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Abstract. Due to the increasing popularity of collaborative tagging systems, the

research on tagged networks, hypergraphs, ontologies, folksonomies and other related

concepts is becoming an important interdisciplinary topic with great actuality and

relevance for practical applications. In most collaborative tagging systems the tagging

by the users is completely “flat”, while in some cases they are allowed to define a shallow

hierarchy for their own tags. However, usually no overall hierarchical organisation of

the tags is given, and one of the interesting challenges of this area is to provide an

algorithm generating the ontology of the tags from the available data. In contrast, there

are also other type of tagged networks available for research, where the tags are already

organised into a directed acyclic graph (DAG), encapsulating the “is a sub-category

of” type of hierarchy between each other. In this paper we study how this DAG affects

the statistical distribution of tags on the nodes marked by the tags in various real

networks. The motivation of this research is that understanding the tagging based on

a known hierarchy can help in revealing the hidden hierarchy of tags in collaborative

tagging systems. We analyse the relation between the tag-frequency and the position

of the tag in the DAG in two large sub-networks of the English Wikipedia and a

protein-protein interaction network. We also study the tag co-occurrence statistics by

introducing a 2d tag-distance distribution preserving both the difference in the levels

and the absolute distance in the DAG for the co-occurring pairs of tags. Our most

interesting finding is that the local relevance of tags in the DAG, (i.e., their rank or

significance as characterised by, e.g., the length of the branches starting from them)

is much more important than their global distance from the root. Furthermore, we

also introduce a simple tagging model based on random walks on the DAG, capable

of reproducing the main statistical features of tag co-occurrence. This model has high

potential for further practical applications, e.g., it can provide a starting point for a

benchmark system in ontology retrieval, or it may help pinpointing unusual correlations

in the co-occurrence of tags.

1. Introduction

The network approach has become an ubiquitous tool for analysing complex systems

ranging from the interactions within cells through transportation systems, the Internet

and other technological networks to economic networks, collaboration networks and the
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society [1, 2]. Over the last decade it has turned out that networks corresponding

to realistic systems can be highly non-trivial, characterised by a low average distance

combined with a high average clustering coefficient [3], anomalous degree distributions

[4, 5] and an intricate modular structure [6, 7, 8]. A recently emerging sub-field of

growing interest in this area is given by tagged networks, folksonomies and hypergraphs.

In general, when studying the topology of the graph corresponding to a real system,

the inclusion of node tags (also called as attributes, annotations, properties, categories,

features) leads to a richer structure, opening up the possibility for a more comprehensive

analysis. These tags can correspond to any information about the nodes and in most

cases a single node can have several tags at the same time. The appearance of tags, e.g.,

in biological networks is very common [9, 10, 11, 12, 13, 14], where they usually refer to

the biological function of the units represented by the nodes (proteins, genes, etc.). Node

features are also fundamental ingredients in the so-called co-evolving network models,

where the evolution of the network topology affects the node properties and vice versa

[15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. These models are aimed at describing the

dynamics of social networks, in which people with similar opinion are assumed to form

ties more easily, and the opinion of connected people becomes more similar in time.

The entanglement between tags and the network structure is even more deep

in collaborative tagging systems or folksonomies like CiteUlike, Delicious or Flickr

[26, 27, 28], where the network is actually arising in a tagging process. The basic

scenario in these systems is that users can tag certain type of objects (photos, web-pages,

books, etc.) with freely chosen words. Although the limits of the access to objects and

tags introduced by others varies from system to system, the arising set of objects with

associated free tags is usually referred to as a folksonomy. Since each tagging action is

forming a new user-tag-object triple, the natural representation of these systems is given

by tri-partite graphs, or in a more general framework by hypergraphs [27, 29, 30], where

the hyperedges can connect more than two nodes together. In some cases the users

are also offered the possibility to indicate social contacts (mark each other as a friend),

opening up a new dimension for the analysis of the interrelation between tagging and

the social ties between users [31, 32].

Folksonomies provide an alternative approach to organise knowledge compared to

ontologies [33, 34, 35]. An ontology usually corresponds to a set of narrower or broader

categories, (capturing the view and concepts of a certain domain, e.g., protein functions),

building up a hierarchy composed of “is a sub-category of” type relations. The natural

representation of this hierarchy is given by a directed acyclic graph (DAG) between

the categories. When tagging objects with categories taken from an ontology, we have

the benefit that in principle all ancestors up to the root in the DAG can be inferred

from a single tag on the object. In contrast, the tagging in a folksonomy is either

completely “flat”, or at most the users can define a shallow hierarchy for their own

tags. Nevertheless, a global hierarchical organisation of the tags is not given. One

of the very interesting challenges related to folksonomies is to extract an ontology for

the tags appearing in the system. Several promising approaches have been proposed,
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e.g., by aggregating the shallow hierarchies of the individual users [36, 37], using a

probabilistic model [38], analysing the node centralities in the co-occurrence network

between the tags [39], or integrating information from as many sources as possible [40].

Since a reliable hierarchy between the tags can seriously improve searching, an effective

ontology building algorithm has high potential for practical applications.

Motivated by the ontology extraction problem described above, in this paper we

focus on the relation between the structure of the ontology and the distribution of

the tags in systems where the DAG describing the hierarchical relations is predefined.

The basic idea is that understanding how the ontology effects the tagging can help in

improving the methods for reverse engineering the hidden DAG from the tag distribution

in folksonomies. Along this line we examine the statistics of tag occurrence in two large

sub-graphs of the English Wikipedia and the protein interaction network of MIPS.

We also analyse samples from Flickr, where the user defined shallow hierarchies are

taken into account as individual DAGs. Furthermore, we introduce a simple model for

reproducing the observed statistics based on a random walk on the DAG of tags. The

paper is organised as follows: in Sect.2. we define the most important quantities we

aim to study, while the details of the investigated networks are given in Sect.3. The

obtained statistics are presented in Sect.4, continued by the description of the random

walk model in Sect.5, with some concluding remarks closing the paper in Sect.6.

2. Definitions

2.1. DAG-levels

In the tagged networks we study the tags are organised into a hierarchy which can be

represented by a DAG, where the directed links between two tags correspond to an “is

a sub-category of” type of relation. The tags close to the root in the DAG are usually

related to general properties, and as we follow the links towards the leafs, the categories

become more and more specific. In some cases we can find categories in the DAG with

more than one in-neighbours, meaning that the given sub-category is part of several

categories which are not in direct ancestor-descendant relation with each other.

Starting from the root we can define levels in the DAG, with the root corresponding

to level l = 0, the first tags under the root providing level l = 1, etc. For tags which

can be reached via multiple paths from the root we assign the level corresponding to

the longest path. (In some cases the level value of a tag is also referred to as the rank

of tag). One of the simple statistical properties we are interested in is how does l effect

the frequency of the tags, or in other words, are the popular/rare tags close to the root

in the DAG, or are they more likely to be close to the leafs? At this point we note

that leafs can occur in principle at any level in the DAG, since the different branches

have usually different maximal depths in a real system. In order to be able to judge

the distance of a tag from the leafs as well, we introduce a rescaling of the level values

illustrated in Fig.1.: The rescaled level value, l̃ at the root remains unchanged (l̃ = 0),
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while for any leaf tags we require l̃ = 1. For tags in-between the two extremes we assign

an l̃ ∈ [0, 1] based on the length of the longest root-leaf branch it takes part in, and l̃ is

given by the depth of the tag divided by the maximal depth of the branch.
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Figure 1. Illustration of the rescaling of the DAG. a) A small DAG of categories in

which leaf nodes appear at various levels. The vertical position of a tag (category) is

determined by its distance from the root. b) After the rescaling the leafs are all at the

bottom, and the vertical position of each node is determined by the longest root-leaf

path in which it participates.

2.2. Tag-frequency

The frequency of the tags in most real systems is heterogeneous, most popular tags

occur rather often, whereas others are assigned only to a few objects. A natural choice

for the definition of the frequency fα of a given tag α is simply the number of objects

it is assigned to. The probability to find α attached to an object chosen uniformly at

random is given by

pα = fα/N, (1)

where N denotes the total number of objects. According to [41], the probability

distribution of this quantity has a power-law like tail for both the Wikipedia and the

MIPS network. In the present work (among other questions) we shall be interested in

how is the tag-frequency effected by the level value of the tag.

We note that in systems where a DAG of the hierarchical relations between the tags

is given, in principle we could infer all ancestors up to the root from an actually present

tag on an object. This enables an alternative definition of the tag-frequency [41, 42],

considering the aggregated number of occurrences for all descendants of α and α itself.

However, since one of the main motivation of the present work is given by folksonomies

(where the DAG is absent), we shall concentrate on the frequency given by simply the

number of occurrences.

2.3. 2d tag-distance distribution

Another question of interest is how does the DAG affect the co-occurrence of different

tags on the same object. The simplest idea for measuring the relatedness of a pair
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of co-occurring tags based on the DAG would be given by their distance. However,

for some pairs the connecting path in the DAG is composed of links all going in the

same direction, whereas in other cases we might need both up- and downward pointing

links to reach from one tag to the other. In order to also include this aspect into the

investigations, we define the 2d tag-distance distribution for the co-occurring pairs as

illustrated in Fig.2. The positive quarter plane is divided into unit cells, with the cell

at the origin corresponding to distance zero. A given pair of tags contributes to the

distribution as follows: starting from one of them we first move upwards in the DAG

until the lowest common ancestor is reached. In parallel we move the same number of

cells vertically up in the 2d plane. Next, we move downwards in the DAG to reach

the other tag, and in parallel, we move the same number cells horizontally to the right

in the plane, and the number of “events” in the final cell is increased by one. The

contribution from the path going back to the first tag from the second one is taken into

account following the same rules: going upwards in the DAG corresponds to moving up

in the 2d plane starting from the origin, whereas going down in the DAG corresponds

to moving horizontally to the right in the plane. The resulting distribution of the tag-

distances is symmetric to the diagonal by construction. The co-occurring pairs of tags

which are in direct ancestor-descendant relation contribute to the first column of cells

and the bottom row, whereas e.g., the diagonal cells correspond to pairs in which the

two tags are equally deep in different branches from their lowest common ancestor, (see

Fig.2 for illustration).

a) b)

Figure 2. Illustration of the 2d tag-distance distribution for the co-occurring tag

pairs. a) A small part of a DAG with two pairs of tags chosen: the ones marked with

continuous circles are in direct ancestor-descendant relation, whereas the tags marked

with dashed circles form an “uncle-nephew” pair. b) The corresponding cells of the

tag-distance distribution are highlighted in solid black colour and with dashed-lines

respectively.

3. The studied systems

We studied the statistical properties of co-occurring tags with predefined DAG in two

sub-networks of the English Wikipedia and the protein-protein interaction network of

MIPS. Furthermore, we also investigated the tag co-occurrence in the presence of user

defined shallow hierarchies in samples from Flickr.
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The protein-protein interaction network of MIPS [43] consisted of N = 4546

proteins, connected by M = 12319 links, and the tags attached to the nodes

corresponded to 2067 categories describing the biological processes the proteins take

part in. The DAG between these categories was obtained from the Genome Ontology

database [44].

In the Wikipedia [45] the pages are connected by hyperlinks (providing a very

interesting network on its own [45, 46, 47, 48]), and at the bottom of each page, one

can find a list of categories, which can be used as tags. We used the same data set as

in [41, 42], representing the state of the system in 2008. Since each Wiki-category is a

page in the Wikipedia as well, these pages were removed from the network to keep a

clear distinction between objects and tags. Similarly to the biological processes in the

MIPS network, the Wiki-categories can have sub-categories and are usually part of a

larger Wiki-category. (Although the directed graph graph between the Wiki-categories

contains a few loops, these can be removed quite easily to obtain a strict DAG [41]).

Since the English-Wikipedia is quite a large network, we used smaller subsets obtained

with a sampling method based on the tag-induced graphs [41]: after choosing a rather

general category we keep the pages marked by this tag or any of its descendants. The

chosen sub-graphs were induced by the categories “Japan”, (consisting of N = 61581

nodes, M = 949350 links and 4939 sub-categories), and “United Kingdom” (consisting

of N = 318183 nodes, M = 5432914 links and 30383 sub-categories).

One of the most popular collaborative tagging systems is given by Flickr, designed

for tagging photos. Beside attaching tags, the users can also group their photos into

so-called sets, and these sets can be also put into larger collections up to a limited range

of levels. In contrast to the photos, the collections and sets are given short descriptions

rather than tags. Anyhow, from the sets and collections of a given user we can generate

a shallow hierarchy of tags. A natural choice is to link all tags appearing in a given set

under one meta-tag corresponding to the set itself, then link this meta-tag under another

meta-tag corresponding to the collection the given set is part of, etc. Of course, the

tag-distance distribution of the tags appearing on the photos of a given user becomes

trivial if we use the shallow hierarchy gained from these photos as the DAG: all co-

occurring tags are siblings. However, the picture becomes non-trivial when we calculate

the tag-distance distribution of the tags of a given user with help of the DAG gained

from another user. In fact, for a given sample of users from Flickr, we can extract the

shallow hierarchy of each user separately, then prepare the tag-distance distribution of

for all other users using this DAG, and finally merge the results into one aggregated

plot.
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4. Applications

4.1. The structure of the DAG

We start our analysis with an interesting effect related to the structure of the DAGs

describing the hierarchy of tags in the systems we investigate. In Fig.3. we plot the

size of the levels (how many tags occur at a given level) as a function of the level

depth. For convenience, the vertical axis for each plot is rescaled by the size of the

largest level. According to Fig.3a, the size of the levels is small when we are either

very close to the root, or very far from it, whereas it becomes larger in between. (Since

the maximal depth is different in each system, the horizontal axis in this case has been

rescaled from l to l/lmax, where lmax denotes the length of the longest branch in the

DAG). However, the shape and place of this maximum is unique for each system. (An

alternative illustration of this effect is given in the Appendix, where in the top-panel of

Fig.11. the differences between the un-scaled DAGs are more apparent). In contrast,

when we switch to the rescaled level depth l̃, the curves become roughly uniform with

a more or less monotonously increasing shape, as shown in Fig.3b. Thus, the rescaling
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Figure 3. a) The relative size of the levels in the DAG (scaled with the largest level)

as a function of l/lmax, where lmax denotes the length of the longest branch in the

DAG . b) The relative size of the levels in the DAG as a function of the rescaled level

depth l̃. Note that the vertical axis is logarithmic.

of the level values has an interesting side effect on the shape of the DAG, bringing it

closer a “triangular” form, similar to the shape of a regular hierarchical graph.

4.2. Tag-frequencies and level values

As our main interest is focused on the interplay between the tag-hierarchy and the

statistical properties of tag-occurrences, in Fig.4. we show the average tag-frequency
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as a function of the level depth. When no rescaling is applied (apart from dividing l

by the maximal level depth lmax), the tag-frequency is almost completely independent

of the level depth in a wide range of l (Fig.4a). In contrast, when switching to the

rescaled l̃, a clear decreasing tendency can be observed, apart from the very low l̃

region (corresponding to levels close to the root). This non-trivial result indicates that

the frequency of a tag is more sensitive to the depth of the branches starting from it

compared to its distance from the root. A plausible explanation of this effect is the
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Figure 4. a) The average frequency 〈f〉 of the tags on a given level as a function of

l/lmax. b) The average frequency 〈f〉 of the tags on a given level as a function of the

rescaled level depth l̃.

following: we already pointed out that leafs can occur basically at any level in a large

enough real world DAG. As we move upwards from the leafs, presumably the importance

(relevance, rank, significance, standing, etc.) of the tags is increasing at least in the first

few steps. However, since the leafs we started from were located at various levels, we

arrive to the conclusion that tags with higher relevance can also occur at a wide range

of levels in the DAG. Thus, the level value l of a tag, measuring its global distance from

the root is not very informative in this respect, and accordingly, it has no significant

effect on the average frequency of the tags. In contrast, by switching to the rescaled

level value l̃, we also take into account the depth of the local branches starting from the

given tag, which seem to be more relevant for evaluating the standing of a tag in the

hierarchy, as the frequency of tags is decreasing with l̃. (The more important tags have

longer sub-branches starting from them, thus, on average have lower l̃ values).

4.3. Tag-distance and co-occurrence

Next we move on to the examination of the 2d tag-distance distributions defined in

Sect.2.3. For illustration, in Fig.5a we show the contribution from the tag “British
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Figure 5. Illustration of the calculation of the tag-distance distribution in case of

the Wiki-UK network. a) The contribution from the tag “British kings involved in

Caesar’s invasion of Britain”. The colours indicate the number of occurrences, the

inset shows the corresponding sub-graph in the DAG. b) The contribution from the

tag “World War I poems”. c) The shortest paths to the lowest common ancestors in

the DAG for tag-pairs considered in panel (b).

kings involved in Caesar’s invasion of Britain” in case of the Wiki-UK network, where

the number of occurrences together with other tags at a given distance ldiff are indicated

by the colour of the corresponding cell. The sub-graph between the tags and the lowest

common ancestors in the DAG is given in the inset. For comparison, in Fig.5b we show

the contribution from “World War I poems” in a similar fashion. Here the routes through
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the lowest common ancestors between the co-occurring tag pairs are much longer, thus,

they are displayed separately in Fig.5c. The tags co-occurring with “British kings ...”

are close in the DAG, and accordingly, their contribution in the 2d distribution is close

to the origin. In contrast, the distances to the tags co-occurring with “World War I

poems” are large, thus, their contribution falls in cells far from the origin.

Figure 6. a) The 2d tag-distance distribution for co-occurring tag pairs in the

studied systems (colour coded). b) The average tag-distance distribution when the

tags are randomised keeping the tag-frequencies and the number of tags on the objects

fixed. c) The average tag-distance distribution for random DAGs. d) The z-score

corresponding to the difference between the original data (panel a) compared to the

random tag assignment (panel b) in the units of the standard deviation of the random

tag assignment.

In Fig.6. we plot the complete 2d tag-distance distributions for the networks we

investigated. According to the Fig.6a, the maximum of the plots is a few steps away

from the origin, which might seem a bit surprising at first sight. In order to reveal the

background of this effect we also measured the average tag-distance distribution for a

random tag assignment analogous to the configuration model in the networks literature.

Here the DAG is taken from the system under study, and we consider the ensemble of

all possible associations of tags to the objects consistent with the observed number of

occurrences for the tags and the observed number of tags on the individual objects. To

simulate draws from this ensemble one can apply a randomisation procedure, in which

a pair of tags is swapped between two randomly chosen objects in each step. This way

both the number of tags on the objects and the tag-frequencies are preserved. The

average tag-distance distributions for this random tag assignment are shown in Fig.6b,
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Figure 7. The tag-distance distributions shown in Fig.7. when the distances are

measured according to the rescaled level value l̃. Since l̃ can take up real values (not

only integers as l), we introduced bins of size 0.05. Similarly to Fig.7., beside the

original data (panel a) we also show the results for random tag assignment (panel b),

random DAGs (panel c), and the z-scores (panel d).

with the maximums even further away from the origin compared to the original data. An

alternative possibility for randomisation is to replace the DAG of the original system

by a random DAG of the the same size. For this we used the random DAG model

introduced in [49] with fixed number of nodes and links. The results for random DAGs

and the original distribution of the tags on the objects are displayed in Fig.6c, showing

a picture somewhat similar to Fig.6b. Finally, to highlight the part of the original tag-

distance distribution that cannot be accounted for random effects, in Fig.6d we show the

z-score of the individual cells, defined as the difference between the original distribution

(Fig.6a) and the average for the random tag assignment (Fig.6b) scaled by the standard

deviation of the random tag assignment. The maximums in this plots have clearly moved

close to the origin, showing that the co-occurrence of tags only a few steps away in the

DAG is far more probable than at random in the systems we investigated.

The three z-score plots in Fig.6d also reveal an interesting difference between the

systems: in case of the protein interaction network the maximum is in the diagonal,

while for the two Wiki-networks it is in the first row (or first column). This means

that for the protein interaction network the most enhanced co-occurring tags are like

“brothers”, i.e., they are at the same depth from their lowest common ancestor on

different branches. In contrast, the maximum places for the Wiki-networks correspond to

tag-pairs in direct ancestor-descendant relation with each other. This effect is somewhat

even more apparent when we replot the tag-distance distributions using the rescaled level
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Figure 8. a) The tag-distance distribution obtained for a sample from Flickr. We

measured the distances between the co-occurring tags on a given photo belonging to a

given user using the shallow hierarchies of the other users in the sample, and aggregated

the results for all photos and all DAGs. b) The average tag-distance distribution for

random tag assignment. c) The average tag-distance distribution for random DAGs d)

The z-score obtained by comparing the results shown in panel a) and the null-model

displayed in panel b).

value l̃ for measuring the distance between the tags, as shown in Fig.7. (Since l̃ can take

up real values in [0, 1], we introduced bins of size 0.05 when preparing the tag-distance

distributions). Similarly to Fig.6., the maximums are far from the origin for both the

original data sets (panel a) and their random counterparts (panels b-c). However, in

case of the z-score (panel d), the maximum is shifted rather close to the origin along the

diagonal for the protein interaction network, while it is concentrated in the first row (or

column) for the two Wiki-networks. A further nice feature of using the rescaled levels is

that the tag-distance distribution of the random tag assignment has high values around

(1,1), in contrast to the traditional level-based distribution which has high values in a

nontrivial, case-specific region (see Fig.6b).

4.4. Results for Flickr

We also prepared the 2d tag-distance distribution using the user defined shallow

hierarchies for a sample from Flickr. Since the maximal level depth in this case is

only l = 3, the distinction between close by and far away tags becomes a bit artificial,

(e.g., for direct descendants the largest possible distance is 3). According to the results

shown in Fig.8., the maximum of the 2d tag-distance distribution is close to the origin

for both the original data (Fig.8a) and its randomised counterparts (Figs.8b-c). From

the z-score (Fig.8d) we can see that the cells having the most significant enhancement

in the number of tag-pairs compared to the random tag assignment correspond to direct

descendants within distance 1 and 2. Although this behaviour is consistent with the

results shown previously for the three tagged networks, the enhancement in the number

of close by tag-pairs is far less striking. An interesting question, (which is out of the

scope of the present work), related to the above is the following: How would the tag-

distance distribution behave in the Flickr data set if the set of user-defined shallow

hierarchies are replaced by a unique overall DAG obtained from an ontology extraction

algorithm?
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4.5. Local standing vs. global rank in the tag-distance distribution

In Sect.4.2. we have seen that the length of the local branches starting from a given tag

in the DAG have much larger effect on its frequency compared to its global distance from

the root. An interesting question related to this is whether we can observe any similar

effect in the behaviour of the 2d tag-distance distribution as well. Since this distribution

depends on the relative distance between the co-occurring tags, from its original form

we cannot deduce any information about the absolute level value of the occurring tags.

However, applying a randomisation restricted to a given part (e.g., a given set of levels)

in the DAG and tracking the induced changes in the 2d tag-distance distribution can

help resolving the influence of the given region in the DAG on the tag co-occurrence: If

the chosen part is crucial, then the behaviour of 2d tag-distance distribution obtained

after the randomisation should be very different from the original. However, if the

chosen part of the DAG has only little influence on the tag co-occurrence, then the

restricted randomisation of the given part should not make a significant difference.

Along this line we divided the DAG of the systems we investigated into an “upper

half” (corresponding to levels close to the root), and a “lower half” (composed of bottom

levels far from the root). Although the number of tags in the two parts were the same,

the induced changes in the 2d tag-distance distribution due to the randomisation of a

single part alone were strikingly different, in agreement with the previously observed

enhancement of the importance of the “local position” compared to the“global position”

in the DAG from the point of view of tag frequencies. In Fig.9. we show the results

for randomising the “upper half” (top row) and “lower half” (bottom row) of the DAG

separately in the protein interaction network. (During the randomisation process at each

step a pair of tags from the restricted set was randomly swapped in the DAG). In Fig.9a

we show the 2d tag-distance distribution obtained after the restricted randomisation,

for comparison Fig.9b displays the results for random tag assignment (using the partly

randomised DAG). The corresponding z-scores are given in Fig.9c-d, for both for the

original- and the rescaled level values. In case of randomising the “upper half” the

z-scores are quite similar to the z-scores shown in Figs.6-7, (although some small details

look slightly different). In contrast, the z-scores for randomising the “lower half” show

drastic deviations from the original z-scores: we can observe only a week reminiscent

of the maximum close to the origin, and the landscape becomes almost completely

flat. This enhanced sensitivity of the 2d tag-distance distribution to the changes in the

“lower half” of the DAG compared to changes in the “upper half” is in agreement with

the enhanced sensitivity of the tag-frequencies to the local position of the tags in the

hierarchy compared to the global distance from the root: When randomising the “upper

half”, the local position for at least the tags in the “lower half” is preserved, whereas the

global routes to any tag are messed up. In contrast, when randomising the “lower half”,

while preserving the global structure, we mess up the local position for the majority of

the tags, (as “upper half” tags are also likely to have branches reaching into the “lower

half”). We observed similar behaviour in case of randomising partly the DAG of either



Ontologies and tag-statistics 14

Figure 9. Comparison between the tag-distance distributions obtained after

randomisation of the “upper half” of the DAG (top row) and the “lower half” of

the DAG (bottom row) in case of the protein interaction network. a) The obtained

2d tag-distance distributions. b) The average 2d tag-distance distributions for random

tag assignment (using the partially randomised DAGs). c) The z-score corresponding

to the difference between panel a and panel b in the units of the standard deviation of

panel b. d) The z-score when the distance between the tags is measured according to

the rescaled level value l̃.

the Wiki-Japan or the Wiki-UK network as well.

5. Random walk model

According to the results of Sect.4. the DAG between the tags has indeed an effect on

the co-occurrence of tags. In this section we demonstrate that a rather simple model

can reproduce the main statistical features observed for the real systems. Since the co-

occurring tags were more close to each other in the DAG than at random, the model has

to provide a mechanism for choosing pairs from the DAG with an enhanced probability

for close by tags. A natural idea is to pick the first tag at random, then start a random

walk on the DAG from the chosen tag, and after a few steps pick the target reached.

(In some respect this approach is a sort of “dual-model” of the random walk model

introduced in [50] on the network of word associations, which was used for inferring

similarity relations between words).

If we take the DAG as predefined (e.g., the DAG of the system we would like to

model), then the two “parameters” of the model are given by the frequency distribution

of the tags and the length distribution of the random walks. For the tag-frequencies the

first natural idea is to use the frequency distribution measured in the real data. However,

we also worked with uniform tag-frequencies set to the average value measured in the

real data. In case of the random walk length distribution we tried out the gamma-

distribution, the uniform distribution, the lognormal distribution, and the Poisson-

distribution. For all choices the average length of the walks was set to a value ranging
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between 3 and 10. According to the results, the tag-distance distribution is very robust

against the changes in any parameters.

In Fig.10a we show typical tag-distance distribution results for the random walk

model. The DAGs used in these simulations (indicated on the left of each row) were

taken from the tagged networks we studied in Sect.4.3, and the frequency of the tags

as well as the number of tags on the objects were set to the average values measured

in the corresponding real system. The length distribution for the random walks was

a uniform distribution in the [3-10] interval. (In the Appendix we show very similar

results for different random walk length distributions). Similarly to the case of the real

systems we studied, in Fig.10b we also show the results for a suitably chosen null-model

which in this case corresponds to choosing the tag-pairs at random, irrespectively of

the DAG. In Fig.10c we show the results for random walks on random DAGs generated

using the model introduced in [49]. For highlighting the part which is only present

due to the correlations induced by the random walk, in Fig.10d we also display the z-

scores (corresponding to the difference between Fig.10a and Fig.10b in the units of the

standard deviation of Fig.10b). Similarly to the behaviour observed in the real systems,

the maximum in the z-score is shifted close to the origin in all cases.

Figure 10. The tag-distance distributions for co-occurring pairs of tags in the random

walk model (colour coded), where the DAG was taken from the protein interaction

network (1st row), the Wiki-Japan network (2nd row) and the Wiki-UK network (3d

row). Similarly to Fig.6., beside the actually measured values (panel a), for comparison

the results for un-correlated tag assignment (panel b), the results for random DAGs

(panel c) and the z-scores (panel d) are also shown.
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In summary, according to the simulations, our random walk model qualitatively

reproduces the main properties of the tag-distance distribution for the co-occurring tags

observed in real systems. Although the model is rather simple, it has high potential

for further applications. On the one hand, with the further development of ontology

extraction algorithms sooner or later the need for a controllable benchmark system

will arise. The rough outline of this benchmark is that stochastic collections of tagged

“objects” (sets of co-occurring tags) are generated based on given input DAG, and

using these collections as input we can test how well does a given ontology extraction

algorithm recover the DAG. Our random walk model can provide a starting point for

generating random collections of co-occurring tags with some sort of “memory” of the

underlying DAG of hierarchy between the tags.

On the other hand, the tag-distance distribution generated by the random walk

model can also help pointing out non-trivial effects in the tag-distance distribution

of the original data where the DAG was taken from. For example, when using the

DAG taken from the Wiki networks, the behaviour of the tag-distance distribution in

the random walk model is very similar compared to the original one. However, when

repeating this experiment with the protein interaction network, the two tag-distance

distributions are only roughly similar: although the maximum in the z-scores is shifted

close to the origin in both cases, for the original data it remains in a diagonal position

(see Figs.6-7), while it becomes off-diagonal for the random walk model (see Fig.10).

Thus, the co-occurrence patterns of the protein interaction network have features which

cannot be explained by a simple random walk on the DAG.

6. Conclusions

Motivated by the ontology extraction problem in collaborative tagging systems and

folksonomies, we studied the statistical properties of tag occurrence in tagged networks

where the DAG of hierarchy between the tags is predefined. In order to be able to give

support for the further development of ontology extraction algorithms, this research was

focused on the interaction between the DAG and the tag-statistics. Our most interesting

result is that the local standing (rank, significance, etc.) of the tags in the DAG has

a much more relevant effect on the tag-statistics compared to the global distance from

the root. This is supported on the one hand by the change in the behaviour of the

tag-frequency as a function of the level value when switching to the rescaled levels l̃,

on the other hand by the different sensitivity of the 2d tag-distance distribution for

co-occurring tags to randomising the “upper half” or the “lower half” of the DAG.

According to our studies on a protein interaction network and two sub-networks

from the English Wikipedia, the average frequency of the tags is more or less independent

of the level value (distance from the root) in the hierarchy of the tags. In contrast, if

we switch to a rescaled level value l̃ taking into account also the length of the sub-

branches starting from the given tag in the DAG, we see a decreasing tendency in

the tag-frequency with growing l̃ in a wide range of l̃. A plausible explanation for
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this interesting effect is that the distance from the root is not a good indicator of the

importance (significance, rank, etc.), e.g., in the DAGs we studied leafs (corresponding

probably to the most specific tags) occurred at a wide range of levels. However, the

lengths of the branches starting from a given tag provide an alternative candidate for

evaluating its importance, and in contrast to the distance from the root, this measure is

of local nature. The above result suggests that taking into account this local information

as well when evaluating the rank of a tag yields a quantity which is much more entangled

with the tag-frequency compared to the traditional level value.

We studied the statistical properties of co-occurring tag pairs by introducing a

2d tag-distance distribution for the relative positions in the DAG. We compared this

distribution for the three investigated systems with the distribution obtained for a

random tag assignment analogous to the configuration model in the complex network

literature. According to the z-scores, close by pairs of tags co-occur in these systems

far more often then expected at random. Furthermore, these 2d plots also reveal an

interesting difference between the protein interaction network and the Wiki-networks: in

the first system the co-occurring tag pairs are much less likely to be direct descendants of

each other compared to the other two networks, instead they are often to like “cousins”,

“brothers” or “nephews”. We also analysed the 2d tag-distance distribution obtained

for a sample from Flickr using the shallow hierarchies defined by the users. The results

were consistent with the behaviour seen for the tagged networks with predefined DAG,

however the increase in the number of the close by tag pairs compared to the random

null model was far less striking.

In order to examine the difference between importance of the local- and global

position of the tags in the hierarchy from a further perspective, we applied restrictive

randomisation to the DAG by dividing it into an “upper-half” and a “lower-part”

of equal size. The induced changes in the 2d tag-distance distribution showed

significant difference: the effect of randomising the “upper-half” is marginal, whereas

the structure of the z-score undergoes a drastic transformation when randomising the

“lower-half”. Since randomising the “upper-half” modifies mainly the global structure,

while randomising the “lower-half” reshuffles mainly the local structure, this effect is in

complete agreement with the previously observed imbalance between the importance of

the local- and global standing of tags (in favour of the local one) from the point of view

of tag-frequencies.

Finally, we introduced a simple model based on random walks on the DAG

for describing the enhancement of close by tag-pairs in the tag-distance distribution.

According to our simulations, this approach can reproduce the shift of the maximum

towards the origin in the z-score in a robust way. Although simple in nature, this model

has relevant potential for further applications, e.g., it can provide a starting point in

constructing benchmark systems for ontology extraction algorithms, and can also help

in pinpointing non-trivial effects in the tag-distance distribution of real systems.
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Appendix

A1: The structure of the DAGs

Figure 11. a) Schematic illustration of the DAGs in the tagged networks we

investigate. The width of the bars corresponds to the number of tags at the given

level. b) After switching to the rescaled level value l̃ the shape of the DAGs becomes

rather uniform.

The DAG capturing the hierarchical relations between the tags plays a crucial role

in our analysis, and in the systems we investigate the structure of the DAG is not trivial,

i.e., its shape is far from e.g., the shape of a regular hierarchical graph in which the level

sizes are increasing as a power-law with the level depth. In Fig.11a we show a schematic

illustration of the level sizes for the networks under study, where the width of the bars

indicates the number of tags on a given level, while the vertical position of the bar

corresponds to l. This representation shows significant differences between the three

DAGs. However, when switching to the rescaled level value l̃, according to Fig.11b, the

shape of the DAGs become more or less uniformly “triangular”. (Since l̃ can take up

real values instead of integers, we used binning similarly to the case of Fig.7. in the

main text).

A2: Robustness of the random walk model

As mentioned in the main text, the random walk model turned out to be quite robust

against changes in the details like the frequency distribution of the tags, the distribution
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of the number of tags on the objects, or the length distribution of the random walk on the

DAG. For illustration, in Fig.12. we show results for replacing the uniform distribution of

the random walk lengths in Fig.10. in the main text by gamma-distribution (1st row),

uniform distribution with different ranges (2nd row), lognormal-distribution (3drow),

and Poisson-distribution (4th row). Apparently, the qualitative behaviour of the 2d tag-

distance distribution is the same as before: the maximum is shifted close to the origin

in the z-score.

Figure 12. The 2d tag-distance distribution in the random walk model when changing

the walk length distribution to gamma-distribution (1st row), uniform distribution (2nd

row), lognormal-distribution (3d row), and Poisson-distribution (4th row) for the DAGs

taken from the protein interaction network. Similarly to Fig.10., beside the actually

measured values (panel a), for comparison the results for un-correlated tag assignment

(panel b), the results for random DAGs (panel c) and the z-scores (panel d) are also

shown.
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