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Abstract

This paper presents a reformulation of classical mechanics which is invariant
under transformations between reference frames and which can be applied
in any reference frame (rotating or non-rotating) (inertial or non-inertial)
without the necessity of introducing fictitious forces.

Introduction

The reformulation of classical mechanics presented in this paper is obtained starting from a general
equation of motion. This paper considers that any observer S uses a reference frame S and a dynamic
reference framĕS. The general equation of motion is a transformation equation between the reference
frame S and the dynamic reference frameS̆.

The dynamic position̆ra, the dynamic velocity̆va, and the dynamic accelerationăa of a particle A
of massma relative to the dynamic reference frameS̆ are given by:

r̆a =
∫ ∫

(Fa/ma) dt dt

v̆a =
∫

(Fa/ma) dt

ăa = (Fa/ma)

whereFa is the net force acting on particle A.

The dynamic angular velocity̆ωS and the dynamic angular accelerationᾰS of the reference frame S
fixed to a particle S relative to the dynamic reference frameS̆ are given by:

ω̆S =±
∣∣(F1/ms−F0/ms) · (r 1− r 0)/(r 1− r 0)2

∣∣1/2

ᾰS = d(ω̆S)/dt

whereF0 andF1 are the net forces acting on the reference frame S in the points 0 and 1,r 0 andr 1 are
the positions of the points 0 and 1 relative to the reference frame S, andms is the mass of particle S
(the point 0 is the origin of the reference frame S and the center of mass of particle S) (the point 0
belongs to the axis of dynamic rotation, and the segment 01 is perpendicular to the axis of dynamic
rotation) (the vector̆ωS is along the axis of dynamic rotation)
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General Equation of Motion

The general equation of motion for two particles A and B relative to an observer S is:

mamb
[
ra− rb

]
−mamb

[
r̆a− r̆b

]
= 0

wherema andmb are the masses of particles A and B,ra andrb are the positions of particles A and B,
r̆a andr̆b are the dynamic positions of particles A and B.

Differentiating the above equation with respect to time, we obtain:

mamb
[
(va−vb)+ ω̆S× (ra− rb)

]
−mamb

[
v̆a− v̆b

]
= 0

Differentiating again with respect to time, we obtain:

mamb
[
(aa−ab)+2ω̆S× (va−vb)+ ω̆S× (ω̆S× (ra− rb))+ ᾰS× (ra− rb)

]
−mamb

[
ăa− ăb

]
= 0

Reference Frames

Applying the above equation to two particles A and S, we have:

mams
[
(aa−as)+2ω̆S× (va−vs)+ ω̆S× (ω̆S× (ra− rs))+ ᾰS× (ra− rs)

]
−mams

[
ăa− ăs

]
= 0

If we divide byms and if the reference frame S fixed to particle S(rs = 0,vs = 0 andas = 0) is
rotating relative to the dynamic reference frameS̆ (ω̆S 6= 0) then we obtain:

ma
[
aa +2ω̆S×va + ω̆S× (ω̆S× ra)+ ᾰS× ra

]
−ma

[
ăa− ăs

]
= 0

If the reference frame S is non-rotating relative to the dynamic reference frameS̆ (ω̆S = 0) then
we obtain:

maaa−ma
[
ăa− ăs

]
= 0

If the reference frame S is inertial relative to the dynamic reference frameS̆ (ω̆S = 0 andăs = 0)
then we obtain:

maaa−ma ăa = 0

that is:

maaa−Fa = 0

or else:

Fa = maaa

where this equation is Newton’s second law.
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Equation of Motion

From the general equation of motion it follows that the accelerationaa of a particle A of massma

relative to a reference frame S fixed to a particle S of massms is given by:

aa =
Fa

ma
−2ω̆S×va− ω̆S× (ω̆S× ra)− ᾰS× ra−

Fs

ms

whereFa is the net force acting on particle A,̆ωS is the dynamic angular velocity of the reference
frame S,va is the velocity of particle A,ra is the position of particle A,̆αS is the dynamic angular
acceleration of the reference frame S, andFs is the net force acting on particle S.

In contradiction with Newton’s first and second laws, from the above equation it follows that
particle A can have a non-zero acceleration even if there is no force acting on particle A, and also
that particle A can have zero acceleration (state of rest or of uniform linear motion) even if there is
an unbalanced force acting on particle A.

Therefore, in order to apply Newton’s first and second laws in a non-inertial reference frame it is
necessary to introduce fictitious forces.

However, this paper considers that Newton’s first and second laws are false. Therefore, in this
paper there is no need to introduce fictitious forces.

System of Equations

If we consider a system of N particles (of total mass M and center of mass CM) and a single
particle J relative to a reference frame S (fixed to a particle S) then from the general equation of motion
the following equations are obtained:

[1] →
∫

dr̆ ij → [6] → 1
2 dt→ [8]

↓ dt ↓ ↓ dt ↓

[4] ←× r̆ ij ← [2] →
∫

dv̆ij → [7] [9]

↓ dt ↓ ↓ dt ↓ ↗
∫

dr̆ ij ↗

[5] ←× r̆ ij ← [3]

The equations [1, 2, 3, 4 and 5] are vector equations, and the equations [6, 7, 8 and 9] are scalar
equations. The principles of conservation are obtained from the equations [2, 4, 7 and 9]
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Equation [1]

∑N
i=1mi

[
(r ij )− (r̆ ij )

]
= 0

Equation [2]

∑N
i=1mi

[
(vij + ω̆S× r ij )− (v̆ij )

]
= 0

Equation [3]

∑N
i=1mi

[
(aij +2ω̆S×vij + ω̆S× (ω̆S× r ij )+ ᾰS× r ij )− (ăij )

]
= 0

Equation [4]

∑N
i=1mi

[
(vij + ω̆S× r ij )× r ij − (v̆ij )× r̆ ij

]
= 0

Equation [5]

∑N
i=1mi

[
(aij +2ω̆S×vij + ω̆S× (ω̆S× r ij )+ ᾰS× r ij )× r ij − (ăij )× r̆ ij

]
= 0

Equation [6]

∑N
i=1

1/2 mi
[
(r ij )2− (r̆ ij )2

]
= 0

Equation [7]

∑N
i=1

1/2 mi
[
(vij + ω̆S× r ij )2− (v̆ij )2

]
= 0

Equation [8]

∑N
i=1

1/2 mi
[
(r ij ·vij )− (r̆ ij · v̆ij )

]
= 0

Equation [9]

∑N
i=1

1/2 mi
[
(vij ·vij +aij · r ij )− (v̆ij · v̆ij + ăij · r̆ ij )

]
= 0

The i-th particle (of massmi) relative to particle J, to particle S, and to the center of mass CM

r ij = r i− r j r̆ ij = r̆ i− r̆ j r is = r i− rs r̆ is = r̆ i− r̆s r icm = r i− rcm r̆ icm = r̆ i− r̆ cm

vij = vi−vj v̆ij = v̆i− v̆j vis = vi−vs v̆is = v̆i− v̆s vicm = vi−vcm v̆icm = v̆i− v̆cm

aij = ai−aj ăij = ăi− ăj ais = ai−as ăis = ăi− ăs aicm = ai−acm ăicm = ăi− ăcm
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∆ Equation [2]

∑N
i=1 ∆ mi

[
(vij + ω̆S× r ij )− (v̆ij )

]
= 0

Now, replacing particle J by particle S and distributing(∆ mi) we have:

∑N
i=1

[
∆ mi (vis + ω̆S× r is)−∆ mi (v̆is)

]
= 0

If the reference frame S(vs = 0) is inertial(ω̆S = 0 andv̆s = constant) then:

∑N
i=1

[
∆ mi vi−∆ mi v̆i

]
= 0

Since
[
∆ mi v̆i =

∫ 2
1 mi ăi dt =

∫ 2
1 Fi dt

]
we obtain:

∑N
i=1

[
∆ mi vi−

∫ 2
1 Fi dt

]
= 0

If the system of particles is isolated and if the internal forces obey Newton’s third law in its weak
form (∑N

i=1Fi = 0) then:

∑N
i=1mi vi = P = constant

Therefore, if the system of particles is isolated and if the internal forces obey Newton’s third law
in its weak form then the total linear momentumP of the system of particles remains constant relative
to an inertial reference frame.

∆ Equation [4]

∑N
i=1 ∆ mi

[
(vij + ω̆S× r ij )× r ij − (v̆ij )× r̆ ij

]
= 0

Now, replacing particle J by the center of mass CM and distributing(∆ mi) we have:

∑N
i=1

[
∆ mi (vicm+ ω̆S× r icm)× r icm−∆ mi (v̆icm)× r̆ icm

]
= 0

Since
[
∆ mi (v̆icm)× r̆ icm = ∆ mi v̆icm× r̆ icm =

∫ 2
1 (mi ăicm× r̆ icm)dt =

∫ 2
1 (mi ăicm×r icm)dt

]
we obtain:

∑N
i=1

[
∆ mi (vicm+ ω̆S× r icm)× r icm−

∫ 2
1 (mi ăicm× r icm)dt

]
= 0

Given that
[

∑N
i=1

∫ 2
1 (mi ăicm× r icm)dt = ∑N

i=1
∫ 2

1 (mi ăi× r icm)dt = ∑N
i=1

∫ 2
1 (Fi× r icm)dt

]
we get:

∑N
i=1

[
∆ mi (vicm+ ω̆S× r icm)× r icm−

∫ 2
1 (Fi× r icm)dt

]
= 0

If the system of particles is isolated and if the internal forces obey Newton’s third law in its strong
form (∑N

i=1Fi× r icm = 0) then:

∑N
i=1mi (vicm+ ω̆S× r icm)× r icm = L = constant

Therefore, if the system of particles is isolated and if the internal forces obey Newton’s third law
in its strong form then the total angular momentumL of the system of particles remains constant.
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∆ Equation [7]

∑N
i=1 ∆1/2 mi

[
(vij + ω̆S× r ij )2− (v̆ij )2

]
= 0

Now, replacing particle J by the center of mass CM and distributing(∆1/2 mi) we have:

∑N
i=1

[
∆1/2 mi (vicm+ ω̆S× r icm)2−∆1/2 mi (v̆icm)2

]
= 0

Since
[
∆1/2 mi (v̆icm)2 = ∆1/2 mi v̆icm · v̆icm =

∫ 2
1 mi ăicm ·dr̆ icm =

∫ 2
1 mi ăicm ·dr icm

][
Eq. A

]
we obtain:

∑N
i=1

[
∆1/2 mi (vicm+ ω̆S× r icm)2−

∫ 2
1 mi ăicm ·dr icm

]
= 0

Given that
[

∑N
i=1

∫ 2
1 mi ăicm ·dr icm = ∑N

i=1
∫ 2

1 mi ăi ·dr icm = ∑N
i=1

∫ 2
1 Fi ·dr icm

][
Eq. B

]
we get:

∑N
i=1

[
∆1/2 mi (vicm+ ω̆S× r icm)2−

∫ 2
1 Fi ·dr icm

]
= 0

Therefore, we can consider that the total workW done by the forces acting on the system of
particles, the total kinetic energyK of the system of particles and the total potential energyU of the
system of particles are as follows:

W = ∑N
i=1

∫ 2
1 Fi ·dr icm

∆K = ∑N
i=1 ∆1/2 mi (vicm+ ω̆S× r icm)2

∆U = ∑N
i=1−

∫ 2
1 Fi ·dr icm

If the system of particles is isolated and if the internal forces obey Newton’s third law in its weak
form (∑N

i=1Fi = 0) then:

W = ∑N
i=1

∫ 2
1 Fi ·dr i

∆U = ∑N
i=1−

∫ 2
1 Fi ·dr i

The total workW done by the forces acting on the system of particles is equal to the change in the
total kinetic energyK of the system of particles.

W = ∆K

The total workW done by the conservative forces acting on the system of particles is equal and
opposite in sign to the change in the total potential energyU of the system of particles.

W =−∆U

Therefore, if the system of particles is exclusively subject to conservative forces then the total
mechanical energyE of the system of particles remains constant.

E = K +U = constant
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∆ Equation [9]

∑N
i=1 ∆1/2 mi

[
(vij ·vij +aij · r ij )− (v̆ij · v̆ij + ăij · r̆ ij )

]
= 0

Now, replacing particle J by the center of mass CM and distributing(∆1/2 mi) we have:

∑N
i=1

[
∆1/2 mi (vicm ·vicm+aicm · r icm)− (∆1/2 mi v̆icm · v̆icm+∆1/2 mi ăicm · r̆ icm)

]
= 0

Since
[
Eq. A

]
and

[
∆1/2 mi ăicm · r̆ icm = ∆1/2 mi ăicm · r icm

]
we obtain:

∑N
i=1

[
∆1/2 mi (vicm ·vicm+aicm · r icm)− (

∫ 2
1 mi ăicm ·dr icm+∆1/2 mi ăicm · r icm)

]
= 0

Given that
[
Eq. B

]
and

[
∑N

i=1 ∆1/2 mi ăicm · r icm = ∑N
i=1 ∆1/2 mi ăi · r icm = ∑N

i=1 ∆1/2 Fi · r icm
]
we get:

∑N
i=1

[
∆1/2 mi (vicm ·vicm+aicm · r icm)− (

∫ 2
1 Fi ·dr icm+∆1/2 Fi · r icm)

]
= 0

Therefore, we can consider that the total workW′ done by the forces acting on the system of
particles, the total kinetic energyK ′ of the system of particles and the total potential energyU ′ of the
system of particles are as follows:

W′ = ∑N
i=1(

∫ 2
1 Fi ·dr icm+∆1/2 Fi · r icm)

∆K ′ = ∑N
i=1 ∆1/2 mi (vicm ·vicm+aicm · r icm)

∆U ′ = ∑N
i=1−(

∫ 2
1 Fi ·dr icm+∆1/2 Fi · r icm)

If the system of particles is isolated and if the internal forces obey Newton’s third law in its weak
form (∑N

i=1Fi = 0) then:

W′ = ∑N
i=1(

∫ 2
1 Fi ·dr i +∆1/2 Fi · r i)

∆U ′ = ∑N
i=1−(

∫ 2
1 Fi ·dr i +∆1/2 Fi · r i)

The total workW′ done by the forces acting on the system of particles is equal to the change in the
total kinetic energyK ′ of the system of particles.

W′ = ∆K ′

The total workW′ done by the conservative forces acting on the system of particles is equal and
opposite in sign to the change in the total potential energyU ′ of the system of particles.

W′ =−∆U ′

Therefore, if the system of particles is exclusively subject to conservative forces then the total
mechanical energyE′ of the system of particles remains constant.

E′ = K ′+U ′ = constant
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General Observations

The magnitudes̆r , v̆, ă, ω̆ andᾰ are invariant under transformations between reference frames.

In any reference framer ij = r̆ ij . Therefore,r ij is invariant under transformations between reference
frames.

In any non-rotating reference framevij = v̆ij andaij = ăij . Therefore,vij andaij are invariant under
transformations between non-rotating reference frames.

In any inertial reference frameai = ăi . Therefore,ai is invariant under transformations between
inertial reference frames. Any inertial reference frame is a non-rotating reference frame.

In the universal reference framer i = r̆ i , vi = v̆i andai = ăi . Therefore, the universal reference
frame is an inertial reference frame.

The total angular momentumL of a system of particles is invariant under transformations between
reference frames.

The total kinetic energyK and the total potential energyU of a system of particles are invariant
under transformations between reference frames. Therefore, the total mechanical energyE of a system
of particles is invariant under transformations between reference frames.

The total kinetic energyK ′ and the total potential energyU ′ of a system of particles are invariant
under transformations between reference frames. Therefore, the total mechanical energyE′ of a system
of particles is invariant under transformations between reference frames.

The total mechanical energyE of a system of particles is equal to the total mechanical energyE′

of the system of particles(E = E′)
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Appendix

Definitions and Relations

r i = r i r ij = r i− r j

vi = dr i/dt vij = dr ij /dt

ai = dvi/dt aij = dvij /dt

vi =
∫

ai dt vij =
∫

aij dt

∆vi =
∫ 2

1 ai dt ∆vij =
∫ 2

1 aij dt

1/2 vi ·vi =
∫

ai ·dr i 1/2 vij ·vij =
∫

aij ·dr ij

∆1/2 vi ·vi =
∫ 2

1 ai ·dr i ∆1/2 vij ·vij =
∫ 2

1 aij ·dr ij

vi× r i =
∫
(ai× r i) dt vij × r ij =

∫
(aij × r ij ) dt

∆vi× r i =
∫ 2

1 (ai× r i) dt ∆vij × r ij =
∫ 2

1 (aij × r ij ) dt

Invariant Equations

r ij · r ij = ŕ ij · ŕ ij

r ij ·vij = ŕ ij · v́ij

vij ·vij +aij · r ij = v́ij · v́ij + áij · ŕ ij

r ij = ŕ ij

vij + ω̆S× r ij = v́ij + ω̆Ś× ŕ ij

aij +2ω̆S×vij + ω̆S× (ω̆S× r ij )+ ᾰS× r ij = áij +2ω̆Ś× v́ij + ω̆Ś× (ω̆Ś× ŕ ij )+ ᾰŚ× ŕ ij

Alternative Equations

L = ∑N
i=1mi (vi + ω̆S× r i)× r i−M (vcm+ ω̆S× rcm)× rcm

L = ∑N
i=1 ∑N

j>i mi mj M−1(vij + ω̆S× r ij )× r ij

K = ∑N
i=1

1/2 mi (vi + ω̆S× r i)2− 1/2 M (vcm+ ω̆S× rcm)2

K = ∑N
i=1 ∑N

j>i
1/2 mi mj M−1(vij + ω̆S× r ij )2

K ′= ∑N
i=1

1/2 mi (vi ·vi +ai · r i)− 1/2 M (vcm·vcm+acm· rcm)

K ′= ∑N
i=1 ∑N

j>i
1/2 mi mj M−1(vij ·vij +aij · r ij )
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