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Abstract

We describe a parallelised version of the MOLDY molecular dynamics pro-
gram. This Fortran code is aimed at systems which may be described by short-
range potentials and specifically those which may be addressed with the embed-
ded atom method. This includes a wide range of transition metals and alloys.
MOLDY provides a range of options in terms of the molecular dynamics en-
semble used and the boundary conditions which may be applied. A number of
standard potentials are provided, and the modular structure of the code allows
new potentials to be added easily. The code is parallelised using OpenMP and
can therefore be run on shared memory systems, including modern multicore
processors. Particular attention is paid to the updates required in the main force
loop, where synchronisation is often required in OpenMP implementations of
molecular dynamics. We examine the performance of the parallel code in de-
tail and give some examples of applications to realistic problems, including the
dynamic compression of copper and carbon migration in an iron-carbon alloy.

Keywords: molecular dynamics; embedded atom method; openmp

∗Corresponding author.
E-mail address: g.j.ackland@ed.ac.uk

Preprint submitted to Computer Physics Communications July 14, 2011



PROGRAM SUMMARY
Manuscript Title: The MOLDY short-range molecular dynamics package
Authors: G J Ackland K D’Mellow S L Daraszewicz D J Hepburn M Uhrin K Stratford
Program Title: MOLDY
Journal Reference:

Catalogue identifier:

Licensing provisions: GNU General Public License Version 2
Programming language: Fortran 95 / OpenMP
Computer: any
Operating system: any
RAM: 100 MB or more
Number of processors used: any
Supplementary material: Requires OpenMP for parallel execution
Keywords: molecular dynamics; embedded atom method; openmp
PACS: 71.15.Pd, 71.20.Be
Classification: 7.7 Other Condensed Matter inc. Simulation of Liquids and Solids
Nature of problem: Moldy addresses the problem of many atoms (of order 106) in-
teracting via a classical interatomic potential on a timescale of microseconds. It is
designed for problems where statistics must be gathered over a number of equivalent
runs, such as measuring thermodynamic properities, diffusion, radiation damage, frac-
ture, twinning deformation, nucleation and growth of phase transitions, sputtering etc.
In the vast majority of materials, the interactions are non-pairwise, and the code must
be able to deal with many-body forces.
Solution method: Molecular dynamics involves integrating Newton’s equations of mo-
tion. MOLDY uses verlet (for good energy conservation) or predictor-corrector (for
accurate trajectories) algorithms. It is parallelised using open MP. It also includes
a static minimisation routine to find the lowest energy structure. Boundary condi-
tions for surfaces, clusters, grain boundaries, thermostat (Nose), barostat (Parrinello-
Rahman), and externally applied strain are provided. The initial configuration can
be either a repeated unit cell or have all atoms given explictly. Initial velocities are
generated internally, but it is also possible to specify the velocity of a particular atom.
A wide range of interatomic force models are implemented, including embedded atom,
morse or Lennard Jones. Thus the program is especially well suited to calculations of
metals.
Restrictions: The code is designed for short-ranged potentials, and there is no Ewald
sum. Thus for long range interactions where all particles interact with all others, the
order-N scaling will fail. Different interatomic potential forms require recompilation
of the code.
Additional comments: There is a set of associated open-source analysis software for
postprocessing and visualisation. This includes local crystal structure recognition and
identification of topological defects.
Running time: A set of test modules for running time are provided. The code scales
as order N. The parallelisation shows near-linear scaling with number of processors in
a shared memory environment. A typical run of a few tens of nanometers for a few
nanoseconds will run on a timescale of days on a multiprocessor desktop.
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1. Introduction

Classical molecular dynamics (MD), which solves Newton’s laws of motion for a
system made up of atoms and/or molecules, is a powerful and widely used tool to study
both simple and complex systems. With the power of modern computers, these systems
can range in size from a few thousand to many millions of atoms. Of particular interest
for modern hardware are codes which can take advantage of multicore processors and
increasingly accelerators, such as graphics processing units (GPUs).

A number of well-established classical MD packages exist which may be used to
simulate very large systems in various contexts [e.g., LAMMPS, DL POLY, NAMD].
These codes are able to address large systems by means of domain decomposition
and message passing, usually via the Message Passing Interface (MPI). Some of these
codes are important for general purposes, while others are more fashioned for particular
fields, such as large biomolecules or proteins.

The code described here, MOLDY, is one specifically developed with metals and
alloys in mind. This allows the code to be used for a wide range of problems of
practical interest, such as the properties of materials undergoing deformation, defect
propagation and radiation damage. It is not our intention to put forward a replacement
for codes of the type mentioned above, but to provide a complementary option which
allows users to simulate modestly large systems on desktop machines. The increasing
proliferation of multicore machines makes OpenMP an ideal route to allow users less
familiar with MPI the chance to adapt the code incrementally without the additional
complexity involved with message passing. Further, the inclusion of standard directives
in future versions of OpenMP to distribute work to accelerated hardware such as
graphical processing units (GPUs) would place the code in a good position to access
these resources.

The code is a direct descendant of a Fortran code “Moldy” which was first de-
veloped at the United Kingdom Atomic Energy Research Establishment [1, 2]1, with
conventional constant volume and constant pressure ensembles and deforming sys-
tems under constant stress using the extended Lagrangian formulation of Parrinello
and Rahman [4]. In Moldy, the atoms interact via short-range pairwise potentials and
are free of bond constraints or long-range interactions. These two simplifications are
retained in the current version. The code was extended to include the embedded atom
method [5], or Finnis-Sinclair potentials [6]. This feature specifically aims the code at
the simulation of metals and alloys.

In retaining Fortran as the language of the updated version, we have made the
decision to restrict development to level of the Fortran 1995 standard. This is for
reasons of portability: compiler support for some features of later Fortran standards
is currently not complete. This means some design compromises from a software
engineering point of view. For example, an abstract potential type, or class, might
have been preferable for extensibility and flexibility. Instead, at the moment, the
potential is introduced at compile time as a fixed module, so the code is recompiled
for each different material. However, the existing design does not preclude refactoring

1Not to be confused with another MD code of the same name: Refson [3].
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to make use of these attractive language features in future. We hope the level of
compiler support for Fortran 2003 features will improve rapidly in the near future.

In the following section we provide a brief background on molecular dynamics
which makes clear the issues addressed in the paper. Section 3 goes on to discuss the
structure of the code and in particular how the potentials should be represented. A
number of different potentials are included as examples. Importantly, this section also
discusses the strategy for the parallelisation of the force loop using OpenMP. Section 4
gives an overview of how the code is run in practice and how the user deals with input
and output. Section 5 shows results for the parallel performance of the code for a
number of idealised problems and considers a number of simple example applications.
These applications present an opportunity for visualisation and local crystal structure
determination, which are provided as part of the package. A summary and conclusions
are presented in Section 6.

2. Theoretical background

On account of the screening properties of the conduction electrons, metals can be
described by short range interatomic potential. This offer significant advantages for
molecular dynamics simulations, in particular since each atom interacts only with a
finite number of neighbours the computer time to calculate forces scales as O(N) rather
than O(N2) for generalised long ranged forces, or O(N1.5)/O(NlogN for Coulombic
Ewald sums or fast multipole techniques.

For simulations of large numbers of atoms, it is essential that the electronic de-
grees of freedom are integrated out, and forces depend only on the atomic positions.
However, since the electrons are delocalised, the forces cannot be simply pairwise
interactions between atoms. The delocalisation also suggests that an expansion in
two-, three, four-body terms may not converge quickly, if at all [7]. Since 1984 po-
tentials involving a function of some measure of the local density have become the
methods of choice. The two most prominent are the Embedded Atom (EAM) and the
second-moment tight-binding methods, also called Finnis-Sinclair (FS) [6]. In these
the cohesive energy is written as:

Ucoh =
∑

i

(

∑

j

Vij(rij) + Fi[
∑

j

φij(rij)]

)

(1)

where V and φ are short-ranged pairwise potentials, and F is a function of the
sum of φ’s. The form of the second term means that an expansion of the potential in
n-atom terms does not converge [7].

The interpretations of φ’s are subtly different. In EAM the φij = φj 6= φi repre-
sents the electron density from the atom j at site i - it depends only on the type of
atom at j. In FS φij = φji is the square of the tight binding hopping integral between
j and i - it depends on both types of atom [5, 8]. In both cases φ is a function only
of the interatomic distance. Similarly the EAM “embedding function” Fi depends on
the atom at site i, while in the FS picture, F is a universal function for a canonical
d-band, independent of atom types - the square root. In practice, these distinctions
only become important when more than one atomic type is considered.

A number of potentials which appear to be different actually take the same form
as Eq. 1. These include the “magnetic” type potentials[9, 10], rescaled potentials[11]
and the Metallic-Covalent FeC potential of Hepburn-Ackland [12].

4



Similarly, simple pairwise potentials such as Morse or Lennard-Jones can be cast
into this form by setting F (ρ) = 0.

The form of the potential allows one to define the “energy of an atom”. This
concept is both useful and meaningless. It is useful because deviations from the mean
value can be used to highlight defects or hotspots in a simulation, but meaningless
because the physically meaningful quantities, total energy and forces, are independent
of how the energy is partitioned between atoms.

2.1. Ensembles

The code implements several different ensembles.
The “Total Energy” reported by MOLDY comprises only the kinetic energy of

the movable particles and the cohesive energy of the system. However the additional
degrees of freedom of the extended Lagrangian introduced by the thermostat and
barostat can exchange energy with the system. Thus the only ensemble in which total
energy is conserved is NVEp, i.e. without barostat or thermostat.

2.1.1. Molecular dynamics (microcanonical) NVEp
The standard “molecular dynamics” ensemble is NVEp - constant particle number,

volume, energy and momentum (p=0). The momentum constraint distinguishes it
slightly from microcanonical NVE.

2.1.2. Thermostat NVTp
The Nose-Hoover [13, 14] thermostat can be applied to produce an NVTp canonical

ensemble. This couples the system to an external heat bath. The temperature is
defined by the kinetic energy via the relation:

∑

i

p2

i

2mi
=

3N − 3

2
kBT

where kB is the Boltzmann constant, mi and pi are the particle masses and mo-
menta and (3N-3) is the number of degrees of freedom once total momentum is con-
served.

The Nose-Hoover thermostat is an extended Hamiltonian, which can be interpreted
as an external heat reservoir, with an additional degree of freedom. This heat reservoir
controls the temperature through exchange of kinetic energy with the system. To
define a heat bath kinetic energy we introduce an effective mass Qs and momentum
πs. The equations of motion are then

dri
dt

=
pi

mi
,

dpi

dt
= −

∂U

∂qi

− πspi,

Qs
dπs

dt
=
∑

i

pi
2

2mi
− (3N − 3)kT.

Thus π is the degree of freedom associated with the thermostat, effectively a ther-
modynamic friction and Qs is “thermal inertia”, which determines the rate of heat
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transfer and how closely the temperature is maintained near to the target tempera-
ture Topt. The value of Qs depends on the heat conduction in the system and must
be specified in the input to the code. It is possible to choose Qs to reproduce missing
effects such as electronic heat conduction.

2.1.3. Barostat NPTp
The Parrinello-Rahman method [4] is implemented for simulations in the NPEp (or

with Nose, NPTp) ensemble. There are a number of anomalies in that paper[15, 16, 17],
including lack of rotational invariance and missing cross terms in the derivatives, and
these are reproduced faithfully by the code.

The positions ri are written as a product of fractional coordinates xi and a 3×3
“boxmatrix” h = [a,b, c] defining the simulation volume

ri = hxi

from which a strain matrix with respect to a reference structure h0 is defined by

ǫ =
1

2
(h′

0

−1
h′hh−1

0 − 1)

where prime denotes the transpose. The boxmatrix introduces nine additional
degrees of freedom, three stretches, three shears and three rotations. Equations of
motion for these degrees of freedom come from the stresses on the supercell.

The strain definition is non-unique, but is sensible in the limit of small strain.
The Parrinello-Rahman Lagrangian contains the kinetic and potential energy of the
particles, pressure times volume, a fictitious “Kinetic Energy” associated with the
boxmatrix and a complex term arising from the non-hydrostatic stresses.

L =
1

2

∑

i

miẋ′
ih

′hẋi − Ucoh − P (Ω− Ω0) +
1

2
WTrḣ′ḣ−

1

2
Tr[h−1

0 (S− P )h′

0Ω0h
′h.

Where Ω,Ω0 are the volume and unstrained volume, respectively; P is the external
hydrostatic pressure, S is the external stress. A constant term ΩTr(S−P ) is ignored.

The scalar W is the equivalent of a mass associated with the box degrees of freedom.
It determines how rapidly the box changes shape in response to stress and can be
related loosely to elastic constants. Typically it takes a value of similar order of
magnitude to the sum of the atomic masses. From all this analysis, the equation of
motion for the boxmatrix degrees of freedom is

Wḧ = (π − P )σ − h[h−1

0 (S− P )h′

0Ω0]

where π is the internal stress tensor from the kinetic energy and virial and σ is the
reciprocal space equivalent of the boxmatrix

σ = {b × c, c× a, a× c}.

2.2. Boundary conditions

The code offers a range of different boundary conditions. For infinite simulations,
the simulation cell is repeated periodically, and the minimum image convention for
forces is applied where for purposes of eq.1 rij refers to the shortest vector between
atom i and either j or any of its periodic images.
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Each atomic trajectory is followed faithfully, there is no explicit wraparound of the
atoms (i.e position is stored as r =(x, y, z) rather than x =(x(moda), y(mod b), z(mod c)).
This allows diffusion calculation to be done reliably.

As an alternative, free boundary conditions are also possible, where there are no
repeated cell or periodic boundary conditions.

For surface calculations, free surface in the z direction can be combined with
minimum image convention in the x and y directions. For surface calculation in
crystals there is a surface tension (different from the surface energy) [18]. Ideally,
one would like to have an infinitely thick slab so this 2D tension would be balanced
by an infinitesimal 3D strain: in practice an infinite slab is not possible, and the
correct boundary condition to simulate macroscopic material is to impose constant
supercell lengths with (NVT) minimum image forces in x − y and free boundaries in
z. Relaxation perpendicular to and within the surface is then still possible.

For interface calculation (e.g. grain boundaries) the interface may expand, so the
boundary condition should be constant (zero) stress perpendicular to the boundary
and constant strain within the boundary. Once again this will generate internal stresses
in the simulation, which in reality are balanced by infinitesimal strains in the bulk.

Finite strain rate boundary conditions can be applied using the strainloops variable.
This multiplies the boxmatrix by the strain matrix every nsteps, and continues the
calculation for a total of strainloops*nsteps timesteps. This enables an external shear
or compression to be applied stepwise to the system. By reducing the values of nsteps
and straintensor while increasing strainloops it is possible to make this shear as smooth
as one wishes.

A similar method can be used to achieve finite temperature gradient: the tempsp

parameter increments the target temperature every nsteps timesteps. This then allows
the thermostat to add or extract the additional energy.

2.3. Time integration

The equations of motion for atomic and box degrees of freedom can be integrated
using either of two methods: velocity Verlet[24] or third-order predictor-corrector[25].
Velocity Verlet is time-reversible, and so tends to give better energy conservation (see
Section 5.1). By contrast, the third-order predictor-corrector gives more accurate
atomic trajectories.

2.4. Fixed atoms

In some case it is desirable to fix atoms so that they do not move under external
forcing. MOLDY fixes the fractional coordinates of all atoms with atomic mass = 0,
at constant values. By applying an external strain to the boxmatrix, it is possible
to move rigid blocks of atoms around to apply external strains to the system. There
are possible consequences of this: any unusual behaviour at the interface between
fixed and not fixed atoms is likely to be unphysical, and phonons or sound waves are
reflected from such surfaces. The stress calculation ignores any forces acting between
fixed atoms.

2.5. Velocity initialisation

At the start of the calculation all atoms are assigned velocities drawn from a
uniform random distribution and scaled such that the kinetic energy is equal to the
target temperature (as input) and the total momentum is zero. If all atoms are started
on their crystallographic positions, this means that the initial state has all its energy in
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kinetic degrees of freedom. After NVEp equilibration, the temperature will typically
drop to one half of the initial value, while in NVTp the thermostat will supply energy
to maintain the required temperature. To ensure that there is some initial variation in
potential energy, it is possible to displace all atoms randomly using the dsp parameter.

A special parameter group pka,pkavx,pkavy,pkavz and Epka , allows the user to
specify a single particle’s initial kinetic energy and direction of motion. This enables
radiation damage simulations to be done by defining the incoming or primary knock-on
atom.

2.6. Thermodynamic Quantities

MOLDY can calculate a number of thermodynamic quantities. The simplest of
these are quantities defined for a microstate, number of degrees of freedom, coordinates
and their time derivatives: Ñ,xi, ẋi, h; Temperature

T =
1

ÑkB

∑ 1

2

∑

i

miẋ′
ih

′hẋi;

Potential Energy, Ucoh; kinetic energyKE = 3ÑkBT/2; total energy TE = Ucoh+KE,
volume V = det(h) and enthalpy H = TE + PV , where P is the external pressure.

More complicated are those quantities which can be defined through the various
fluctuation theorems[19]. For example the specific heat capacities

cV =
ÑkB
2

+
〈δU2

coh〉NV T

kbT 2

cP =
ÑkB〈T 〉NPE

2〈T 〉NPE − 3Ñ〈δT 2〉NPE

the compressibility

κ =
〈δV 2〉NPE

〈V 〉NPEkB〈T 〉NPE

and the thermal expansion

α =

(

2cP

ÑkB〈T 〉2NPE

)

〈δV δUcoh〉NPE + P 〈δV 2〉NPE

〈V 〉NPE

where δA is the variation from the average values, 〈δA2〉 found by keeping a running
average of 〈A2〉 − 〈A〉2.

These quantities can be calculated as running averages over a molecular dynamics
simulation. However great care has to be taken to obtain good results. The simula-
tion must be correctly sampling the ensemble throughout, so proper equilibration is
essential. Secondly, these quantities converge slowly with time, so extended runs are
needed. In each case it is possible to calculate the same quantity from a series of runs
varying the external T, V or P, measuring the mean values of microstate quantities,
and obtaining cV , cP , α or κ from the slope.
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2.7. Units

MOLDY defines the following system of units, naturally applicable to molecular
dynamics, and uses these internally: length in Å, mass in atomic mass units (1u =
1.66053886×10−27kg) and energy in electron volts. The units of time are constructed
as a combination of these base units with dimensions (M×L2/E)1/2. As this gives an
unusual number (≈ 1.018x10−14s) we convert all input from femtoseconds to model
units and output from model units to femtoseconds for human consumption. Hence
timescales are always considered by the user in fs.

Similarly, the internal units of pressure are constructed as a combination of the
base units with dimensions (E/L3). However, for convenience, all input and output
concerning pressure are in units of GPa. The necessary conversions to and from
internal units are done automatically. Similarly, temperature is input and output in
Kelvin.

3. Potentials and the Force Calculation

3.1. The potential interface

This module provides the interface to the potential. The material choice is made at
compile-time (using preprocessor directives in theMakefile). By design, the core code
only interacts with the public interface of potential_m and not the actual potential
as supplied by the relevant material module. Therefore, each material module must
conform to the well defined interface.

Public routines fall into two categories in a material module: those of the potentials
themselves and those of inquiry routines. A material module must provide public
functions for the pair potential V , the cohesive potential φ, the embedding function
E, and their derivatives:

function vee_src(r, na1, na2)

function dvee_src(r, na1, na2)

function phi_src(r, na1, na2)

function dphi_src(r, na1, na2)

function emb_src(rho, na1)

function demb_src(rho, na1)

where the arguments for the pairwise potential are of the following type:

real (kind_wp) :: vee_src !< result (eV)

real (kind_wp), intent(in) :: r !< separation (angstrom)

integer, intent(in) :: na1 !< atomic number atom 1

integer, intent(in) :: na2 !< atomic number atom 2

The V and φ potentials accept two species arguments, allowing one to specify
asymmetric potentials, e.g. φij(r) 6= φji(r), Vij(r) 6= Vji(r). The embedding function
is only a function of ρ for a given species.

In addition to the V , φ, and E potentials, any material module must provide two
inquiry routines:

subroutine get_supported_potential_range(rmin,rmax)

real(kind_wp), intent(OUT) :: rmin, rmax !< range in angstroms
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This returns the minimum and maximum range over which the potential acts.
MOLDY uses this information when setting link-cell and neighbour list sizes and in
deciding whether to calculate the potential for a particle pair. The implementation of
this routine is not specified and is free to the user. Examples are found in the supplied
material modules.

subroutine check_supported_atomic_numbers(species_number,spna,ierror)

integer, intent(in) :: species_number !< number of species

integer, intent(in) :: spna(species_number) !< atomic numbers of the species

integer, intent(out):: ierror !< return error code

At startup, this routine checks that the available material module can support
the particles contained within the simulation’s system file, and should return non-
zero ierror if this is not the case. MOLDY will halt execution before the simulation
begins, and report the condition. In the case of the generic potential module, this
routine loads the required potential coefficients from coefficients files or returns an
error if the files are not found.

3.1.1. Available potentials
The process of choosing a material module is one which might employ function

pointers, available in Fortran 2003 onwards. However, as we adhere to Fortran 95
standards for portability, we have ruled this out as an option. Consequently, a material
module is chosen at compile time, suitable for the simulation to be performed. There
are two stages required to introduce an additional material module to the code:

1. Create a material module conformant to the potential interface.

2. Edit a single line in potential_m.F90 to optionally “use” this module, e.g.:

!Material Module choice - use one material module only.

use generic_atvf

For convenience, one can make use of the MATERIAL variable to allow the choice to
be made from within the Makefile.

The above forms the core code of MOLDY. The code’s design makes it easy to
change potentials without any changes to the main code. Consequently, we have pro-
vided a potentials module, which delivers an abstract interface through which the code
accesses a selected set of potential functions from material module. A material module
can be written or modified by the user and is required at compile-time, however it
must conform to the defined potential interface. The following material modules are
provided in the initial release:

iron_carbon — complete asymmetric potential set for Fe-C simulations [12, 20]
zirconium — single species Zr hcp potential [21]
pairpot — multispecies Lennard-Jones potential with parameters read at runtime
morse — multispecies Morse potential with parameters read at runtime
generic_atvf — generic potential loading module to load cubic spline potential coef-
ficients from disk at runtime [22]

The generic potentials currently offer single species potentials for Al, Cs, K, Li,
Mo, Na, Nb, Rb, Ta, V, W, Cu, Au, Ag, Ni, Ti, Zr, and Pt. In addition, Ni-Al cross
species potentials are included. Each potential is specified in a coefficients file. An
example of a coefficients file is given here:
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# ATVF format Ni/Al fitted to apb001 and elastic constants #

13 # Principal Atomic number

28 # Second Atomic number (used only for cross potential)

4 # Number of coefficients (vee)

1 # Number of coefficients (phi)

0.0 # Minimum potential radius

4.35174 # Maximum potential radius

-0.6469208776 1.1392692848 -0.6655106072 1.4680219296 # a_k coefficients (v)

4.35174 4.24473 3.88803 2.96061 # r_k coefficients (v)

0.0 # a_k coefficients (phi)

1.0 # r_k coefficients (phi)

# END OF INPUT #

Coefficients files must conform to the naming convention which MOLDY employs:
pot XXX YYY.in where XXX and YYY are the atomic numbers of the two species
involved suitably prefixed with zeros. For example, the Al potential (single species) is
pot 013 013.in, whereas the Ni-Al cross potential is provided by both pot 013 028.in

and pot 028 013.in. Additional materials can be provided by supplying the appropriate
potential files.

For Morse and Lennard Jones potentials it is still necessary to specify an atomic
number, which will determine the mass. Although these potentials cannot represent
specific materials, units are still required. It is recommended that parameters be
chosen such that lattice parameters and binding energies lie in the Å and eV range as
MOLDY makes some internal checks for unphysical values.

3.2. The Force calculation

3.2.1. The Neighbourlist calculation
MOLDY uses a hybrid neighbour-list/link-cell method[23, 1]. The link-cell method,

or LCM was designed for a large number of particles, because when using LCM the
calculation scales as O(N). When a neighbour list is used in the traditional way, a
calculation tends to scale as O(N) at each timestep at which the list is consulted, but
as O(N2) at each timestep in which the list is updated. The hybrid method, removes
the remaining O(N2) scaling because the neighbour list is rebuilt but from neighbours
within adjacent link cells, and the link cells are fixed in fractional coordinate space.

In a dynamic simulation the link cells in the NL-LCM must be large enough to
include all neighbours which might come into range of an atom within the cell/list
update period. MOLDY ensures that link cells are a minimum size according to the
maximum range of the acting potentials, plus a user-defined padding size rpad given
in the parameter file.

The neighbour list is calculated relatively infrequently, but for large systems, this
can be costly. The neighbour list is the second most intensive task after the force
calculation, and in tests we find the neighbourlist quickly becomes a bottleneck. The
calculation is implemented as a nested loop over link-cells and their adjacent cells. As
calculation of the neighbour list does not change the state of the system, the lists for
each particle can be calculated independently. We find that applying a simple loop
over a single link-cell index works effectively.
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3.2.2. OpenMP Parallelisation
The code has been parallelised for shared-memory systems using OpenMP.2 This

type of system is often found in modern hardware, as multi-core processors have be-
come increasingly standard, and look to increase further in both core number and
ubiquity. The two targets for parallelisation of MOLDY are the force and neighbourlist
calculations.

For reasons of efficiency, MOLDY maintains an asymmetric neighbour list, such
that for two atoms i and j, if j is in the neighbour list of i, the reverse is not true.
This allows the force Fij to be calculated once and applied to both particles i and j,
without double counting. We adopt a particle-based parallelisation, as this promises
the most even load-balance and maps sensibly onto the particle based loops. This
implies that a particular OpenMP thread will have assigned to it a set of particles, for
which it is responsible. In what follows, this thread is referred to as the parent of these
particles. To calculate the total force on a particle i, we sum the force components
Fij for all the neighbours of i. The difficulty in this approach arises when the force
Fij is also to be applied to i’s neighbouring particle j, where j does not belong to the
same OpenMP thread as i. There is a real and unacceptable risk that two threads will
attempt to update the force on j at the same time - those threads being the parent
thread of i whose neighbour is j, and the parent thread of j itself. In order to avoid
this behaviour, synchronisation must be employed, such that only one thread may
update the cumulative force on j at a time. However, a simple synchronisation like
atomic updates or a critical region, proves too costly for the force calculation, as the
necessary synchronisation introduces a substantial overhead to this intensive region of
code. It should be noted that it is possible to avoid any kind of synchronisation by
maintaining a symmetric neighbourlist, at the cost of having to calculate Fij twice.
This factor of two penalty is only worth taking if a synchronisation mechanism results
in less than 50% relative efficiency.

To combat this, we have established a mechanism that results in far fewer syn-
chronisation calls. We adopt the approach of locking access to particles within defined
regions of the simulation volume, encompassing the range of influence of a particular
particle - by design, the link-cell scale. Establishing locks on the link-cells allows us
to lock/unlock a larger region of space, a correspondingly infrequent number of times.
This manifests as a larger wait time should a non-parental thread need to access a
particle. By ordering the particles array by increasing link-cell index, it is possible to
space out the regions of the simulation volume being acted on by separate threads.
This generally minimises the number of times different threads will be working within
range of each other, and hence, minimises the time spent waiting for locks. This
mechanism is designed to perform well for larger problem sizes.

From this basis, three schemes were considered, as follows:

A: The parent thread locks the link-cell containing its child particle i, and also the
link-cell of the neighbour particle j. Link-cells can be locked and unlocked as infre-
quently as the link-cells change.
B: The parent thread locks each link-cell within the sphere of influence of a particle,
and only releases these locks when the link-cell or the current particle i changes from
that of the previously considered particle i−1. This involves locking 8 cells per thread.

2in fact, we used OpenMP Version 2.4
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C: The parent thread locks the link cell of the neighbouring particle j only, and releases
when the neighbouring cell changes from that of the previously considered neighbour
j − 1. This involves locking only one cell per thread, and calculating a private accu-
mulator of the force on the child particle i, updating this at the end with a similar
lock/unlock on i’s cell.

Scheme A is the simplest, but if not careful, schemes like this can result in deadlock
if two threads are visiting neighbours in the link-cells of each other’s child particles.
Scheme B is an overly conservative approach, locking more of the simulation volume
than is strictly necessary at one time. This scheme also requires extra care to be taken
over locking order, to avoid deadlocking situations. Scheme C has been adopted, as it
benefits from locking only one link-cell at a time, which eliminates the possibility of
deadlock, and decreases the number and duration of waits.

For MOLDY, the neighbour list is constructed from the link cells so that atoms
in the same link cell are contiguous. This means that in the loop over neighbours, at
most 8 lock/unlock commands need to be sent. Tests showed that this is considerably
faster than double-calculation of the potential for large systems, albeit at the cost of
some coding complexity. The scheme is illustrated in the pseudocode snippet below.

!$OMP PARALLEL

neighbour_link_cell = 0 !! (null value = neighbour link-cell is not set)

!$OMP DO

!! calculate force on particles and their neighbours

particleloop: do i = 1, number of particles

! Temporary force accumulator for particle i

force_i = 0

neighbourloop: do j = 1, number of neighbours of particle i

! Global index of i particle’s j neighbour

neighbour_idx = neighbours(j,i)

force_ij = calculate force between i and j

!! set/reset region locks when changing neighbour link cell

if (linked_cell_of(neighbour_idx) .ne. neighbour_link_cell) then

!! If we hold a lock on an old link cell, unset it

if (neighbour_link_cell .gt. 0) then

call omp_unset_lock(lock(neighbour_link_cell))

end if

!! set neighbour link cell to the current link-cell and lock it

neighbour_link_cell = linked_cell_of(neighbour_idx)

call omp_set_lock(lock(neighbour_link_cell))

end if

!! update force of particle’s neighbour

force(neighbour_idx) += force_ij
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!! update temporary force accumulator for particle i

!! do not update force on i yet.

force_i += force_ij

end do neighbourloop

!! set/reset region locks when updating own particle

if (linked_cell_of(i) .ne. neighbour_link_cell) then

call omp_unset_lock(lock(neighbour_link_cell))

!!set neighlc to the current link-cell

neighbour_link_cell = linked_cell_of(i)

call omp_set_lock(lock(neighbour_link_cell))

end if

force(i) -= force_ij

end do particleloop

!$OMP END DO NOWAIT

!! release all locks

call omp_unset_lock(lock(neighbour_link_cell))

4. Running the Code

4.1. Input and Output files
MOLDY utilises two main input files: the parameter file, and the system file. These

two are sufficient to describe a physical system and the features of a simulation.
The main output files MOLDY creates are the default output file (equivalent to

stdout), and the unformatted checkpoint/restart file. Input and output filenames can
be specified by the user in the main parameter file.

4.1.1. The main parameter file, params.in
The main input file is params.in, and must always have this name. This file con-

tains all the parameters of the simulation, including specification of other file names,
physical parameters of the simulation, verification parameters for the system file, and
non-physical simulation parameters governing flow control and loop counters. The
parameter file contains key-value pairs. Comments can be placed at any point at
the end of a line or on separate lines. Many parameters have defaults, in which case
specification is not necessary. The parameter list is given in Tab. 1.

To get started with the code, some parameters of note are the following:

boxmass In Parrinello-Rahman dynamics, the box itself is dynamically evolved. The
box mass determines the magnitude of the reaction of the box as the system
evolves. The mass is specified in atomic mass units per particle.

rpad The neighbour list is constructed from particles within the potential range. A
padding distance is added to maintain the completeness of the neighbourlist
as particles move into and out of the potential range between neighbourlist
updates. A rule of thumb for the padding distance is the expected maximum
drift of particles over the course of the time between neighbour-list recalculation.
This will be system dependent and vary a lot between, e.g. solid and liquid.
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Table 1: Defined key-value pair parameters and their defaults

Keyword Default Description
file system system.in File describing atomic positions in sys-

tem (the system file)
file textout moldin.out File for text output
file checkpointread - Input checkpoint filename
file checkpointwrite - Output checkpoint filename
file dumpx1 - File to output per iteration data
boxmass - Mass of the box in units of A.M.U. per

constituent particle
deltat - Timestep in fs
rpad 0.0 Padding thickness over potential cutoff in

Å(for link cell)
temprq - Required temperature in the MD in

Kelvin
press 0.0 Required external pressure in GPa
ivol - Switch defining volume behaviour of the

system
iquen - Switch between molecular dynamics and

molecular statics
nose 0.0 Softness of damping in the Nose thermo-

stat (0.0: no damping)
dsp 0.0 Random displacement from input parti-

cle positions (in Å)
pka 0 Prints out position of a single chosen

atom each nprint steps
Epka 0 Initial energy of atom Epka
pkavx,pkavy,pkavz 0,0,0 Direction of motion of pka
straintensor δij Strain tensor in one unrolled 9 element

value
nm - The number of particles in the simulation
nspec - The number of distinct species in the

simulation
nsteps 0 Number of timesteps to be done in a run
nbrupdate - Frequency of updating list of neighbours

(MD steps)
strainloops 1 Number of loops of applying the strain

tensor
restart 0 Switch defining whether a restart file is

read at startup
nprint 100 Frequency of printing of thermodynamic

averages (MD steps)
nchkpt -1 Frequency with which to checkpoint (MD

steps)
nposav 0 Prints sys avs.out: positions averaged

over final nposav timesteps
nnbrs 150 Maximum size of the neighbour list
tjob - Maximum execution time in seconds
tfinalise - Time reserved for finalising the job
iverlet 0 Algorithm choice (0=predictor-corrector,

1=verlet)
prevsteps 0 Number of timesteps done previously

(e.g., if restarting)
lastprint 0 Number of timesteps since last printing

of run averages
lastchkpt 0 Number of timesteps since last check-
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ivol This integer parameter is a switch which controls the MD details. Accepted
values are (0) constant pressure; (1) constant volume; (2) free surface on z,
constant volume on x,y; (3) cluster: free surface on x,y,z, (4) grain boundary:
constant volume on x,y, constant pressure on z. (5) Pillar compression: free-
surface-on-xy, constant-volume-on-z.

iquen Integer parameter to choose between molecular dynamics, molecular statics
(quenching) or “boxquenching”.

nose The Nose-Hoover thermostat parameter; related to the Qs defined above, large
values correspond to slow relaxation.

straintensor An external strain can be applied on the simulation volume (box) after
construction. This is a 3x3 matrix, but can be specified here unrolled as nine
values, i.e. Sxx Sxy Sxz Syx Syy Syz Szx Szy Szz.

restart This controls whether a checkpoint/restart file is read in. Accepted values
are (0) new simulation, do not read restart; (-1) read a restart file but calculate
fresh initial velocities; (1) use the entire restart file to continue from a previous
calculation

4.1.2. The system file
The system file (by default system.in) contains information on the physical system

including system size, shape and contents. An example system file looks like this:

4000 # Number of particles included in this file

1 1 1 # Number of replications of the system in x,y,z

56.2719571 0.0 0.0 # Size of the system volume (3x3)

00.0 32.4886349 0.0 #

0.0 0.0 51.8247969 #

0.0333333351 0.0000000000 0.000000000 40 91.22

0.0833333351 0.0500000000 0.000000000 40 91.22

0.0666666651 0.0000000000 0.050000000 40 91.22

0.0166666651 0.0500000000 0.050000000 40 91.22

.

.

The first line contains the number of particles in the system file itself. The simu-
lation cell will be populated with a number of copies of these particles, depending on
the number of replications entered on line two. Lines 3-5 are the unreplicated system
volume size and shape in Angstroms. After that follows Nparticles lines each giving
the fractional coordinates, the atomic number and mass of the particle.

The system file can be considered as defining a unit cell. The replication feature
allows a simulation to be constructed from any number of replications of this unit cell,
and is particularly useful for creating large volumes of regular lattice positions. Thus
an equivalent to the above file specifying all positions would be:

4 # Number of particles included in this file

10 10 10 # Number of replications of the system in x,y,z

5.62719571 0.0 0.0 # Size of the system volume (3x3)

00.0 3.24886349 0.0 #

0.0 0.0 5.18247969 #

0.333333351 0.0000000000 0.000000000 40 91.22
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0.833333351 0.500000000 0.000000000 40 91.22

0.666666651 0.0000000000 0.500000000 40 91.22

0.166666651 0.5000000000 0.500000000 40 91.22

4.1.3. Checkpoint/restart
MOLDY allows full checkpoint/restart governed by the restart and nchkpt keys

in the parameter file (Section 4.1.1). The file contains the entire simulation parameter
set, particle positions, velocities, accelerations and jolts, the atomic number, species,
and mass index arrays and bulk thermodynamic properties of the system. Check-
point/restart files are created every nchkpt timesteps (set in the parameter file) and
at the end of a simulation. The output file system.out can be used in place of system.in

to restart the simulation. It is also in a format readable by BallViewer [26].

4.1.4. Tests and examples
MOLDY includes several examples that may be used to help gain familiarity with

the procedure for setting up and running simulations. These examples are stored in
the trunk/examples/ directory and are documented on the MOLDY wiki website:
https://www.wiki.ed.ac.uk/display/ComputerSim/MOLDY. Tab. 4.1.4 lists the set
of examples at time of writing; these may be added to in the future.

Table 2: Set of examples included with the initial release of MOLDY.

Test Nparticles Notes
Iron heat 2000 Bcc iron at constant pressure
Melting 16000 Zr constant pressure MD at high temperature
Dislocation 3600 Bcc iron with line defect

5. Results

All the results presented in the following sections use one of the available potentials
described in Section 3.1. The tests have been run on a machine with four quad-core
Intel Xeon E7310 processors running at 1.6 GHz.

5.1. Parallel benchmarks

The benchmark test case considered is that of a cube of bcc iron as generated by
the following system input file:

2 # Number of particles included in this file

n n n # Number of replications of the system in x,y,z

2.870 0.0 0.0 # Size of the system volume (3x3)

0.0 2.870 0.0 #

0.0 0.0 2.870 #

0.0 0.0 0.0 26 55.847 # Iron atom at the origin

0.5 0.5 0.5 26 55.847 # Iron atom at the centre of the cell
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We vary n to create cubes of a given size as required. Unless otherwise stated, bench-
marks were performed at a temperature of 300 K with no thermostat enabled at a
constant pressure of 0.1 GPa with periodic boundaries in all directions. A timestep
of 1 fs was used throughout and the system evolved for 1000 timesteps using the Ver-
let integrator. Due to the lack of diffusion in our system we do not re-evaluate the
neighbour list for the duration of the simulation.

The parallel performance of MOLDY was assessed on a shared memory machine
with four quad-core Intel Xeon E7310 processors running at 1.6 GHz with 16 GB
of main memory. All calculations were carried out at full 64-bit precision. Each
benchmark is repeated three times to ensure that timing results are reliable.

Fig. 1(a) shows how the runtime scales with the number of atoms in the system.
As expected, linear scaling is observed as a consequence of MOLDY’s short-range
potential nature. This benchmark set was carried out using all 16 available threads
and we can therefore also consider the runtime per atom which is plotted in Fig. 1(b).
Initially starting at ≈0.013 s this levels off to ≈0.092 s when using 32k atoms or more.
This suggests that each processor requires at least 2000 atoms to become saturated
with sufficient work during each iteration.

We evaluate the strong scaling using systems of 32k (n=25) and 85k (n=35) atoms.
Fig. 2(a) shows the speedup when running using the lookup table and explicit potential
calculation. We see that good scaling is achieved all the way up to our maximum of
16 threads. The explicit potential shows the best speedup; this is due to the fact that
it takes longer to evaluate the force consequently increasing the parallel fraction of the
code. Fig. 2(b) confirms that, in absolute terms, the lookup table method significant
outperforms the explicit potential evaluation even at 16 threads.

To evaluate the weak scaling we start with a system of 18k atoms (24 × 24 × 16
repeats) and increase the system size linearly with the number of threads by scaling
the z-repeats accordingly. Fig. 3 shows a shallow rise in relative runtime for each
additional thread caused by the serial fraction. The achieved scaling is, however, very
good with a system of almost 300k atoms taking only 1.4 times as long to simulate
using 16 threads as that of a 18k atom system on one thread.

Finally, we evaluate the cost of neighbour list update frequency on the performance
for a fixed number of threads. This may become important for simulations with a high
rate of diffusion where atoms can migrate between linked-cells often. Fig. 4 shows how
changing this parameter affects the runtime when using a single thread. Initially the
performance cost of increasing the update frequency is fairly steep, however this quickly
relaxes to linear scaling with a fairly small scale factor. From this we recommend
that for simulations with little or no diffusion neighbour list updates should be kept
to a minimum while for simulations with large amount of diffusion it is safe to set
a conservatively high frequency without incurring a large performance penalty. It
should be noted that the neighbour list update subroutine has not been parallelised
and consequently a high neighbour list update frequency may adversely affect parallel
speedup.

Further tests show that using a Nosé thermostat or predictor-corrector integra-
tor in place of Verlet has little impact on the performance. The Nosé subroutine is
parallelised and has been found not to affect the parallel speedup.

5.1.1. Integration error
To evaluate the energy drift caused by integration error we compare results from

both the Verlet and predictor-corrector schemes. Fig. 5 shows the total energy plotted
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(a) A plot showing how the runtime scales with the number of atoms in
the system. As expected linear scaling is observed.
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(b) A plot of the runtime per atom when using 16 threads. This levels off
at ≈2000 atoms per thread, any less and parallelisation overheads begin to
impact on code efficiency.

Figure 1: Graphs showing how MOLDY scales with the number of atoms in the system.
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potential evaluation. Here we use a system of 31,250 atoms.

Figure 2: Parallel performance of MOLDY when integrating a system of bcc iron for 1000
timesteps.
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Figure 5: The total energy plotted up to 20k timesteps of 2fs when using the Verlet and
predictor-corrector integration schemes. Both NVE and NPE ensembles are shown. The test
system used was that from Section 5 with 31250 atoms.

over 20k steps when using the test system from Section 5 comprising 31250 atoms. To
obtain some drift we used a 2fs timestep, slightly larger than one would normally choose
at such high temperatures. We started each simulation far from equilibrium, with
atoms on their lattice sites and 1800K worth of kinetic energy. Through equipartition
the temperature drops rapidly to around 900K. The coupling to the box modes is
weak, and the NPE simulations oscillate in volume. In the figure, this manifests itself
as an oscillation in energy as energy is transferred in and out of the fictitious modes.

Owing to its symplectic nature in the NVE ensemble, the Verlet scheme has a
bounded local error and preserves the total energy globally (see e.g. [27] for a discussion
of integration error from Verlet). For the NVT, NPT with Nose-Hoover thermostat
no symplectic integrator is possible and energy is not conserved. For NPH ensembles
Verlet is not symplectic, and since energy is exchanged between the physical system
and the other terms in the Parrinello-Rahman extended Lagrangian, energy conser-
vation should not be expected. In fact, energy is very well conserved in the extended
Hamiltonian: for the physical system it oscillates about a fixed value.

Conversely the predictor-corrector exhibits a linear drift with respect to the number
of timesteps in NVE ensemble, with a similar drift superimposed on the oscillations
for the NPE case. In this instance this amounts to an error of ≈0.01% over 20k steps.
While this error is small we recommend Verlet as the de facto integration scheme to
be used especially in cases where thermodynamic averages are the primary quantities
of interest.

6. Application Examples

6.1. Dynamic compression of copper

One of the main features of MOLDY is its very flexible approach to boundary
conditions. An example where boundary conditions are important comes in simulat-
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ing stamping a metal. In this experiment, the sample is subject to large uniaxial
compression, inducing plastic flow into free space in the perpendicular direction.

We simulate this process for a perfect nanocrystallite of copper, with no preexisting
dislocations, oriented along 100, cut along 001 and 010. The boundary conditions
applied are a constant strain rate in the z-direction, with free boundaries in x and y.
The process is fast, and the simulation region represents the entire sample, so we do
not use a thermostat.

The constant strain rate is applied using nsteps = 1 strainloops = 1000000 and
STRX = 0.9999995 which applies a Parrinello-Rahman box strain to the sample
every timestep. With a timestep of 1fs and a 108Å cell this is equivalent to a realistic
stamping velocity of 5.4m/s.

Snapshots of the material at various levels of strain are analysed by the BallViewer
software [26]. This shows a curious sequence of events.

The material transformation occurs first by elastic strain up to the stress required
for nucleation of dislocations. This is significantly higher than the yield stress of
copper, implying that the barrier is the nucleation rather than the motion of the
dislocations. It is lower than the nucleation stress calculated for perfect single crystal
copper [28] consistent with the apparent nucleation at the surface.

Partial dislocations then travel through the material leaving steps on the sur-
face: they leave behind them layers of material indexed as hcp on account of its local
stacking[26]. Because the dislocations move on planes at an angle to the applied
strain, they cross and lock, hardening the material. Slip bands are formed and the
stress increases, until the macroscopic shape of the yz plane changes from a square to
a diamond. The orientation is now (111) (111) (110). This change accompanies the
removal of most of the stacking faults associated with the dislocations and indexed
as hcp by BallViewer: the crystallite has effectively recrystallised into its new shape.
This process is associated with a rise in temperature due mainly to the work done in
compression. The recrystallised sample has surfaces which are now the (111) type,
which have lower surface energy than the original (001) type. however the transfor-
mation does not create the lowest energy Wulff shape: the steps on the surface from
the previous dislocation motion remain.

Further compression takes the system through another cycle of dislocation genera-
tion, with the diamond shape becoming increasingly stretched. This novel deformation
mechanism would be strongly suppressed by periodic boundary conditions.

The stress and potential energy of the sample is monitored and shown in Fig. 7.
The potential energy rises because energy is being supplied to the system from work
done in compression. One can estimate the T=0 potential energy by assuming equipar-
tition of energy between PE and KE, and evaluating PE-KE. This quantity rises steeply
during the elastic phase, then drops, presumably due to reconstruction at the surface,
in the second phase. In the third phase it increases slowly, this is primarily due to the
increased surface area and only partly due to damage accumulating in the structure.
Quenching the structure to a local potential energy minimum followed by a BallViewer
analysis shows the final state to be almost perfect fcc.

6.2. Self-diffusion in iron

Self-diffusion, D(T), can be related to the limiting slope of the mean square dis-
placement (MSD) of the atoms

D(T ) = lim
t→∞

1

6t
〈∆r(t)2〉 (2)
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Table 3: Simulation and experimental results for vacancy properties of α iron.

Reference Ev
m (eV) Ev

f (eV) Q = Ev
m + Ev

f (eV)

Simulation
Calder and Bacon (1993) [32] 0.91 1.83 2.74
Domain and Becquart (2002) [34] 0.65 1.9 2.55
Fu et al. (2004) [35] 0.67 2.07 2.74
Mendelev and Mishin (2009) [29] 0.60 2.18 2.78
this work 0.60 1.72 2.32

Experiment
Schaefer et al. (1977) [37] 1.28 1.60 2.86
Vehanen et al. (1982) [38] 0.55 - -
De Schepper et al. (1983) [39] - 2.0 -
Romanov et al. (2006) [40] 0.73 - -

where the term in the angle brackets is the MSD averaged over all atoms and t is the
simulation time. Self-diffusion for α-iron was measured for the temperature range from
900K to 2000K using a system of 2000 atoms with a single mono-vacancy at a random
site. The potential does not describe the ferro-paramagnetic transformation, so the bcc
structure is stable at all these temperatures. The N-particle average of MSD against
time is shown in Fig. 8. Clearly, system diffusion increases at higher temperatures, as
expected. To characterise the temperature dependency of diffusion and calculate the
energy of a mono-vacancy migration the data is fitted to the Arrhenius-type expression:

D(T ) = D0 exp(
Ef+Em

kBT
), where kB is Boltzmann constant, T is temperature and Ef

and Em are the energies of defect formation and migration, respectively.
The energy of vacancy migration was calculated to be Ev

m = 0.60eV with 99%
confidence limits of (0.53-0.67)eV. The fit excluded temperatures T > 1800K, where
the diffusivity increases dramatically, hinting at a solid-liquid phase transition. This
is in reasonable agreement with the experimental value of the melting point of iron;
Tm = 1811K. In addition, the energy of formation of a vacancy was calculated using
molecular statics: Ef = 1.72eV. Both of the these values are in good agreement with
previous experimental and simulation results presented in Tab. 8. The prefactor D0

was obtained from the y-intercept in the Arrhenius graph to be 4.65 · 10−3cm2/s with
corresponding 99% confidence bounds of (2.58-8.48·10−3)cm2/s. This is two orders
of magnitude lower than the experimentally measured values, however in reasonable
agreement with the more recent MD simulations [29, 30]. Note that due to the extrap-
olation to infinite temperature and the exponential sensitivity to Q, there are typically
high errors associated with the experimentally determined values.

There is a significant stochastic error in our calculations, as D(T) was sampled
at 100K intervals only, but such a large discrepancy points to an inadequacy of the
potential: this may be related to the fact that the potential does not describe the
transformation from bcc to fcc and back.

6.3. Elastic constants in iron

We tested the shear boundary conditions by calculating the elastic constants of
iron. Elastic constants vary with temperature in a way which is often well described
by the semi empirical expression
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C(T ) = C(0)−
s

exp(TE/T )− 1

where TE and s are empirical parameters[41]. A resonant ultrasound spectroscopy
study [42] suggested that the C′ = 1

2
(C11 − C12) elastic modulus dropped by over

15% between 0 and 500K. Equation 6.3 then implied that it would go to zero above
2000K. We calculated the modulus from distorting a unit cell of 2000 atoms according
to the C’ strain and evaluating the elastic constant from fitting the total energy at
each temperature to a quadratic in the strain. This is cross-checked with the stress-
strain relation. Since the potential is fitted to the zero temperature elastic moduli,
good agreement at low temperature is expected. In Fig. 9 we show that although the
calculated C’ softens, it does not do so as much as in the experiment. This suggests
that the potential does not fully account for the physics behind the softening. The C’
elastic constant involves the same strain as the Bain transformation from bcc to fcc,
which is also not correctly reproduced.

6.4. Carbon migration in iron

We also investigated the effect of carbon on diffusion in iron.
The diffusion D(T) temperature dependence and energy of migration for carbon in

bcc iron was evaluated for temperature ranging up to 1800K with a 2000+1C atom cell.
The energy of migration of a carbon interstitial was found to be considerably higher
than that for the vacancy; EC

m = 1.2(3)eV> Ev
m = 0.6(1)eV. The carbon occupies the

octahedral (1/2, 0, 0) site and the nearest adjacent site (e.g. (1/2, 1/2, 0)) lies along the
(010)-type direction. However, Fig. 10 shows evidence of correlated migration along
various directions (e.g. event at 2500fs) and multiple correlated motion along a (100)
direction (e.g. event at 7000fs). This suggests that the martensite-type tetragonal
strain field around the C can persist, enabling secondary jumps to occur [43].

We also investigated a 1999+1C iron system with a carbon and a vacancy. Now
we find a trapping and detrapping effect: the fastest migrating species is the vacancy,
followed by the vacancy-carbon complex and finally the isolated carbon (see Fig. 11).
Thus the carbon acts as a weak trap for the vacancy, slowing its migration: by contrast
the vacancy enhances the migration of the carbon. Even the weak vacancy trapping
effect means that the overall self-diffusion rate of Fe is reduced by more than an order
of magnitude due to the presence of 0.05% carbon.

7. Conclusions

We described a thoroughly updated and parallelised flexible molecular dynamics
code MOLDY, which previously existed in many different versions. The program is
interfaced with BallViewer, a bespoke graphics package for identifying local crystal
structures and visualising MD outputs.

Furthermore, we demonstrated the parallel capabilities of MOLDY using up to 16
threads to run simulations of systems exceeding one million atoms. It was shown that
the strong and weak scaling of the code provided by OpenMP parallelisation were
good out to a 16-thread system.

MOLDY comes with its own test suite and we have presented applications, which
illustrate some of the code features that are missing in many standard codes, such as
variable boundary conditions, quenching, autocorrelation, complete stress and strain
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tensors. These applications show some features which are interesting in their own
right, for example the crystallographic reorientation of a single nanocrystal of copper
under uniaxial compression and the 100-fold reduction in iron self-diffusion due to a
small amount of carbon.
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Figure 6: Top view from BallViewer of stamping simulations, all at the same scale. Green
atoms are fcc, red are hcp; top left, initial yield: slip bands fringed with stacking faults; top
right: reorientation transformation complete, Bottom: final state after further dislocation
damage, note roughened edges.
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Figure 7: Evolution of stress and temperature in the constant energy constant strain rate
ensemble stamping simulation. Regimes are shown corresponding to the initial elastic regime,
the dislocation nucleation glide, and the reorientation/recrystallisation induced shape change
of the sample.
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Figure 8: Calculated RMS displacements as a function of time and temperature from
2000 atom simulation with iron. Using the minimum image convention for forces, but not
wraparound for atomic positions, ensures that there are no discontinuities when an atom
leaves the supercell.
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Figure 10: RMS displacement of the carbon atom through a series of jumps at 1300K.
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Figure 11: RMS displacement of the carbon atom through a series of jumps in a system with a
vacancy at 1350K. Up to 800ps the carbon is associated with the vacancy and migrates rapidly
(left panel). After 800ps carbon migration ceases, presumably due to detrapping. However
migration of the vacancy is increased, as evidenced by the increased iron self-diffusion (change
in slope, right panel).
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