference to the invariance problem.

4 Remark on Least Action Principle and Noether’s

Theorem in Measurable Form

Considerations of Section 2 point to the fact that the Least Action Principle
and Noether’s Theorem at low energies E ≪ Ep are valid in a measurable
form with substitution of the measurable analogs defined in Section 2 for
all the components involved in proof of these arguments. For the canonical
(continuous) case we use the notation of Section 3 in [18].
Let φ be a set of all the considered fields φ

.
= (φ1, φ2. Then the action S

in the continuous case taking the form

S =

∫
L(φ, ∂µφ)d4x (39)

is replaced by the measurable action Smeas,N

Smeas,{N} =
∑

Lmeas,{N}(φ,
∆φ

∆Nxµ

)
∏ ℓ

Nxµ

, (40)

where Nxµ – integers with the property |Nxµ | ≫ 1,Lmeas,N–Lagrangian den-
sity of the measurable fields φ and of their measurable analogs for par-
tial derivatives in formula (6) ∆φ

∆Nxµ
. This means that all variations of these

functions are expressed in terms of only measurable quantities. In the
product

∏
the index µ takes the values µ = 0, ..., 3, and {N}–collection of

all Nxµ ,i.e. {N} .
= {Nxµ}. Further, where this causes no confusion, for the

measurable quantities corresponding to the set {N} we can equally use
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both the lower index {N} and N .
According to Remark 2.1. and Remark 2.5., for the integer numbers
Nxµ sufficiently high in absolute value we, to a high accuracy, have

S = Smeas,{N}. (41)

Then it is assumed that all the considered functions are measurable, i.e.
all variations of these functions are expressed in terms of only measurable
quantities.
In this case the ordinary variations δxµ, δφ going to zero at the boundary
∂R of the four-dimensional regionR are replaced bymeasurable variations
(δxµ)meas, (δφ)meas with the same property. The measurable complete
field variation φ denoted as (∆φ)meas in the first-order approximation for
(δxµ)meas takes the form

(∆φ)meas = (δφ)meas +
∆φ

∆Nxµ

(δxµ)meas. (42)

As follows from Remark 2.5., for Nxµ sufficiently large in absolute value
formula (42) correlates (to a high accuracy) with the well-known formula
∆φ in the case of complete variation in a continuous variant

∆φ = δφ+ (∂µφ)δxµ. (43)

Similarly, we can find the measurable variation (δSmeas,{N})meas for the
action Smeas,{N} from formula (40), making substitutions relative to the
continuous pattern as in formula (40)∫

7→
∑

; ∂µ 7→ ∆

∆Nxµ

; d4x 7→
∏ ℓ

Nxµ

, ... (44)

and replacing the expression d4x
′
= J(x

′
/x)d4x, where J(x

′
/x) –Jacobian

transformations of x → x
′
= x + δx in the continuous case, by the for-

mula
∏

ℓ
N

x
′
µ

= Jmeas(x
′
/x)

∏
ℓ

Nxµ
, where Jmeas(x

′
/x) – ”measurable” Ja-

cobian corresponding to the matrix (∆µν) of the transformation x → x
′
=

x+ (δx)meas in measurable consideration from formula (25). With regard
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to Remark 2.5., we can see that in this way in measurable consideration
one can reproduce the results of a continuous picture for the integer num-
bers Nxµ sufficiently high in absolute value to any preassigned accuracy.
In this manner, using the infinitesimal quantities dxµ of the form ℓ/Nxµ ,
where Nxµ – real numbers sufficiently high in absolute value, and then Re-
mark 2.5, we can take all the steps to the proof of the Variance Principle
(including Gauss theorem) to any accuracy and obtain the canonical Euler-
Lagrange equations of the measurable form

∂Lmeas,N

∂φ
− ∆

∆Nxµ

[
∂Lmeas,N

∂( ∆
∆Nxµ

φ)
] = 0. (45)

For the above-mentioned conditions, these equations give very exact ap-
proximation of Euler-Lagrange equations in the continuous paradigm

∂L
∂φ

− ∂

∂xµ

[
∂L

∂(∂µφ)
] = 0. (46)

Noether’s Theorem may be represented in themeasurable form in a similar
way.
In this case the energy-momentum tensor Θ

Θµ
ν =

∂L
∂(∂µφ)

∂νφ− δµνL (47)

in the measurable format, similar to (45), takes the form

(Θmeas,N)
µ
ν = [

∂Lmeas,N

∂( ∆
∆Nxµ

φ)
]

∆

∆Nxν

φ− δµνLmeas,N . (48)

If the action S from formula (39) is invariant by some transformation group
G involving xµ and φ, then Smeas,{N} from formula (40) for the components
of the set {N} sufficiently large in absolute value are invariant by the action
G at the accuracy however high. This is obvious if we naturally suppose
that the action G for the fields φ in the general and in the measurable
considerations is identical, whereas for the coordinates xµ,with regard to
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Remark 3.1. and Remark 2.5., the action may be considered identical
too for the components of the set {N} sufficiently large in absolute value.
Proceeding from the paragraph indicated by italics, we can repeat all the
steps of the proof for Noether’s Theorem in the measurable form with the
corresponding substitutions form formula refS3.m).
Then for the ”measurable” currents (Jmeas,N)

µ
ν ), to a high accuracy, we

have

∆

∆Nt

∑
(Jmeas,N)

0
ν

3∏
i=1

ℓ

Nxi

=
∆(Qmeas,N)ν

∆Nt

= 0. (49)

And formula (49)for the components of the set {N} sufficiently high in
absolute value reproduces Noether’s Theorem in the canonical form to any
preassigned accuracy

d

dt

∫
J0
νd

3x =
dQν

dt
= 0. (50)

5 Measurability,Gauge Fields,Gravity and Tran-

sition to High Energies

5.1 Measurability for Gauge Theories at Low Ener-
gies

In this section we use the formalism from [18],[19].
It is easily seen that at low energies E ≪ Ep for the gauge theories written in
the measurable form all formula of the canonical (continuous) theory are
valid with the corresponding substitution according to formulae (5),(6),(44).
Indeed, let G – gauge group and {N} .

= {Nxµ}, similar to formulae from
the preceding section,– fixed set of the integers |Nxµ | ≫ 1 sufficiently large
in absolute value.
As G - group of the local internal symmetries of a physical system and the
definition of measurability refers only to the space-time indexes, we can
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get the following correspondences:

W′
µ = U Wµ U

−1 − i

g
(∂µU)U−1 7→ W′

µ,{N}
.
=

.
= U Wµ,{N}, U

−1 − i

g
(

∆

∆Nxµ

U)U−1,

Dµ = ∂µ − igWµ 7→ Dµ,{N}
.
=

.
=

∆

∆Nxµ

− igWµ,{N},

Fµν = ∂µWν − ∂νWµ − i g [Wµ,Wν ] 7→ Fµν,{N}
.
=

.
=

∆

∆Nxµ

Wν,{N} −
∆

∆Nxν

Wµ,{N} − i g [Wµ,{N},Wµ,{N}]. (51)

And, similarly, we have

Ψ (iγµDµ −m)Ψ 7→ Ψ{N} (iγ
µDµ,{N} −m)Ψ{N}. (52)

Here g is a coupling constant,Wµ – space-time components of gauge fields,
Ψ,Ψ–corresponding material fields (in this case fermion),Dµ–covariant deriva-
tive and U - element of the gauge group G.
Passage in formulae (51),(52) from the left- to the right-hand side is as-
sociated with the transition from the canonical (continuous) consideration
to the representation in terms of measurable quantities for the fixed set
{N} .

= {Nxµ}. It is clear that in this case all the transformable quanti-
ties in the right-hand sides of these formulae should depend on {N},that is
indicated by the additional lower index {N}. In a similar way, the ”mea-
surable” metric gµν(x,Nxχ) ≡ gµν(x, {N}) from formula (17) is dependent
on {N}.
However, considering that the energies are low and the numbers |Nxµ | ≫ 1
are sufficiently high, the above-mentioned relationship is very weak.
As follows from formulae (51),(52) and from the paragraph preceding these
formulae, if L – gauge-invariant Lagrangian associated with the left-hand
sides of these formulae, the corresponding Lagrangian given in terms of
measurable quantities Lmeas,{N} is also gauge-invariant by G and we have

L ≈ Lmeas,{N}. (53)
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Besides, from the above formulae it follows that all the known relations
for the gauge theory with the group G are valid, to a high accuracy, at
low energies for a measurable variant of this theory on replacement of all
basic quantities in the initial theory by the corresponding quantities with
the additional lower index {N}.
Specifically, the ”gauge” analog Bianchi identity

DρFµν +DµFνρ +DνFρµ = 0 (54)

in the measurable form is replaced, to a high accuracy, by the identity

Dρ,{N}Fµν,{N} +Dµ,{N}Fνρ,{N} +Dν,{N}Fρµ,{N} = 0. (55)

Obviously, this accuracy is the higher the greater the absolute values of the
numbers from the set {N}.
Similar to the canonical case, formula (54) is equivalent to the Jacoby iden-
tity ∑

cyclic permutations

[Dρ, [Dµ, Dν ]] = 0, (56)

in the measurable consideration formula (55) to a high accuracy is equiv-
alent to the measurable form of Jacoby identity∑

cyclic permutations

[Dρ,{N}, [Dµ,{N}, Dν,{N}]] = 0. (57)

5.2 General Relativity in Terms of Measurable Quan-
tities and Its High-Energy Deformations

At low energies E ≪ Ep for connectivity coefficients in gravity, i.e. Christof-
fel symbols, and for the fixed set {N} in his papers [4],[5] the author has
derived their expressions in the measurable form (formula (50) in [5]):

Γα
µν(x, {N}) = 1

2
gαβ(x, {N}) (∆νgβµ(x, {N}) + ∆µgνβ(x, {N})−

−∆βgµν(x, {N})). (58)
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Here, to make it short, the author denotes the operator ∆/∆Nxχ
from

formula (6) as ∆χ, and Nxχ–corresponding element from the set {N}.
In [4],[5] it is shown that, with the use of (58) in the measurable form, one
can obtain all the base quantities of General Relativity (GR), in particular
the Riemann tensor Rµ

ναβ(x, {N}) and, finally, the measurable form of
Einstein Equations, for short denoted as (EEM) (abbreviation for Einstein
Equations Measurable) (formula (57) in [5]):

Rµν(x, {N})− 1

2
R(x,Nxχ) gµν(x, {N})− 1

2
Λ(x, {N}) gµν(x, {N}) =

= 8 π GTµν(x, {N}). (59)

Considering the properties of {N}, for the measurable form of GR the
Bianchi identity may be written, to a high accuracy, as follows:

D̃ρ,{N}R
χ
λµν(x, {N}) + D̃µ,{N}R

χ
λµρ(x, {N}) + D̃ν,{N}R

χ
ναβ(x, {N}) = 0, (60)

where D̃α,{N} =
∆

∆Nxα
+ Γµ

να(x, {N}) and Nxα ∈ {N}.

Thus, at low energies in measurable consideration, as in the canonical
case, there is correlation between gauge theories and gravity.
But, in principle, the understanding of ”high energies” in gravity and in
gauge theories is different. According to the current knowledge, in gravity
these energies are at a level of the Planck energies E ≈ Ep (or same E ≈ Eℓ)
which are associated with origination of the quantum-gravitational effects.
In [4],[5], using the definitions given in Comment**, the author has con-
structed a high-energy (Planck) deformation of GR of the form

EEM[Nq]
.
= Rµν(x, {Nq})−

1

2
R(x, {Nq}) gµν(x, {Nq})−

−1

2
Λ(x, {Nq}) gµν(x, {Nq}) =

= 8 π GTµν(x, {Nq}). (61)

Here {Nq}
.
= {Nxχ}, χ = 0, ..., 3 is a set of the integer numbers Nxχ the

absolute values of which are close to 1.
The small quantity ℓ/Nxχ = ℓ2

~ pNxχ
,where pNxχ

is a primarily measurable
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momentum and |Nxχ| ≫ 1, at low energies E ≪ Eℓ in the case under study
has its analog–the quantity lH(pNxµ

)that is given by formula (13) in the
present paper (or formula 113) in [5]).
As absolute values of the integers Nxµ are small, the quantities lH(pNxµ

)
are varying discretely (similar to the denominator in the right-hand side
of formula (8)) and hence the high-energy deformation of GR specified by
EEM[Nq] (formula (61)) is in fact a discrete theory.
It is clear that in this case the limit

pNxχ
, (|Nxχ| ≈ 1)

|Nxχ |≈1→|Nxχ |≫1
⇒ pNxχ

, (|Nxχ| ≫ 1), (62)

where momenta in the right-hand side of formula (62), i.e. pNxχ
, (|Nxχ | ≫

1), are the primarily measurable momenta at low energies E ≪ Ep and
pNxχ

, (|Nxχ| ≈ 1) – corresponding generalized measurable momentum
from formula (13, should be valid. Obviously, the momentum from formula
(8)for N∆x

.
= Nxχ satisfies this condition.

Then formula (17) for the canonically measurable prototype of the infinites-
imal space-time interval at low energies E ≪ Ep is replaced by its quantum
analog or the canonically measurable quantum prototype for E ≈ Ep taking
the form

∆s2{N}(x,q)
.
= gµν(x, {N},q)lH(pNxµ

)lH(pNxν
) =

ℓ4

~2
gµν(x, {N},q)pNxµ

pNxν
.(63)

Here there is no doubt that the numbers Nxµ , Nxν belong to the set {N},
all the components of this set are integers with small absolute values, pNxχ

are the generalized measurable momenta at high energies corresponding
to formula (62) and gµν(x, {N},q) meets the condition

gµν(x, {N},q), (|{N}| ≈ 1)
|{N}|≈1→|{N}|≫1⇒ gµν(x, {N}), (|{N}| ≫ 1), (64)

where gµν(x, {N}) = gµν(x,Nxχ) is a metric in the measurable form at
low energies (formula (17)).
From formula (62) we have

lH(pNxχ
)
.
=

ℓ2

~
pNxχ

; |Nxχ| ≈ 1. (65)
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Then by the substitution ℓ/Nxχ 7→ lH(pNxχ
) in formulae (18),(19) we can

have quantum analogs of minimal measurable variations of the metric and
of the partial derivative

∆qgµν(x,Nxχ ,q)χ
.
= gµν(x+ lH(pNxχ

), Nxχ ,q)− gµν(x,Nxχ ,q),

∆χ,qgµν(x,Nxχ ,q)
.
=

∆qgµν(x,Nxχ ,q)χ

lH(pNxχ
)

. (66)

Using the substitution in formula (6)

ℓ

Nxµ

7→ lH(pNxµ
);

∆

∆Nxµ

7→ ∆q

∆Nxµ ,q

,

∆qF(xµ)

∆Nxµ ,q

=
F (xµ + lH(pNxµ

))− F (xµ)

lH(pNxµ
)

(67)

and applying this substitution to all corresponding formulae in the mea-
surable format of GR at low energies, we can derive at planck energies
E ≈ Ep all the components high-energy deformation of Einstein Equations
in the measurable form EEM[Nq] (61) (or formula (117) in [5])
As a result, we have

lim
E≪Ep

EEM[Nq] = EEM or lim
|{Nq}|≫1

EEM[Nq] = EEM. (68)

For EEM[Nq], the metrics gµν(x,Nxχ ,q) (formula (63)) represent the solu-
tion.

It should be noted that the proposed approach can be considered as a de-
velopment of the idea of quantum fluctuations in the space-time geometry
(”space-time foam”) [20]–[22]but for the case of discrete considera-
tion. Really, at low energies E ≪ Ep the canonical metric components
in a continuous consideration gµν(x) may be taken as components of the
metric in the measurable form gµν(x,Nxχ) (formula (17) for Nxχ = ∞,
i.e. we have gµν(x) = gµν(x,∞)). But, as at low energies |Nxχ| ≫ 1, the
theory may be considered continuous to a high accuracy due to Remark
2.5. Then, expanding the quantity gµν(x,Nxχ) into a series in terms of the

23



small parameter 1/Nxχ close to the point gµν(x) and retaining only the zero-
or first-order terms (due to obvious smallness of all the remaining terms),
in fact, we arrive at the formula for fluctuation of the metric g in a region
with the size L ([22],formula (43.29)):

∆g ∼ lp
L
. (69)

Indeed, as lp ∝ ℓ, considering that the energies are low and with due re-
gard for Remark 2.2, L represents PMQ. Then, setting L = Nxχℓ and
substituting it into (69),we get the following:

∆g ∼ lp
L

∼ ℓ

Nxχℓ
=

1

Nxχ

. (70)

So, at low energies the indicated quantum fluctuations are very small, ac-
tually being coincident with the basic parameters in the measurable ap-
proach (parameters of the corresponding deformation).
But, as demonstrated by formulae (61)–(67), at high energies E ≈ Ep this
is not the case, and quantum fluctuations
gµν(x, {N},q), (|{N}| ≈ 1) of the metric gµν(x, {N}), (|{N}| ≫ 1) are
great.
In this case in themeasurable form the notion ”space-time foam”) is ab-
solutely adequate because the only restriction imposed on gµν(x, {N},q), (|{N}| ≈
1) is (64). It is clear that in this case there is a great deal of differ-
ent gµν(x, {N},q), (|{N}| ≈ 1). As the measurable analogs of Einstein
Equations at low energies EEM (59) and at high energies EEM[Nq] (61),
according to the above formulae, are determined by the quantities pNxχ

,
where |Nxχ| ≫ 1, |Nxχ | ≈ 1, respectively, at low energies for the given met-
ric gµν(x, {N},q), (|{N}| ≫ 1) its quantum fluctuations in the general case
are determined by the functions Gµ(Nxµ), µ = 0, ..., 3 which are dependent
on integer values of Nxµ so that

pNxµ

.
=

~
Gµ(Nxµ)ℓ

, (71)

and

lim
|Nxµ |→∞

Gµ(Nxµ) = Nxµ . (72)
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We can see that the functions G(∆x)
.
= 1/2(N∆x +

√
N2

∆x − 1)ℓ;N∆x
.
=

Nxi
, i = 1, 2, 3 from the right side of formula (8) and G(∆t)

.
= 1/2(N∆t +√

N2
∆t − 1)τ ;N∆τ

.
= Nx0 from the right side of formula (12) satisfy the

condition of (72).
In [5] at low energies E ≪ Ep for the measurable form of gravity EEM
(59) the author has derived the Least Action Principle and the Lagrangian
formalism (particular case in the first part of Section 4 in the present paper).
The action for GR in themeasurable format can be derived from the action
for the canonical GR in continuous space-time

SEH = − 1

16πG

∫
d4x

√
|g| (R + Λ) (73)

with substitution in formula (44), leading to the ”measurable” action

SEH(Nxχ) = − 1

16πG

∑
∆(Nxχ )Ω

√
|g(Nxχ)| ·

·
(
R(x,Nxχ) + Λ(x,Nxχ)

)
, |Nxχ| ≫ 1, (74)

where ∆(Nxχ )Ω is the volume element in a measurable variant of GR (for-
mula (44)-(46) in [5]).
It is obvious that at high energies E ≈ Ep, due to real discreteness of the
theory, the Least Action Principle in the general case is no longer valid for
this theory. We can note only the Planck deformation SEH(Nxχ , q) of the
”measurable” action SEH(Nxχ) (74):

SEH(Nxχ ,q)
.
= − 1

16πG

∑
∆(Nxχ ),qΩ

√
|g(Nxχ ,q)| ·

·
(
R(x,Nxχ) + Λ(x,Nxχ ,q)

)
, |Nxχ| ≈ 1, (75)

with substitution of all components in formula (74) in accordance with the
formulae in this subsection.
Of course, in this case the condition

SEH(Nxχ ,q), (|Nxχ| ≈ 1)
|Nxχ |≈1→|Nxχ |≫1

⇒ SEH(Nxχ), (|Nxχ| ≫ 1) (76)

must be fulfilled. It should be noted that the above-mentioned results may
be applied for the derivation of a measurable variant of gravitational ther-
modynamics for horizon spaces [3].
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Specifically, T.Padmanbhan has obtained, for space with static spherically-
symmetric horizon at the horizon r = a, Einstein field equations ([23],
eq.(117)) taking the form

c4

G

[
1

2
f ′(a)a− 1

2

]
= 4πPa2, (77)

where P = T r
r is the trace of the momentum-energy tensor and radial pres-

sure. And

kBT =
~cf ′(a)

4π
. (78)

where T – corresponding temperature for the horizon spaces [23].
Naturally, in terms of measurable quantities it is assumed that the radius
r = a is a primarily measurable quantity,i.e. a = Naℓ. Then Einstein
equations for the spherically-symmetric horizon spaces [23],derived in the
measurable form in [3] and written at low energies (Na ≫ 1) in terms
of the parameter αa(HUP )

.
= 1/N2

a or at high energies (Na ≈ 1) in terms
of the parameter αa(GUP )

.
= 1/[1/4(Na +

√
N2

a − 1)2], completely comply
with their general form (59),(61).
Besides, in accordance with Remark 2.2, the condition Na ≥ 2 should
be fulfilled. This fact was also noted in [24],[15], however, on the basis of
another approach. Besides, in terms of measurable quantities and in [3],
some implications for gravitational thermodynamics of black holes [25] at
all the energy scales have been suggested.

5.3 Gauge Theories in Measurable Consideration and
Transition to High Energies

We assume that at high energies E (close to the Planck energy E ≈ Ep or
same maximal E ≈ Eℓ) space-time is always curved. Because of this, we
should consider three different possibilities.

5.3.1. Low energies E ≪ Ep and flat space-time.
In the well-known Quantum Field Theory (QFT) [19],[18] and, specifically,
in its part used for the collider computations, in the general case space-time
is assumed to be flat, i.e. to be Minkowskian.

26



Besides, as noted in Comment*, actually all the energies considered exper-
imentally meet the condition E ≪ Ep and hence (see the end of Remark
2.2 in measurable consideration all observable quantities are PMQ.
In this case we have a discrete QFT that is almost-continuous due to Re-
mark 2.5. As such a theory in the momentum representation has the
upper limit cut-off, it is not Lorentz-invariant from the start. This is not
surprising because it is known that, if a theory involves the minimal length
ℓ, in the general case Lorentz invariance is violated (for example, see most
known work of KMM [14]). As distinct from other works involving ℓ, in
the proposed approach the wave function is considered separately at high
energies E ≈ Ep and at low energies E ≪ Ep, with the imposed restriction
that the first function is a high-energy deformation of the second function
[2]. In other works (for example, in [14]) the wave function is common for
all the energy scales. But, considering the assumption in the beginning of
this subsection, this is impossible because the indicated functions belong to
spaces of different geometries: curved and flat.
It is clear that the above-mentioned discrete (almost-continuous) (QFT),
with a cut-off at a certain upper limit of the momenta which are consid-
erably lower than the Planck’s, should be ultraviolet-finite. In this case
passage to higher energies means going from the momenta pN , |N | ≫ 1 to
the momenta pN ′ , |N | > |N ′ | ≫ 1 and, vice versa, passage to lower energies
is going in the last equality from the integers N

′
to the integers N .

For further resolution of the indicated QFT, along with formula (44), we
should ”translate” correctly the mathematical apparatus of the Dirac δ-
function into the measurable representation.
Note that at the present time there is a strong belief that Lorentz-invariance
is violated on passage to higher energies even for the particular quantum-
field models without involvement of the minimal length ℓ, i.e. in the con-
tinuous space-time paradigm(for example, [26]).

5.3.2. Low energies E ≪ Ep and curved space-time.
In this case it is assumed that a measurable Lagrangian, containing a
quantum gauge field in the measurable form Wµ,{N} from formula (51)
and the terms including material fields Ψ{N} (formula (52)),is considered in
the space-time geometry generated by the measurable metric gαβ(x, {N}).
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Such consideration corresponds to the semiclassical approximation in the
canonical (continuous) form. In fact, as E ≪ Ep, in this case in continu-
ous space-time gravity can be considered as classical, that is equivalent to
the semiclassical approximation–”quantized material fields in the classical
space-time geometry”.
Since the energies are low, using Remark 2.5, in this case we can take a
discrete QFT as an (almost-continuous) theory with a cut-off at a certain
upper level of the momenta which are significantly lower than the Planck’s
momentum and with substitution of formula (44) in the corresponding for-
mulae of a quantum theory in curved space-time [16],[27], considering sub-
stitution of the measurable metric gαβ(x, {N}) for the metric gαβ(x).
Nevertheless, the differences, as compared to the continuous theory, really
exist and are associated with selection of Nxχ ∈ {N}. The selection should
be determined by the energies for which the theory is considered.
In continuous consideration, with the abstract infinitesimal quantities dxχ, dpi, dE, χ =
0, ...3; i = 1, ...3, the theory fails to ”sense” specific energies. In the mea-
surable form this is not the case due to the theory construction per se.
Further studies are needed to find the corresponding inferences for different
problems in curved space-time (for example, properties of pure and mixed
states, entanglement depending on dynamics of the elements {N}), specifi-
cally for solution of the Information Paradox Problem (IPP)[28].

5.3.3. High energies E ≈ Ep and curved space-time.
This is a pure quantum-gravitational phase. When the material field La-
grangian is studied in this phase, in the measurable form, in accordance
with the above formulae, we resolve a pure discrete theory. The geometry
in such a ”space” arises from the metrics satisfying the equation EEM[Nq]
(61). In this case all ”minimal” variations for gauge fields and material
fields in the coordinate and momentum representations should be taken
from formulae for the corresponding GMQ,i.e. from the expressions for
p{N}, lH(p{N}), |{N}| ≈ 1 with regard to formulae (71),(72).
Then in the low-energy limit we have the case 5.3.2. And, if the geometry
determined by the metric gαβ(x, {N}) is asymptotically flat, for very great
|{N}| we have the case 5.3.1.

28



6 Conclusion

6.1. in the proposed approach the mathematical apparatus of the well-
known theories in continuous space-time based on the use of the abstract
infinitesimal quantities dxµ, dpi, dE is replaced by the apparatus based on
the measurability notion and involving the ordered small quantities de-
pendent on the existent energies. All small space-time variations in the
indicated theories are generated by the momenta, (primarily measurable
at low energies and generalized measurable at high energies). Consid-
ering the involvement of the minimal length ℓ ∝ lp, in this case the initial
theory becomes discrete but at low energies, far from the Planck energy
E ≪ Ep, it is very close to the initial theory in continuous space-time.
Real discreteness is revealed at high energies E ≪ Ep. Such an approach
enables one to study the theories (specifically, QFT and gravity) in the same
terms at all the energy scales.

6.2. In terms of the measurability notion the author has conducted a
comparative analysis of passage to high energies for gravity and gauge the-
ories. It has been shown that measurability in gravity is closely associated
with quantum fluctuations of the space-time geometry (or at high energies
of the ”space-time foam”) introduced by J.A.Wheeler.

6.3. Of course, the words ”very close given in bold type are not meaning
coincident. In the last paragraph of 5.3.2 it is noted that measurability
offers additional possibilities for solution of the known problems in curved
space-time.
Because of this, it should be noted that in [5] the author first analyzed the
potentialities of using measurability to avoid pathological solutions in GR
– Closed Timelike Curves (CTC) [29]–[32].

6.4. In the proposed approach, within the scope of the measurability
notion, the terms classical and quantum considerations common for the con-
tinuous space-time paradigm, generally speaking, lose their initial meaning.
Indeed, the use of these terms is justified only at low energies E ≪ Ep but
at these energies all minimal variations in the coordinate space take the
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form ℓ/{N}, |{N}| ≫ 1 and ℓ in its definition has all the three fundamen-
tal constants including ~, because ℓ ∝ lp. On the other hand, due to the
condition |{N}| ≫ 1, a quantum nature of the variations ℓ/{N} is not felt.
The same is true for the momentum representation.
In fact, in the proposed approach the classical consideration is associated
with the limiting transition |{N}| → ∞. However, as shown in [5], for real
physical systems at low energies E ≪ Ep is always |{N}| < ∞ and we have

N∗ ≥ |{N}| ≥ N∗ ≫ 1, (79)

where N∗, N
∗ – some lower and upper bounds.

As noted in 5.3.1, in this case passage to higher or to lower energies means
going to consideration of a theory with higher or lower absolute values of
the numbers {N}, respectively, compared to the initial ones.

6.5. From formula (68) it follows that

Λ(x, {Nq}), (|{Nq}| ≈ 1)
|{Nq}|≈1→|{N}|≫1⇒ Λ(x, {N}), (|{N}| ≫ 1), (80)

where the right side of (80) is a dynamic cosmological term in the measur-
able form at low energies E ≪ Ep. According to the results of Subsection
5.2, Λ(x, {N}) has little differences from the cosmological constant Λ in
continuous consideration.
In his earlier works [33],[34] the author uses other methods, within the holo-
graphic principle validity, to show that

Λ(x, {N})
Λ(x, {Nq})

≈ 10−123. (81)

It should be noted that Λ(x, {N}) , to a high accuracy, agrees with the
experimental cosmological constant.
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