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Abstract

We investigate an application of crossing parity for the bracket expan-
sion of the Jones polynomial for virtual knots. In addition we consider an
application of parity for the arrow polynomial as well as for the categori-
fications of both polynomials. We present a number of examples found
through our calculations. We provide tables of calculations for these in-
variants on virtual knots with at most 4 real crossings.
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1 Introduction

Since the introduction of virtual knot theory, crossing parity has provided a
valuable resource for creating invariants. (See Definition 3.1 in the present pa-
per for our definition of crossing parity.) For instance, given a virtual knot
the odd writhe [23] (i.e. sum of the signs of the odd crossings) is an easily
computable invariant. Recently, Manturov introduced a parity version of the
bracket polynomial [31] and described how this construction can pass to Kho-
vanov homology via a filtration on the space of virtual knots. Our goal here
is to investigate these constructions and show how we can apply a similar con-
struction to the arrow polynomial. Along the way we show how known facts
about minimal surface genus for virtual knots extend to the categorical setting.

The bracket polynomial (and Jones polynomial) as well as the arrow polyno-
mial have a rich history. For an introduction to virtual knot theory we recom-
mend [19]. For an introduction to the bracket polynomial we point the reader
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to [21] and [22]. Similarly, for the arrow polynomial we recommend the paper
[18] as well as the work of Dye and Kauffman in [8] [9]. Note that the arrow
polynomial is equivalent to the Miyazawa polynomial as constructed in [35] and
[36]. We use the term arrow polynomial as our definition follows the construc-
tion introduced by Dye and Kauffman.

The Jones polynomial was categorified by Khovanov in [26] and for an in-
troduction to Khovanov homology we point the reader to Bar-Natan [4], [5] and
Kauffman [20]. Since Khovanov’s seminal work categorification in classical knot
theory has been a fruitful topic of research. Notably, Rasmussen [37] used a
spectral sequence introduced by Lee [29] to produce a lower bound on the slice
genus for a classical knot. Recently it was also announced by Kronheimer and
Mrowka [28] that Khovanov homology detects the unknot by showing there is
a spectral sequence from (reduced) Khovanov homology to instanton Floer ho-
mology. This is exciting news as it provides support for the similar conjecture
for the Jones polynomial.

The study of Khovanov homology in relation to virtual knot theory is still
rather new. The introduction of the virtual crossing brings with it a new dia-
gram for the unknot which has the property d2 = 0 (using Khovanov’s original
definition) only for coefficients in Z2 (see Figure 6 of [30]). A wonderful expla-
nation of how far we can take Khovanov’s original work is given by Viro in [39].
To work around this new problem methods have been introduced by Asaeda,
Przytycki, and Sikora [1] as well as Manturov [32]. The Asaeda-Przytycki-Sikora
approach requires not only a diagram but an embedding in a (fixed) thickened
surface. On the other hand, Manturov’s version introduces a signed, oriented
and ordered basis on the states of the cube complex to make all faces commute.

Other than its introduction in [10] and recent review in [19], little has been
written about the categorifications of the arrow polynomial. In this regard we
produce lower bounds for the homological width of the fully-graded categorifi-
cation and we as extend bounds for the surface genus to the categorical setting.
In the Appendix we provide a collection of programs for computing all of the
invariants discussed in this paper. We hope these programs will increase the
awareness and interest in the study of these categorifications.

1.1 Virtual Knots

In [24] Kauffman introduced virtual knots and links as a natural extension
of classical knots and links. Virtual knot theory can be thought of both as
(1) equivalence classes of embeddings of closed curves in a thickened surface
(possibly non-orientable) up to isotopy and handle stabilization on the surface
and (2) the completion of the signed oriented Gauss codes (i.e. an arbitrary
Gauss code corresponds to a virtual knot while not every Gauss code corresponds
to a classical knot.)
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We recall in Figure 1 the Reidemeister Moves for classical knot diagrams.
Figure 2 displays the additional Virtual Reidemeister Moves for the theory in
terms of planar diagrams. Here we have introduced the virtual crossing which
is neither an under-crossing or over-crossing. We represent the virtual crossing
by two arcs which cross and have a circle around the crossing point.

Figure 1: Reidemeister Moves

Figure 2: Virtual Reidemeister Moves

Note that the move in Figure 3 is not an equivalence relation for diagrams of
virtual knots and links. It can be shown that adding this relation and its mirror
image to the Virtual Reidemeister Moves allows one to unknot any virtual knot.
For this reason we refer to this move as the forbidden move. Adding just one of
these two forbidden moves yields a nontrivial theory called welded knots [12].
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Figure 3: The “Forbidden Move”

1.2 The Normalized Bracket Polynomial

For completeness we recall the construction of the bracket polynomial intro-
duced by Kauffman in [21].

Definition 1.1. Given a diagram D for a virtual knot K the bracket polynomial
of K is defined by the relations in Figures 4.

Figure 4: Bracket Polynomial Skein Relations

To be more precise, suppose D is an n-crossing diagram for the (virtual)
knot K. We generate the polynomial by smoothing every crossing in each of
the two ways possible. The result of each smoothing at a particular crossing is
multiplication by the term, A or A−1, following the conventions of Figure 4, and
we take the sum of these two weighted smoothings. For a particular crossing
we call these smoothings the A-smoothing and B-smoothing respectively.

Next let s = (s1, . . . , sn) where si ∈ {0, 1}. Define the state of D correspond-
ing to s to be the result of applying an B-smoothing at crossing i when si = 0
and an A-smoothing at crossing i when si = 1. Furthermore define 〈D | s〉 to
be the product of A’s and A−1’s that label the state s multiplied by the loop
value d‖s‖ where d = (−A2 −A−2) and ‖s‖ denotes the number of loops in the
state. Here each state is obtained by a choice of smoothing for each crossing
and is labeled with the type of smoothing at each of the smoothing sites.

Remark 1.1. This definition of the bracket polynomial is shifted from the stan-
dard definition. Here the value of a single loop is d = (−A2−A−2) as opposed to
1 in the standard definition. This has the effect that our definition is d× 〈〈K〉〉
, where 〈〈K〉〉 is the standard definition of the bracket polynomial as in [21].

Definition 1.2. Let S be the collection of all states of a diagram D for a knot
K. We may define the bracket polynomial of K to be

〈K〉 =
∑

s∈S

〈D | s〉
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It follows from this definition that the state sum is well defined and the
expansion identities in Figure 4 follow from the state sum definition.

Definition 1.3. Given a virtual knot K with diagram D, the normalized bracket
polynomial of K is given by

fA(K) = fA(D) = (−A)−3ω(D)〈D〉

where 〈D〉 is the bracket polynomial of D and

ω(D) = writhe(D) = (# positive crossings in D)− (# negative crossings in D).

Theorem 1.1. The normalized bracket polynomial is an invariant of (virtual)
knots.

Proof. Here each loop, regardless of virtual crossings, evaluates as the loop value
d. See [21]

1.3 The Arrow Polynomial

Similarly we recall the construction of the arrow polynomial. Given a diagram
D for a virtual knot K the (un-normalized) arrow polynomial of K is defined by
the smoothing relations in Figure 5 analogous to the prior construction of the
bracket polynomial and reduction relations in Figure 6.

Figure 5: Arrow Polynomial Crossing Relations

Notice that the smoothing relations for the arrow polynomial depend on the
sign of the crossing. While we still have an A-smoothing and B-smoothing and
will refer to these choices, we also differentiate the smoothings by whether they
agree with the original (pre-smoothed) orientation of the knot diagram. If the
orientations agree we call these oriented smoothings else they are disoriented
smoothings. The disoriented smoothings create cusps in the state which satisfy
the relations in Figure 6. Moreover, these cusps introduce an infinite family
of variables {Kn},n ∈ N. That is, we cancel consecutive cusps pointing in the
same direction (locally both inward or outward) and resolve virtual crossings
following the rules in Figure 6. The remaining 2n alternately-oriented cusps on
a loop are counted and we assign the loop the value {Kn} when n > 0. We refer
to these variables as arrow numbers [9] [18].
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Figure 6: Arrow Polynomial Reduction Relations

Definition 1.4. Given a virtual knot K with diagram D, the un-normalized
arrow polynomial of K is given by

〈D〉A =
∑

s∈S

〈D | s〉A

where S is the collection of all states of D.

Definition 1.5. Given a virtual knot K with diagram D, the normalized arrow
polynomial of K is given by

AP (K) = AP (D) = (−A)−3ω(D)〈D〉A

where 〈D〉A is the arrow polynomial of D and

ω(D) = writhe(D) = (# positive crossings in D)− (# negative crossings in D).

Theorem 1.2. The normalized arrow polynomial is an invariant of virtual
knots.

Proof. See [18].

Remark 1.2. The Jordan Curve Theorem implies that the arrow polynomial is
equivalent to the normalized bracket polynomial for classical knots.

1.3.1 The Arrow Polynomial and Surface Genus

Recall that virtual knots are in 1-1 correspondence with equivalence classes of
knots in thickened oriented surfaces modulo 1-handle stabilization and Dehn
twists. This raises the question, given a knot, what is the minimal genus for
this embedding.
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Definition 1.6. Given a virtual knot K, the (orientable) surface genus of K,
s(K), is the minimal genus of the surface Sg such that S1 →֒ Sg×I corresponds
to K.

Theorem 1.3. (Theorem 4.5 of [9]) Let K be a virtual knot diagram with arrow
polynomial 〈K〉A. Suppose that 〈K〉A contains a summand with the monomial
Ke1

i1
Ke2

i2
· · ·Ken

in
where ij 6= ik for all j, k in the set {1, 2, . . . , n}. Then n deter-

mines a lower bound on the genus g of the minimal genus surface in which K
embeds. That is, if n ≥ 1 then the minimum genus is 1 or greater and for g ≥ 2
if n > 3g − 3 then s(K) > g.

Proof. The proof follows from showing that non-zero arrow numbers correspond
to essential curves on the surface. The bounds follow from considering the
maximal number of non-intersecting essential curves on the surface which do
not bound annuli.

Remark 1.3. In the g = 1 case it can be shown that if there is more than
1 non-intersecting essential curve then they must bound an annulus. Hence if
〈L〉A contains a summand with a monomial of the form KiKj with i 6= j then
the minimal surface genus is at least 2.

1.4 Examples

Figure 7: Virtual Knot 3.1

Following the naming conventions in Jeremy Green’s virtual knot tables [13]
we consider virtual knot 3.1 as shown in Figure 7. Figures 8 and 9 show how one
uses the state-sum formulas from the previous sections to arrive at the respective
polynomials. Note that by the previous theorem the arrow polynomial gives that
the surface genus of virtual knot 3.1 is at least one. The diagram above has
surface genus 2.
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Figure 8: Virtual Knot 3.1 Bracket Polynomial State-Sum

2 Categorification

2.1 Khovanov Homology for Virtual Knots

For completeness we recall the definition of Khovanov homology [26] [27]. Our
construction follows closely that of Dror Bar-Natan [4] and Kauffman [19]. For
other descriptions of the construction we point the reader to Khovanov [26]
[27], Wehrli [40], Viro [39], Shumakovitch [38], Elliott [11], Kauffman[19], and
Manturov [32]. For technical reasons involving the construction of the categori-
fication of the arrow polynomial we will take coefficients over the field Z2. It
should be noted that the construction of Khovanov homology for virtual knots
can be extended to arbitrary coefficients following the construction of Man-
turov in [32]. As one would expect, Manturov’s definition is equivalent to that
of Khovanov for classical knots.

Before we recall the construction, we first rewrite the normalized bracket
polynomial in order to simplify the definition. For a given virtual knot or link
K with corresponding diagram D, let c(K) denote the crossing number of D.
Sending 〈K〉 to A−c(K)〈K〉 and A to −q−1 we get the following definition of the
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Figure 9: Virtual Knot 3.1 Arrow Polynomial State-Sum

bracket polynomial:

〈Ø〉 = 1 ; 〈©K〉 = (q + q−1)〈K〉 ; 〈 〉 = 〈 〉 − q〈 〉

And, as pointed out in Bar-Natan [4] we can summarize the Khovanov
bracket via the axioms:

JØK = 0 → Z2 → 0 ; J©KK = V ⊗ JKK ; J K = Cone(J K
d

→ J K{1})

where V = Z2[X ]/(X2), {1} is the “degree shift by one” operation on the
quantum grading and Cone is the mapping cone over the differential d which
we have yet to define. Note that we will use the enhanced state definition
common in the literature, where each enhanced state corresponds to a labeling
of the circle by 1 or X. This has the correspondence

1 ⇔ q+1 and X ⇔ q−1.

Remark 2.1. For convenience we will continue to use the terms A-smoothing
and B-smoothing as defined earlier.
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More constructively, consider the collection of enhanced states S arising
from applying an A-smoothing and B-smoothing at each crossing and further-
more labeling each of the resulting circles by either 1 or X. Define the Kho-
vanov complex C•,• by setting Ci,j to be the linear span of states s ∈ S where
i = nB(s) = “the number of B-smoothings in s” and j = j(s) = nB(s) + λ(s)
where λ(s) = “the number of loops in s labeled 1 minus the number of loops
labeled X”. We will refer to i as the homological grading and j as the quantum
grading.

For any two states s, s′ that differ by replacing an A-smoothing by a B-
smoothing at a single site respectively we define a local differential, ds,s′ , such
that the homological grading is increased by 1 and the quantum grading is
preserved. Once this is defined, we then have the differential

d : Ci,j → Ci+1,j

defined by

d(s) =
∑

s′

ds,s′

All that remains is to determine the possible values for ds,s′ . Since we are
only concerned with resmoothing at a single site there are 3 possible scenarios
relating s and s′ in the setting of virtual knots.

Circle Annihilation

Circle Creation

Single-Cycle Smoothing

For any circles in state s not involved in resmoothing we set ds,s′ to act as
the identity on the enhanced states. For the enhanced circles involved in the
resmoothing we define m,∆ and η as follows:
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m :















1⊗ 1 → 1
1⊗X → X
X ⊗ 1 → X
X ⊗X → 0

∆:

{

1 → 1⊗X +X ⊗ 1
X → X ⊗X

η:

{

1 → 0
X → 0

We are now in a position to define the Khovanov homology of a knot or link
K,

H(K) = JKK[−n−]{n+ − 2n−}

where [l] is the shift operator on the homological grading and {l} is the shift op-
erator on the quantum grading. Moreover we can define the Khovanov invariant
to be the Poincaré polynomial:

Kh(K) :=
∑

i,j

tiqjdimHi,j(K)

Example 2.1. Consider the virtual knot 3.1 in Figure 7. The Khovanov com-
plex for the unenhanced states is shown in Figure 10. It is a small exercise to
show Kh(V K3.1) = q + q−1

Figure 10: Virtual Knot 3.1 Khovanov Homology Complex

We will omit the well known proof that d2 = 0, which amounts to checking
all cases in the virtual setting, as well as the proof of invariance under the Rei-
demeister Moves. These details can be found in [26], [4], [5], [32], and [39].
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If not for the self-imposed Z2 setting, we could also discuss applications of
Lee’s spectral sequence [29], [37] in the virtual setting. We plan to return to
this subject in a future paper.

2.2 Categorifications of the Arrow Polynomial

In 2009 Dye, Kauffman and Manturov [10] introduced two categorifications of
the arrow polynomial for virtual knots. Both constructions are homology the-
ories defined over Z2 and agree with Khovanov homology over Z2 for classical
knots. We remark that this construction is similar in flavor to the construction
of Khovanov homology described in the previous section. The major difference
in the constructions presented here are the considerations of additional gradings
arising from the arrow numbers. We will use the same renormalization for cat-
egorification of the arrow polynomial as we did in Khovanov homology, namely
sending 〈K〉 to A−c(K)〈K〉 and A to −q−1, where c(K) is the crossing number
for the diagram of K.

We first recall the construction introduced in [10] introducing the multi-
ple grading and vector grading. Consider the collection of enhanced states
S arising from applying an A-smoothing and B-smoothing at each crossing,
where A- and B-smoothings are defined as in Figure 5, and furthermore la-
beling each of the resulting circles by either 1 or X. Define the arrow complex
C•,•,•,•
A by setting Ci,j,m,v

A to be the linear span of enhanced states s ∈ S where
i = nB(s) = “the number of B-smoothings in s” and j = j(s) = nB(s) + λ(s)
where λ(s) = “the number of loops in s labeled 1 minus the number of loops
labeled X”. We will refer to i as the homological grading and j as the quantum
grading.

Given a state s define the multiple grading of s, mg(s), to be the set of arrow
numbers of s.

Given an enhanced state s, consider the collection Λs of enhanced circles
carrying nonzero arrow numbers. For a circle c ∈ Λ with arrow number p let
the order of c, o(c), be the value of k such that p = 2k−1 ∗ l with gcd(2, l) = 1.
Define the function vg(c) by vg(c) = eo(c) if c is labeled by X and vg(c) = −eo(c)
if c is labeled by 1, where e1, e2, . . . is the standard basis for R∞. Then the vector
grading, vg(s), is given by

vg(s) =
∑

c∈Λ

vg(c)

Example 2.2. The state s = has

mg(s) = {K1,K2} and vg(s) = (−2, 1, 0, 0, 0, ...)

As before, for any two states s, s′ that differ by an A- to B- resmoothing at a
single site it remains to define a local differential ds,s′ such that the homological
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grading is increased by 1 and the quantum grading, multiple grading and vector
grading are all preserved. Once this is defined, we have the differential

d : Ci,j,m,v
A → Ci+1,j,m,v

A

defined by

d(s) =
∑

s′

ds,s′

Finally, The local differential ds,s′ is defined by ds,s′ = ∂̃s,s′ ◦ ∂s,s′ where
∂s,s′ is the Khovanov local differential between the corresponding states and

∂̃s,s′ is the projection map preserving the multiple grading and vector grading.
It is a short exercise to show that this satisfies the requisite d2 = 0 through
checking all possible cases. A key observation for the proof is noting that for
circle annihilation and circle creation arrow numbers are ±-additive while a
single cycle resmoothing causes the arrow number to change by 1 as is shown
in Figure 11.

Figure 11: The Effect of Resmoothing on Arrow Numbers

We are now in a position to define the homology for the fully-graded categori-
fication of the arrow polynomial of a knot or link K, HA(K), by renormalizing
analogously to Khovanov homology. Moreover we can define the fully-graded
arrow categorification invariant to be the Poincaré polynomial:

AKh(K) :=
∑

i,j∈Z,m∈M(D),v∈V (D)

m× v × ti × qj × dimHA
i,j,m,v(K)

where

S(D) = {enhanced states of D} , M(D) =
⋃

s∈S

mg(s) and V (D) =
⋃

s∈S

vg(s)

for a diagram D of K.
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Example 2.3. Consider the virtual knot 3.1 in Figure 7. The cube complex for
the unenhanced states is shown in Figure 12. It is a small exercise to show

AKh(VK3.1) =
vg(2, 1)K[2]

q3t
+
vg(1, 2)K[1]

q3
+
vg(2,−1)K[2]

qt
+qvg(1,−2)K[1]+

2K[1]

q

Remark 2.2. To translate the polynomial into the form of the definition one
only has to see how to read the multiple grading and vector grading for a given
monomial. The multiple grading is simply the collection of coefficients of the
form K[i](= Ki). The vector grading is obtained as follows. Each coefficient
of the form vg(i, a) corresponds to having coefficient ai = a when the vector

grading is written as
∑

i∈N

aiei. The product of vector gradings corresponds to the

sum of the individual gradings. For example vg(2, 1)vg(1,−1) corresponds to the
vector grading (−1, 1, 0, 0, 0, . . .).

Figure 12: Virtual Knot 3.1 Arrow Polynomial Categorification Complex

We will again omit the proof of invariance under the Reidemeister Moves,
which is similar to the equivalent proof for Khovanov homology. Similarly we
leave out most of the proof that d2 = 0 other than to point out why we work
over Z2. As with Khovanov homology, the proof follows by showing that the
differential commutes for every possible face with every possible grading con-
figuration in the cube complex. Much of this is follows from the additivity
relations for arrow numbers under resmoothing. However, the face in Figure 13
is an example of a general type necessitating working over Z2.
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Figure 13: An example of the necessity of working over Z2

In [10] a simpler categorification for the arrow polynomial is introduced. We
can arrive at this construction through a simple modification of the differential
∂̃s,s′ . Suppose we represent the vector grading as vg(s) =

∑

i∈N
ais ∗ ei where

e1, e2, . . . is the standard basis for R
∞. Rather than preserving the multiple

grading and vector grading, ∂̃s,s′ is defined by

∂̃s,s′ =

{

1 , if a1s ≡ a1s′ mod 2
0 , if a1s 6≡ a1s′ mod 2

We have constructed a Mathematica program to calculate all of the categori-
fications mentioned in this section for knots with at most 6 classical crossings
based on Jeremy Green’s table [13]. We have been unable to find two virtual
knots that are distinguished by the fully-graded categorification and not by the
simpler categorification. Additionally, we have no examples of knots which are
distinguished from the unknot by the categorification and not by the arrow
polynomial.

2.2.1 The Fully-Graded Arrow Categorification and Surface Genus

We may extend Theorem 1.3 on surface genus bounds produced by the arrow
polynomial to the fully-graded categorification as follows.

Theorem 2.1. Let K be a virtual knot diagram with fully-graded arrow cat-
egorification invariant AKh(K). Suppose that AKh(K) contains a summand
having multiple grading M, a nonempty set of arrow numbers, with |M| = n.
Then n determines a lower bound on the genus g of the minimal genus surface
in which K embeds. That is, if n = 1 then the minimum genus is at least 1, if
n = 2 then the minimum genus is 2 or greater and for n ≥ 3 if n > 3g− 3 then
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s(K) > g.

We add a bit more detail to the earlier sketch to highlight why we only get
the extension in the fully-graded categorification. The proof relies on the fol-
lowing fact from [15].

Lemma 2.2. Consider a collection A of non-intersecting essential curves (i.e.
not contractible) on an orientable surface Sg of genus g no pair of which co-
bound an annulus. If g = 1 then |A| ≤ 1 and if g ≥ 2 then |A| ≤ 3g − 3.

Proof of 2.1: The proof follows by the above lemma once we show that
multiple grading corresponds to n non-intersecting essential curves of which no
pair co-bound an annulus. Since the multiple grading is an invariant of the knot
we have that any embedding into Sg × I for K must contain a state s with
mg(s) = A.
To see that each element of A is an essential curve suppose for contradiction
Kil ∈ A bounds a disk. By the disoriented smoothing relation each cusp in Kil

is paired with another cusp somewhere in s corresponding to the other half of the
smoothing. Since Kil bounds a disk (in the projection to Sg) the Jordan Curve
Theorem implies the interior and exterior cusps cannot be paired. If we consider
only the internal cusps in Kil they too cannot be paired with one-another (for
odd arrow numbers this follows from parity and for even arrow numbers this
follows from orientation.) Thus an inner cusp of Kil must be paired with the
cusp either of another Kij or of circle with an even number of canceling cusps.
In either case we produce another cusps with which to repeat the argument.
Since our knot has a finite number of crossing (hence a finite number of cusps)
this is a contradiction. A similar argument shows that given Kil ,Kij ∈ A with
il 6= ij they cannot co-bound an annulus.

2.3 Categorification and Width

The subject of the width of Khovanov homology for various classes of knots
has been of interest since Khovanov’s seminal work [26]. Here we produce a
definition of width for the virtual setting, recall known results in the classical
setting and give some basic results in the virtual knot setting.

In the classical case it was noticed early on that when plotting the homologi-
cal degree versus the quantum degree for the support of the Khovanov invariant
the majority of small knots were supported on 2 diagonals corresponding to the
signature of the knot ±1. In the classical case we say that a knot is H-thin
if its Khovanov homology is supported on 2 diagonals corresponding to lines
t− 2q = constant, else it is called H-thick. The thickness of a number of classes
of classical knots is known and a recent summary of the known results can be
found in [11]. In the case of alternating knots Lee [29] proved that they are
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H-thin. Since all alternating knots are of even parity (which we will define
shortly), Lee’s proof extends to alternating virtual knots as was pointed our by
Viro [39].

In the virtual knot setting we need to re-examine our definition of H-thick
and H-thin. If we wish to use the thickness of the homology to determine if the
Khovanov homology holds additional information over the Jones polynomial we
quickly run into trouble in the virtual case. It is no longer enough to determine if
the homology is supported on 2 diagonals to determine if the homology contains
more information than the polynomial (not to mention that the signature is not

well-defined). For instance virtual knot 2.1 has bracket polynomial

(A4 +A6 −A10)(−A2 − A−2)

and Khovanov invariant

(q6 + q4)t2 + (q4 + q2)t+ q3 + q.

By the classical definition virtual knot 2.1 is H-thick as it is supported on 4
diagonals. However, the Khovanov homology does not hold any additional in-
formation.

Two good questions to ask are (1) for a given virtual knot, on how many
diagonals is the homology H(K) supported and (2) what is the maximal width
between the diagonals (i.e. cmax− cmin for the supported diagonals t− 2q = c.)
We call the solution to the first the thickness of the homology and denote it
by Th(H(K)) for a given knot K. The second is referred to as the width of the
homology and denoted by W (H(K)).

More can be said about knots with orientable atoms. We recall from Man-
turov [33] that for a given knot K, an atom for K is a pair (M,Γ) where M is a
surface without boundary (not necessarily connected or orientable) and Γ is a
4-valent graph on M such that (M,Γ) admits a checkerboard coloring. We say
an atom is orientable if M is orientable.

In [34] Manturov proves that for knots with orientable atoms we have:

Theorem 2.3. For a knot K with orientable atom, Th(Kh(K)) ≤ g(K) + 2
where g(K) is the Turaev genus (or atom genus) of the knot.

The proof requires a careful examination of the interplay between the Turaev
genus of the knot and the number of crossings in the knot diagram. Note that
the orientable condition is important. Virtual knot 2.1 has Th(Kh(K)) = 4
(as shown above), however g(K) = 1/2 since K can be placed on the projective
plane in a checkerboard fashion.
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Asking the same questions for the fully-graded arrow categorification we im-
mediately see:

Theorem 2.4. Given a virtual knot K suppose the arrow polynomial 〈K〉A
contains a monomial with non-zero arrow number Ke1

i1
. . .Ken

in
then

W (AKh(K))) ≥ 2(
∑

i=1,...,n

ei)

Proof. This is an immediate consequence of categorification. Since we have cat-
egorified up to multiple grading and vector grading the monomial with non-zero
arrow number Ke1

i1
. . .Ken

in
corresponds to a term in AKh(K). If we consider

the vector gradings related to the corresponding unenhanced state in the cube
complex we see the the largest and smallest correspond to the “all 1” label-
ing and the“all X” labeling. The corresponding width between these states is

2(
∑

i=1,...,n

ei) giving the theorem.

The above proof actually gives more if we consider all possible labelings.

Theorem 2.5. Given a virtual knot K suppose the arrow polynomial 〈K〉A
contains a monomial with non-zero arrow number Ke1

i1
. . .Ken

in
, then

Th(AKh(K))) ≥
∑

i=1,...,n

ei

2.4 Computations and Examples

Inspired by Dror Bar-Natan’s program for Khovanov homology [4] we have cre-
ated a collection of Mathematica programs which calculate the categorifications
of the arrow polynomial mentioned above. More information on these programs
can be found in the Appendix. The program are also available from the first
authors website. The following examples have been computed using the list of
knots available at Jeremy Green’s Knot Tables [13] as well as those in LinKnot
[16].

2.4.1 Identical Khovanov Invariant but Distinguished by a Categori-

fication of the Arrow Polynomial

Example 2.4. Virtual knots 5.129 in Figure 14 and 5.267 in Figure 15 both
have Khovanov invariant

Kh(5.129) = Kh(5.267) =
1

q5t2
+

1

q3t2
+

1

q3t
+ q2t+

1

q2
+

1

qt
+ q +

1

q
+ t+ 1
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Figure 14: Virtual Knot 5.129

Figure 15: Virtual Knot 5.267

and arrow polynomial

AP (5.129) = AP (5.267) = −A10+A6−A4K2−2A2K12−A2K1+
K1

A2
+2A2−K2

However,

AKh(5.129) =
vg(2, 1)K[2]

q3t
+

2vg(1, 2)K[1]

q3
+ q2tvg(1,−1)K[1] +

vg(1, 1)K[1]

q2

+ qtvg(2,−1)K[2] +
vg(2,−1)K[2]

qt
+

tvg(2, 1)K[2]

q

+ 2qvg(1,−2)K[1] + tvg(1, 1)K[1] + vg(1,−1)K[1] +
4K[1]

q

+
1

q5t2
+

1

q3t2
+

2

q3t
+

2

qt
+ qt+

t

q
+ q +

1

q
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and

AKh(5.267) =
vg(2, 1)K[2]

q3t
+

2vg(1, 2)K[1]

q3
+ q2tvg(1,−1)K[1] +

vg(1, 1)K[1]

q2

+ qtvg(2,−1)K[2] +
vg(2,−1)K[2]

qt
+

tvg(2, 1)K[2]

q

+ 2qvg(1,−2)K[1] + tvg(1, 1)K[1] + vg(1,−1)K[1] +
4K[1]

q

+
1

q5t2
+

1

q3t2
+

2

q3t
+

2

qt

2.4.2 Rational Virtual Knots

Lee [29] showed that the Khovanov homology of an alternating knot is com-
pletely determined by its Jones polynomial. Recall that every classical rational
knot is isotopic to an alternating knot (see Theorem 3.5 of [25]). Hence the
Khovanov homology of every classical rational knot is completely determined
by its Jones polynomial.

This result of Lee is not the case for virtual knots and the categorifications
of the arrow polynomial. The following examples were found with the help of
Slavik Jablan and the program LinKnot [16].

Figure 16: Virtual Knots with Equivalent Polynomials but Distinguished by a
Categorification

Both of the knots in Figure 16 have identical normalized bracket polynomial

1

A26
+

1

A24
−

1

A20
−

1

A18
+

1

A12
−

1

A10
−

1

A8
−

1

A6

and normalized arrow polynomial

A10 +A8K1−
1

A6
− 2A4K1−

K1

A4
+

1

A2
+ 2K1

The knot on the left hand side has Khovanov invariant
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q13t5 + q12t4 + q11t5 + q11t4 + q10t4 + 2q10t3

+q9t4 + 2q8t3 + 2q8t2 + 2q6t2 + q6t+ q5 + q4t+ q3

and fully-graded arrow categorification invariant

q12t4vg(1,−1)K[1] + q10t4vg(1, 1)K[1]

+2q10t3vg(1,−1)K[1] + 2q8t3vg(1, 1)K[1]

+2q8t2vg(1,−1)K[1] + 2q6t2vg(1, 1)K[1]

+q6tvg(1,−1)K[1] + q4tvg(1, 1)K[1] + q13t5

+q11t5 + q11t4 + q9t4 + q5 + q3

while the knot on the right hand side has Khovanov invariant

q13t5 + q12t4 + q11t5 + q11t4 + q10t4 + 2q10t3

+q9t4 + q9t3 + q9t2 + 2q8t3 + 2q8t2 + q7t3 + 2q7t2 + q7t

+2q6t2 + q6t+ q5t2 + q5t+ q5 + q4t+ q3

and fully-graded arrow categorification invariant

q12t4vg(1,−1)K[1] + q10t4vg(1, 1)K[1]

+2q10t3vg(1,−1)K[1] + 2q8t3vg(1, 1)K[1]

+2q8t2vg(1,−1)K[1] + 2q6t2vg(1, 1)K[1]

+q6tvg(1,−1)K[1] + q4tvg(1, 1)K[1] + q13t5

+q11t5 + q11t4 + q9t4 + q9t3 + q9t2 + q7t3 + 2q7t2

+q7t+ q5t2 + q5t+ q5 + q3

3 Parity and Virtual Knots

3.1 Parity and the Reidemeister Moves

Given a diagramD for a knot K label each crossing uniquely 1 through n, where
n is the total number of crossings in D. Let P an arbitrary base-point on the
knot. Starting at P and following the orientation of the knot we can construct a
sequence of length 2n with terms corresponding to each crossing we encounter.
Each term is a 3-tuple of the form (O or U , Crossing Number, ±) where O or U
corresponds to an over or under-crossing respectively and ± corresponds to the
sign of the crossing. The resulting code is referred to as the (signed, oriented)
Gauss code for the diagram D of the knot K.

The Gauss code can be represented diagrammatically as follows. Given a
circle (often refereed to as the core circle) place upon it in a counterclockwise
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fashion 2n points where each point is labeled by a crossing name (an integer
between 1 and n) in the cyclic order corresponding to the Gauss code. Between
the two occurrences of a crossing on the core circle, place a signed, oriented
chord where the sign corresponds to the crossing sign and the orientation goes
from the over crossing to the under crossing. We call this the chord diagram for
D [14], [24]. For example, the knot 3.1 in Figure 7 has Gauss Code

“O1−, O2−, U1−, O3+, U2−, U3+′′

and chord diagram as in Figure 17.

Figure 17: Chord Diagram for Virtual Knot 3.1

Definition 3.1. Given a diagram D for a knot K we can label each crossing as
even or odd in the following manner. For each crossing v locate the 2 occur-
rences of v in the Gauss code for D. If the number of crossing labels between the
two occurrences of v is even then label the crossing even. Else it is labeled odd.

Remark 3.1. This parity is well-defined for a 1-component links (i.e. knots)
as the number of crossing labels in the Gauss code is 2n where n is the number
of crossings.

It is important to notice how parity behaves under the classical Reidemeister
moves. Note that virtual Reidemeister moves do not change the Gauss code or
chord diagram and thus do not affect parity.

• Reidemeister I

A first Reidemeister move is always even, as is shown in Figure 18

Figure 18: Reidemeister I equivalence for flat chord diagram

• Reidemeister II

The two crossings involved in a second Reidemeister move are either both
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even or both odd. To see this, note that in Figure 19 if the number of
crossings before the second Reidemeister move is n+2 and a and b denote
the number of markings on the core circle as labeled in the figure then
a+ b = 2n is even. Hence either a and b are both even or both odd.

Figure 19: Reidemeister II equivalence for flat chord diagram

• Reidemeister III

In a third Reidemeister move either all crossings are even or two are even
and one is odd. To see this note that in Figure 20 if the number of
crossings not involved in the third Reidemeister move is n and a, b and c
denote the number of markings on the core circle as labeled in the figure
then a+ b+ c = 2n is even. Hence either a, b and c are all even or two are
odd and one is even.

Figure 20: Reidemeister III equivalence for flat chord diagram

3.2 Manturov’s Graphical Parity Bracket Polynomial

Manturov [31] introduced the following graphical modification for the bracket
polynomial.

Definition 3.2. The parity bracket polynomial of a virtual knot K is defined
by the relations in Figure 21.

Definition 3.3. Given a virtual knot K with diagram D, the normalized parity
bracket polynomial of K is given by

PFA(K) = PFA(D) = (−A)−3ω(D)〈D〉P
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Figure 21: Parity Bracket Polynomial Skein Relations

where 〈D〉P is the parity bracket polynomial of D and

ω(D) = writhe(D) = (# positive crossings in D)− (# negative crossings in D).

Theorem 3.1. The parity bracket polynomial is an invariant of virtual knots.

Proof. We give an outline of the proof. The majority of this proof follows from
Kauffman’s proof of invariance for the bracket polynomial [21]. You can find a
similar proof by Manturov in [31].

1. Reidemeister I follows from the writhe normalization.

2. Reidemeister II follows for even crossing as in the classical case and for
odd crossing by the reduction relations.

3. Reidemeister III follows by applying the usual trick at a single even cross-
ing. (Note in the mixed case there is only 1 even crossing to choose.)

Example 3.1. Figure 22 displays the calculation of the parity bracket polyno-
mial for virtual knot 3.1 in Figure 7.

Notice that the parity bracket polynomial contains graphical coefficients.
Since all of the remaining crossings are virtual or graphical (i.e. coming from an
odd crossing) the only skein relations we may apply to the graphical coefficients
are the graphical Reidemeister II move as well as the graphical detour move.

3.2.1 The Parity Bracket Polynomial and Surface Genus

Definition 3.4. Given a graphical coefficient D the minimal surface genus
s(D) is the minimal genus for an orientable surface Sg such that there is an
embedding D → Sg. Given the product of graphical coefficients D1D2 · · ·Dn the
surface genus s(D1D2 · · ·Dn) is the minimal genus for an orientable surface Sg

such that there exist disjoint embedding Di → Sg for i ∈ {1, . . . , n}.
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Figure 22: Virtual Knot 3.1 Graphical Parity Bracket Polynomial

Remark 3.2. Note that in the case of the parity bracket polynomial the minimal
surface genus for a graphical coefficient is the same as the minimal surface
genus for the underlying flat virtual knot. Hence for a graphical coefficient D,
s(D) ≥ s(K) where K is any virtual knot arising from D by resolving all crossing
in any manner.

Theorem 3.2. Given a knot K, the parity bracket polynomial gives a lower
bound on the surface genus of K, s(K). More precisely, if PFK(A) contains a
monomial with graphical coefficients D1D2 · · ·Dn then

s(D1D2 · · ·Dn) ≤ s(K)

Proof. Suppose K is given by an embedding S1 →֒ Sg×I and s′ is the state of the
parity bracket polynomial corresponding to the term with graphical coefficients
D1D2 · · ·Dn. Projecting s down onto Sg ×{0}, we see that the minimal surface
genus of s′ is at least s(D1D2 · · ·Dn). Since the polynomial is an invariant of
the knot this holds for every projection.

Example 3.2. Let K be virtual knot 4.72 in Figure 23. It is a short exercise
to show 〈K〉A = 1 and that

〈K〉P = −A4 − A2 +D2[1]− 2−
1

A2
−

1

A4
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where D2[1] = . Note that s(D2[1]) = 1 [8] and hence s(K) ≥

1. Note that the diagram in Figure 23 has genus 2. It is not currently known to
us if the minimal surface genus is 1 or 2. Similarly the diagram in Figure 23
has virtual crossing number 3. It is unclear if there is a diagram for this knot
with a lower virtual crossing number.

Figure 23: Virtual Knot 4.72

3.3 A Parity Arrow Polynomial

We use Manturov’s idea of graphical coefficients [31] to extend the arrow poly-
nomial via parity as follows.

Definition 3.5. The (un-normalized) parity arrow polynomial of a virtual knot
K is defined by the relations in Figures 24 and 25. We expand as usual on the
even crossing and make a graphical vertex for odd crossings.

Figure 24: Parity Arrow Polynomial Crossing Skein Relations

Definition 3.6. Given a virtual knot K with diagram D, The normalized parity
arrow polynomial of K is given by

PAPA(K) = PAPA(D) = (−A)−3ω(D)〈D〉PA

26



Figure 25: Parity Arrow Polynomial Reduction Skein Relations

where 〈D〉PA is the parity arrow polynomial of D and

ω(D) = writhe(D) = (# positive crossings in D)− (# negative crossings in D).

Theorem 3.3. The normalized parity arrow polynomial is an invariant of vir-
tual knots.

Proof. As in the case of the parity bracket polynomial much of the proof is the
same as in the non-parity version.

1. Reidemeister I follows from the writhe normalization.

2. Reidemeister II follows for even crossing by the equivalent proof for the
arrow polynomial and for odd crossing by the reduction relations.

3. Reidemeister III follows by applying the usual trick at a single even cross-
ing in conjunction with the cusped ‘Reidemeister II’-like relation. (Note
in the mixed case there is only 1 even crossing to choose.) See Figure 26
for one of diagramatic proofs. The others follow similarly.

Example 3.3. The normalized parity arrow polynomial for virtual knot 4.70 in
Figure 27 is equal

D2[3]A
8 + 2K1A

6 −A6 −A2

where D2[3] is the graphical coefficient . We should note that the

parity bracket polynomial of virtual knot 4.70 also contains a graphical coeffi-
cient.
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Figure 26: Invariance for one of the mixed Reidemeister III move.

Figure 27: Virtual Knot 4.70

Remark 3.3. In [18] Kauffman introduced a polynomial called with extended
bracket polynomial which is a generalization of the arrow polynomial. One key
difference between these two polynomials is that the cusps in the extended bracket
polynomial are maintained in associated pairs. One can extend the parity arrow
polynomial in a similar fashion by replacing the mixed ‘Reidemeister II’-like

relation with a similar relation .

3.3.1 The Parity Arrow Polynomial and Surface Genus

Similar to the parity bracket polynomial we have the following lower bound on
the surface genus.

Theorem 3.4. Given a knot K, the parity bracket polynomial gives a lower
bound on the surface genus of K, s(K). More precisely, if 〈D〉PA contains a
monomial with graphical coefficients D1D2 · · ·Dn then

s(D1D2 · · ·Dn) ≤ s(K)
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Proof. This is identical to the proof for the parity bracket polynomial.

Example 3.4. Virtual knot 5.5 in Figure 28 has arrow polynomial

A10K12 −A10K1− 3A6K12 +3A6K1+A6 −
1

A6
− 2A4K2− 3A2K1+

K1

A2
+2A2

and parity arrow polynomial

−A4D4[1]−A6 − 2A2 −
1

A2

Where D4[1] = Note that by [9] the arrow polynomial gives a

minimal surface genus, s(K) ≥ 1. However, in [8] Dye and Kauffman show
that a Kishino knot lying under D4[1] (in the sense of resolving graphical nodes
into knot crossings) has surface genus 2. Hence the parity arrow polynomial
gives the lower bound s(K) ≥ 2.

Figure 28: Virtual Knot 5.5

3.4 Z-Equivalence and Graphical Parity Polynomials

When computing the normalized bracket polynomial for virtual knots the rela-
tion of Z-Equivalence, depicted in Figure 29, goes undetected. Passing to the
parity bracket polynomial we have the option to add the corresponding graph-
ical relation to the coefficients (i.e. including the relation in Figure 29 when
the classical crossings are replaced by graphical nodes.) We call the resulting
polynomial the z-parity bracket polynomial

Going a step further, we can choose to completely ignore the graphical co-
efficients by sending the graphical nodes to virtual crossings. This leads to the
following forgetful parity bracket polynomial.
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Figure 29: Z-Equivalence and the Bracket Polynomial

Lemma 3.5. The parity bracket polynomial is strictly stronger than the z-parity
bracket polynomial which in turn is strictly stronger than the forgetful parity
bracket polynomial.

Proof. For the parity bracket polynomial and z-parity bracket polynomial the
follows immediately from the definition. For the forgetful parity bracket polyno-
mial and z-parity bracket polynomial, notice that the action of swapping an odd
crossing for a virtual crossing in the Z-Equivalence relation yields an identity.

3.5 Manturov’s Parity Filtration

In [31] Manturov introduced the following descending filtration on the category
of virtual knots. Given a virtual knot K with chord diagram D. Let D0 = D be
the equivalence class of D up to Reidemeister moves and define Di+1 to be the
equivalence class of Di after removing all odd chords (or equivalently, turning
odd crossings into virtual crossings.)

This is well-defined since parity is invariant under the Reidemeister moves
as shown above, most notably this filtration does not introduce the forbidden
move from Figure 3 when applied to the mixed-parity Reidemeister III move.
Hence for 2 representatives Di, D

′
i ∈ [Di] := Equivalence Class of Di we have

[Di+1] ≡ [D′
i+1].

Diagrammatically this filtration is described by the map sending odd cross-
ing to virtual crossing and hence the forgetful parity polynomials are precisely
an application of the respective polynomial on the filtration.

Theorem 3.6. 1. For any virtual knot this filtration is finite. (i.e. there
exists n such that Dn = Di for n ≤ i.)

2. For any classical knot this filtration is of the form D0 = D1 = . . ., that is
all levels of the filtration are identical.

Proof. 1. This follows from the finiteness of crossings.

2. Every classical knot is equivalent to a knot with all even crossings.

It is not difficult to construct a family of virtual knots for which given an n,
Dn = Di for n ≤ i. Consider the family in Figure 30. Here the knot F1 is the
2-crossing virtual knot (hence not equivalent to the unknot.) Each additional
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member of the family is produced from its predecessor by the addition of two
odd positive crossing arcs and which become the only odd arcs in the new dia-
gram. Since we are unable to cancel the two new odd crossings with one another
we see each new virtual knot created in this way is unique from its predecessor.
Moreover for Fn it is easy to verify that for Dn = Di = Unknot for n ≤ i.

Figure 30: A Parity Filtration Family

3.6 Extending the Parity Polynomials to Links

For this subsection we will take a wider view and consider the space of virtual
links (2 or more components). One should note that our definition of even and
odd parity does not naturally extend. For example, the links in Figure 31 illus-
trate some of the difficulty in the natural extension.

Figure 31: Examples of Difficulty in Extending the Definition to Links

Omitting signs, the left link in 31 has Gauss code “O1, U1, O2;U2” while
the other has Gauss code “U1;O1, O2;U2”. In the first of these Crossing 1 is
both even and odd in the first component while Crossing 1 is either even or odd
depending upon whether you examine the first or second link component.

We may circumvent this pitfall by defining even and odd for self-crossings
based on the parity of self-crossing in each component while labeling crossings
shared by 2 components as link crossings.

Example 3.5. The link in Figure 32 has Gauss code

“O1, O7, O3, U1, U2, U3, O2;U4, O5, U6, U5, O4, O6, U7′′
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Figure 32: Link Parity Crossing Labelings

Crossings 1, 2, 4 and 5 are odd, crossings 3, and 6 are even and crossing 7 is a
link crossing.

As we did with odd crossings, we investigate the invariance of crossings be-
tween links to provide the framework for generalizing the parity polynomials.
We will call a crossing where both arcs involved are in the same link component
a self-crossing while a crossing whose arcs are in separate components a link-
crossing.

• Reidemeister I

In a Reidemeister I move only a single link component is involved hence
is always an even self-crossing.

• Reidemeister II

The two arcs involved in a second Reidemeister move are either both
in the same component or each is in a different component. Thus either
both crossings above are self-crossings or both crossings are link-crossings.

• Reidemeister III

In a third Reidemeister move either all strands involved are in one com-
ponent, or two in one component and one in another or all three in sepa-
rate components. Thus either all crossings are self-crossings, or one self-
crossing and two link-crossings or three link-crossings respectively.

This motivates the following definitions for link parity polynomials.

Definition 3.7. Given a diagram D for a virtual knot K the (link) parity
bracket polynomial of K is defined by the relations in Figures 33 and 34.
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Figure 33: Link Parity Bracket Polynomial Smoothing Relations

Figure 34: Link Parity Bracket Polynomial Reduction Relations

Definition 3.8. Given a virtual link K with diagram D, The normalized (link)
parity bracket polynomial of K is given by

PFA(K) = PFA(D) = (−A)−3ω(D)〈D〉P

where 〈D〉P is the parity bracket polynomial of D and

ω(D) = writhe(D) = (# positive crossings in D)− (# negative crossings in D).

Theorem 3.7. The (link) parity bracket polynomial is an invariant of virtual
knots.

Proof. 1. RI: A crossing involved in a Reidemeister I move is always an
even self-crossing, hence invariance follows from the writhe normalization
as in the normalized bracket polynomial.

2. RII: Reidemeister II follows for even self-crossing as in the classical case
and for odd self-crossing and link-crossings by the reduction relations.

33



3. RIII: Here we have three cases to consider:

(a) Reidemeister III for three self-crossings follows by applying the usual
trick at a single even crossing.

(b) For a Reidemeister III involving one self-crossings and two link cross-
ings, if the self-crossing is even then the usual trick with the RII-like
move for link crossings gives invariance. If the self-crossing is odd
then the result is immediate by the reduction relations.

(c) Reidemeister II for three link-crossings also follows immediately from
the reduction relations.

4. Mixed Move: For an even self-crossing this is the standard proof and for
an odd self-crossing or link-crossing it follows from the reduction relations.

Example 3.6. Figure 35 displays the calculation for the (link) parity bracket
polynomial for the given 2-component link.

Figure 35: Graphical Link Parity Bracket Polynomial Example

Similarly for the parity arrow polynomial we have:

Definition 3.9. Given a diagram D for a virtual link K the (link) parity arrow
polynomial of K is defined by the relations in Figures 33 and 34.

Definition 3.10. Given a virtual link K with diagram D, The normalized (link)
parity arrow polynomial of K is given by

PAPA(K) = PAPA(D) = (−A)−3ω(D)〈D〉PA

where 〈D〉PA is the parity arrow polynomial of D and

ω(D) = writhe(D) = (# positive crossings in D)− (# negative crossings in D).

Theorem 3.8. The (link) parity arrow polynomial is an invariant of virtual
knots.
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Figure 36: Link Parity Arrow Polynomial Smoothing Relations

Figure 37: Link Parity Arrow Polynomial Reduction Relations
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Proof. This proof is nearly identical to the one above. The only difference is
the proof for the Reidemeister III move involving an even self-crossing and two
link crossings. Here we use a cusped RII-like move for link crossing in the usual
trick for RIII invariance.

Remark 3.4. We have used a similar extension to links in [17] to generalize
the construction of Parity Biquandles.

4 Parity and Categorifications

We would like to categorify the parity polynomials in an analogous manner to the
original polynomials by adding an additional grading, similarly to the construc-
tion of the categorification of the arrow polynomial, based on the equivalence
classes of graphified flat knot diagrams. However, it is fairly simple to construct
an example showing this to be naive. For instance, consider the virtual knot in
Figure 38.

Figure 38: Kishino Knot

Performing the available Reidemeister II move, the resulting diagram is one
of three virtual knots often referred to as Kishino knots. Figure 39 shows that
both the parity bracket polynomial and parity arrow polynomial of the knot is
the graphified version of the diagram as there are no graphical Reidemeister II
moves or detour moves available.

Figure 39: Graphical Parity Bracket Polynomial of a Kishino Knot

However, when we consider the Khovanov complex (the arrow polynomial
categorifications have equivalent complexes) as in Figure 40 we can see that d2 6=
0. In particular, the all-A and all-A−1 states are both graphically equivalent
to two circles while in the middle we have the top state graphically equivalent
to a graphified Kishino knot and the bottom state graphically equivalent to
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3 circles. Hence, as shown in the figure, the upper differentials are both the
0-map. Considering the element (x⊗ 1), we see

d2(x⊗ 1) = (1 ⊗m) ◦ (∆⊗ 1)(x⊗ 1) = (1⊗m)(x⊗ x⊗ 1) = x⊗ x 6= 0

Figure 40: Graphical Parity Kishino Complex

However, this does not prevent us from applying Manturov’s parity filtration
along with the forgetful version of the parity categorifications. In doing so we
clearly lose some of the power of the parity polynomial (for instance the Kishino
knot is no longer detected) but we still retain an invariant which is capable of
detecting non-classicality. We can define the parity Khovanov homology (re-
spectively, parity arrow categorification) to be the homology theory produced
by first applying Manturov’s parity filtration to the given knot and then com-
puting the Khovanov homology (respectively, the arrow categorification) of the
resulting knot. Similarly, define the parity Khovanov invariant (respectively,
parity arrow invariant) to be the resulting Poincaré polynomial as produced
previously.

For instance, consider the knot in Figure 41. Applying the parity Khovanov
homology we have that the original knot has Khovanov invariant

1

q9t3
+

1

q8t2
+

1

q7t3
+

1

q7t2
+

1

q6t2
+

1

q6t
+

1

q5t2
+

1

q5
+

1

q4t
+

1

q3

Applying the filtration and turning crossings 1 and 4 into virtual crossings
we have that the underlying knot at this level of the filtration is the two crossing
virtual knot. Hence virtual knot 4.9 has parity Khovanov invariant

1

q6t2
+

1

q4t2
+

1

q4t
+

1

q3
+

1

q2t
+

1

q

and moreover is non-classical.

Using Jeremy Green’s virtual knot table [13] we have been able to calculate
the parity categorifications on knots with at most 6 real crossings. Table 1 is
a collection of planar diagram codes for 8 knots which are not distinguished
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Figure 41: Virtual Knot 4.9

from the unknot via the bracket polynomial, arrow polynomial or their cate-
gorifications, but are distinguished from the unknot via the parity arrow cate-
gorification. Please see the Appendix for an explanation of our planar diagram
conventions. The top four knots have parity arrow invariant

vg(2, 1)K[2]

q3t
+

vg(1, 2)K[1]

q3
+

vg(2,−1)K[2]

qt
+ qvg(1,−2)K[1] +

2K[1]

q

while the lower four have parity arrow invariant

q3tvg(2,−1)K[2] + q3vg(1,−2)K[1] + qtvg(2, 1)K[2] +
vg(1, 2)K[1]

q
+ 2qK[1]

4.1 Link Parity Polynomials and Categorification

Following the construction presented in Section 3.6 we can extend the graphical
polynomials to links. However, the graphical coefficients for links suffer a simi-
lar problem to that of knots when categorified. As with knots we map use the
forgetful map to send the graphical link coefficients to virtual crossings. The
effect of this for links is rather unfortunate as it reduces a link to the disjoint
union of its components. (This is easiest to see by thinking of the chord dia-
gram.) Hence it reduces the link parity categorification back to the knot parity
categorification setting.

4.2 Intriguing Examples

Using Jeremy Green’s tables [13] we have calculated the above invariants as
along with the Sawollek polynomial and z-parity Sawollek polynomial([17]) for
knots with at most 6 real crossings. The knots in Figure 42 and Figure 43
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6.5508 PD[X[4, 2, 5, 1], X[7, 4, 8, 3], X[10, 6, 11, 5], Y[12, 3, 1, 2],
Y[9, 7, 10, 6], Y[8, 12, 9, 11]]

6.5627 PD[X[4, 2, 5, 1], X[7, 4, 8, 3], X[10, 6, 11, 5], Y[12, 3, 1, 2],
Y[9, 7, 10, 6], Y[11, 9, 12, 8]]

6.7613 PD[X[4, 2, 5, 1], X[7, 4, 8, 3], X[9, 7, 10, 6], Y[12, 3, 1, 2],
Y[10, 6, 11, 5], Y[8, 12, 9, 11]]

6.7701 PD[X[4, 2, 5, 1], X[7, 4, 8, 3], X[9, 7, 10, 6], Y[12, 3, 1, 2],
Y[10, 6, 11, 5], Y[11, 9, 12, 8]]

6.24828 PD[X[6, 4, 7, 3], X[9, 5, 10, 4], X[11, 8, 12, 7], Y[12, 3, 1, 2],
Y[1, 11, 2, 10], Y[8, 6, 9, 5]]

6.37012 PD[X[6, 4, 7, 3], X[8, 6, 9, 5], X[11, 8, 12, 7], Y[12, 3, 1, 2],
Y[1, 11, 2, 10], Y[9, 5, 10, 4]]

6.60677 PD[X[3, 7, 4, 6], X[9, 5, 10, 4], X[11, 8, 12, 7], Y[12, 3, 1, 2],
Y[1, 11, 2, 10], Y[8, 6, 9, 5]]

6.65816 PD[X[3, 7, 4, 6], X[8, 6, 9, 5], X[11, 8, 12, 7], Y[12, 3, 1, 2],
Y[1, 11, 2, 10], Y[9, 5, 10, 4]]

Table 1: Undistinguished from Unknot by Categorification but Distinguished
by Parity

are special in that they are not distinguished from the unknot via any of the
invariants. Knot 6.32008 has 4 odd crossings while Knot 6.73583 has no odd
crossings and both knots are trivial as flats. Using a 2-cable Jones polynomial
calculator adapted from Dror Bar-Natan’s “faster” Jones polynomial Calculator
[3] we have been able to distinguish each of these knots from one-another and
from the unknot.

Figure 42: Knot 6.32008
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Figure 43: Knot 6.73583

A Appendix

A.1 Computational Results

A.1.1 Planar Diagram Conventions

The following examples and programs compute the associated invariant based
on a planar diagram code for a diagram for the given knot whose arcs have been
consecutively labeled. Our conventions are listed in Figure 44.

Figure 44: Planar Diagram Code Conventions

Example A.1. Virtual knot 3.1 as labeled in Figure 45 has planar diagram
code:

PD[X [1, 5, 2, 4], X [5, 4, 6, 3], Y [6, 3, 1, 2]]

Figure 45: Virtual Knot 3.1
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A.1.2 Parity Polynomials

The following table displays the parity bracket polynomial and parity arrow
polynomial for virtual knots with at most four crossings. Naming conventions
are as in [13]. Graphical coefficients are labeled by D2 [1] , D2 [2] , D2 [3] and
D4 [1] , . . . , D4 [4] corresponding to the following diagrams.

D2 [1] = D2 [2] =

D2 [3] =

D4 [1] = D4 [2] =

D4 [3] = D4 [4] =

It has been shown by Dye and Kauffman (Theorem 4.1 of [8]) that graphical
coefficients D4 [1] and D4 [2] have surface genus s(D4 [1]) = 2 and s(D4 [2]) = 2.
Using this fact we can see that the parity polynomials are able to give a better
bound on the genus than that of the arrow polynomial [9] for certain knots. In
particular we have s(K) ≥ 2 forK ∈ {4.1, 4.2, 4.4, 4.5, 4.7, 4.8, 4.55, 4.56, 4.76, 4.77}.
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Table 2: Parity Bracket and Parity Arrow Polynomial Calculations

Knot Parity Bracket Parity Arrow

2.1 −A2
−

1
A2 −A2

−

1
A2

3.1 A6
−D2[1]A

2 +A2 A6
−D2[1]A

2 +A2

3.2 −A2
−

1
A2 −A2

−

1
A2

3.3 A6
−D2[1]A

2 +A2 A6
−D2[1]A

2 +A2

3.4 −

D2[1]

A2 + 1
A2 + 1

A6 −

D2[1]

A2 + 1
A2 + 1

A6

3.5 A18
− A10

− A6
− A2 K2

1A
14

− A14
−K2

1A
10

− A2

3.6 A18
− A10

− A6
− A2 A18

− A10
− A6

− A2

3.7 −A2
−

1
A2 −A10 +K2

1A
6
− A6

−K2
1A

2

4.1 D4[1] D4[1]

4.2 D4[2] D4[2]

4.3 −A2
−

1
A2 −A2

−

1
A2

4.4 D4[1] D4[1]

4.5 D4[2] D4[2]

4.6 −A2
−

1
A2 −A2

−

1
A2

4.7 D4[2] D4[2]

4.8 D4[1] D4[1]

4.9 D2[1]A
8
− 2A8

− A6
− 2A4

−A2 D2[2]A
8 + 2K1A

6
− A6

− A2

4.10 A12
− A6

− A4
− A2

−K1A
10 +K1A

6
− A6

− A2

4.11 −A4
− A2 +D2[1]− 2− 1

A2 −

1
A4 K1A

2
−A2 +D2[3] +

K1

A2 −

1
A2

4.12 −A2
−

1
A2 −A2

−

1
A2

4.13 −A2
−

1
A2 −A2

−

1
A2

4.14 D2[1]

A8 −

1
A2 −

2
A4 −

1
A6 −

2
A8

2K1

A6 + D2[2]

A8 −

1
A2 −

1
A6

4.15 A12
− A6

− A4
− A2

−K1A
10 +K1A

6
− A6

− A2

4.16 D2[1]A
8
− 2A8

− A6
− 2A4

−A2 D2[2]A
8 + 2K1A

6
− A6

− A2

4.17 −A4
− A2 +D2[1]− 2− 1

A2 −

1
A4 K1A

2
−A2 +D2[3] +

K1

A2 −

1
A2

4.18 −A2
−

1
A2 −A2

−

1
A2

4.19 −A4
− A2 +D2[1]− 2− 1

A2 −

1
A4 K1A

2
−A2 +D2[2] +

K1

A2 −

1
A2

4.20 −

1
A2 −

1
A4 −

1
A6 + 1

A12

K1

A6 −

K1

A10 −

1
A2 −

1
A6

4.21 D2[1]

A8 −

1
A2 −

2
A4 −

1
A6 −

2
A8

2K1

A6 + D2[2]

A8 −

1
A2 −

1
A6

4.22 −

1
A2 −

1
A4 −

1
A6 + 1

A12

K1

A6 −

K1

A10 −

1
A2 −

1
A6

4.23 A12
− A6

− A4
− A2

−K1A
10 +K1A

6
− A6

− A2

4.24 −

1
A2 −

1
A4 −

1
A6 + 1

A12

K1

A6 −

K1

A10 −

1
A2 −

1
A6

4.25 −A2
−

1
A2 −A2

−

1
A2

4.26 D4[3] D4[3]

4.27 −A2
−

1
A2 −A2

−

1
A2

4.28 D4[4] D4[4]

4.29 D2[1]A
8
− 2A8

− A6
− 2A4

−A2 D2[3]A
8 + 2K1A

6
− A6

− A2

4.30 −A4
− A2 +D2[1]− 2− 1

A2 −

1
A4 K1A

2
−A2 +D2[2] +

K1

A2 −

1
A2

4.31 A12
− A6

− A4
− A2

−K1A
10 +K1A

6
− A6

− A2

4.32 −A2
−

1
A2 −A2

−

1
A2

4.33 −A4
− A2 +D2[1]− 2− 1

A2 −

1
A4 K1A

2
−A2 +D2[2] +

K1

A2 −

1
A2

4.34 D2[1]

A8 −

1
A2 −

2
A4 −

1
A6 −

2
A8

2K1

A6 + D2[2]

A8 −

1
A2 −

1
A6

4.35 −A2
−

1
A2 −A2

−

1
A2

4.36 −

1
A2 −

1
A4 −

1
A6 + 1

A12

K1

A6 −

K1

A10 −

1
A2 −

1
A6
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Knot Parity Bracket Parity Arrow

4.37 A12
− A6

− A4
− A2

−K1A
10 +K1A

6
− A6

− A2

4.38 −A2
−

1
A2 −A2

−

1
A2

4.39 −A2
−

1
A2 −A2

−

1
A2

4.40 −

1
A2 −

1
A4 −

1
A6 + 1

A12

K1

A6 −

K1

A10 −

1
A2 −

1
A6

4.41 A12
− A6

− A4
− A2

−K1A
10 +K1A

6
− A6

− A2

4.42 −A2
−

1
A2 −A2

−

1
A2

4.43 −A2
−

1
A2 −A2

−

1
A2

4.44 −A2
−

1
A2 −A2

−

1
A2

4.45 D4[3] D4[3]

4.46 −A2
−

1
A2 −A2

−

1
A2

4.47 D4[4] D4[4]

4.48 D2[1]A
8
− 2A8

− A6
− 2A4

−A2 D2[2]A
8 + 2K1A

6
− A6

− A2

4.49 −A4
− A2 +D2[1]− 2− 1

A2 −

1
A4 K1A

2
−A2 +D2[3] +

K1

A2 −

1
A2

4.50 A12
− A6

− A4
− A2

−K1A
10 +K1A

6
− A6

− A2

4.51 −A2
−

1
A2 −A2

−

1
A2

4.52 D2[1]

A8 −

1
A2 −

2
A4 −

1
A6 −

2
A8

2K1

A6 + D2[2]

A8 −

1
A2 −

1
A6

4.53 −A2
−

1
A2 −A2

−

1
A2

4.54 −A2
−

1
A2 −A2

−

1
A2

4.55 D4[1] D4[1]

4.56 D4[2] D4[2]

4.57 D2[1]A
8
− 2A8

− A6
− 2A4

−A2 D2[3]A
8 + 2K1A

6
− A6

− A2

4.58 −A4
− A2 +D2[1]− 2− 1

A2 −

1
A4 K1A

2
−A2 +D2[2] +

K1

A2 −

1
A2

4.59 −A4
− A2 +D2[1]− 2− 1

A2 −

1
A4 K1A

2
−A2 +D2[2] +

K1

A2 −

1
A2

4.60 −

1
A2 −

1
A4 −

1
A6 + 1

A12

K1

A6 −

K1

A10 −

1
A2 −

1
A6

4.61 A12
− A6

− A4
− A2

−K1A
10 +K1A

6
− A6

− A2

4.62 −A2
−

1
A2 −A2

−

1
A2

4.63 −A2
−

1
A2 −A2

−

1
A2

4.64 −

1
A2 −

1
A4 −

1
A6 + 1

A12

K1

A6 −

K1

A10 −

1
A2 −

1
A6

4.65 A12
− A6

− A4
− A2

−K1A
10 +K1A

6
− A6

− A2

4.66 −A2
−

1
A2 −A2

−

1
A2

4.67 −A2
−

1
A2 −A2

−

1
A2

4.68 −

1
A2 −

1
A4 −

1
A6 + 1

A12

K1

A6 −

K1

A10 −

1
A2 −

1
A6

4.69 A12
− A6

− A4
− A2

−K1A
10 +K1A

6
− A6

− A2

4.70 D2[1]A
8
− 2A8

− A6
− 2A4

−A2 D2[3]A
8 + 2K1A

6
− A6

− A2

4.71 −A4
− A2 +D2[1]− 2− 1

A2 −

1
A4 K1A

2
−A2 +D2[2] +

K1

A2 −

1
A2

4.72 −A4
− A2 +D2[1]− 2− 1

A2 −

1
A4 K1A

2
−A2 +D2[2] +

K1

A2 −

1
A2

4.73 −A2
−

1
A2 −A2

−

1
A2

4.74 −A2
−

1
A2 −A2

−

1
A2

4.75 −A2
−

1
A2 −A2

−

1
A2

4.76 D4[2] D4[2]

4.77 D4[1] D4[1]

4.78 A12
− A6

− A4
− A2

−K1A
10 +K1A

6
− A6

− A2

4.79 A12
− A6

− A4
− A2

−K1A
10 +K1A

6
− A6

− A2

4.80 D4[3] D4[3]

4.81 D4[4] D4[4]

4.82 −A10 +D2[1]A
6
− A6

−D2[1]A
2

−A10 +D2[1]A
6
− A6

−D2[1]A
2
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Knot Parity Bracket Parity Arrow

4.83 −A2
−

1
A2 −A2

−

1
A2

4.84 −A10 +D2[1]A
6
− A6

−D2[1]A
2

−A10 +D2[1]A
6
− A6

−D2[1]A
2

4.85 −A2
−

1
A2 −A10 +K2

1A
6
− A6

−K2
1A

2

4.86 −A10
−

1
A10 −A10

− A2 +
K2

1

A2 −

1
A2 −

K2
1

A6 + 1
A6

4.87 −A10 +D2[1]A
6
− A6

−D2[1]A
2

−A10 +D2[1]A
6
− A6

−D2[1]A
2

4.88 −A10 +D2[1]A
6
− A6

−D2[1]A
2

−A10 +D2[1]A
6
− A6

−D2[1]A
2

4.89 A18
− A10

− A6
− A2

−A18 + 2K2
1A

14
− 2A14

− 2K2
1A

10 +
A10 + A6

− A2

4.90 −A10
−

1
A10 −K2

1A
6 + A6 + K2

1A
2
− 2A2 +

K2

1

A2 −

2
A2 −

K2

1

A6 + 1
A6

4.91 −A2
−

1
A2 −A2

−

1
A2

4.92 −A2
−

1
A2 −A2

−

1
A2

4.93 −A10 +D2[1]A
6
− A6

−D2[1]A
2

−A10 +D2[1]A
6
− A6

−D2[1]A
2

4.94 −A2
−

1
A2 −A2

−

1
A2

4.95 −A2
−

1
A2 −A2

−

1
A2

4.96 −A10 +D2[1]A
6
− A6

−D2[1]A
2

−A10 +D2[1]A
6
− A6

−D2[1]A
2

4.97 −A2
−

1
A2 −A2

−

1
A2

4.98 −A2
−

1
A2 −A2

−

1
A2

4.99 −A10
−

1
A10 −A10

−

1
A10

4.100 −A2
−

1
A2 −A2

−

1
A2

4.101 −A2
−

1
A2 −A2

−

1
A2

4.102 −A2
−

1
A2 −A2

−

1
A2

4.103 −A10 +D2[1]A
6
− A6

−D2[1]A
2

−A10 +D2[1]A
6
− A6

−D2[1]A
2

4.104 −A2
−

1
A2 −A2

−

1
A2

4.105 A18
− A10

− A6
− A2 A18

− A10
− A6

− A2

4.106 −A2
−

1
A2 −A10 +K2

1A
6
− A6

−K2
1A

2

4.107 −A2
−

1
A2 −A2

−

1
A2

4.108 −A10
−

1
A10 −A10

−

1
A10

A.2 A Mathematica Program

A.2.1 A Parity Categorification

The following program for a categorification of the arrow polynomial and the for-
getful parity version is based on Dror Bar-Natan’s construction [4] for Khovanov
homology. Here we implement a version of Gaussian elimination for computing
homology with coefficients over Z2 that was pointed out to us by Marc Culler
and implemented by Baldwin and Gillam for computation of Heegaard-Floer
knot homology in [2]. This can be described graphically as in Figure 46 where
we reduce based on the chosen marked edge. This is equivalent to applying
Gaussian Elimination to the chain complex as in Figure 47 where we assume φ
(the equivalent of the selected edge) is invertible. Maps denoted by • are arbi-
trary and inconsequential in the final result. For more on Gaussian Elimination
and homotopy equivalence we point the reader to [7].

Remark A.1. A similar program for Khovanov homology and the forgetful
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parity version with Z2 coefficients is available on the first authors website.

Figure 46:

Figure 47:
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np[L_PD] := Count[L, _X];

nm[L_PD] := Count[L, _Y];

SetAttributes[del, Orderless]

np and nm count the number of positive and negative crossings for a given planar
diagram respectively. We set del to be orderless to reduce the number of necessary
relations.

The following lines of program perform the forgetful mapping on the odd crossings.

EvenParityPD[L_PD] :=

Sort[L /. {X[i_, j_, k_, l_] :>

Odd[i, j, k, l] /; OddQ[i - j]} /. {Y[i_, j_, k_, l_] :>

Odd[i, j, k, l] /; OddQ[i - j]}]

EvenParity performs a simple check to determine if a given crossing is even or odd.
For an odd crossing it replaces the head X or Y with Odd. Note this subroutine assumes
that arcs of a given knot diagram are labeling consecutively.

OddIdentities[L_PD] :=

ReplacePart[ ReplacePart[Reverse[Sort[

Flatten[ReplacePart[Take[EvenParityPD[L],

Length[EvenParityPD[L]] - (np[EvenParityPD[L]] +

nm[EvenParityPD[L]])],

0 :> List] /. {Odd[i_, j_, k_, l_] :> {del[i, k],

del[j, l]}}]]],

0 :> Times] //. {del[a_, b_] del[b_, c_] :> del[a, c]}, 0 :> List]

OddIdentities creates a collection of arc relations displayed in terms of Kronecker
deltas based on the odd crossings.

EvenCross[L_PD] :=

Drop[EvenParityPD[L],

Length[EvenParityPD[L]] - (np[EvenParityPD[L]] +

nm[EvenParityPD[L]])]

EvenCross collects the even crossings from a given PD code.

PDReduction[L_PD, d_del] := (mm := Min[d[[1]], d[[2]]];

nn = Max[d[[1]], d[[2]]]; L /. {nn :> mm})

PDReduction turns a single identity produced by OddIdentities into a reduction re-
lation and applies this relation.

ForgetfulEvenParityPD[L_PD] := (RedPD = EvenCross[L];

Do[RedPD = PDReduction[RedPD, OddIdentities[L][[i]]], {i,

Length[OddIdentities[L]]}]; RedPD)
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ForgetfulEvenParityPD applies PDReduction for all of the relations in OddIdentities

and returns the resulting PD code.

rule2 = {del[a_, b_][m_] del[a_, b_][m_] :> del[a, a][m],

del[a_, b_][m_] del[b_, c_][n_] :> del[a, c][Min[m, n]],

del[a_, b_][m_] led[b_, c_][n_] :> led[a, c][Min[m, n]],

del[a_, b_][m_] led[c_, b_][n_] :> led[c, a][Min[m, n]],

led[a_, b_][m_] del[b_, c_][n_] :> led[a, c][Min[m, n]],

led[a_, b_][m_] del[c_, b_][n_] :> led[a, c][Min[m, n]],

led[a_, b_][m_] led[b_, c_][n_] :> del[a, c][Min[m, n]]};

rule3 = {del[a_, a_][m1_] :> c[m1, 0, 0],

del[a_, a_][m1_]^_ :> c[m1, 0, 0],

led[a_, b_][m1_]^2 :> c[m1, 1, 1],

led[a_, b_][m1_] led[a_, b_][m2_] :> c[Min[m1, m2], 1, 1],

led[a_, b_][m1_] led[x_, b_][m2_] led[x_, d_][m3_] led[a_, d_][

m4_] :> c[Min[m1, m2, m3, m4], 2, 2],

led[a_, b_][m1_] led[x_, b_][m2_] led[x_, d_][m3_] led[e_, d_][

m4_] led[e_, f_][m5_] led[a_, f_][m6_] :>

c[Min[m1, m2, m3, m4, m5, m6], 3, 1],

led[a_, b_][m1_] led[x_, b_][m2_] led[x_, d_][m3_] led[e_, d_][

m4_] led[e_, f_][m5_] led[g_, f_][m6_] led[g_, h_][

m7_] led[a_, h_][m8_] :>

c[Min[m1, m2, m3, m4, m5, m6, m7, m8], 4, 3],

led[a_, b_][m1_] led[x_, b_][m2_] led[x_, d_][m3_] led[e_, d_][

m4_] led[e_, f_][m5_] led[g_, f_][m6_] led[g_, h_][

m7_] led[y_, h_][m8_] led[y_, z_][m9_] led[a_, z_][m10_] :>

c[Min[m1, m2, m3, m4, m5, m6, m7, m8, m9, m10], 5, 1]};

rule2 and rule3 are reduction relations used by S. rule2 joins arcs and cusps while
rule3 produces the labeled circles for a basic (unenhanced) state. We follow the
convention c[m, p,k] is circle m with arrow number p and dot of order k. Where
p = l*2^(k - 1) for l odd.

ruleStar = {v___c u___ X[i_, j_, k_,

l_] :> ((u del[i, j][Min[i, j]] del[k, l][Min[k, l]] //.

rule2 //.

rule3) -> (u led[l, i][Min[l, i]] led[j, k][Min[j, k]] //.

rule2 //. rule3)),

v___c u___ Y[i_, j_, k_,

l_] :> ((u led[l, i][Min[l, i]] led[j, k][Min[j, k]] //.

rule2 //.

rule3) -> (u del[i, j][Min[i, j]] del[k, l][Min[k, l]] //.

rule2 //. rule3))};

ruleStar is a reduction relations used by S which produces notation corresponding to
a bifurcation on an edge denoted by * on the cube complex.

S[L_PD, a_List] :=
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Times[(Times @@ (Thread[{List @@

Drop[L, Length[L] - (np[L] + nm[L])],

a}] /. {{X[i_, j_, k_, l_], 0} :>

del[i, j][Min[i, j]] del[k, l][Min[k, l]], {X[i_, j_, k_,

l_], 1} :>

led[l, i][Min[l, i]] led[j, k][Min[j, k]], {Y[i_, j_, k_,

l_], 0} :>

led[l, i][Min[l, i]] led[j, k][Min[j, k]], {Y[i_, j_, k_,

l_], 1} :>

del[i, j][Min[i, j]] del[k, l][Min[k, l]], {x_X, "*"} :>

x, {y_Y, "*"} :> y})), (Times @@ (Take[L,

Length[L] - (np[L] + nm[L])] /. {Odd[i_, j_, k_, l_] :>

del[i, k][Min[i, k]] del[j, l][Min[j, l]]}))] //.

rule2 //. rule3 //. ruleStar

S[L_PD, s_String] := S[L, Characters[s] /. {"0" -> 0, "1" -> 1}]

S produces the unenhanced state of the cube complex for L corresponding to the vertex
a.

MG[expr_] :=

expr //. {c[m_, 0, k_] :> 1} //. {c[m_, p_, k_] :>

a[p]} //. {a[i_]^_ :> a[i]}

MG computes the multiple grading for an given unenhanced state. If there is no arrow
numbers MG returns 1. If there are arrow numbers MG returns a product of the form
a[i1]a[i2] . . . a[in], where the ij are the distinct arrow numbers (ie ij = ik iff j = k).

Deg[expr_] := Count[expr, _v1, {0, 1}] - Count[expr, _vX, {0, 1}]

V[L_PD, s_String, deg___] :=

V[L, Characters[s] /. {"0" -> 0, "1" -> 1}, deg]

V[L_PD, a_List] :=

List @@ Expand[S[L, a] /. x_c :> ((vX @@ x) + (v1 @@ x))]

V[L_PD, a_List, deg_Integer] :=

Select[V[L, a], (deg == Deg[#] + (Plus @@ a)) &]

The above subroutines provide information on the enhanced states. V replaces c[m,p,k]
by vX[m,p,k]+v1[m,p,k] throughout then expands each expression. Each summand
corresponds to an enhanced (labeled by X and 1) state, which we separate into a list
of enhanced states at each vertex. Deg computes (# X’s - #1’s)) and when given to V

returns enhanced states with a given bi-degree. ((bi-degree) = (homological degree)
+ (# X’s - #1’s))

VG[expr_] :=

expr //. {vX[m_, 0, k_] :> 1} //. {v1[m_, 0, k_] :> 1} //. {vX[m_,

p_, k_] :> vg[k, 1]} //. {v1[m_, p_, k_] :>

vg[k, -1]} //. {vg[a_, i_]^m_ :>

vg[a, i*m]} //. {vg[a_, i_] vg[a_, j_] :> vg[a, i + j]} //. {vg[

a_, 0] :> 1}
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We need to compute the vector grading of an enhanced state. Recall that this (inf.
dim.) vector is the sum over the labeling in the enhanced state where, for i > 0, we
transform vX[*,*,i] into the vector that is 1 in the ith position and 0 elsewhere and
similarly we transform v1[*,*,i] into the vector that is -1 in the ith position and
0 elsewhere. VG returns 1 if the vector grading is the zero vector else it returns the
product of terms of the form v[k, n] corresponding to the kth position in the vector
grading having value n.

d[L_PD, s_String] := d[L, Characters[s] /. {"0" -> 0, "1" -> 1}]

d[L_PD, a_List] :=

S[L, a] //. {(c[x__] c[y__] -> c[z__])*_. :> {v1@x v1@y -> 0,

v1@x vX@y -> 0, vX@x v1@y -> 0,

vX@x vX@y -> 0} /; (MG[S[L, a //. {"*" -> 0}]] =!=

MG[S[L, a //. {"*" -> 1}]]), (c[z__] ->

c[x__] c[y__])*_. :> {v1@z -> 0,

vX@z -> 0} /; (MG[S[L, a //. {"*" -> 0}]] =!=

MG[S[L, a //. {"*" -> 1}]])} //. {(c[x__] c[y__] ->

c[z__])*_. :> {v1@x v1@y -> v1@z, v1@x vX@y -> vX@z,

vX@x v1@y -> vX@z,

vX@x vX@y ->

0} /; (VG[v1@x v1@y] === VG[v1@z]) && (VG[v1@x vX@y] ===

VG[vX@z]) && (VG[vX@x v1@y] === VG[vX@z]), (c[x__] c[y__] ->

c[z__])*_. :> {v1@x v1@y -> 0, v1@x vX@y -> vX@z,

vX@x v1@y -> vX@z,

vX@x vX@y ->

0} /; (VG[v1@x v1@y] =!= VG[v1@z]) && (VG[v1@x vX@y] ===

VG[vX@z]) && (VG[vX@x v1@y] === VG[vX@z]), (c[x__] c[y__] ->

c[z__])*_. :> {v1@x v1@y -> v1@z, v1@x vX@y -> 0,

vX@x v1@y -> vX@z,

vX@x vX@y ->

0} /; (VG[v1@x v1@y] === VG[v1@z]) && (VG[v1@x vX@y] =!=

VG[vX@z]) && (VG[vX@x v1@y] === VG[vX@z]), (c[x__] c[y__] ->

c[z__])*_. :> {v1@x v1@y -> v1@z, v1@x vX@y -> vX@z,

vX@x v1@y -> 0,

vX@x vX@y ->

0} /; (VG[v1@x v1@y] === VG[v1@z]) && (VG[v1@x vX@y] ===

VG[vX@z]) && (VG[vX@x v1@y] =!= VG[vX@z]), (c[x__] c[y__] ->

c[z__])*_. :> {v1@x v1@y -> 0, v1@x vX@y -> 0,

vX@x v1@y -> vX@z,

vX@x vX@y ->

0} /; (VG[v1@x v1@y] =!= VG[v1@z]) && (VG[v1@x vX@y] =!=

VG[vX@z]) && (VG[vX@x v1@y] === VG[vX@z]), (c[x__] c[y__] ->

c[z__])*_. :> {v1@x v1@y -> 0, v1@x vX@y -> vX@z,

vX@x v1@y -> 0,

vX@x vX@y ->

0} /; (VG[v1@x v1@y] =!= VG[v1@z]) && (VG[v1@x vX@y] ===

VG[vX@z]) && (VG[vX@x v1@y] =!= VG[vX@z]), (c[x__] c[y__] ->

c[z__])*_. :> {v1@x v1@y -> v1@z, v1@x vX@y -> 0,

vX@x v1@y -> 0,
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vX@x vX@y ->

0} /; (VG[v1@x v1@y] === VG[v1@z]) && (VG[v1@x vX@y] =!=

VG[vX@z]) && (VG[vX@x v1@y] =!= VG[vX@z]), (c[x__] c[y__] ->

c[z__])*_. :> {v1@x v1@y -> 0, v1@x vX@y -> 0, vX@x v1@y -> 0,

vX@x vX@y ->

0} /; (VG[v1@x v1@y] =!= VG[v1@z]) && (VG[v1@x vX@y] =!=

VG[vX@z]) && (VG[vX@x v1@y] =!= VG[vX@z]), (c[z__] ->

c[x__] c[y__])*_. :> {v1@z -> v1@x vX@y + vX@x v1@y,

vX@z ->

vX@x vX@y} /; (VG[v1@z] === VG[v1@x vX@y]) && (VG[v1@z] ===

VG[vX@x v1@y]) && (VG[vX@z] === VG[vX@x vX@y]), (c[z__] ->

c[x__] c[y__])*_. :> {v1@z -> vX@x v1@y,

vX@z ->

vX@x vX@y} /; (VG[v1@z] =!= VG[v1@x vX@y]) && (VG[v1@z] ===

VG[vX@x v1@y]) && (VG[vX@z] === VG[vX@x vX@y]), (c[z__] ->

c[x__] c[y__])*_. :> {v1@z -> v1@x vX@y,

vX@z ->

vX@x vX@y} /; (VG[v1@z] === VG[v1@x vX@y]) && (VG[v1@z] =!=

VG[vX@x v1@y]) && (VG[vX@z] === VG[vX@x vX@y]), (c[z__] ->

c[x__] c[y__])*_. :> {v1@z -> v1@x vX@y + vX@x v1@y,

vX@z ->

0} /; (VG[v1@z] === VG[v1@x vX@y]) && (VG[v1@z] ===

VG[vX@x v1@y]) && (VG[vX@z] =!= VG[vX@x vX@y]), (c[z__] ->

c[x__] c[y__])*_. :> {v1@z -> 0,

vX@z ->

vX@x vX@y} /; (VG[v1@z] =!= VG[v1@x vX@y]) && (VG[v1@z] =!=

VG[vX@x v1@y]) && (VG[vX@z] === VG[vX@x vX@y]), (c[z__] ->

c[x__] c[y__])*_. :> {v1@z -> vX@x v1@y,

vX@z ->

0} /; (VG[v1@z] =!= VG[v1@x vX@y]) && (VG[v1@z] ===

VG[vX@x v1@y]) && (VG[vX@z] =!= VG[vX@x vX@y]), (c[z__] ->

c[x__] c[y__])*_. :> {v1@z -> v1@x vX@y,

vX@z ->

0} /; (VG[v1@z] === VG[v1@x vX@y]) && (VG[v1@z] =!=

VG[vX@x v1@y]) && (VG[vX@z] =!= VG[vX@x vX@y]), (c[z__] ->

c[x__] c[y__])*_. :> {v1@z -> 0,

vX@z ->

0} /; (VG[v1@z] =!= VG[v1@x vX@y]) && (VG[v1@z] =!=

VG[vX@x v1@y]) && (VG[vX@z] =!= VG[vX@x vX@y])} //. {(c[

x__] -> c[y__])*_. :> {v1@x -> 0, vX@x -> 0}}

d computes the edge morphism for the edge corresponding to the label a. Here a is
a list of 0’s and 1’s along with a single * where * corresponds to the crossing we are
resmoothing and 0 and 1 correspond to A− and A−1-smoothings at the remaining
crossings.
We now have enough to construct the cube complex. The following collection of rou-
tines together collect this information and constructs a graph. We then preform the
previously mentioned graphical reduction algorithm to compute the homology.

dif[L_PD, s_String] := dif[L, Characters[s] /. {"0" -> 0, "1" -> 1}]
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dif[L_PD, a_List] :=

Flatten[MapThread[

ge, {V[L, a /. ("*" :> 0)],

Expand[V[L, a /. ("*" :> 0)] /. d[L, a]]}] /. (ge[u___,

v__ + w__] :> {ge[u, v], ge[u, w]}) /. (ge[z___, 0] :> 0)]

Comp[L_PD] :=

Join @@ (Join @@ {Expand[

ed[((v @@ #) /. ("*" :> 0)), ((v @@ #) /. ("*" :> 1))] dif[

L, #]]} & /@ Perms[L]) //. (ed[a__, b__] ge[c__, d__] :>

edge[a*c, b*d]);

Edges[L_PD] :=

Cases[If[((# === 0) || (#[[1]] === #[[2]])), 0, #] & /@ Comp[L],

Except[0]]

dif constructs the set of directed edges for the graph corresponding to an edge of the
cube complex. It does the locally by applying the differential d to the tail of each edge.
Comp produces the full set of vertices for the graph and connected the heads and tails
of the directed edges formed by dif. Some zero differentials remain. Edges removes
these from the list.

KhColumn[L_PD, r_Integer] :=

If[r < 0 || r > (np[L] + nm[L]), {0},

Join @@ (((v @@ #) V[L, #]) & /@

Permutations[

Join[Table[0, {(np[L] + nm[L]) - r}], Table[1, {r}]]])];

Gens[L_PD] :=

Cases[Flatten[{KhColumn[L, #] & /@ Range[0, (np[L] + nm[L])]}],

Except[0]];

Gens produces the collection of enhanced states corresponding to the enhanced states
of the complex (i.e. the nodes in the graph) by calling KhColumn for each homological
degree of the planar diagram for the knot.

Perms[L_PD] :=

Join @@ (Permutations[

Join[{"*"}, Table[0, {(np[L] + nm[L]) - # - 1}],

Table[1, {#}]]] & /@ Range[0, (np[L] + nm[L]) - 1]);

Perms generates the lists of 0’s, 1’s and a single * corresponding to the edges of the
cube complex.

Height[gen___] := (gen /. {v1[a___] :> 1, vX[b___] :> 1,

v[c___] :> Plus[c]});

EdgeHeight[e__] := If[IntegerQ[e], -1, Height[e[[1]]]];

MultGrad[e__] :=

e /. {v[expr___] :> 1, vX[a_, b_, c_] :> K[b],

v1[a_, b_, c_] :> K[b]} /. {K[0] :> 1} /. {K[i_]^_ :> K[i]};

MultGrad takes a homology class representative and outputs its multiple grading.
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AddDelEdges[edges_List, e_edge] := (Off[Part::partd];

listfs = Select[edges, #[[2]] == e[[2]] &];

listgs = Select[edges, #[[1]] == e[[1]] &];

remfs = Rule[#, 0] & /@ listfs; remgs = Rule[#, 0] & /@ listgs;

sym = edges /. remfs /. remgs /. {edge[e[[2]], ___] :> 0};

diff = Tuples[{listfs,listgs}] /.

{{edge[f1__, e2__], edge[e1__, g2__]} :> edge[f1, g2]};

symdiff =

If[(listfs == {}) || (listgs == {}), sym,

Union[Complement[diff, sym], Complement[sym, diff]]];

On[Part::partd]; symdiff)

Given an edge e, AddDelEdges looks for all local subgraphs which share the same head
as e. It then computes a symmetric difference with collection of edges whose tail is
the same as e.

Reduc[gens_List, edges_List,

e_edge] := (Checks[(gens /. {e[[1]] :> 0, e[[2]] :> 0}),

AddDelEdges[edges, e]]);

Checks[gens_List, unsortededges_List] := (

edges = Cases[(SortBy[unsortededges, EdgeHeight[#] &]), Except[0]];

If[edges == {}, Cases[gens, Except[0]],

Reduc[gens, Delete[edges, 1], edges[[1]]]]);

Checks looks for the remaining edge whose head is in the highest homological degree.
It then applies Reduc to remove the edge and apply the symmetric difference algorithm
in AddDelEdges.

HomReps[L_PD] :=

Block[{$IterationLimit = Infinity, $RecursionLimit = Infinity},

Checks[Cases[Gens[L], Except[0]], Cases[Edges[L], Except[0]]]];

HomReps takes a planar diagram code, repeatedly applies Checks to run the graph
reduction algorithm and outputs representatives for the homology classes.

QT[gen___, L_PD] :=

(r = (Height[gen] - nm[L]); (t^r)

*(q^(r + Deg[gen] + np[L] - nm[L])));

QT computes the associated powers of q and t for a given representative of a homology
class.

AKh[L_PD] :=

Plus @@ (QT[#, L]*VG[# /. {v[a___] :> 1}]*

MultGrad[# /. {v[a___] :> 1}] & /@ HomReps[L]);

ParityAKh[L_PD] :=

If[Length[ForgetfulEvenParityPD[L]] == 1 ||

Head[ForgetfulEvenParityPD[L]] === PDReduction, q + q^(-1),
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Plus @@ (QT[#, ForgetfulEvenParityPD[L]]*VG[# /. {v[a___] :> 1}]*

MultGrad[# /. {v[a___] :> 1}] & /@

HomReps[ForgetfulEvenParityPD[L]])];

Finally, AKh and ParityAKh compute the corresponding categorifications for a given

planar diagram L.
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