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Abstract

This paper presents a reformulation of classical mechanics which is invariant
under transformations between reference frames and which can be applied
in any reference frame (rotating or non-rotating) (inertial or non-inertial)
without the necessity of introducing fictitious forces.

Introduction

The reformulation of classical mechanics presented in this paper is obtained starting from a gener
equation of motion. This paper considers that any observer S uses a reference frame S and a dyna
reference fram&. The general equation of motion is a transformation equation between the referenc
frame S and the dynamic reference fraghe

The dynamic positioria, the dynamic velocity,, and the dynamic acceleratiag of a particle A
of massm, relative to the dynamic reference frarfSere given by:

Fa= [ [ (Fa/me) dt dit
Va = [ (Fa/ma) dt

3a = (Fa/Ma)
whereF, is the net force acting on particle A.
The dynamic angular velocitys and the dynamic angular acceleratiagiof the reference frame S
fixed to a particle S relative to the dynamic reference fr&waee given by:
. 1/2
s = & | (Fy/ms — Fo/ms) - (1 —ro) /(11 — o)V
s = d(&)s)/dt

wherelF, andF; are the net forces acting on the reference frame S in the points 0 apdrigr, are

the positions of the points 0 and 1 relative to the reference frame Snaigdthe mass of particle S

(the point O is the origin of the reference frame S and the center of mass of particle S) (the point |
belongs to the axis of dynamic rotation, and the segment 01 is perpendicular to the axis of dynam
rotation) (the vectotos is along the axis of dynamic rotation)



General Equation of Motion

The general equation of motion for two particles A and B relative to an observer S is:
MaMy [Fa—p] —MaMy[Fa—Tp] =0

wherem, andmy, are the masses of particles A andrBandry, are the positions of particles A and B,
I, andry, are the dynamic positions of particles A and B.

Differentiating the above equation with respect to time, we obtain:
ma”b[(Va—Vb) +@sx (ra— rb)] - %%[Va—vb] =0
Differentiating again with respect to time, we obtain:

MaMy [ (8a — @) -+ 20s X (Va — Vb) + s X (@s X (Ta—Tp)) + &5 X (fa—Tp)] —Mamy[8a — &) =0
Reference Frames

Applying the above equation to two particles A and S, we have:
MaMs[(8a — @s) +20s X (Va— Vs) + Bs X (Ds X (fa—Ts)) + GsX (fa—Ts)| —Mams[8a—&s| =0

If we divide by mg and if the reference frqme S fixed to particlérs = 0,vs = 0 andas = 0) is
rotating relative to the dynamic reference fraBi@ws # 0) then we obtain:

Ma[8a+ 205 X Va+ Bs X (Ds X Ia) + Gs X Ia] —Ma[8a — 85| =0

If the reference frame S is non-rotating relative to the dynamic reference fsaidg = 0) then
we obtain:

Mada —Ma[8a— &) =0

If the reference frame S is inertial relative to the dynamic reference ffafde; = 0 andés = 0)
then we obtain:

Ma8a—Mada =0
that is:
Maaa —Fa=0
or else:
Fa=mMaaa

where this equation is Newton’s second law.



Equation of Motion

From the general equation of motion it follows that the acceleratioof a particle A of massn,
relative to a reference frame S fixed to a particle S of mags given by:

F o o o - F
aa:?;—Zwsxva—a)sx(a)sxra)—asxra_ri

whereF, is the net force acting on particle A&s is the dynamic angular velocity of the reference
frame S,v, is the velocity of particle Ay, is the position of particle Ags is the dynamic angular
acceleration of the reference frame S, &gds the net force acting on particle S.

In contradiction with Newton’s first and second laws, from the above equation it follows that
particle A can have a non-zero acceleration even if there is no force acting on particle A, and als
that particle A can have zero acceleration (state of rest or of uniform linear motion) even if there is
an unbalanced force acting on particle A.

Therefore, in order to apply Newton’s first and second laws in a non-inertial reference frame it is
necessary to introduce fictitious forces.

However, this paper considers that Newton’s first and second laws are false. Therefore, in thi
paper there is no need to introduce fictitious forces.

System of Equations

If we consider a system of N particles (of total mass M and center of mass CM) and a single
particle J relative to a reference frame S (fixed to a particle S) then from the general equation of motio
the following equations are obtained:

[ | —fdfj— | [6] | —3dt— | [8]

ldt] ldt]
[4] | «xTij— | [2 | = [dVy— | [7] [9]
ldt] ldt] 7 [diy

[5] | < xrij— | [3]

The equations [1, 2, 3, 4 and 5] are vector equations, and the equations [6, 7, 8 and 9] are scal
equations. The principles of conservation are obtained from the equations [2, 4, 7 and 9]



Equation [1]
siam[(ri) — (Fi)] =0
Equation [2]
SR [(vij +dsx i) — (V)] =0
Equation [3]
Sy m [ (@ +2ds x Vij + Bs x (ds X 1) + &g x ij) — (8j)] = 0
Equation [4]
Sy M [(vij + @s x rij) x rig — (Vi) x Fij] =0
Equation [5]
STy M [(@ + 20 x Vij + B X (s x 1) + G X 1ij) x Fij — (&) x Fij] =0
Equation [6]
St Yomi[(rg)? = (Fj)?] =0
Equation [7]
SIL1 Yo M [(vi + @s x 1) — ()2 =0
Equation [8]
SiLa e m [(rij -vi) — (Fij - V)] =0
Equation [9]

S0y [(vij - vij + & -rif) — (Vij - Vij + & -Fij)] =0

Thei-th particle (of massn) relative to particle J, to particle S, and to the center of mass CM
rj=ri—rj fj=~ri—f rs=ri—rs fis=Ti—Ts Tiem=ri—fem Ticm=Ti—Tcm
Vii =Vi—=Vj Vij=Vi—Vj Vis=Vi—Vs Vig=Vi—Vs Viem=Vi—Vem Viem= Vi —Vcm

Qj=a—a & =8—8 as=a—as ds=3& —as aicm =& —acm dicm = & — dcm



A Equation [2]
S Am[(vij +dsxrij) — (V)] =0

Now, replacing particle J by particle S and distribut{dgm;) we have:
SN [Am (Vis+dsx Tis) —Am (Vis)] =0

If the reference frame &/s = 0) is inertial (s = 0 andVs = constan} then:
SN [Amvi—AmY] =0

Since[AmV; = [Zm & dt = [ F; dt] we obtain:
SN [Amvi— [ZFdt] =0

If the system of particles is isolated and if the internal forces obey Newton'’s third law in its weak
form (3N, Fi = 0) then:

N myv; = P = constant
Therefore, if the system of particles is isolated and if the internal forces obey Newton’s third law
in its weak form then the total linear momentuihof the system of particles remains constant relative
to an inertial reference frame.
A Equation [4]
YN AN [(Vij + @ x 1) x rij — (Vij) x T =0
Now, replacing particle J by the center of mass CM and distribuifngy ) we have:
SV 1 [A M (Viem+ @s X Fiem) X Fiem — A M (Viem) X Fiem] = 0
SincelAm; (Viem) x Fiem =AM Viem X Fiem = [Z(M &icm X Fiem) dt = [Z(M 8icm X Fiem) dt] we obtain:
SN 1 [A M (Viem+ @s X Fiem) X Fiem — JZ(M &icm X Tiem) dt] =0
Given tha 3N 4 [2(m &icm X Figm) dt = 3N 1 [Z(M & X riem) dt = 3N [2(Fi x ricm) dt] we get:
SV 1 [A M (Viem+ @s X Fiem) X Fiem— JZ(Fi X Fiem) dt] =0

If the system of particles is isolated and if the internal forces obey Newton'’s third law in its strong
form (3N, Fi X ricm = 0) then:

SN M (Viem+ @s X Fiem) X Fiem = L = constant

Therefore, if the system of particles is isolated and if the internal forces obey Newton’s third law
in its strong form then the total angular momenturof the system of particles remains constant.



A Equation [7]
S AYy m[(vi + Bsxrij)? — (Vj)?] =0
Now, replacing particle J by the center of mass CM and distribu(irig, m) we have:
ZiNzl [Al/z M (Viem + ®s X I'icm)z —AY,m (Vicm)z] =0
Since[AY, my (Viem)? = AYo M Viem Viem = [ M 8icm dFicm = [ M 8icm - dricm| [EQ. A we obtain:
SN 4 [AY5 M (Viem+ s X Fiem)? = M &icm- A icm] = 0
Given thatl $N 1 [Zm &icm- dricm = Y4 [ZM & - dricm = 3\, [ZFi - dricm| [Eq. B| we get:
Sy [AY, my (Viem + (s X Fiem)? — J2Fi ~drigm) =0

Therefore, we can consider that the total wdtkdone by the forces acting on the system of
particles, the total kinetic enerd¢ of the system of particles and the total potential endigyf the
system of particles are as follows:

W= ZiN=1f12 Fi-dricm
AK = 3N | AV, m (Viem + s X Figm)?
AU =3N, — [Fi-dricm

If the system of particles is isolated and if the internal forces obey Newton’s third law in its weak
form (YN, F = 0) then:

W=y, [7Fi-dr;
AU =N, — [2F . dr

The total workW done by the forces acting on the system of particles is equal to the change in the
total kinetic energK of the system of particles.

W =AK

The total workW done by the conservative forces acting on the system of particles is equal anc
opposite in sign to the change in the total potential energyf the system of particles.

W=-AU

Therefore, if the system of particles is exclusively subject to conservative forces then the tota
mechanical energlg of the system of particles remains constant.

E = K+U = constant



A Equation [9]
S1La DY My [(vij -vij +aj - Tij) — (Y - Vij + & - Fij)] =0
Now, replacing particle J by the center of mass CM and distribu(irig, m) we have:
SN4 [AY M (Viem - Viem + @em- Fiem) — (A2 My Viem - Viem -+ AY/2 M &em- Fiem) ] = 0
Since[Eq. Al and[AY, My &icm - Fiem = AY, My &icm - Tiem] We obtain:
SR1 [AY2 My (Viem Viem+ @icm - Fiem) — (/M 8icm - dricm+ A2 M &icm - Fiem) | =0
Given thafEq. Bl and[ ] ; AL, M Sicm Tiem = Y N1 AY2 M3 -Tiem = S ALY, Fi - Ficm| We get:
S [AYo My (Viem Viem+ 8icm - Fiem) — (/2 Fi - driem+AY2 Fi - Tiem) ] =0

Therefore, we can consider that the total widvk done by the forces acting on the system of
particles, the total kinetic enerd¢/ of the system of particles and the total potential en&t§pf the
system of particles are as follows:

W' = Z|N:1(flz Fi-dricm+AY, Fi - Tiem)
AK' = ZiN=1Al/2 M (Viem - Viem + &icm - Ficm)
AU = ZiNzl_ (.[12 Fi-driem+AY2 Fi-ricm)

If the system of particles is isolated and if the internal forces obey Newton’s third law in its weak
form (3N, Fi = 0) then:

W = 5N, (fEFi-dri+AY, Fi-ri)
AU/ =5N ) — (J2F-dri+AY, Fi-ry)

The total workV’ done by the forces acting on the system of particles is equal to the change in the
total kinetic energ’ of the system of patrticles.

W' = AK’

The total workW’ done by the conservative forces acting on the system of particles is equal anc
opposite in sign to the change in the total potential enexggf the system of particles.

W' = —AU’

Therefore, if the system of particles is exclusively subject to conservative forces then the tota
mechanical energlg’ of the system of particles remains constant.

E’ =K’ +U’ = constant



General Observations

The magnitudes, V, &, @ andd are invariant under transformations between reference frames.

In any reference frami; = ;. Thereforer;; is invariant under transformations between reference
frames.

In any non-rotating reference framag = V;; anda;; = &;. Thereforey;; anda;; are invariant under
transformations between non-rotating reference frames.

In any inertial reference frama = &. Thereforea; is invariant under transformations between
inertial reference frames. Any inertial reference frame is a non-rotating reference frame.

In the universal reference framme= f;, vi = V; anda, = §;. Therefore, the universal reference
frame is an inertial reference frame.

The total angular momentumof a system of particles is invariant under transformations between
reference frames.

The total kinetic energ¥K and the total potential enerdy of a system of particles are invariant
under transformations between reference frames. Therefore, the total mechanicaEeofeagystem
of particles is invariant under transformations between reference frames.

The total kinetic energiK’ and the total potential enerdy’ of a system of patrticles are invariant
under transformations between reference frames. Therefore, the total mechanicaEnéaygystem
of particles is invariant under transformations between reference frames.

The total mechanical enerdy of a system of particles is equal to the total mechanical engfgy
of the system of particleE = E')
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Appendix

Definitions and Relations

r=r rij ="ri—rj

vi =dr;/dt vij = drj; /dt

a = dv;/dt ay = dv; /dt

vi = [g dt vij = [a; dt

Avi = [Fq dt Avj = [Za dt

Yavi-vi= [a-dri Y2vij -vij = [ @ -drj
AYyvi-vi = [fa-dri AYyvij -vij = [f & -drj

Vi xri= [(g xrj)dt Vij X rij = [(a&j xrjj) dt
Avi xri= [Z(a xri)dt Aviy xrij = [Z(a x rij) dt

Invariant Equations

Fij - Tij = Fij - Fi

rij - vij = Fij - Vi

Vij - Vij + & - Tij = Vij - Vij + & - £

rij :fij

Vij —I—(I)SX Iij :\'/ij —l—(I)éX fij

a&j + 2ag X Vij + g X (g X Iij) + Og X Tij = &jj + 20g X Vij + (g X (g x ij) 4 0tg X Fjj
Alternative Equations

L=y m(Vi+dsxri)xri—M (Vem+ @s X I'em) X F'em
L=y, 30 mmyM=Y(vj + dsxrj) xrj

K= 3N 5o m (Vi +dsx 11)2 = Y5 M (Vem+ B X Tem)?
K=y 30 Yommy M- (vij + @s x 1))

K'= ZiN=11/2 My (Vi - Vi 48 - 1) — %2 M (Vem* Vem+ @m- F'em)
K'= 3Ny 50 Yo mmy M (v - vij + & - 1))



