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In this paper, we construct a class of (n+1)-dimensional (n ≥ 4) slowly rotating black

hole solutions in Brans-Dicke-Maxwell theory with a quadratic potential. These solutions

can represent black holes with inner and outer event horizons, an extreme black hole and a

naked singularity and they are neither asymptotically flat nor (anti)-de Sitter. We compute

the Euclidean action and use it to obtain the conserved and thermodynamics quantities such

as entropy, which does not obey the area law. We also compute the angular momentum and

the gyromagnetic ratio for these type of black holes where the gyromagnetic ratio is modified

in Brans-Dicke theory compared to the Einstein theory.
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I. INTRODUCTION

Brans-Dicke(BD) theory [1] is perhaps the most common alternative theory to the Einstein’s

general relativity. This theory contains both Mach’s principle and Dirac’s large number hypothesis.

The theory has recently received interest as it arises naturally as the low energy limit of many

theories of quantum gravity such as the supersymmetric string theory or Kaluza-Klein theory, and

is also found to be consistent with present cosmological observations [2]. The theory contains an

adjustable parameter ,ω, that represents the strength of the coupling between matter and the scalar

field. For certain values of ω, the BD theory agrees with GR in the post-Newtonian limit up to

any desired accuracy and hence weak-field observations cannot rule out the BD theory in favor of

general relativity [3], although the singularity problem remains.

Shortly after the appearance of this theory one of its authors, C. Brans, obtained the statically

spherically symmetric solutions [4]. Since then many authors have investigated black holes in

Brans-Dicke theory [5]. Hawking proved in four dimensions the stationary and vacuum Brans-

Dicke solution is just the Kerr solution with a constant scalar field everywhere [6]. Cai and Myung

have proved that in four dimensions, the charged black hole solution in the Brans-Dicke-Maxwell

theory is just the Reissner-Nordstrom solution with a constant scalar field [7]. The Kerr-Newman

type black hole solutions, which are different from the solutions in general relativity, have been
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constructed for −5/2 < ω < −3/2 in [8]. Thermodynamics of black holes in Brans-Dicke theory is

investigated [9].

On the other hand, the rotating black hole solutions in higher dimensional Einstein gravity

was found by Myers and Perry [10]. The solutions were uncharged and can be considered as a

generalization of the four dimensional Kerr solutions. Moreover it has recently been shown that

the gravity in higher dimensions contains much richer dynamics than in four dimensions. As

an example, there exists a black ring solution in five dimensions with the horizon topology of

S2 × S2 [11], which has the same mass and angular momentum as the Myers-Perry solution and

therefore contradicts the uniqueness theorem in five dimensions. Although the non-rotating black

hole solutions in higher dimensional Einstein-Maxwell gravity was found many years ago [12], the

analytic solution of a generalization of the charged Myers-Perry solution in (n + 1)-dimensional

Einstein Maxwell gravity has not been found yet. Solutions of different kinds of charged rotating

black holes in higher dimensions have been discussed in the framework of supergravity and string

theory [13–15]. In [16], the solutions of charged rotating black hole in (n+1)-dimensional Einstein-

Maxwell theory with a single rotation parameter in the limit of slow rotation have been constructed.

In addition, [17] contains a class of charged slowly rotating black hole solutions in Gauss-Bonnet

gravity. Rotating black holes in Einstein-Maxwell-Dilaton gravity is discussed in [26].

In this paper we investigate charged slowly rotating black holes in Brans-Dicke theory by using

the conformal transformation between dilaton fields and Brans-Dicke theory. The structure of this

paper is as follows: In section II we obtain the solution of charged rotating Brans-Dicke black holes

and discuss their causal structure, then in section III we obtain the conserved quantities of the

finite action by using the Euclidean action and section IV contains our results.

II. SLOWLY ROTATING BLACK HOLES IN BRANS-DICKE-MAXWELL THEORY

The action of the Brans-Dicke-Maxwell theory in (n + 1)-dimensions with a scalar field Φ and

a self-interacting potential V (Φ) is

IG = − 1

16π

∫

M

dn+1x
√−g(ΦR− ω

Φ
(∇Φ)2 − V (Φ)− FµνF

µν) (1)

where R is the Ricci scalar, Fµν = ∂µAν − ∂νAµ the electromagnetic tensor field, Aµ the vector

potential, ω the coupling constant and Φ is the BD scalar field. By varying the the action (1) with

respect to the metric gµν , the scalar field Φ and vector field Aµ, one can obtain the following field
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equations

Gµν =
ω

Φ2
(∇µΦ∇νΦ− 1

2
gµν(∇Φ)2)− V (Φ)

2Φ
gµν +

1

Φ
(∇µ∇ν − gµν∇2Φ)

+
2

Φ
(FµλF

Λ
ν − 1

2
FρσF

ρσgµν) (2)

∇2Φ = − n− 3

2[(n − 1)ω + n]
F 2 +

1

2[(n− 1)ω + n]

[

(n− 1)Φ
dV (Φ)

dΦ
− (n + 1)V (φ)

]

(3)

∇µF
µν = 0 (4)

where Gµν is the Einstein tensor. It is not easy to solve the field equations (2)-(4) directly because

the right hand side of eq. (2) includes the second derivatives of the scalar field. Fortunately, we

can transform these field equations to the dilaton field equations by conformal transformations. If

one uses the following conformal transformations

ḡµν = Φ2/(n−1)gµν

Φ̄ =
n− 3

4α
lnΦ (5)

where

α = (n− 3)/
√

4(n− 1)ω + 4n (6)

then the action (1) takes the form

ĪG = − 1

16π

∫

M

dn+1x
√−ḡ{R̄ − 4

n− 1
(∇̄ Φ̄)2 − V̄ (Φ̄)− e−

4αΦ̄
n−1 F̄µν F̄µν} (7)

where R̄ and ∇̄ are the Ricci scalar and covariant derivative corresponding to the metric ḡµν and

V̄ (Φ̄) is:

V̄ (Φ̄) = Φ−(n+1)/(n−1)V (Φ) (8)

Eq. (7) is simply the action of (n+1)-dimensional Einstein-Maxwell-dilaton gravity, where Φ̄

is the dilaton field, V̄ (Φ̄) a potential for Φ̄ and α is a constant that determines the strength of

coupling of the scalar and electromagnetic field F̄µν . By varying the action (7) with respect to ḡµν

, Φ̄ and F̄µν , we obtain

R̄µν =
4

n− 1
(∇̄µΦ̄∇̄νΦ̄ +

1

4
V̄ (Φ̄)ḡµν) + 2e−4αΦ̄/(n−1)(F̄µλF̄

λ
ν − 1

2(n− 1)
F̄ρσF̄

ρσ ḡµν) (9)
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∇̄2Φ̄ =
n− 1

8

∂V̄

∂Φ̄
− α

2
e−4αΦ̄/(n−1)F̄ρσF̄

ρσ (10)

∇̄µ[
√−ḡe−4αΦ̄/(n−1)F̄µν ] = 0 (11)

Many authors have obtained the solutions of above field equations [18–26]. It is now simple to

obtain the solutions of field equations (2)-(4) by applying the conformal transformations (5) to the

solution of the field equations (9)-(11). In [26], the solution of field equations (9)-(11) has been

obtained in the slowly rotating case where a ≪ 1. In this case the only term in the metric which

changes to O(a) is gtφ, and Aφ is the only component of the vector potential that changes, where the

dilaton field does not change to O(a). Therefore, for infinitesimal angular momentum up to O(a),

we can take the following form for the metric in (n+1)-dimension for Einstein-Maxwell-dilaton

theory [26]

ds2 = − U(r)dt2 +
dr2

U(r)
− 2af(r)sin2θdtdφ (12)

+ r2R2(r)(dθ2 + sin2θdφ2 + cos2θdΩ2
n−3)

where U(r), R(r) and f(r) are functions of r, and a is a parameter associated with its angular

momentum and dΩ2
n−3 denotes the metric of an unit (n− 3)-sphere. For small values of a, U(r) is

a function only of r. From equation (11) we can obtain the t component of the Maxwell equations

F̄tr =
qe4αΦ̄/(n−1)

(rR)n−1
(13)

where q is an integration constant related to the electric charge of the black hole. By using the

definition Q = 1
4π

∫

exp[−4αΦ̄/(n− 1)]FdΩ we obtain the electric charge as

Q =
qωn−1

4π
(14)

where ωn−1 represents the volume of a hypersurface with constant curvature. In general, when we

have a rotational parameter, there is also a vector potential of the form

Aφ = aqh(r)sin2θ (15)

In [26], for a Liouville-type dilaton potential, is introduced for V̄ (Φ̄)

V̄ (Φ̄) = 2Λ2ζΦ̄ (16)
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where Λ and ζ are constants. The unknown functions U(r), f(r) and R(r) are obtained using the

ansatz in [26]

R(r) = e2αΦ̄/(n−1) (17)

By substituting eq. (17), the Maxwell fields (13) and (15) and the metric (13) into the field

equations (9)-(11), we can obtain

U(r) = −(n− 2)(α2 + 1)2b−2γr2γ

(α2 − 1)(α2 + n− 2)
− m

r(n−1)(1−γ)−1
+

2q2(α2 + 1)2b−2(n−2)γ

(n− 1)(α2 + n− 2)
r2(n−2)(γ−1)

(18)

f(r) =
m(α2 + n− 2)b(n−3)γ

α2 + 1
r(n−1)(n−γ)+1 − 2q2(α2 + 1)b(1−n)γ

n− 1
r2(n−2)(γ−1) (19)

Φ̄ =
(n− 1)α

2(1 + α2)
ln(

b

r
) (20)

h(r) = r(n−3)(γ−1)−1 (21)

where γ = α2/(1 + α2) and b is an arbitrary constant. In addition we should have

ζ =
2

α(n − 1)
, Λ =

(n− 1)(n − 2)α2

2b2(α2 − 1)
(22)

in order to fully satisfy the field equations.

To obtain the solutions of the field equations (2)-(4) in the Brans-Dicke-Maxwell theory, we

take a metric of the form

ds2 = − A(r)dt2 +
dr2

B(r)
− 2ag(r)sin2θdtdφ (23)

+ r2H2(r)(dθ2 + sin2θdφ2 + cos2θdΩ2
n−3)

To determine the unknown functions A(r), B(r), g(r) and H(r) we apply the conformal transfor-

mations (5), (6) and (8) to eqs. (17),(18) and (20). Leading to

A(r) = −(n− 2)(α2 + 1)2b−2γ(n−5
n−3

)r2γ(
n−5
n−3

)

(α2 − 1)(α2 + n− 2)

+
2q2(α2 + 1)2b2γ(2−n+ 2

n−3
)

(n− 1)(α2 + n− 2)
r2(n−2)(γ−1)− 4γ

n−3 − mb
4γ

n−3 rγ(n−1− 4
n−3

)

r(n−2)
(24)
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B(r) = −(n− 2)(α2 + 1)2b−2γ(n−1
n−3

)r2γ(
n−1
n−3

)

(α2 − 1)(α2 + n− 2)

+
2q2(α2 + 1)2b−2γ(n−2+ 2

n−3
)

(n− 1)(α2 + n− 2)
r2(n−2)(γ−1)+ 4γ

n−3 − mb−
4γ

n−3 rγ(n−1+ 4
n−3

)

r(n−2)
(25)

and

g(r) =
m(α2 + n− 2)b(n−3+ 4

n−3
)γ

α2 + 1
r(n−1)(n−γ)+1− 4γ

n−3 − 2q2(α2 + 1)b(1−n+ 4
n−3

)γ

n− 1
r2[(n−2)(γ−1)− 2γ

n−3
]

(26)

H(r) = (
b

r
)γ

n−5
n−3 (27)

Φ(r) = (
b

r
)2γ

n−1
n−3 (28)

Ftr =
qbγ(3−n)

r(n−3)(1−γ)+2
(29)

V (Φ) = 2ΛΦ
1

α(n−2)
[(α+1)−4]

(30)

At this point, it is worthwhile to investigate the physical properties of these solutions. We can

show that the Kretschmann scalar RµνλκR
µνλκ diverges at r = 0, and it is finite for r 6= 0 and
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FIG. 1: The function B(r) versus r for n = 4,

m = 2, b = 1 and q = 1. α = 0.5 (bold line)

and α = 1.2 (dashed line)
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FIG. 2: The function B(r) versus r for n = 4,

m = 2, b = 1 and q = 1, α = 0 (bold line),

α = 0.54 (dashed line) and α = 0.7 (dotted

line)
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FIG. 3: The function V(r) versus r for n = 4,

m = 2 and b = 1, α = 0.5 q = 0.5(bold line),

q = 1 (dashed line) and q = 1.5 (dotted line)

approaches to zero as r → 0. We find that there is an essential singularity at r=0. In addition, the

solution is ill-defined for α = 1 and the cases α > 1 and α < 1 should be considered separately.

For α > 1, there exists a cosmological horizon (fig. 1) whereas there is no cosmological horizon for

α < 1. In this case eq. (24) contains a wide range of causal structure which depends on the values

of the metric parameters α,m, q and k (fig. 2-3).

Moreover we can obtain some information about causal structure by considering the temperature

of the horizons. By using the definition of Hawking temperature on the outer horizon r+, which

may be obtained through the definition of surface gravity

T+ =
1

2π

√

−1

2
(∇µχν)(∇µχν) (31)

where χ is the Killing vector ∂t, we can write

T+ = −(α2 + n− 2)m

4π(α2 + 1)
r
(n−1)(γ−1)
+ +

(n− 2)(α2 + 1)b−2γ

2π(1 − α2)
r2γ−1
+ (32)

We see from the above equation that the temperature is invariant under conformal transformations

[26], which is a result of the regularity of the conformal parameter at the horizon. For α > 1 we find

that the temperature is negative from eq. (32). Numerical calculations show that the temperature

of the event horizon goes to zero as the black hole approaches an extreme one. In addition we can

show that for (α < 1)

mext =
2(n − 2)(α2 + 1)2b−2γ

(n− α2)(α2 + n− 2)
r
(2−n)(γ−1)+γ
+ (33)
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In summary, the metric (24) can represent a rotating black hole with two inner and outer horizons

located at r+ and r− provided that the mass parameter m is greater than mext, an extreme black

hole when m = mext, and a naked singularity when m < mext.

The electric potential U , measured at infinity with respect to the horizon, is defined by [27]

U = Aµχ
µ |→∞ −Aµχ

µ |→0 (34)

where χ is the null generator of the event horizon. Therefore we obtain:

U =
qbγ(3−n)

ΞΓrΓ+
(35)

where Γ = γ(3− n) + n− 2.

III. EUCLIDEAN ACTION AND CONSERVED QUANTITIES

The ADM (Arnowitt-Deser-Misner) mass M , entropy S and electric potential U of the topo-

logical black hole can be calculated through the use of the Euclidean action method [28]. In this

approach, the electrical potential and the temperature are initially fixed on a boundary with a

fixed radius r+. The Euclidean action has two parts; bulk and surface. The first step to make the

Euclidean action is to substitute t with iτ (this change does not affect our physical parameters,

especially the angular momentum, see eq. (44)). This makes the metric positive definite:

ds2 = + A(r)dt2 +
dr2

B(r)
− 2ag(r)sin2θdtdφ (36)

+ r2H2(r)(dθ2 + sin2θdφ2 + cos2θdΩ2
n−3)

There is a conical singularity at the horizon r = r+ in the Euclidean metric. To eliminate it, the

Euclidean time τ is made periodic with period β, where β is the inverse of Hawking temperature.

We can now calculate the Euclidean action of (n+1)-dimensional Brans-Dicke-Maxwell theory. It

can be obtained analytically and by continuously changing of action (1) to Euclidean time τ , i.e.,

IGE = − 1

16π

∫

M

dn+1x
√
g
(

ΦR− ω

Φ
(∇Φ)2 − V (Φ)− FµνF

µν
)

+
1

8π

∫

dnx
√
hΦ(K −K0), (37)

where K represents the extrinsic curvature on the induced metric h, and K0 is the extrinsic

curvature on the metric h for flat space-time, which must be added so that the Euclidean action
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is normalized to zero in flat space-time. Using the metric (37), we find to O(1)

R = −g−1/2(g1/2U ′V/U)′ − 2G0
0 +O(a2) +O(a4)

K = −
√

B(r)

2

A′(r)rH(r) + 2(n− 2)A(r)H(r) + (2n− 7)A(r)rH ′(r)

A(r)rH(r)

K0 =
2(n− 3)− γ

2r

√

(n− 2)(α2 + 1)2

(α2 − 1)(α2 + n− 2)
(
r

b
)−

n−1
n−3 (38)

where G0
0 is the 0-0 component of the Einstein tensor. By substituting eq. (38) in action (37) and

using eqs. (24)-(30), we obtain

IGE = β
ωn−1

16π

(

b(n−1)γ(n− 1)

(α2 + 1)

)

−
ω(n−1)

4ln−2

(

b(n−1)γr
(n−1)(1−γ)
+

)

− β
ωn−1

8π

(n− α2)(α2 + n− 2)b2(n−2)γωn−1

n(n− 2)(α2 + 1)2
ma2 − β

q2

8πΓrΓ+
(39)

where Γ = (n− 3)(1− γ) + 1. According to Ref. [29], the thermodynamical potential can be given

by IGE

IGE = βM − S − βUq − βΩJ (40)

where M is the ADM mass, S the entropy and, U the electric potential corresponding to the

conservation of charge q and Ω = a in this case. Comparing eqs. (39) and (40), we find

M =
b(n−1)γ

16π

n− 1

1 + α2
ω(n−1)m, (41)

S =
b(n−1)γr

(n−1)(1−γ)
+

4l(n−2)
(42)

and

Q =
qω(n−1)

4π
(43)

J =
(n− α2)(α2 + n− 2)b2(n−2)γωn−1

8πn(n− 2)(α2 + 1)2
ma (44)

We can see from the above equations that the ADM mass, entropy and electric potential are

invariant under the conformal transformation [18]. In addition, in the context of BD gravity, where

we have the additional gravitational scalar degree of freedom, the entropy of the black hole does not

follow the area law. This is due to the fact that the black hole entropy comes from the boundary

term in the Euclidean action formalism.
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In addition, the charge which is calculated in eq. (43) is the same as the one which was calculated

in eq. (14). By combining eqs. (41) and (44), we can write:

J =
2Ma

n− 1
(45)

In order to calculate the gyromagnetic ratio of this type of black hole, we first need the magnetic

dipole moment for slowly rotating black holes, i.e., µ = Qa, then the gyromagnetic ratio is given

by

g =
2µM

QJ
=

n(n− 1)(n − 2)(α2 + 1)

(n− α2)(α2 + n− 2)b(n−3)γ
(46)

As our solutions are neither asymptotically flat nor (A)dS, we get g ≥ 2 in four dimension, in

contrast to asymptotically flat or (A)dS which have g ≤ 2 in four dimensions [30]. In the absence

of a non-trivial dilaton (α = γ = 0), the gyromagnetic ratio reduces to:

g = n− 1 (47)

IV. CONCLUSIONS

In this paper we construct the solutions of slowly rotating black holes in (n + 1)-dimensional

Brans-Dicke-Maxwell theory with a liouville-type potential in the limit of a slow rotation parameter,

with an arbitrary value of the coupling constant ω. Our solutions are neither asymptotically flat

nor (A)dS, in contrast to the rotating black holes in the Einstein-Maxwell theory. The solutions

are ill-defined for α = 1 and for α > 1 we have cosmological horizons and there are no cosmological

horizons for α < 1. In the latter case (α < 1), we can have a black hole with inner and outer event

horizons if m > mext, an extreme black hole if m = mext and a naked singularity for m < mext.

The cosmological horizons have a negative temperature for α > 1. We computed the Euclidean

action and obtained the thermodynamics and conserved quantities. The temperature and entropy

for this type of black hole were found to equal those in the static case to O(a). In addition entropy

does not follow the area law. Moreover we obtained angular momentum and gyromagnetic ratio

for this rotating Brans-Dicke black hole. The gyromagnetic ratio is modified in this theory.
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