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In this work we present a mathematical description of how one can produce and read a thin
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formalism. With the help of computer simulations, we investigate the aberrations created by this
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I. INTRODUCTION

The theory of holography was first developed by Hungarian scientist Dennis Gábor around

1947-48 while working to improve the resolution of an electron microscope [1]. He coined the

words hologram and holography from the Greek words holos (whole, entire) and gramma

(anything written or drawn). A hologram is defined as the whole [or entire] message: the

total information. However, holography refers to the information storage process. According

to the principle of holography, a detailed three dimensional image of an object can be

recorded in a two dimensional photographic film and the image can be reproduced in a

three dimensional space.

In the first holographic experiment Gabor used incandescent light and the results were

good enough to prove his theory. The quality of the hologram was poor due to the random

phase relationships (the noise) produced by the incandescent light. The conventional optical

holography is a unique interference pattern of two light beams: A reference beam and an

object beam (also known as the diffraction beam) [see Fig. 1]. A laser beam is split by

a beam splitter into two parts. The first one (the reference beam) of the divided coherent

beam is focused directly on the film and the second one (the object beam) is first flashed

onto the object of interest and the modified light waves, after reflection from the object, are

then directed on the film where they interact with the reference beam. The interaction of

the coherent information in the reference beam and the object beam creates the interference

pattern and is recorded (encoded) in the film emulsion. The complex patterned information

stored in the film is called ’hologram’. When the developed film is again illuminated by a

coherent light beam, the encoded information is projected into local space and an image of

the original object is reconstructed.

The hologram can be produced by any wave kind of wave action [3]. The conventional

laser holography [4], acoustical holography [5] and electron holography [6] came up about fifty

years after the first articulated hologram theory. Due to an advancement in the computer

technology the computational holography [7], a computer synthesized real-time interactive

or virtual reality display of holograms, is a growing area of interest.

In this work we investigate the aberrations caused by the holographic procedure. We

also studied the effect of reading beam hitting the screen not in the same direction as the

reference wave, but in a slightly different one, and by using slightly different wavelengths
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FIG. 1: Image taken from [2]

for the reading, etc. As it is known in optics [3], the image of a point is rarely a point, but

a fuzzy object. We investigate the width of this image and its dependence on the size of

the holographic screen, the distance between the screen and the object, the distance of the

object from the symmetry axis of the screen, the nature of the mapping and reading wave.

By ’waves of different nature’, we mean scalar, spinor, vector and tensor waves etc...

In the section-II we describe the theory of creation and reading of a hologram using

various types of waves in the usual space and hyperspace. In the section-III we use computer

simulations and study the image created by the holographic mapping of a single stationary

point with scalar wave in 2d-space, and then reading the hologram. In this section we

also investigate the aberrations caused by the holographic procedure. In the section-IV we

present the discussion and conclusions.

II. HOLOGRAPHIC MAPPING AND READING

In this section we first describe the creation of holograms when the object is in the

usual three-dimensional space (subsection IIB). In the present study the hologram is two-

dimensional. This of course can be generalized also for a different dimensionality ’d’, but

then the dimensionality of the hologram will be ’d-1’.

Next, we describe the reconstruction of the holographic image in the d-dimensional space

(subsection IIC). As said above, the holograms can be formed in the presence of any wave

action [3], first we use scalar fields and we generalize our procedure for several other fields,
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such as vector (electromagnetic, acoustic, Maxwell-Proca), tensor (gravitational), and spinor

fields. We also describe how can one generalize these calculations to a space of different

dimensionality.

To generalize the results of our previous work [8], here we use a massive scalar field and we

prove that for this the Green’s functions found in the classical text books of electricity and

magnetism, such as [9] are adequate. Scalar waves can be produced by using scalar particles,

or pseudo scalars, as in the case of our calculation space reflection is not used. Even if we

make use of electromagnetic waves, that are vectors, they can be regarded as scalars in

the so-called paraxial approximation, meaning that the size of the screen is much smaller

than the object-screen distance [10]. But in order to create and read holograms, one must

investigate how different kind of waves are reflected and how do they affect photosensitive

materials. We restrict our discussion to reflection holograms, although the generalization to

transmission holograms is straightforward, and we assume thin holograms only.

A. The Physics of Different Kinds of Waves

For scalar waves, there is obviously no issue of polarity. For vectorial waves with several

components Ai, the reflection process can be modelled as

Ai′ = −RT ijAj, (1)

where the prime referring to the components after reflection, R is the reflectivity, and T ij

is the reflection tensor. The negative sign is due to the phase the phase shift of π due to

reflection. For tensor waves, this is generalized as

Aij′ = −RT ikT jlAkl. (2)

Next we describe how this transformation tensor is determined in the case when we use

vectorial waves. The wave vectors of the incident and reflected waves are ~ki and ~krefl. When

we create the hologram, the first wave vector refers to the object beam before it hits the

object, while the second the wave vector of the same when it leaves the object. However,

when we read the hologram, the first wave vector is that of the reference beam and the

second is that of the wave reflected from the hologram. We assume that they are equal in

magnitude, |~ki| = |~krefl| = k, i.e. one has elastic scattering. These two vectors determine a
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plane of incidence. We then construct the unit vectors v̂i and v̂r, requiring that both be in

the plane of incidence and ~ki · v̂i = ~krefl · v̂r = 0, therefore they are found to be

v̂i =
−~ki cos θ + ~krefl

k
√
1− cos2 θ

(3)

and

v̂r =
~ki − cos θ~krefl

k
√
1− cos2 θ

, (4)

where cos θ = ~ki · ~krefl/k2 is the cosine of the angle between the two wave vectors.

In the electromagnetic case (whether the wave is transverse as in the case of free waves,

or longitudinal or mixed, as they can appear in plasmas) as well as in the case of massive

vector bosons, that are called Maxwell-Proca waves, the reflection from perfect conductors

has the same boundary conditions. We model our reflection tensor in Eq. (1) to satisfy

these boundary conditions, which are compatible with the very reasonable and commonly

used assumption that there will be a phase shift of π due to reflection. This mean that

the polarization component that is perpendicular to the plane of incidence will change sign

(which is signified by the ’minus’ sign in Eq. (1), but we later include this sign in the phase).

The polarization component that is parallel to ~ki will be parallel to ~krefl and will also change

sign, just like the component parallel to v̂i that will be parallel to v̂r. These considerations

will give the following form to the tensor T

Tml = δml − k̂m
i .k̂

l
i + k̂m

refl.k̂
l
i − v̂mi .v̂

l
i + v̂mr .v̂

l
i. (5)

The k̂i and k̂refl symbols mean the unit vectors belonging to ~ki and ~krefl.

One can verify that a reflection of this kind preserves helicity. While modelling spin we

consider processes that preserve helicity in order to be consistent with our former results

and we also assume that the reflection tensor does not modify the norm, since we want to

incorporate this effect into R, and we also assume that there is a phase shift of π.

Therefore Eq. (1) is maintained, while the transformation tensor is different

Tml = a01 + i~b.~σp, (6)

with

a0 =
1

2

√
1 + cos θ, (7)

bj =
1

2

√

1 + 2k̂j
i .k̂

j
refl − cos θ,
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and the σp symbols stand for the usual Pauli matrices.

The only link missing from our discussion is the investigation of the manner these waves

interact with photographic materials. It is known that for optical holograms the maxima

correspond to the ventral points of the electric fields and not those of the magnetic fields

and that the electric fields ~E are parallel to the vector potential ~A: ~E = iω ~A [10]. Therefore

we model all our pure transverse waves in the same way as the free electromagnetic waves

and the purely longitudinal ones as electrostatic waves. For these waves, if the intensity I

is defined as I = ~E2 one can see that I ∼ ~A2.

However, maintaining the same definition of I for the Maxwell-Proca case, one does not

have the same proportionality between intensity and the square of the vector potential as in

the electromagnetic case. It is known [11] that for massive vector bosons the gauge symmetry

is broken and the Lorentz condition is mandatory, therefore besides the transverse fields ~A⊥

there will be longitudinal components ~Al even in the case of free waves. The frequency ω will

not only depend on the wave vector, but also on the mass of the particle M : ω =
√
M2 + k2,

in the so-called natural system (h̄ = c = 1). For these kind of waves it is also crucial to find

a connection between the ~E and ~A fields, since the former is involved in the computation of

the intensity, while the latter is given by the Green’s function formalisms directly, as we see

in subsection IIC.

Maintaining the same definition for the electric fields as in Electrodynamics and making

use of the Lorentz condition, we find that the electric field is ~E = ik ~A⊥ + iM2

ω
~Al, therefore

the proportionality relation becomes

I ∼
∣

∣

∣

∣

∣

~A⊥ +
M2

ωk
~Al

∣

∣

∣

∣

∣

2

. (8)

In the scalar case we assume that the intensity is proportional to the absolute value

squared of the wave field and in the spinor and tensor case this will be proportional to the

sum of the absolute values squared of each component of the wave field.

B. Making the Hologram

The hologram is produced, as seen in Fig.(1), by splitting a single beam into two pieces:

the object beam with its wave vector ~ko and the reference beam directly shed on the photo-

graphic plaque with a wave vector ~kr. As we have said before, we assume a d-dimensional
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space with the holographic screen lying on the ’d-1’ plane by construction.

We assume that the phase of the reference beam is φr0 while the phase of object beam

is φo0 in the origin, which is also the geometrical center of the holographic screen. The

wavelength of the radiation is λ = 2π/|~k|, where ~k is the wave vector. Therefore the phase

of the reference beam at an arbitrary point A of the screen (whose position vector is ~rA)

is φr(A) = φr0 +
~k · ~rA. Likewise if the position vector of the object is ~ro, the phase of

the object beam when it hits the object is φo = φo0 +
~k · ~ro. When the object beam is

reflected, it acquires an additional phase π, and when it hits the screen at A, its phase will

be φo(A) = φo0 +
~k ·~ro+π+k|~rA−~ro|. In the case of reflection, we added a phase π, which is

not always realistic, but in most cases is a good approximation and is widely used in eikonal

optics [3].

The wave field that is reflected from the object and then hits the screen has a value of

Eo(A), which is

Eo(A) = Eo0

√
σR

exp (iφo(A))√
4π|~rA − ~ro|

. (9)

We labeled the amplitude of the object wave by Eo0, the cross section of the object by σ,

its reflectivity by R, and we assumed isotropic reflections, which is also a reasonable approx-

imation. Likewise the reference beam (whose amplitude is Er0) will have its contribution to

the field on the screen

Er(A) = Er0 exp (iφr(A)). (10)

The fields Eo(A) and Er(A) can be added together and squared, and then we have the

interference picture that is the ’hologram’. How would one generalize for an arbitrary number

of dimensions? Only Eq. (9) will be modified, while the phases will be given by the same

formulae as before, and Eq. (10) is also maintained, with the exception that the dot product

will contain a different number of terms.

As we have found previously [8], in the case where we assume isotropic reflections and

the number of dimensions ’d’ is greater than two, the reflected wave field from the object

will read

Eo(A) = Eo0

√

σdR
Γ(d

2
)

2πd/2

exp (iφo(A))

| ~rA − ~ro|d/2−1
, (11)

where Γ is the Euler function and we also have to use the generalized cross section σd

instead of σ. In this case, as we have said previously, the dimensionality of the holographic

picture is ’d-1’.
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The only infra-dimensional case which makes sense is ’d=2’, where the hologram is one-

dimensional and Eq. (9) will be modified as

Eo(A) = Eo0

√

σdR
exp (iφo(A))
√

2π| ~rA − ~ro|
. (12)

This discussion covers the effects of the dimensionality while creating the hologram. As

we have seen, the velocity does not show up in these formulae, the only thing that is referring

to the wave is the wave vector, therefore there is no dependence on the mass except for the

case of the Maxwell-Proca waves due to Eq. (8). This will be true also in the case of

hologram reading.

We can generalize the former discussion for the case of waves with different nature, which

implies a different number of components. For vector and spinor fields, there will be i

components Ei(A) = Ei
o(A) + Ei

r(A) where

Ei
o(A) = Ei′

o0

exp (iφo(A))√
4π|~rA − ~ro|

(13)

and

Ei
r(A) = Ei

r0 exp (iφr(A)), (14)

where Ei′
o0 are the amplitudes of the different components for the object beam when

it leaves the object, while Ei
r0 are the different components for the reference beam. The

intensity on the screen at point A will be I(A) =
∑

i |Ei(A)|2. The components Ei′
o0 will be

evaluated as follows

Ei′
o0 = −

√

σdR
∑

j

T ijEj
o0. (15)

C. Hologram Reading

The hologram is read once one sheds a wave on it. It may be noted that the direction

and the frequency of this beam should be the same as those of the reference beam that was

used to create it.

In order to determine the image generated by a hologram when we shed some wave onto

it, one must know the reflected fields at any given point. The intensity of these fields is

related to the squares of the reflected wave fields as we have described in subsection IIA,

and knowing that, we can have an analytical description of the generated image. If some

wave is reflected from a surface (such as a hologram), we can compute the reflected fields
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on the surface and we can examine how those fields propagate. First we consider how

static fields are determined from known boundary conditions and after that we extend the

calculation for wave fields. For simplicity, we start with the (massive) scalar case.

The Green’s function G(~r) of a static field is defined as

(

∇2 −M2
)

G(~r) = −δ(~r). (16)

The field at any given point can be calculated as

ϕ(~r′) =
∫

V
d3~rϕ(~r)δ(~r, ~r′) = −

∫

V
d3~rϕ(~r)

(

∇2 −M2
)

G(~r, ~r′), (17)

where the derivative ∇ is related to the variable ~r.

After applying the following identities

ϕ(~r)∇2G(~r, ~r′) = ~∇
[

ϕ(~r)~∇G(~r, ~r′)
]

− (~∇G(~r, ~r′))(~∇ϕ(~r)) ,

(~∇G(~r, ~r′))(~∇ϕ(~r)) = ~∇(G(~r, ~r′)∇ϕ(~r))−G(~r, ~r′)∇2ϕ(~r) , (18)

and making use of the Laplace equation

(

∇2 −M2
)

ϕ(~r)) = −ρ(~r) , (19)

the field in any point can be calculated as

ϕ(~r′) =
∫

V
d3~rG(~r, ~r′)ρ(~r) +

∫

S
d2~rG(~r, ~r′)∇nϕ(~r)−

∫

S
d2~rϕ(~r)∇nG(~r, ~r′)) , (20)

where ∇n is the component of the derivative that is perpendicular to the surface.

The first term refers to the sources and we assume that there are no sources in the part

of space we examine. The other two terms are the so-called surface terms. In Optics, these

are called Kirchhoff integrals. Whenever the first surface term vanishes(and the Green’s

function must be chosen accordingly, so that it vanishes on the surface) we must know the

value of the field on the surface, and we are said to use the Dirichlet conditions.

If we know only the derivatives of the fields on the surface, we must require that the

normal derivative of the Green’s function vanishes on the surface, and we are said to make

use of a Neumann Green’s function. Note that any of these conditions can be met at any

time (although not both at the same time) because Eq. (16) does not completely fix the

Green’s function, so we might add any term whose Laplacian is zero (in the region of space

we are interested in) in such a way that the new Green’s function satisfies either one of the
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two conditions. Because we can calculate the fields at the surface, we use a Dirichlet Green’s

function, so our field at any given point is expressed as follows

ϕ(~r′) = −
∫

S
d2~rϕ(~r)∇nG(~r, ~r′)) . (21)

From the image solution for the auxiliary electrostatic problem, the Green’s function for

Dirichlet conditions can be calculated. We need to know the Dirichlet Green’s function on a

plane. First we define some new variables ~r1 and ~r2 as ~r1,2 = (x−x′)~e1+(y−y′)~e2+(z∓z′)~e3,

(in terms of our orthonormal basis ~e1, ~e2, ~e3), r1,2 =
√

(~r1,2 · ~r1,2).
In these terms, the Dirichlet Green’s function is given in [9] as

G̃(~r, ~r′) =
1

4π

(

1

r1
− 1

r2

)

. (22)

If instead of static field we have wave fields, this Green’s function is replaced with

G(~r, ~r′; t) =
1

4π

(

δ(t− r1/vf)

r1
− δ(t− r2/vf)

r2

)

, (23)

where vf = ω/k is the phase velocity of our wave. Since we consider only one frequency

(ω), we only need the Fourier transform of this Green’s function, which is

G(~r, ~r′;ω) =
1

4π

(

exp (ikr1)

r1
− exp (ikr2)

r2

)

. (24)

Note that the dependence on ω and hence on the mass has disappeared. If we change

the sign between the two terms of the RHS of the former equation, we get the Neumann’s

Green’s function. If we drop the second term, we need to know both the field and its

derivative on the integration surface, which is another way we could proceed. We choose to

use the Dirichlet’s Green’s function, however. Now we substitute Eq. (24) into Eq. (21),

but how one can justify this substitution, since Eq. (21) has been derived based on the

assumption that the fields are static. Let’s check this in the following way: we know if there

is a wave field, the Eq. (19) is replaced with
(

∇2 − ∂2

∂t2
−M2

)

ϕ(~r) = −ρ(~r, t). (25)

On the other hand, if we consider one frequency and retarded waves only, our field and

source can be expressed as

ϕ(~r, t) = ϕ(~r, t = 0) exp [−iω(t− l/vf)],

ρ(~r, t) = ρ(~r, t = 0) exp [−iω(t− l/vf )], (26)
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where l is the distance between the source and observer. Now, substituting this into Eq.

(25) and dividing the resulting equation by exp (−iω(t− l/vf )) we obtain Eq. (16). So if we

work with the time Fourier transforms of the wave fields and Green’s functions and assume

only one frequency, we are able to make use of the static formulation of the problem using

the Fourier transform of the Green’s function we have just given in Eq. (24).

The normal derivative of this Green’s function on the surface defined by the hologram is

∇nG(~r, ~r′) = − ∂

∂z
G(~r, ~r′)|z=0. (27)

If the dimensionality ’d’ were different (but d > 3), our Green’s function would be

modified as

G(~r, ~r′) =
Γ(d

2
)

2πd/2

[

exp (ikr1)

r
(d−1)/2
1

− exp (ikr2)

r
(d−1)/2
2

]

, (28)

while for d = 2, (the only meaningful case of an infra space in holography) is

G(~r, ~r′) = const.×
[

exp (ikr1) log
(

r1
R0

)

− exp (ikr2) log
(

r2
R0

)]

, (29)

where R0 is arbitrarily fixed in order to make the Green’s function vanish when r1 = r2 =

R0. The constant in the former equation is not even important.

Now the only thing left to be determined is the reflected field at any given point of the

hologram. For scalar waves, the phase and amplitude of the reflected wave depends on the

phase and amplitude of the reading wave

E ′
r(A) = −|Rh|Er(A) (30)

where E ′
r(A) is the reflected wave, Rh is the reflectivity of the hologram (it is the hologram

data file generated in the previous step) and Er(A) is the reading wave (exactly same as the

reference beam in Eq. (10)).

As in the previous section, the field of the wave that hits the screen is

Er(A) = Er0 exp
[

i
(

φr0 +
~k · ~rA

)]

, (31)

which we introduce into the Eq. (30). In the case of wave fields with several components,

one must use the appropriate relations for the reflection as given in subsection IIA.

We incorporate Eqs. (21), (29), (30) and (31) into a numerical code to compute the

reflected fields (and therefore the intensities in the manner presented in subsection IIA)

at any given point of the space. Therefore, after reading we obtained the image from the

hologram.
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III. COMPUTER GENERATED HOLOGRAPHY

In this section we generate a computer code which consider a stationary point-like object

of negligible but finite physical size for study. In the simulation we use waves of different

types, like scalar, spinor, vector and tensor waves, for creating and reading the hologram in

various dimensionality.

Like any optical procedure [3], the process of generating and creating the hologram too

will give us a blurry picture instead of a single point. In this section we are empirically

studying the dynamics of this blurriness and try to read some physics into it.

For the whole process we assume that the point-like object is situated in a ’d’ dimensional

space and the hologram is created in a ’d-1’ dimensional space. The object is separated from

the center of the rectangular screen (whose picture is the actual hologram) by a distance

’DD’. The sides of the holographic screen are equal and their size is ’D’, and that the line

of separation is perpendicular to the screen.

There is no need to play with wavelength because it appears in ratios with image width,

distance from the screen, and off-centricity. So for convenience we fixed the wavelength

λ = 1 unit and thus wave vector k = 2π. The geometrical size of the point is taken as

S1 = 5× 10−5 units.

For the numerical integration that is involved in creating and reading the hologram, we

divided the screen into several thousands (N2
P ) of equal regions (pixels); say 10000× 10000.

The number of necessary grid-points was estimated as follows: NP=Screen Size*Number of

Fringes per unit Wavelength. We estimated the size of the fringe, knowing this, we computed

the number of fringes per screen size, and placed 10 points per fringe, then, in order to check

stability we doubled the number of grid-points and so on.

We played with the parameters; screen dimensions (D), distance of image centre from

the screen (DD), number of grid-points (NP ), directions of reference and object beams and

off-central configurations etc... to see the effect on best possible image of the object. We

also check the effect due to the change in wavelength λ. We tabled down the width of image

(Γ) with respect to these parameters.

In this work we consider the simplest case of scalar wave and a point-like object in a two-

dimensional (d=2)-space. The infra-space hologram thus created is one (d=1) dimensional

space. The direction cosines of the object and reference beams are taken slightly different;
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DD 5.0 50.0 500.0 5000.0

Γ 6.0 6.0 6.0 6.0

TABLE I: Empirical study of the parameters in units: Γ v/s DD. Here D = 60.0 units.

D 5.0 10 12 15 20 30 40

Γ 13 6.0 12 13.5 19 26 37

TABLE II: Empirical study of the parameters in units: Γ v/s D, with DD = 500 units.

(co(1) = 0.2) and (cr(1) = 0.22), respectively. The numerically created hologram of the

object thus is read back in the two-dimensional space. We noted the image has a sharp

peak, centred at −8 units, along x-axis, however it is quite blurred along -ve side of the

y-axis, as shown in Fig (2). No effect in the image width and noise with variation in the

distance of object from the screen has been found as shown in the Table I.

In Table II we fixed the centre of image formationDD at 500 units and study the variation

of the screen width D1 = D2 = D. We found that Γ = 6.0 units. We also noted that in

most of the other cases there appear double peaks intermingled with each other.

-30 -20 -10 0 10 20
0

500

1000

1500

2000

2500

3000

In
te

n
si

ty

Image Widths Axes-wise

-30 -20 -10 0 10 20
Image Width

0

500

1000

1500

2000

2500

3000

In
te

n
si

ty

X-axis

Y-axis

FIG. 2: The image for DD = 500 units, D = 10 units and λ = 1.0 units.

We present a case where the screen width is fixed at D = 10 units and we study the

13



DD 5 10 20 30 40 50 60 70

Γ 5 6 8 10.5 12 15 17 18.5

TABLE III: Empirical study of the parameters in units: Γ and DD, with D = 10 units.

dependence of image width with the variation of the distance from the screen as depicted

in Table III.

In the Fig. (3) we plot image intensity versus x-width of the image in four panels for

DD = 5.0, 10.0, 30.0, 70.0 units, respectively. One can see from the Figure that the

blurriness is minimum for DD = 10 units, in other words the image is focussed at a distance

of 10 units.
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FIG. 3: The image for DD = 10 units, D = 5 units and λ = 1.0 units.

No change in the x and y coordinates has also been noted as we change the direction

of object beam, keeping the direction of reference beam fixed. However, if we change the

direction of reading wave (cr(1) = 0.1; 0.2; 0.3), keeping the direction cosines of the reference

beam fixed (cr(1) = 0.2), the peak shifts along x-axis. As shown in the Fig. (4) a shift in

peak of about 49% along +ve x-axis and about 54% along -ve x-axis have been observed for
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first and third cases, respectively. No significant change has been noticed in y-axis.
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FIG. 4: The image for DD = 10 units, D = 10 units and λ = 1.0 units.

In our simulation, there is no significant variation in the off-axis deviation i.e. non-

symmetric position of the object.

At last we also investigated the effect of the wavelength on the image formation. As

shown in the Fig. (5), on the variation of 10% in wavelength there is 7− 16% up-down shift

in the peak.

We have also investigated the sensibility of our holographic mapping on the process of

changing the wavelength of the reading wave from that of the reference beam, and their

direction cosines with a few percent knowing that during experiments this meant destroying

the picture. Surprisingly, we did not find this effect in our computations.

IV. DISCUSSION & CONCLUSIONS

The revolution in the Holographic Principle is now a major focus of attention in many

area of science e.g. gravitational research, quantum field theory and elementary particle
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FIG. 5: The image for DD = 10 units, D = 10 units and λ = 0.9; 1.1 units.

physics. A popular account of holography can be found in [12–15].

In the present work we discussed a mathematical formalism of creating and reading a

hologram, in the most general terms. We developed holographic theory for various kind of

waves: electromagnetic, acoustic, etc. These waves can propagate in several media, solids,

liquids, plasma, etc. They exhibit a large variety of mathematical structures, such as scalar,

spinor, vector and tensor. The fields that are neither scalar nor fermions, can be Abelian or

non Abelian gauge fields if they are massless, but we also considered the same fields when

non-zero mass is added and so the gauge invariance is in part broken.

Due to the fact that waves are fields, we borrowed many tools from classical field the-

ory, such as Green’s function formalism, which is very useful for describing the creation of

holograms, but it is more important for the understanding of the reading process. This

formalism can be used for waves of arbitrary spin and waves propagating in a medium. As

the formalism applies in any dimensions, we presented some conclusions for hyperspace and

for the two-dimensional space, which is the only case of infra-dimensions that makes sense.

We first discussed the massive and massless scalar case, then we justified why this could

be generalized for the vector fields, such as the electromagnetic field in the paraxial ap-
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proximation, and gave a generalized procedure that applies even in the non-paraxial case

whether the wave is transversal or longitudinal. We also extended this generalized procedure

for spinors and tensors.

In our study we obtained the image of a point-like object, like any optical procedure [3],

a blurry picture instead of a sharp point. Let us bring to your notice that in our previous

work [8] we have conjectured that the uncertainty in the quantum mechanics is due to the

holographic basis of physical reality. We have argued that for the macro particles (classical

objects) this fuzziness, noise and wave pattern due to holographic projection are weak and

so hard to observe in daily life.

We investigated the aberrations that are due to a reading beam hitting the screen in a

slightly different direction that of the reference wave and a slightly different wavelengths, etc.

We measured the width of image so formed and its dependence on the size of the holographic

picture, the distance between the screen and the object, the distance of the object from the

symmetry axis of the screen, the nature of the mapping and reading wave.

In this work we presented the simplest case of scalar wave and a point-like object in

a two-dimensional space. The infra-space hologram is one dimensional and is read in a

two-dimensional space.

In the future work we plan to investigate scalar field in 3d and 4d space and the elec-

tromagnetic fields with an analogy of the massive case and propagations in a medium,

especially in dielectrics and plasmas. We also plan to describe some possible integrations of

the path-integral [16] formalism into our description.
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