Topics in Quantum Field Theory in Curved Space

Jaume Harb*

In these lectures we consider some topics of Quantum Fieddijtin Curved Space. In the first one particle
creation in curved space is studied from a mathematicat pbiview, especially, particle production at a given
time using the so called "instantaneous diagonalizatiothaw®. As a first application we study particle pro-
duction in a no-oscillating model where re-heating may hgla@red from gravitational particle creation. In
the second one we re-calculate, with all the mathematidaildeparticle production in the Starobinsky model.
Particle production by strong electromagnetic fields (Soger’s effect) and particle production by moving
mirrors simulating black hole collapse are also studiedthinsecond lecture we calculate the re-normalized
two-point function using the adiabatic regularization.eTdonformally and minimally coupled cases are con-
sidered for a scalar massive and massless field. We reprpdegeus results in a rigorous mathematical form
and clarify some empirical approximations and bounds. Ehiearmalized stress tensor is also calculated in
several situations. Finally, in last lecture quantum atiiom due to a massless fields conformally coupled
with gravity are considered in order to study the avoidarfceirgularities that appear in the flat Friedmann-
Robertson-Walker (FRW) model. It is assumed that the us&/epntains a barotropic perfect fluid with state
equationp = wp (beingp the energy density andthe pressure). The dynamics of the model is studied for all
values of the parameter, and also for all values of the two parameters, that we willeand3, provided by the
guantum corrections. We will see that only the case 0 could avoid the singularities. Then when> —1,
in order to obtain an expanding Friedmann universe at lategi(only a one-parameter family of solutions, no a
general solution, has this behavior at late times), th@irdonditions of the no-singular solutions at early times
must be very fine tuned. These no-singular solutions arenargesolution (a two-parameter family) leaving
the contracting de Sitter phase, and a one-parameter fa@ailyng the contracting Friedmann stage. On the
other hand fow < —1 (phantom field), the problem of the avoidance of singulesits more involved because
if one considers an expanding Friedmann stage at early tithes instead of fine tune the initial conditions
one also has to fine tune the parameteend 3 to obtain a behavior without future singularities, becamsig
a one-parameter family of solutions follows a contractimgeéfimann phase at late times, and only a particular
solution behaves like a contracting de Sitter universe. réleof solutions have future singularities.
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I. INTRODUCTION

In these lectures we'll try to give a self-consistent préstion of the quantum field theory in curved space and also
to show some of its applications. In the first lecture we willega mathematical presentation of the subject and we
will re-derive, with all the details, some of its applicat®to the theory of gravitational re-heating. Our preséontas
no-standard, in the sense that we start explaining the Batimvacuum prescription” introduced by Parker in his thes
[1-3], and the “instantaneous diagonalization methodtputuced in Russian literature at the beginning of 70’sgtas
in the idea that the number of created particles in a givenenaich given time is the energy of the mode at this time
divided by the energy of a single particle in that mode [4-A$. an instructive example we calculate particle creation
in the flat Friedmann-Robertson-Walker (FRW) chart of theSitter space where one can sees the difference between
both prescriptions. After that, we introduce the “in” anditbstates in asymptotically flat spaces where particletaaa
can be defined in the standard way|[8-13]. As an applicati@nreacalculate the gravitational particle production in
a transition from the de Sitter phase to the radiation-daeith one[[14], and we also discuss the problem of a second
inflationary stage related with the back-reaction [15-THis example is important because it describes approxiyate
the inflationary phase followed by a transition to a radiatieminated universe, and the particle production process m
be used to explain the pre-heating in inflationary non-tzgoity models|[14], 18, 19]. Finally we study, in a great detai
particle production in the Starobinsky model[20-22] beseawe believe that there isn’t a clear explanation of particl
creation in this model. In this case, in order to obtain thé-keown results, firstly one must disregards the power-law
expansion of the universe and only retains the oscillatieigglior of the scale factor at late times, secondly one has to
assume that the energy density of the created particles &lalefined quantity in this model and then one has to choose
a particular form of it, and finally one has to assume that dné &f particles, named scalarons, are the responsible for
the late time behavior of the universe, and also that is tieaydef these scalarons what produce particles.

Particle production by strong electromagnetic fields [28]also studied, and Schwinger’s formulal[24] that cal@dat
the probability that the vacuum state remains unchangelerptesence of a constant electric field is deduced, in an
elementary but not at all mathematically correct way, usitagmdard methods of Quantum Field Theory. More precisely,
it is deduced calculating the Bogoliubov coefficients foegvmode via the W.K.B. method in the complex plane. At the
end a rigorous demonstration is outlined.

The last part of this first lecture is devoted to the study atiple production by moving mirrors. Our interest is
concentrated in trajectories that simulate the black baflggse, and to get the same kind of results obtained by Hayvki
in [25], i.e., to obtain the black body spectrum. This ocdorsperfect reflecting mirrors, but we’'ll show that for semi-
transparent moving mirrors the radiation spectrum is aiffesrent.

In the second lecture the vacuum quantum fluctuations adéestuWe calculate the re-normalized two-point function
subtracting adiabatic modes up to order two. We do the cationl for conformally coupled fields and also for minimally
coupled ones re-obtaining, in a consistent way, all theyeegll-known results. Calculating the two-point functiawery
important in the context of inflation, for example, the etdrimflation phenomenon is manifested in some inflationary
model (new inflationary universg [26-28], chaotic inflat[@f]), i.e., the large-scale quantum fluctuations of theaiofh
field termed by its two-point function lead to a process ofitély self-reproducing inflationary mini-universes [[30]
Studying the back-reaction of particles produced in thehmwating phase also requires the two-point function of the
inflaton field and the two-point function of the light paréslinvolved in such a process [31+-33].

The mean problem with the two-point function is that it isralviolet divergent and requires re-normalization. The
simplest method for obtaining divergence-free expressigthe adiabatic regularization based on subtracting gmme
eralized WKB modes [34] that have the same behavior at laggpiEncies as the exact modes; the divergent terms then
cancel. But the procedures for calculating the re-norredltavo-point function differed somewhat in early work. The
authors assumed some not fully justified frequency cut-ofhade unjustified approximations in order to obtain finite
quantities|[26], 35-37].

Our task in this lecture is to matematically clarify the f@ats appearing in those works. Firstly, the massless case is



studied (conformally coupled and minimally coupled caseproducing all the previous results in full detail. Aftaig,

we study a massive field in the de Sitter phase where it's asduinat its mass is smaller than the Hubble parameter (this
is typical in the inflationary models [30]). Here we derive tivo-point function at late time in full detail and accutgte
demonstrate the mean formula obtained. in [26]. We finishl#uire reviewing some important results about the stress
tensor re-nomalization which will be used in last lecture.

In last lecture we study the avoidance of cosmological darifies if one takes into account the vacuum corrections
due to a massless conformally coupled field.

It's well-known that the classical solutions of the genesddtivity for a Friedmann-Robertson-Walker (FRW) model
contain, in general, singularities (Big Bang, Big Rip, fttsudden singularities), this means that near these sintes
the space-time curvature is arbitrarily large. Then, fovatures on the order of the Planck length, quantum effects
have to be taken into account. These quantum effects, ctatevithe so-called energy conditions|[38], and consequentl
they can modify drastically the classical solution. Fostteason, it is possible that quantum effects avoid theickdss
singularities|[39, 40].

We consider the quantum effects produced by massless fietdsrmally coupled with gravity. This is an special
case where, for a flat FRW universe, the quantum vacuum g&eser, that depends on two regularization parameters,
that we calla and 3, can be calculated explicitly. Then due to the trace anoraati/the equation of conservation, one
easily calculates the vacuum energy density that conashiat the modified Friedmann equation. This equation caraot b
analytically integrated, but a qualitative phase-spagegystan be performed. This is the main objective of this lextu

First, we introduce the quantum effects and write the madiffisedmann equation that depends on the parameters
and 3, which we’ll assume that can take all possible values. Atftat, we study the simplest case, i®.= 0, in this
case the modified Friedmann equation becomes a first orderetifial equation and can be integrated. Our conclusion,
in that case, is that the singularities are not avoided. A@osimple case corresponds to the case of an empty universe
(it doesn’t contain any barotropic fluid, only quantum effeare taken into account). An special case< 0, 8 < 0)
is the Starobinsky model [20]. We’'ll see that, in that cadles@utions contain singularities, except whén< 0, where
it appears an unstable de Sitter solution, and an unstahlécsothat connects the de Sitter solution with the point
H = H = 0 (being H the Hubble parameter). Finally, we study the general case,a universe filled by a barotropic
perfect fluid with state equatign= wp. The only case where no-singular solutions may appear iswhe 0 andg < 0.
Then taking the same point of view as|[41, 42], we show thatnwhe> —1, the no-singular early time behaviors that
can lead, at late times, to the Friedmann expanding stag@ eontracting de Sitter phase and a contracting Friedmann
phase. However their initial conditions can be very fine tlimeorder to match with the expanding Friedmann stage. On
the other hand, fap < —1 the late time behavior of no-singular solutions that cornetffthe expanding Friedmann stage
at early time, are the contracting Friedmann phase and thieamting de Sitter one. In this case, instead of fine tune the
initial conditions, one also has to fine tune the parameteansd 5 in order to obtain no-singular solutions. But in both
cases, the no-singular solutions are unstable in the skatart small perturbation leads them to a singular behavior.

The units used in these lectures are i = 1.

II. PARTICLE CREATION BY CLASSICAL FIELDS

Particle creation by gravitational fields is studied in thégtion. The theory developed is applied to a non-oscitati
inflationary model and to the Starobinsky one.

A. Graviational particle production
1. Quantum fields in curved space-time: General Theory

It's well known that the Lagrangian density of a scalar fieldlil] £ = (9,40 ¢ — m?¢* — {R¢?), and its corres-
ponding Klein-Gordon equation is given by

(=V, V¥ +m? +ER)p =0, (1)

where ¢ is the coupling constant an& is the scalar curvature. If one considers the flat FRW metsit
—dt* + C(t)dx®> = C(n)(—dn* + dx?) (being n the conformal time), the modes of the form(x, )
(2m)~3/2C=1/2(n)e™ ™\ (n) will satisfy the equation

Xie () + Q& (n)xx(n) =0, @2

~
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where we have introduced the notati®d (n) = wi(n) + (£ — 1/6)C(n)R(n), with wi(n) = m?C(n) + |k|*> and
R(n) =3 (g_;' - %%_f) = 6% (beingC' = a?).
Firstly, we are interested in the conformally coupled case, in the casé¢ = 1/6, where equatiori{2) becomes
Xk () + wi(m)xx (1) = 0. 3
This is the equation of a set of no-interacting harmoniclizgors, so to built a quantum theory, we can consider the
following Hamiltonian operato?{(r)) = i (ﬁ2 + wQ(n)éz) — 4w(n) corresponding to a single harmonic oscillator. In

Heisenberg picture the operat6raind¢ satisfy the equations’ = I andr’ = —w?24, thatis,¢ satisfy the Klein-Gordon
equationp” + w?¢ = 0, and thus, one can writes:

o(n) > _ ( X () )A < X" (1) ) it

z = + . Al 4

< Aam )~ \xm )T ), ) ®
where the mode functiog is a solution of the Klein-Gordon equation aﬁq is, in that picture, a constant operator that
we will call the "annihilation operator relative to the mogée

From the commutation relatiojil, §] = —i, one can deduces thatmust satisfies the relatiog x* — x*x = —i,
which means that the annihilation operator is given by
Ay = =i (X"t = x*mrm) (5)

Once this operator has been introduced one can defines theuwestate relative to the mogé, namely|0; x), as
the quantum state that satisfié§|0; x) = 0. It's clear from this definition that there isn't particleqatuction at any
time, becauséy; O|AL/A1X|O;X> = 0 all the time [43]. However, this definition depends on theicb@f the modey.
Effectively, if one chooses two different mode functiongnrely y; and o, since/lx1 = OLLQAx2 + BT,QAI@ with
a2 = —iW|xe; x7] andpy o = —iW[x3; x7] (where)V denotes the Wronskian), then an observer ifjthg.) vacuum

state can observeg -particles because one h&§ > = (y2; 0|Al, A, [0;x2) = [B12]*-
In this way, if one considers the family of solutions to theitGordon equation, namely, (n), defined by the initial
condition

xor ()= f('); xoy(n') =g(n'), wheref andg are some arbitrary functions (6)

one can calculates the numbengf-particles detected by an observer in thex.+) vacuum state, that is, the number of
produced particles at timefrom the vacuum state at timé, with the formula

N(r;7") = (X3 0ml AL Ay, m|0msx-r) = B 7)P, with  B(757') = iW[xzrs x4 ). @)

Note that, different families of solutions give rise to @ifént definitions of the vacuum state. For example, to define
the adiabatic vacuum modesfirst we consider the-Klein-Gordon equatiorv” + w?(n)v = 0, where heree is a
dimensionless parameter that one shalleset 1 at the end of the calculations. At ordet”, a WKB solution of the
Klein-Gordon equation is (see for detalls|[44]):

1

; Q)= [ et T Walme)dn 8
Xn"WKB(T’E) QI/Vn(T;e)6 ’ (8)
whereW, = w and
, LW/ 3 (W2
W,, = terms until ordee>" of 22|l ) nol _ 9
unt <\/w € |:2Wn1 1 W371 ( )

Once one has introduced the WKB solutions, the adiabatiowacat order is defined through the family,,.,, (1)
that satisfy the initial condition

Xn;n! (77/) = Xn;WKB(T/I; €= 1); X:z;n’ (77/) = X:L;WKB(T/I; €= 1) (10)
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From this definition, at thes order, theg-Bogoliubov coefficient is given by, (7;7') = iW[xn;r; Xn:r], and the
number of produced particles at timecan be calculated from the formula

Nolrit) 2 18alri 0 = gt (5 OF + W2 (] = 3302(0))
W) W)

+8W3 (7_) |Xn;7"(7-)|2 + 4W3 (7_) (X’/VT;T/ (T)X"ﬁ'/ (T) + X’/VI;T/ (T)sz;r/ (T))? (11)

whereW,, (1) = W, (1;e = 1).
Another important family of solutions to the Klein-Gordoguation, namely 4iag:, (1), is given by the initial condi-
tion

Xdiagm’ (77/) = XO;WKB(T]I; €= 1)7 deiag;n’ (77/) = _iw(nl)XO;WKB(n/; €= 1) (12)

This family defines the so-callédstantaneous Hamiltonian diagonalization method and their Bogoliubov coeffi-
cients

O‘diag(T;T/) = _iW[Xdiag;r/§X2iag;r]a Bdiag(ﬁ 7’/) = iW[Xdiag;‘r/; Xdiag;‘r]v (13)

can be calculated as follows: Writingiiag.~' (1) = Qdiag (75 T')Xdiag:+ (1) + ﬂdiag(T;T/)Xziag:T(’I]), atn = 7 one gets
the system '

{ Xdiagsr (T) = Qdiag(T; T )Xow Kk B(T; € = 1) + Baiag (T 7 )Xow i p(Ti€ = 1) (14)
X:iiag;r/(T) = —iW(T) (adiu«g(T; T/)XO;WKB (T; €= 1) - Bdiag(T; TI)XEK);WKB (T; €= 1)) )
which can be used to obtain the interesting formula
N N ) N2 1 1., 2 2 _ 9 1 15
diag(T37") = [Baiag (T;7')|” = o) 3 Xaiager (T)I” + @ () [Xaiagsr (T)F] = w(7) |, (15)

which shows that this quantity is the energy at timef the modey ..~ divided by the energy, at time, of a single
particle.

Another way to obtain the Bogoliubov coefficients can be doom the system(14) if one takes into account that the
mode functionydiag;- (7) satisfy the equationy;,,... (1) + w?(7)Xdiag:~ () = 0. As a function of the variable, one
has '

= (1) (Gawis(rie =1))° Baiag(r; 7")
W' () (vo,wrB(T; € = 1))2 Odiag(T; 7). (16)

aiiiag (T; T/)

Biiag(Ti7') =

This system can be solved by iteration, for example, if irfitse iteration one chooses;;., (7; ') = 1, one will arrive
at formula

T

/
N A w (77) —2i [Mw(n")dn’
ia 3 = - dn. 17
Bd Q(T T) \/Tl 2W(77)6 T] ( )

Example II.1. (Particle creation in the flat FRW chart of the de Sitter spéicae [45, 46])
In the de Sitter phase the scalar factor is givendfy) = —1/(Hn), with —co < n < 0 (being H the Hubble

parameter), and the frequency has the fasm) = |/w? + Hmz—; wherewy is a constant. We are interested in the case
m > H which correspond to the adiabatic approximation (see bldwn easy calculation yields

im/H
|1 . eragps ul
. ;€= 1 = —8“00 ne+m /(H WO) ’ 18
XoswkB(1 ) 2w (1) V0?2 +m2/(H2w2) +m/(Hwo) 4o

which shows, when — —oo, that

1 —1iw -
XowrkB(m € =1) =4/ 20 " Xoawrp(me=1) = —iwovowkB(n;€ = 1). (19)



The mode solution that satisfy the initial conditionl(19yigen in terms of the Hankel functions [11]

T
= Oy | T HP (won), (20)

withp = /3 — ﬁ ~im/H, C=e (F+5) =emm/CHe=i%  and n=e |y

Using the asymptotic form of the Hankel functions at lateetim.e., whei|wo < 1 [47]

H w m/H w im/H
~ —nwm/H _ o7 o7
x(n) =2 -C 47Tm[ (1 zm/H)( 5 ) —TI'(1+tm/H) ( 5 ) }, (21)
an easy calculation provides that
|Biag (0; —00)|? = I T (1 —am/H)|* ™™/ H (22)
diag i - 32mm? '

Using at this point|[47]|T(1 + iy)|? = 7y/sinh(7y), we conclude that, whelp|wy < 1, the number of produced
particles, using the diagonalization method, is given/ k8][4
H2
16m?2’
However if we use the zero order (the other orders give theesasult) adiabatic vacuum modes, the square of the
(5-Bogoliubov coefficient will be given by

Ndiag(o; _OO)

14

(23)

180(0; —00) > = |x(0)X6:w x5 (05 € = 1) — X' (0)xo;w k B(0; € = D”. (24)

Inserting [21), in this last formula, we obtain

H —1
No(0;=00) 2 = [T (1 + im/H)|* ™/ — (e%m/H - 1) . (25)

This is the thermal spectrum obtained in the flat FRW chartheide Sitter space-time [45,/48].

Remark 11.1. The two methods give a different result because whien < 1, one has

. 1 .
Xowrp(me=1) = —iwn)xowrp(ne= 1)+ %XO.,WKB(W; e=1)# —iwm)xowkp(me=1), (26)

this is due to the fact thdtm,,_,,- w(n) = oo, thatis, at late time there is not a well-defined "out” regi¢see below for
a precise definition of the “out” region).

In general (for arbitrary values o), for a given set of modes satisfying’[x;., xx] = —i one can expands the
quantum field, in the Heisenberg picture, as followx, ) = Yk Ay, br(x,m) + fl;k@’;(x n), then one can defines
the quantum vacuum state relative to the modegc, n) = (2m)~*/2C~1/2(n)e™xi(n), namely|0; x), which must
SatISerSAXk|O x) = 0 for all values ofk. However if one considers another set of modes, namg(y; 7), one also
may develops the quantum field asx, n) = > Angsz(x, n) + Alk(bk(x, ), Wheregbk = ax¢x + Pk¢y and thus,

Ag, = ot Ay, — BEAT with |ax|? — |Bk|? = 1. The vacuunjo; X) relative to the modesy (x, n), is related with the
other vacuum trough the relation

10;X) = HeXp{ (AL, )? }|0;X>7 (27)

and the operator "number of particles in the méde¢hat depends on the choice of the set of modes, for exangi¢hé
setgw (x,n) isNy, = Al A, satisfies(x; 0[N, |0; x) = 0, however one ha&y; 0[N, [0; X) = |Bk|?.



Once we have introduced these definitions, one can condtiefamily of solutions to the Klein-Gordon equation,
namelyxi., (), defined by the initial condition

X' (1) = fic('); Xiey (') = 9x(n'),  wherefi, andgy are some arbitrary functions (28)

to calculate the number density pf-particles per unit volume detected by an observer ifjdhg,,) vacuum state, that
is, the number density of produced patrticles at tirrfeom the vacuum state at timé. The general formula is

N N 1
3 . . 3 . 2
. /d k<XT/7O|4.>rck;q— AXk;T|O7XT/> (27Ta)3 /d k|ﬂk(7’7/)| ’ (29)

with B (7; 7') = IW[xK;r/5 Xis7)-
Remark 11.2. In the conformally coupled case one also can defines the gmkengsity of produced particles at time
from the vacuum state at timé as followsp(7; 7') = (QM)B | &k (7)| B (T3 )%

Example II.2. (Particle production in the adiabatic approximation)
This approximation is based in the assumptigjn < Q3. In the conformally coupled case this assumption becomes
wi < wg and it is always satisfied wheff < m. In that case one has

1
ka(T)

Xk, diagir' (T) = Xk owkB(T;6 = 1) = et wilmydn, (30)

and whenw; (") = 0 one can inserts this expression in formula](15) to obtain

o wi(r)  m*C?(7)
T 16;1{(7) T 64wi(r) 1)

|ﬁk,diag (T; TI)'

which helps us to conclude that, using the instantaneowgodialization method, the number density of created padicl
per unit volume is given by/|[5]

H? [* x2 mH?
Naiag(ri7') = = dz = 32
diag (T3 ') 327r2/ @2+ 13"~ Bl2n (32)
and their energy density is
27172 00 2 27172
, m*“H x m*“H
ia 3 = dx = . 33
Paiag(TiT') = 55 /0 @2+ 152"~ 06 (33)

Remark I1.3. Note that formulal(23) can be easily obtained from formUlf) @oplied to the de Sitter phase.

To finish we consider and asymptotically flat FRW space-tithat is, we assume théin,,, + C(n) = Cy, and
we take the following set of modes,, i (x,7) = (27r)*3/20*1/2(n)eikx% whenn — —oo, and the the set
W— k

boutx(x,7) = (27) 732012 ()e* 2" \wheny — oo (beingws x = +/m2C + [K[2). In this context we can

Nz
define the “in” and “out” vacuum states, namély,) and|0,.:), and the “in” and “out” annihilation operatoréi;m,k and
A, k- Then the average number of produced pairs, at late timeéksek mode, is given by0;,, |N0ut k|0in) = |Bx|?
Wherej\/out Kk = Alut,kAOUt x is the operator number of “out” particles, and the beta Biodgpalv coefficient is obtained
trough the relatlorzbm_k = akPout k + 5k¢out,k

In that context, the number density of created particle p@nwlume, at late times, is given by

1
N = (27’1’(1)3 /d3k|ﬂk|23 (34)
and their energy density by [49]
1
p= m/dgkw+,k|ﬂk|2- (35)
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In general, it is impossible to solve the mode equatidn (2)0me can rewrite this differential equation in an integral
one as follows [49, 50]:

emiwn ]

Yel) = o / " Vi) sin(w sl — )il ) (36)

2wokx WokJooo

whereVi (n) = w? , — Qi (n).
Applying Picard’s method to lowest order, i.e, replacingn’) by ‘37;}7"‘77 one obtains the following approximation
w_ k
that works very well for massless nearly conformally codlelds

1

7
o 21+ — [ Vk(n)dn Pk = —
R

e W= x4 (n)d 37
T / (o) (37)

2w_,k

Note that, one will have to assuriim,,_, +, Vi () = 0 if one wants well defined Bogoliubov coefficients. This alway
happens in the massless case, and using Plancherel'sithisonet difficult, in the massless case, to prove that

(£—1/6)

N pr—
16ma

/R a4 () R2 (). (38)

2. Particle production in the transition from de Sitter pkas a radiation dominated universe

Consider the following scale factor [14]
-1 for n<mno
a(n) = Hn -
) { H(n—10) — g5 for mo <,

wheren, < 0 is the time when the sudden transition occurs.

This example is interesting because in the radiation phasssless particles cannot be produced, so in that phase,
the number density of created particles and their energgigeare well defined quantities. Moreover, it describes
approximately the inflationary phase followed by a trapsitio a radiation dominated universe, and the obtainedtresul
can be used to explain the reheating process of the univitesérdlation in some no-oscillatory models [19].

First, we wil consider massless nearly conformally cougladicles. In the de Sitter phase, one fggn) = |k|*> +
(12¢ — 2)/n?, and in the radiation on@; () = |k|?. Using formula[(3I7) one gets

(39)

o ™ gy B 1
g L “
and form formulal(38) one easily obtains

_(66-1) (66— 1)°H? rag\3
N=- 127a3 12« (Z) ’ (41)

whereag = a(n).
Itisn't difficult to show, from formulal(37), that the enerdgnsity diverges. However if one assumes that the transitio
is not abrupt one obtains (seel[14])

po BT ey ()", (42)

a*ng a

Now, we consider massless minimally coupled particles etiee mode functions that describe the vacuum state in the
de Sitter phase are given by

™ 1 1
wto) == 06 =g (14 55 ) )




and in the radiation one, these modes have the form

1 : :
Xk(n) = —== (Oékeﬂ‘k‘" + ﬁkel‘k‘") : (44)
V/2[K|
Matching at time) = 7y one obtaing, = Wa”“kmﬂ what implies that the number density of produced particles
0

is infrared divergent, and their energy density is bothrardd and ultraviolet divergent.

To eliminate the infrared divergency one can imagines thakeey early times the universe is in a radiation phase,
then at a given time, for example= —H ! (¢ = 0), there is an abrupt transition to the inflationary phaseiilesd
approximately by a de Sitter one (see for details [36, 51]).tke other hand, to avoid the ultraviolet divergencies and
can assumes that inflation finishes with an smooth tranditidhe radiation phase [14] because in that case modes with
|k| > |77|51 have a very small contribution. Anyway if one is only inteeskin production of particles whose modes

leave the Hubble horizon, that is, in modes that sati&fy. |k| < || ~!, one can uses the formuta = zlkl%nze‘%'k'”o
0
to obtain
1 Imo] ~* H3 3/ 1
N [k = 2 () (- 1)), (@5)
8n2a3ng Ju 82 \a H|no|
and
1 Imol = H* 4 1
b= g | R = () () (46)
8n2a*ng Ju 812 \a H no|
Now we consider the general massless case where the motldsfihas the vacuum state in the de Sitter phase are
™
xi(n) = Cy [~ HP ([K|n), (47)
withy = /2 — 12¢ andC = e~ (% +7).
For modes that satisfikno| < 1 one can uses the asymptotic formula
: B iy 1
H® ()2 2 (2/2) " T(v) — ——— (2/2) =———. 48
D)= /DT T0) — s G (48)
Then matching at point = 7, one obtains for > 0 (i.e., foré < 3/16) [52]
1 o
Bl = 7= (k[Inol /2]) P W) (1/2-v). (49)
In the opposite casikny| > 1, from the asymptotic formula [47]
2 4% —1 .
HP (2) = Cy/ = (1 it )e—”, (50)
T2 8z
after matching at poing = 79 one obtains
1402 -1 _,
20 L —ilk|no 51

what means that the energy density is always ultravioletrgent.

From these results one concludes that68 < ¢ < 3/16 (0 < v < 1) there isn’t infrared divergencies and thus the
number density of particles converges. Moreover, if onemges that the transition is smooth then their energy derssity
also finite. On the other hand, whér< 5/48 (v > 1) the number density is infrared divergent (andgor 0 (v > 3/2)
their energy is also infrared divergent). The solution t® élvoidance of divergencies in this last case is the samer as fo
the minimally coupled case. Then if one is only interestechivdes that leave the Hubble Horizon, one can uses the
approximationkny| < 1 to obtain the formulae

~ 4 ap\3 1
N gt 02 = () (e 1) 52
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and

4v 2 ag 4 1
64773(2V—3)F2(y) (1/2 =) H! (Z) (W_l) (53)

Remark I11.4. Note that the case = 1/2 is the conformally coupled case and thus there isn’t paetmoduction.

1%

p

To obtain results for massive particles we will apply thegdiaalization method, more precisely, to calculate

| Bx.diag(n0; —00)|? we have to use formul&(IL5) with, and that is very importantn,) = /|k[? + Hg’fnz - Then
for light particles (particles with small mass comparedwiite Hubble parameter, i.e., with < H) no-conformally
coupled one can uses the formulgel (52) (53). Howeverdiafiocmally coupled particles we've obtained, after a

cumbersome calculation, in the rangg H < |kno| < 1

m2

~N—_— 54
A %)

| Bk, diag (110; —00)|?

then, integrating over the modes that leave the Hubble boiine has

pdiag(no) ~m? (@)4111 (H|1770|) ' =

a
In the opposite case, that is, for > H, from the exampl@.1 in the rangdkny| < 1, one gets

H2
B diag (110 =00)* ~ —, (56)

and integrating over the modes that leave the Hubble hodrerhas

H5 ap 4
Pdmg(ﬁo) ~ o (;) . (57)
Finally it's important to remark that for light particlesi# well-known that its energy density during the de Sitteaigh
is of the orderH* (see equatiori (194) in lecture I1), and then if one takes atiofiary model where the energy density
of the inflaton field, namely,, satisfiesp, <« m4 (beingm,, the Planck mass), for example if it is at the grand unified

theory scale [53], then from the Friedmann equaﬁb%_ 8mou one will deduce thal* < p,, that is, the back-reaction

effect will be negligible. However, whep, ~ m,, in [15, 1()] the authors showed, in the minimally coupledecdbat
there is a new inflationary state (which makes the resuhamm above incorrect) driven by the field that produce light
particles, namely, and not by the inflaton field, named®, and thus instead of studying gravitational particle piiaun,
one should study the mechanism of production of particletheffield ® by the oscillations of the fielgp due to the
potential energy densitym?¢?.

3. Particle production in the Starobinsky model

In this model the universe emerges form the de Sitter phadeatrate times the scale factor is approximately
given by (see for example [20, [21}(t) = */3[1 + 3Mt sin(Mt)] (in terms of the Hubble parametéf(t) =

5 cos? (Mt/2) [ — %} where M is a constant that is related with the vacuum polarizatidecefproduced by

massless conformally coupled particles. More precisélg, thodel corresponds to an empty universe (it doesn’t con-
tain any barotropic fluid), and only quantum effects due t@stess conformally coupled fields are taken into account
[20+22, 41]. The energy density that contributes to thedfnignn equation depends on two parameters|[39, 54, 55],
one of them isM and the other is calledl in [21]. Then, when these two parameters are positive thseas iunstable
no-singular solution, that emerges from the de Sitter plmade H () = H, and at late times approaches to a matter

dominated universe witlhl (t) = = cos? (Mt/2) { - M} (A more detailed description of this model is given in

3t
last lecture).
First at all we study the production of massless nearly aonédly coupled particles. To do this we’ll follow Vilenkis’
viewpoint [21] (see alsa [22]). The idea is to calculate thie of particle per unit volume and per unit time, this coricep
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was introduced in_[50] but without any explanation. Herellntgy to justify the results obtained in_[50]. Note that to
calculate the particle rate per unit time one needs to catiewhe particle production at a given time and then to cateul
its derivative with respect to time, that is, one has to usmtda [29) with7’ = —oc. To perform this calculation we've
to choose a given family of mode solutions. From our pointiefwthe most natural choice is

e—tkln

Xk, (1) = —F— o |k|/ Vie(n') sin(|k|(n — 1)) xx,- (0" )dn, (58)

with Vic(n) = w?  — Qp(n) = —(£ — 1/6)C(n)R(n).
Note that these modes satisfy

(1) =S and g, (r) =~k (59)
7)) = an A7) = —1K|—F/——.
. o 2IK]
Now applying Picard’s method to lowest order one obtains
Bulri o) = ~ 3 [ 0l = e 2 M (g)a, (60)
2k| Jg

where we've introduced the Heaviside functiénThen from Plancherel’'s theorem one obtains the followiegsity of

produced particles at time
-1/6)? [T
E-1/67 / a’ (1) R?(n)dn. (61)

174

N{r; —o0) 167a3

To calculate the rate of particles per unit volume and unittione has to multiply this last quantity by and to take
the derivative with respect the cosmic time and finally tddtvbya?, the final result is

5 (@ N (75 =00)) = (€~ 1/6)F(7), (62)

that coincides with formulé2.29) of [21].

Using the formulaR = 12H? + 6‘2’3, one has approximately at late timBs= —ﬂ sin(Mt). Then averaging over a

period of oscillation one finally obtains

(N —oo)) = o

S L€ 162 (63)

2 t2
At this moment an important remark is in order. If one makedate times, the approximation(t) = ¢2/3 (that
corresponds to the expansion law of a matter-dominatecetsgy one has ~ 73, thenR(n) ~ n~3 what means that,
at late times)Vi(n) ~ n and thus one has an infinite production of particles. One gaiu &his problem neglecting the
effect of power-law expansion and taking as a scalar fab®@functiona(t) = [1 + i sin(Mt)], in that case one has

t ~ n and thus, at late times, one higg(n) ~ 1.

To calculate the energy density per unit time one has to tatikeaccount that the energy density at a given time, in
general, diverges for a no-conformally coupled fields (sgeekample[[56]), then one has to re-normalize this quantity
Moreover, the re-normalized energy density depends, irmgéron the regularization method used, and in the finaltresu
it appears some vacuum polarization terms, that are vefigulifto separate of those relative to the particle proaurcti
(only in the conformally coupled case this is possible ta do)

For these reasons in order to “calculate” the energy depsityunit we use the fact that the main contribution to the
particle production come from modes with~ M /2. This can be deduced taking into account the oscillatingibiein
of the curvature at late times, effectively, insertifig = (£ — 1/6) ﬂ sin(Mn) in the beta Bogoliubov coefficient,
one deduces that the oscillating character of the integsapgear Whem: = M/2. Then one might concludes that an
approximation for the energy density per unit time, avedageer an oscillation, is given by

(@®N(7;—00)) = ——3 (5 - 1/6)%. (64)

a’ 4 t2
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At this point is important to remember that Starobinsky sgd in[20] that the oscillating behavior of the scale facto
can be though as a coherent oscillations of a massive fielttiled by particles of masd/ (scalarons), then with this
point of view, gravitational particle production could bederstood as a decay of scalarons (due to its rapid osoilsti
into other particles like massless no-conformally cougladicles, massive conformally coupled ones, etc...

In this way, one can calculates the rate at which the energgalfrons is dissipated

&l

p(T; —00)
p(7)

r

: (65)

where to obtain the energy density of the scalaygs one must uses the “effective” Friedmann equatith= S7o(r)

3m2
beingm, the Planck mass (we say “effective” because in the Starkpimodel the energy density that appearsp in the
equations is only due to the vacuum polarization, but froar@®tinsky’s viewpoint, at late time, one could thinks that
scalarons drive the expansion of the universe).
Now sinceH = Z one has

3 M3

§m_%(§ —1/6)2. (66)

r

1%

Finally at timet ~ I'"! the oscillations of the scalarons field are damped, the edeparticles thermalize, and
the universe becomes radiation dominated. To calculatentperature, one has to use the thermodynamical relation
p = g—;N(T)T‘*, whereN (T) is the effective number of relativistic degrees of freeddrtemperaturd’, the effective
Friedmann equation, and the fact that reheating ends WherH (see for example [57]), then one obtains

Tyn ~ /Tmy, ~ |€ — 1/6| M3/ *m /2. (67)

To end the section, we study massive conformally coupletigiaproduction in the Starobinsky model. First at all
note that, to apply formuld (87) one must assumeslihat ., , ., a(t) = lim;_, ., a(t) [49], then one doesn't have to
work with the Starobinsky model because it doesn't satisfy assumption. We will work with the an scale factor that
at early times isi(t) = 1 and at late time isi(t) = [1 + 33 sin(Mt)]. We also assume that < M, then since
w? o = [k[* + m?, atlate times, one hd& (n) = w? | — wi(n) = m*(1 —a*(n)) = % sin(Mn).

Now if one chooses the family of solutions

e tw— kN 1 n )
) = S [ VAl sinGeo- = 1) e ) (68)
AV 2“}—,k W—k Jr
one obtains
i .
Bilri —o) =~ — [ 6(r = e i), (69)
w,_,k R

Thus, since now we cannot apply Plancherel's theorem, wutzk the density of produced particles at timewe
make the change of variabjk|? + m? = z2M? and make the approximatianV/v/z2M?2 — m?2 = 22 M? — 7"72 then
one gets

M? > m? [
N(ri—oo) = gy UW/M pri—oolfde — g | 1ol _Ooﬂzdx}
~ M3 > 2 . 2
= r()/ 22|y (75 —o0)[*da. (70)

Now we can apply Plancherel’s theorem to obtain

N(r;—00)

1%

v [ v )

16ma3



13

and then, at late times, one has

1d, . m?
Ea(a N(r; —00)) = 9 M?272

where we have used the approximatigm) = 1. Averaging over an oscillation one has

sin?(MT), (72)

1d m?

~ L @B3N(r—s0)) = —
a3dt(a (75 =00)) 187 M?272

To calculate the energy density per unit time, we use onde dyat the main contribution to the particle creation comes
from modes withi ~ M /2, then

(73)

d M1 d m?
— . ~ T T T (a3 . ~
gi"(Timo0) = 5 m g (N (s —e0)) = e (74)
And finally, the rate at which the energy of scalarons is gessid is
d .
p= @i, mt (75)

o(r)  6MmZ’

this is the result obtained by Starobinskyl|[20].

B. Particle production by strong electromagnetic fields: Shwinger’s formula

Here we deduce the well-known Schwinger formula [24] fonspid spinless particles using the W.K.B. approximation,
that is, we compute the probability that the vacuum stateamesnunchanged in the presence of a constant electric field
using the semi-classical approach.

First, we consider, in the Minkowski space-time, the Ki@ordon field in a box of volumé&?, coupled with an external
uniform vector potentiaf(¢). The Klein-Gordon equation is equivalent to a Hamiltonigstem, composed by an infinite
number of harmonic oscillators with frequencies which depen time. The mode equations are:

o+ wi(t)xk =0 with ke Z3 (76)

where noww (t) = | 255 + ef(t)]2 + m? (beinge the electric charge).
We assume thdim;_, . wk(t) = wk +, and we write the “in"-states as linear combinations of that"-states as
follows

Xink(t) = xXout k() + BrXour k(1) (77)

then one hasdux = o Ai 1 + ﬂﬁ/ﬂmk.
Let |nk) be the “in"-state that containsparticles in thek mode, and lefny ) be the “out”-state that contaimsparticles
in thek mode. Then, it is easy to obtain the following relatidns [6]:

00 =Y () . 100 =3 (<25) o 79)
n=0 ak n=0 Ak
with |5k|2 = |Ck|2 = |ak|_2.
From these relations, we deduce that the probability thatrghe in thek mode is produced [2] 6, 58], is

o IB*
| (na| Ox) [* = 0+ B (79)

and the average number of produced particle inktineode, is

(Okclaf; sefout ic|O) = ||, (80)



14

Example I1.3. (Adiabatic approximation) From formulae_(29) arid|31) ortains the following formula for the number
density of produced particles

@
512mm

Ndiag(t; _OO) = |E(t)|v (81)
wherea = €2 is the fine structure constant af&(t) = —f(¢) is the external electric field. However, their energy densit
diverges. To obtain a well-known defined quantity one haginarmalize the electric charge, after this one has (see
details in [6,69+-71])

2 . .
o B + 5 (B - 2B6) - B)) (©2)

Moreover itis also possible to calculate, after charge mrmalization, the induced electric field, that is, the catiens
to the external electric field due to vacuum fluctuations [, 6

Pdiag (t; _OO) =

Buoclt) = — 2 B(1) — % B(1)|B()P (83)
veett T 120rm2 360rm5 ’
and the effective Lagrangian density for the electric fi&€l][
Lops(t) = = IBO)R + LB + = [B(0)? (84)
eff 5760m2m4 96072m?2 ’

which generalizes the Euler-Heisenberg formula [24], fdmae-dependent field.
From these results obtained above one can deduce that thedyility that the vacuum state remains unchanged, namely
Pis
P=1] = W 7 = o (— > log (1+ B ) = exp ( > Z |ﬁk|2”> (85)
kezZ3 keZzZ3 keZ3 n=1

As an application of this result, we'll find Schwinger's fouta for scalar particles. Consider the caie) =
(0,0, f(t)), where

Et if -T<t<T (86)
ET if t>T,

~ET if t<-T
f(t)—{

being £ the electric field and witll" > 1. We suppose for examptdr > 0 (The caseFE < 0 is analogous).
The Schwinger formula gives the probability that the vacistiate remains unchanged. Then, using the notation

N = 2TL3E20¢’ g= m?

(87)

Schwinger’s formula for spinless particleslis|[24]

n+1
= exp < Z exp ( nS)) . (88)

In order to deduce this formula, we compute thBogoliubov coefficient using the relativistic tunnelindesft [59+-61],
i.e., using the formulae given by the W.K.B. method in the ptam plane|[62-€4]in a formal way. (we say in a formal
way because our field is not analytic, and the formula (89) welll use is only mathematically justified for analytic
fields). The result ig [65]

1Bic|? = exp (—Imfv \/(kf_ +m? + (% + eEz) )dz) if ‘%‘ < eET (89)
0 if |25 > eET,




15

wherek, = 2¢ 7 (k1,k2), and is a simple curve in the complex plane, containing the complening points

2mksg

i— vk as interior points (Note that fg#2%2 | > e¢ET there isn't turning points [66], that's the reason why
for that modes its beta-Bogoliubov coefficient vanishegwNt’'s easy to verify that

2 exp (—%) if |%‘ < eET 90
|Bi|” = o (90)
0 if |25Es| > eET,

and therefore, the probability that the vacuum state resnamchanged is

= exp < Z Z |ﬂk|2"> = exp < Z Dl exp ( nS)) , (91)

kez3 n=1

in agreement with Schwinger’s result.
In the same way one obtains that the average number of prdgades per unit volume and per unit time, is

E?a mm?

To obtain Schwinger’s formula for fermions, one has to ugeRhuli Exclusion Principle to get the following relation
between Bogoliubov’s coefficients |65,/67/ 68]

lax|” + [ B = 1. (93)

Now |3|? is the probability that a particle is created in thenode, because it's the same that the average number of
produced particles in that mode, and consequenily’ is the probability that no particles are produced in that enod
Therefore, due to the existence of two states with $pi) the probability that the vacuum state remains unchanged is

P=TI0-5P)? =exp (—2 >3 %mkﬁn) = exp (—2N > e <—ns>) . (94)

kez3 kezZ3 n=1 n=1

Remark 11.5. In that Section we've obtained Schwinger's formula in anydas formal way. However if one wants a
=%,

complete demonstration of the formula with all the detailse can look up at [12—75]. Essentially, the idea is to make

the change of variablg = fE (2’”“ + eEt), then the Klein-Gordon equation behaves
Xk + k() xx = 0, (95)
where @y (y) = /392 — Ax and Ax = 5 (k2 + m?).
In this case, the functiok o.wks(y;e = 1) = 20~Ji(y)e—ify @i(T)dT  has the asymptotic behavior
., o
oot e=1) = { S %)
Note thatxy .y xp(y;€ = 1) = —ibk(y)xx,0.wkB(y; € = 1) wheny — +oo, this means that the diagonalization

metod and zero order adiabatic vacuum modes give the same f@ify.
On the other hand, a independent set of solutionls df (95yerghy the two following parabolic cylinder functionsl|[47]

) 7 1134
uk,1(y) = exp (‘ZKJQ) M <—§Ak + VEDY §y2) (97)
1 7 X 7 3 3 1
uk,2(y) = E €Xp (_Zy2> Yy exp <—Z> M (—§Ak + 12 §y2> ) (98)

whereM is the Kummer’s function.
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We now define the mode solution

Xk(y) = ﬁ1/2Bl:1eiﬂ-/g67ﬂAk/4271/47iAk/2(pk(y), (99)
with
I (3+ 5Ax) U (§+ 5A)
or(y) = —2— 2w (y) + —2—2—ui(y), (100)
I (3) r'(3)
and
T(i+ig T(3+2tA
B = (;lJrf o) 4 (§+‘;‘ W), (101)
I(3-34) T(f-354)

Then, from the asymptotic behavior of the Kummer’s fundd@hwe can see that

xx(y) = Xxowrw(y;e=1), when y — —o0, (102)

and

Xk(y) = B e ™42 o owrew (v € = 1) + CuBy "X owrw (i€ = 1), when y — oo, (103)
with

Cr = P(i+sd)  T(E+34)
Y R

Then from this last formula we can deduce that, in both catiag@nalization method and zero order adiabatic vacuum
modes), the square of thieBogoliubov coefficient is given by

™

e = Cu/ Bif? = 7 = exp (-2

(k2 + m2)) : (104)

in agreement witH{90).

C. Moving Mirrors

Consider a massless scalar fieldn the 2-dimensional Minkowski space-time interacting with a petfreflecting
moving mirror. Assume that the mirror trajectory follows iaertial prescribed trajectory = g(t), that in light-like
coordinatess = ¢ — z andv =t + z, we write asv = V(u) oru = U(v).

For a perfectly reflecting mirror the set of “in” and “out” medunctions is|[76—78]

ij(u, v) = TLM (e‘i“’” — e‘iwv(“)) (v —V(u))
(105)

Z?L(u’ v) = \/4171-_|w| (e—iwu _ e—in(v)) e(u . U(’U))
1

out

w,R(uv v) = arlel
1

2;1,12 (uv ’U) =

(efiwu _ e*in(v)) 9(1) _ V(U))
(106)

(efiwv _ efin(u)) o(u _ U(’U)),

H

47|w

where¢jij (resp.¢jjfL) represents particles with frequeneyoming from the right (resp. left) null past infinity domain
Jgr (resp.J; ), andqbgﬁ% (resp. qbf}fi) represents particles with frequenoygoing to the right (resp. left) null future
infinity domainJ i (resp.J;").
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It is a well-known fact that the average number of partictethew mode produced from the vacuum in the right hand
side (rhs) of the mirror, is [78, 79]

Nw) = [ g (107)
Then our main objective is to calculate the beta Bogoliubmefficient
BEE = (g2 0 )" with  w,w’ >0, (108)

where the parenthesis in the right member denotes the usadhlgt for scalar fields [11], that is,
B =i [ ot a) Do alt. ), (109)
g(t)

that doesn’t depend on the space-like hyper-surface chosen
The best way to perform this calculation is to choose as hgpgace the right null future infinity/;, then one has

R,R ou —l —iwu —iw'V(u 1 w —iwu ,—iw'V(u
ﬂww/—Ql/Rduwf:ﬁ ' R = 71_\/(Jw/Rdue Oue V():%’/J/Rdue e W V(w), (110)

Assuming that the mirror’s velocity converges fast enough tonstant whefu| — oo, and integrating by parts one
gets

ﬁR,R _ _L\/w—w, du VN(U“) efiwuefiw’V(u) (111)
wyw’ 27i (4w V! (u))? '

For simplicity we assume that the mirror's accelerationisgontinuous at the point = a, after another integration by
parts one obtains

RR _ - /o efiwaefiw’V(a) "o~ — V" (a
Bw,w' - (w —i—w’V’( )) (V ( ) 14 ( +))
- 7 V/I/(u) _ 3(“)/(‘/”(”))2 —iwu ,—iw’V (u)
+ o Vww /Rdu {(w TV @R @t eV W) e e . (112)

From this formula, assuming that the mirror’'s trajectoryasigmptotically inertial, i.e.V’(u) > 0 Vu € R (see for
examplel[79]), one concludes ﬂ*@f andw ‘ﬁ

w,w’

’ are integrable functions in the domainco)? \ [0, 1]2.

2
Finally, we're interested in the production of particlestlre infrared domain, i.e., we want to calcul%;ﬂfﬁﬁ in

[0, 1]2. We write the Bogoliubov coefficient as follows

ww _ 27T | /due i(w+Bw')u 71w’(V(u) Bu) (113)

with B > 0. After an integration by parts one obtains

BRR 1 vw

- d / _ B)e iwu —iw'V (u) 114
B = V[ (Vi) — Bt V) 114)

and thus, if the functiofiV’(u) — B| is integrable inR for someB > 0, it can be deduced th fff’ andw ‘ﬂw w,’
are integrable functions in the domain 1]2. An example of this kind of trajectories is
Bu u<0

Viu) = Vw) 0<u<ug (115)
V(ug) + B(u —ug)  u > up.
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2

&1 in the domair{0, 1]2, one only needs

However if we one is only interested in the convergence ofihetionw ‘ﬁf’w,
trajectories that satisfy

0 00
/ du|V'(u) — By| < 00 and/ dulV'(u) — Bg| < 00 (116)

oo 0

for some no-negatives constarits and Bs, (here it's important to remark that one of these constaartsoe zero, that is,
it's not worth that the trajectory be asymptotically inafti To prove this statement we write

0 oo
Bﬁff’ — 2i /il |:/ duefi(w+Blw')uefiw'(V(u)fBlu) +/ duefi(erng/)uefiw/(V(u)7Bgu) ’ (117)
’ ™ w 0

— 00

and we assume for simplicity th&t(0) = 0. After an integration by parts one gets the formula

R,R 1 - By — By 1 V! 0 , i iV (u)
v, = ——V _ du(V - B WU w u
ot om (w+ B )(w+ Baw')  2mw+ Biw' J_o u(V:(u) 1)e €
I Vo e , o,
ww du(V’ (U) _ BQ)e—uuue—zw V(u)7 (118)

" 2T w + Bow! 0

that proves the statement.

In conclusion we've proved that for asymptotically inelrti@jectories with continuous velocity the radiated eryasy
finite. However it is also possible an infinite production afficles with very low frequency (an infrared divergencly.
remove this divergency one must assumes that the initiafiaadmirror’s velocity is the same.

Note that particle creation for partially transmitting noirs is a bit different: At very high frequencies the mirror
behaves transparent, and then there are not particle giodirtdependently of the mirror’s trajectory. On the othand,
at very low frequencies the mirror behaves a perfect refiectd then the same kind of infrared problems as in the perfect
reflector case remain. Consequently, if one is only interkst a finite radiated energy, one can considers trajestoiith
a continuous velocity’(u) Vu € R, which fulfill the condition [11b) as, for instance, the neymptotically inertial
trajectory:

i if w<0

v=V(u) = X . (119)
(1 —e ™) if u>0.

1. Simulating black body collapse
Now we're interested in a trajectory that simulates a blamttybcollapse! [11, 80, 81], that is, with the following form
U if u <0
v=V(u) = %(1 — ek if 0<u<ug (120)
V(ug) + A(u —ug) if  u > uo,

with A = e~F%o wherek is a frequency anéug > 1.
Note that this trajectory can be written under the followfagnm, too

v if v <0
u=U(v) = —2In(1 — kv) if 0<wv<nu (121)

Uvg) + A~ (v —wg) if v > .
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Then,

BR’R; = 21/ du(bOUt Oy i7} = 1 w’ _ 1 e—iwuoe—iw/v(uo) w'A
e R W REUTWLR o2mivww' w+ W 2mivww w+w'A

1 rp oA . w
—%w/%g/ ds(1 — g)iw/kemie'/ks, (122)
0

Assuming for simplicityw ~ k, if one is interested in the domain of frequencies w’/k < A~!, one arrives at

R,R 1 1 /w’l/lA o/ ik
L e — — — —_— = dSl—Slw e w s, 123
Bw,w 27T'L /ww/ 27T w k 0 ( ) ( )

To obtain an explicit expression to the second term on thewbsonsider the domain

.k
D={z€C/Rez € 0,1 — A],Imz € [—¢,0], with o << 1}. (124)
and, going through the same steps as in [82], one easilyrabtai
. iw/k
R,R 1 —iw'/k (Zk) ;
Y ————e — I'(l+iw/k), 125
ﬁw,w 27m.\/m w! ( / ) ( )
and thus, using thal (1 + iw/k) |? = % (seel[47]) one gets, for a perfect reflecting mirror, that
2 1 -1
R,R|™ ~ 2rw/k
s3] = 7k (€ ) (126)

inthe rangel < w'/k < A~

Remark I1.6. From that formula, one deduces that the number of radiatetigles in thew mode diverges logarithmic-
ally with ug — oo. In this situation the physically relevant quantity is thember of created particles in the mode per
unit time. This dimensionless quantity is finite and its eatugiven by|[82, &3]

. 1 _ 1 2nw/k -t

Now we’ll study what happens when the mirror is partially eefing. First, we search for the co-moving coordinates
(1, p), that is, the coordinates for which the mirror is at resheing i the proper time of the mirror, and we taksuch
that its trajectory is given by = 0. Introducing the light-like coordinatds, v) defined as

U=T—p;, UV=T+p, (128)

we will calculate the mirror’s trajectory in the coordinat@, v). Along this trajectory, the length element obeys the
identity [84]

dr? = du?* = dv? = V' (u)du® = U’ (v)dv?. (129)
Then, an easy calculation yields the relations
U if u<0
v =1u(u) = 2(1— eku/2) if 0<u<ug (130)

a(uo) + VA —ug) i u > up,
and,

v if v<0
u=17o(v) = 2(1—v1—kv) if 0<v<u (131)

o(vg) + A~V2 (v —wg) i v > w.
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When the mirror is at rest, scattering is described by thea8+m(see![85-87] for more details)

_ s(w)  r(w)ewk
S(w) = (7(@06%WL s(w) ) (132)
wherexz = L is the position of the mirror. Th8 matrix is taken to be real in the temporal domain, causatawiand
the identity at high frequencies [86]. Correspondinglg, tim” modes in the coordinatds, v) are [88]
mn (= = 1
u,v) =
gw,R( ) 47r|o.)

— WV (5 = 1 —iwv —iw = =
s(w)e O(u—v) + Nz (e +r(w)e ) 0(v — u).

- 3

(133)
gfur?L (’U’v 1_}) =

L . 1 S
e " Lr(we ™) 0(u—1 s(w)e "™“"0(v — u).
by '

(134)
On the other hand, the "in” modes in the coordindtes), namely$*, are defined in the right null past infinityy,
in 1 e—iwv in 0 (135)
w,R — ) w, L )
Ar|w|
and in the left null past infinity7; by
, , 1 ,
wr =0y oL = Cl 136
R ,L \/W ( )
writing g (u, v) = g2 (4(u),v(v)) with k = R, L, and using thag™" , = g/, one obtains the following relation
i = / dw'x ()G i 600)G0 ks With k=R, L (137)
R
with y(w’) the sing function. To calculate explicitly the "in” modes;Hoose the coefficienigw) = ﬁv ands(w) =
S+ With a > 0 that correspond to the so-called Barton-Calogeracos nj8&eb0]. In this case, on the rhs of mirror
one has/[91]
1
in - —iwv refl in trans
o V) = ——e + u); o (U, V) = @ u), 138
R( ) \/m (bo.;,R( ) L( ) ,L ( ) ( )
where
1 —iy —iwV (u).
Vit vs0
1 —iy L —vya(u) _ 2y —iw rEau) @ (s41—Lg(u) 2 _23s
\/mw-l—i'ye ! k 47r\w\e kf02 dsek( : )e b 0<u<uo
O () = (139)
i 1 —iy effyﬁ(u) _ 1 iy [efiw\/(u) _ e*in(ug)effy(ﬁ(u)fﬂ(uo))}
VA |w] @ty Var|w| VAwtiy
: ‘Zrlwleﬂ— e~ (E(w) —u(uo)) |3 50(u0) oot (s+1-Faluo))” -2, w > ug
and
1 w L —iwV(u).
Vi e vs0
1 —iwu =y p—ad(u) _ a(u) E 24— 2ys
TR R e — B 7 ds(s 1 = Baw) R e 0 <u<ug
ol (u) = , e () (140)
L =iy —ya(u) L em™M0 —i 7z (a(w)—a(uo i —y(@(u)—t(uo))
Vo] o+ © + Var|w| wtivVA [we ! +iyvAe ’
2y

2vs
i
Y

LN _ i
ky/4m|w)| ()= atu) fOz (o) ds(s+1— %u(uo))Q ke

U > Ug
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Note that in the case of perfect reflection, that is, when oo one has

re 1 —itwV(u rans
OLrp () = vk Y el () = 0, (141)
and when the mirror is transparent, i.e., when> 0 one has
1

G (W) =0, P (u) — (142)

Var|wl

Since we're interested in the particle production on theoftthe mirror, we must now calculate

BEE = (gt ol )", and BIE = (624 0 ) w,w! > 0. (143)

w,w' — w,w' —

In order to calculate this products we choose the right mdithity .7, , because here the "out” modes have a very easy
form, then

R,R * IN\* R,L __ * *
BEE = (o2h o), and  BRE = (60T o) (144)

We start calculating”? = 2i [, due?"%,6L5’5, with the result

R.R 1 g [ Y /1 w/k—1/2 —2 (1f)/k]
e 1 — = dxx™ e 7 *
Puis 2y ww' W'+ iy k Ja
v -, 1 ) oy 2y I=vz 2
+2 - /efu.u /k dxxzw/kfl/Qelw z/k 1— ?/ et (s +25\/§)/k872'ys/k ) (145)
TRLV WW A 0

Now assuming once again ~ k, provided thatl < % < g—j < A™!, equation[(145) turns into equati23).
Consequently, we precisely obtain the same behavior asgerfact reflecting mirror. However, in the cabe< 7z <
% < A~! we observe that

. N A iw/k+1/2
- LY T(1/2 4+ iw/k), 146
o = e (i) (1/2+ k) (146
and using the identityt” (1/2 + iw/k) |* = o7 (seell47]), we conclude that
R,R 2 ~ 1 Y 2 27w /k -1
’Bw’“’, T 27mkw (w’) (e + 1) ' (147)

Finally, a simple but rather cumbersome calculation yigidbe first case

2

12

R,L
‘ﬁw@’

0, (148)

and in the second one

R,L
’Bw,;u’

C o wilo {(%)1 . (149)

Then we can conclude that the number of produced particlémimodew is approximately given by [92, 93]

ko -1 © 1 2 -1
Nw) =~ ( 2wk _ 1) / (1) ( 2w /h 1)
() /k ok \° + v2/k 2mhw \w' ¢ +

= (/R (7 1) g () = Gk (275 1)L (150)
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because we're assumig~ w < 7.

That s, the number density of produced particles in the mobg a partially transmitting moving mirror is finite when
up — oo, moreover whew ~ k < ~ the mirror radiates a thermal flux described by Bose-Eingtitistics. However
whenw ~ k ~ ~, maybe the contribution of the sectpr®/k, o) could be dominant and another kind of statistics
(Fermi-Dirac) would be possible. This is a situation thagetees futher investigation.

Ill.  VACUUM FLUCTUATIONS

The re-normalization of the two point function via adiabatgularization is given with all the details, and the re-
normalization of the stress tensor is also reviewed.

A. Re-normalized two point function
1. Massless conformally coupled field

We start this lecture studying the simplest case: a masstegermally coupled scalar field in a Friedman-Robertson-
Walker space-time. We'll calculate the re-normalized jpéthe two-point function¢?(n, ¥)) using the adiabatic regu-
larization method. This is the simplest example, and it luslpo understand all the details of the method.

Consider the quantum scalar field

927)(773 X) = / dgk |:dk¢k(7% X) + dL(blt(nv X)} 3 (151)
R3
then, using the same notation as in first lecture, onehés) = 6\};‘;‘_;7 , and thus, the two-point function is given by
~ 1 o0
2 = [ &’k 2:7/ k|d|k|. 152
@) = [ PR = s [k (152

In order to obtain the re-normalized value of the two-poumtdtion, we’'ll follow Bunch’s method described in [34]:
First, one considers the adiabatic modes obtained in the \AffBoximation,

1 .
. - —i [ Widn 153
Xadz,k(n) 2Wk € ) ( )

up to order2. To calculate these adiabatic modes one has to use equ@jahen in the conformally coupled caH8, is
given by (see for details [44, 94,195])

_ lwp 3 (w)?
Whe=wn =38 + 5705 (154
with wi = |k|? + C(n)m?, and a simple calculation yields,
1 mQC// 5 m4(0/)2
W =wk — = — . 155
KTWRTRTS T2 o (155)

Once the adiabatic modes has been calculated, to obtaia-themalized expression 6H?(n, x)) one has to subtract
from (I52), the adiabatic terms up to order two (only ternag tontain, at most, two derivatives of the scalar factaaj th
appear in the expression [96, 97]

1 /OO B (156)
471'20(77) 0 Wk ’
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and finally to take the limitn — 0, that is:

. e 1 o'} | |2 20// oo|k|2 m4(0/)2 00| |2
0o = Jim, s | [ (= S )+ 2 [T Eran = P [T R ] as)

It's not difficult to show that the final result is
C/ OI/
(G) -

which coincides, for the de Sitter phase, with formula (3 d®tained in[[98]. Note also that, in the case of an universe
filled by radiation, and consequently = 0, (¢*(n,%))ren = 0 in the massless case independently of the coupling
constant value.

1 a” 1
= i R 158
4872 a3 2887277 (158)

1

-~ B
(@7 (10, X))ren = T 96120

2. Massless minimally coupled field

In this Section we consider another simple example, a messimimally coupled field in the flat chart of the de Sitter
space-time, where the modes can also be calculated exaetyare

xx(n) = (axb(n) + bxibi(n)) , (159)

whereyy (n) is given by formul) andy andby are some constants.

In general,(¢%(n,x)) = 2ﬁ20 fo |k|?|xx(n)]?d|k]|, has ultra-violet and infra-red divergencies. To avoidsthkast
ones (see for details [36,/51]), we consider a transitiomftioe radiation dominated phase to the de Sitter one, desktrib
by the following scale factor:

2—n/m0 n<mno
— 160
an) { mo/n - n>no, (160)

with no=—1/H.

The modeé(k for n < no, are given bye—?I". Note that these modes correspond to the usual choice obthen
state for a massless field in the radiation phase, becaubatiphase the scalar curvature vanishes, and thesatisfy
the equationy) + |k|?xk = 0, and consequently, the vacuum state is obtained in the saype@svin the Minkowskian
case, that is, from the modes‘/I",

Matching at the pointy = 7, the modes an their derivatives, one obtains

H H? H? 2K 2i k|

i ok T e

=1 =
e =1+ 21k[2¢ 3H

+ 0 (k[*/H?). (161)

With these coefficients, for small values|&f, in the de Sitter phasg) > ), one has

1 2 22\ >
2 — 42 k|*/H? 162
o = 5 [(3H77+ +TL) o (ke (162)

what shows that there is not infra-red divergencies.
To analyze ultra-violet divergencies we calculate for édig

1 H?

1
2 _ 3
[xk|® = 2|k| [1 + —|k|2772 |k|2 cos2lk|(H™ ' +n)+ 0O (H /|K]| )} (163)

what shows that the terms that give ultra-violet divergesiai (¢2 (1, x)) are

27172 e <] 2 [e’e]
n°H H 1
- / Kdk| and - / gk (164)
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Once we have separated the divergent terms, we calculate,arder2, the adiabatic terms that fgr> 7, are given
by

21 402
1 1m=C 5m(g). (165)

Wie = wic — 2
k =k nwe 8 Wl 32 wp

From that, one sees that the divergent parts ofl(156) arkeidé Sitter phase, given by

27172 e3¢} 2 2 2
n°H |k| H / |k|
- / M ana 1 [, (166)

Subtracting, for large frequencies, the divergent paffl68j from [16]), for example fdk| > |n|~!, one gets

2H2 0 k 2 H2 o0 1 k 2
lim 5 / <|k| [k] >d|k| =0 and lim —2/ <— k] d|k|) (167)
m—0 41 In|—1 Wik m—0 47 In|—1 |k| wk

what shows that the ultra-violet divergencies are canceled
The problem now is that the subtracted adiabatic teﬁg H ‘k‘ d|k| contains an infra-red divergency, be-
cause it diverges when the mass approaches to zero. It |srnampdo remark that this term can be written as
871'2 fo ( %) %d|k|, that is, it does not appear in the conformal coupled case.

The solution of this infra-red divergency emerges from thilofving observation: The adiabatic approximation is lohse
on modes of the forn (I53), and it is clear that this form ordg Bense if the exact modes, namely are oscillating,
that is, if yi satisfy the equationl2), with

Q2(n) > 0. (168)

In our case this conditions meaji§ > /2|n~!| = v/2HeHt, and thus, we must only subtract adiabatic modes well
inside in the Hubble horizon at time Consequently, no infra-red divergencies appears.

Here an importantremark is in order: Our recipe to elimitlaéanfra-red divergency does not affect to the consermatio
of the renormalized stress tensor which for a FRW metric ceduo(pC?/2)’ 4 p(C3/2) = 0, wherep is the energy
density and is the pressure, because the adiabatic regularizatiomli@sbtracting adiabatic terms up to a given order
and then the conservation equation is safisfied for each,@démore important, this subtraction can be performed mode
by mode|[43| 56]. This means that if one denoteghy(#x) andp.q(¢r) the adiabatic terms of the energy density and
pressure for the adiabatic mode defined in equafion (158f;dhservation equatidp,q(¢r)C%/2) + paa(dr ) (C3/?) =
0 will be satisfied, and since the substraction is performedertyy mode, one can subtracts a given number of modes
mantaining the conservation equation.

Summarizing, the re-normalized quantity is given by

72 1 > 2 2 1 >~ |k|2
(010} e = Jim 5 < [ wewenra - [ d|k|> (169)

Now since, the ultraviolet divergencies are cancelled, and

] (e 2|k|2 () 4|k|2
lim =—d|k| = lim dk| =0, (170)
m—0 \/5/‘77‘ wk m—0 \/§/|77| wk
using [168) we finally get
22 pV2/nl
. " H
o0 = [ PPk
™ Jo
7’]2H2 00 H2 5
T / < iz Cos(2[k|(H "+ n)+ O (H?/|K| )) k|d|k|. (171)
LTINS

If we are interested in the late time behavipiff < 1, i.e., Ht > 1), we can make the following approximation

2172 pvV2/In| H v2/In

. _nPH 1 H? 1

(@ (1, %)) ren = == / kI [xx(n)Pdk| = — / |ldlk| + / = dlk], (172)
2m 0 972 Jo H k|
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where, in the first integral we have used the approximaltiqsin)|? = I3 (eq. [I62)), and in the second one

= 9n2H2
|Xk(77)|2 = 27721|k_|3 (eq. [163)).
Finally, after integration, at late times we get
~ H2 H2 H3
2 ~ ~
ren = In2+ Ht) = —t, 173
(B0 ren = o + g (s 2+ HE) = (173)

that coincides with the early result obtained.inl [2€,/35, 36]

Note also that formuld {168) justify the prescription givien27,(99], where the authors assumes that only modes
outside to the Hubble horizon at timeontribute to the value of the re-normalized two-point fimre.

In the opposite case, that is, for a few Hubble times, (formgxXa ¢ = 1/H), it is not difficult to show that

(32(1, %)) ren ~ O(H?).

Remark 11.1. In inflationary cosmology the re-normalization of the twamdunction is sometimes obtained in a
different way (see for example [101]). The moggs$n) are given by formulg43), and thus

oy ] %0 1
P00 = gy [ (1 )

To avoid the infra-red divergency one assumes that thelrsize of the universe is of the ordBr!, then the Fourier
expansion shows the modes has to be wave-length smalletiteatubble horizon, that is, impose the cut{iff > H.
And to avoid the ultra-violet divergency one has to subteadinbatic modes that satisfy equati@f68), i.e., adiabatic
modes well inside in the Hubble horizon, and consequentyamy has to take into account the modes that leave the
horizon, more precisely modes that satigfy< [k| < v/2/|n|, then from({I&37) and (I70) one has

v2/n|
oy ] 1
B0 = s [ (14 g )

Finally note that the first term is the usual contributionrfrovacuum fluctuations in Minkowski space and must be
eliminated by re-normalization, which give the followirggmormalized two point function
v2/n| 2 3
- 1 1 H H>t
2
ren = oA~ — 1 24+ Ht) 2 —,

whenH¢t > 1.

3. Massive case

First, we study the minimally coupled case with < H in the de Sitter phase. (This situation appears when the
inflation fields is in the slow-roll phase, and scalar fieldllations described by the two-point function are very intaiot
in order to understand the self-reproducing universediationary cosmology (see for examplel[26, 27])). In lastt®es
we have seen that the re-normalized two-point function\ie@by the formula[{189) without the limit. — 0, because

the adiabatic modes that we have to subtract salﬁqu \n\ 1- 272122 Tﬁ

The calculation of the two-point in the massive case is mdfiedt than in the massless one, however, at late times, it
is possible to approximate its behavior very well. To do,thite that the adiabatic regularization method guararieds

1 /°° 9 9 1
e [ (o = ) al (174)
is convergent[43]. To perform this integral one can chooedersolutions that correspond to the Bunch-Davies vacuum
state, i.e.xi(n) = /e %+ H (|k|p) with v = /2 — m5 =~ 3 _ 3H2 Then, at late times, using the asymptotic

expansion for large arguments of the Hankel functions (fdam 9.2.8-9.2.10 of [47]) one can shows that the divergent
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terms of [I74) exactly cancels, and since a easy calculptioves that the convergent ones are of the oden?), one
can disregard its contribution to the two-point functiomus, at late times, we have

R 22 H 22 pV2/Inl
(02 (1, 5)) ren = /0 e i () P + /H [l [xac () [l K. (175)

272 272
In order to avoid infra-red divergency, we can calculateftfe integral assuming a phase transition to the radiation

dominated universe to a de Sitter phase at time= —1/H. In fact, we consider the general mode solutions in the de
Sitter phase

xicln) = /a2 (acH ) (ki) + bic S (kln)) (176)

and match the modes and their temporal derivativeg at —1/H, to obtain

1 k H .
ax = /T <(—i+—) H£1><|k|no>—H£1>’<|k|no>> ikl

T2V 2 2/K|
1 [7|k|no _H / ,
b = —— —i+=— | H?(|k|no) — H? (|k ikl/H 177

Then from the small-argument limit

) =~ (i) = 210 (B2 a78)
and using that (see [47])
H(W'(2) = HYD (2) - ZH( (2), (179)
one arrives at the resulti (n)|* = ﬁ(HWDl_QV’ and finally one obtains
s / P = e = sl hen 1< < (180)
T Jo 187

0 when t> H/m?%

with agrees with the first term of the right hand side[of {173).
The second one, can be done using the following approximatadid of k| > H,

™ _j(mzyxm
xic(n) 2 | ZLe D H (i), (181)

Effectively, from [I77) one can easily obtains, in the rafide> H, ax = 1 andbx = 0. Then, since at late time we have

Hl(,Q)(Ikln) > —1D(v) (@)ﬁ, inserting this expression in the second integra[of (188 obtains, for a massive
minimally coupled field withn < H,

2H2 \/§/|77| 3H4 m2 m2 3H4 om?
: /H K1 ac(n) 2l = |28 — () | = o [1 - e (182)

272 8m272 S22

because we have assumed< H.
Then, since the first integral in the right hand side[of {18®maller than the second one, depending on the value of
m?t/H one has

) e ¢ when 1/H < t < H/m?
(D0, X))ren & ——5— |1 —e 3m | = (183)
8m27r2 4
SH when  t>> H/m?,

8m2m

which demonstrates, at late times, the form@lpof [2€].
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Remark 111.2. In inflationary cosmology one can choosggn) given in formula[(18[1), then if inflation starts &= 0
and the initial size of the universe is of the ordgH, after subtracting the adiabatic modes well inside in thebble
horizon at timet, one only has to take into account the modes that leave théldiiorizon. Finally one can uses the
small-argument limit{{Z79), which is equivalent to elimim¢éhe Minkowskian vacuum fluctuations, to get

2 3H* m2 2m?2 3H4 _2m2s
<¢2(77ax)>ren = ) 2507 — ( )3H2:| = ) { — e BH }

because we are assuming < H.

Finally we calculate the re-normalized two-point functifor a massive conformally coupled field with < H in the
de Sitter phase, given by

R 2H2 oo oo k2
e =" ([ IPhacPa - 5 [ ) (184)

whereWy, is given by formulal(I55). (Note that, in the conformally pbed case we do not have to disregard any adiabatic
mode.)

At late times, with the same kind of argument used to disikktize terms that appear in equatign (1174), we can do the
following approximation

. 2 g2 Alnl~* 1 AT 2
(X)) ren 2= </ K ) Pl 5 [ "d|k|> (185)

272

whereA is some dimensionless constant of ortleActually, one can chooses = 1, and the reasoning does not change,
becausén| ! is large enough at late times.

Since in this case there is not infra-red divergency, we dayose the modes corresponding to the Bunch-Davies
vacuum state, that is¢(n) = %e‘i(%*‘%)H,(,Q)ﬂkM). Then fork < A/|n|, a good approximation is given by
Xk(n) = , and since

2k

H2? A k]2 2
/0 <|k| > dk| ~ O (m*In (H/m)) , (186)

472

one can disregard this term (it is small compared with thertimes that are of ordé?(H?)) and, at late times, we get
the same result obtained in formula (158) with= 12H2, that is,

- 7 H?
<¢ (nax»ren = U2

because the leading terms[in (185) are the same Bs ih (157).

(187)

B. Re-normalized stress-tensor

In this section we review some classic results about therexalization of the stress-tensor in FRW cosmologies.
The vacuum energy densityis given by

p=(Ty) = (47T202)_1/0 d|k|[k[? {(IXLI2 + witlxxl?) +3(6 —1/6) [D(xkxii/ + XiXk) — %D2|Xk|2] } ,(188)

whereD = C'/C.
To obtain the re-normalized value, one can uses the adiateggilarization which consist in subtracting adiabatic
modes up to order four. Following [56] one has to subtractatiewing divergent terms:

_ >c 3(¢—-1/6)D? |k|2 3( —1/6)D?*m? |k |2
4722 1/ d|k|k/|? 7/ dlk / dlk 189
(4m=C*) ; Ik [k|*wi, T6r2cz ), L e 7 [kl (189)
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and
(5 - 1/6)2 " 12 4 /OO |k|2
T3gece (12D"D — 36D —21D%) | dlk o (190)
and the finite terms:
m2D? 1 3., 3 5 3.4
384w2C  288072C2 (ED D=3P _§D)
(5 - 1/6) 7 72 4 (5 B 1/6)2 12 4
+oraapa (8D"D = 4D = 3DY) + S5 5= (18D'D* + 9D). (191)

The simplest example is when one considers a massless iinicoapled scalar field, in that case the modes are

k(1) = 6\;;‘;‘_;7 then one easily obtains [34, 102, 103]
. 1 3 3 3
vae = (Tit)ren = ———=——=( =D"D - =D"? —ZD*). 192
prac = (Tue) 2880m2C? <2 1 8 ) (192)
In the flat chart of the de-Sitter space-time choosing theasod
Y
xi(n) = Cy [ LD (), (193)

with v = /9 — 1 — 12¢ andC = ¢~ +1), Bunch and Davies obtained in [104] using point-splittisgularization

(which for scalar massive field is equivalent to adiabatiptarization|[55, 105, 106])

pune = Bihoen =z [+ (126 =207 [0 (3 +0) 0 (3 -0) - ()]

2 2 2 27172 1 27174 H4
—m~(12¢ — 2)H* — 3m H- — 5(125 —2)°H* + = (194)
wherey denotes the digamma function. (In exact agreement with inqus resolt obtained in [107] using Schwinger-
DeWitt regularization procedure [[76])
This result holds for all values ofi and¢ except in the massless minimally coupled case, because mtard¢ are
close to zero one has [108]
1 H?

3
27,2 2 ~
m? [m? + (126 — 2)H?] ¢ (5 - u) = s ] T (195)

6472

and thus the limit in[{194) gives different answers depegdive way thatn and¢ approach to the origin. In order to
calculatep,,.. in the massless minimally coupled case using adiabatidaggation on has to consider tife= 0, use the
modes given in[{43) and finally take — 0 [34,/56], gettin

20H*

Pvac = _Wa (196)

which can be also obtained takiig= 0 in (I94) and afterwards: — 0.
Remark 111.3. It's well-known that the trace of the stress tensor corragfing to a massless conformally coupled field is
zero, however after regularization its value is not necalsaero. It was showed ir [56] that the trace anomaly praadd
by adiabatic regularization, in the massless conformadlyed case is given by

1
9607m2(C2
Then from the relatiof,oc = pvac — 3Pwvac ONE gets the value of the vacuum pressug = (Ti..)ren. In fact, if one
knows one of these values the others come from the trace nastetion T, = poac — 3Pvac @nd the conservation
equation(pwcc?’/?)' + Doac (03/2)/ =0.

Toac = {Tg)ren = (DW - D/DQ)- (297)
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IV. AVOIDANCE OF COSMOLOGICAL SINGULARITIES

The vacuum quantum effects due to a massless conformallyecbfield are taken into account in order to avoid
classical cosmological singularities.

A. Review of classical and quantum cosmology

Classical cosmology:We will use the following notationx? = 167G = 167T/m127, beingG Newton’s constantp
energy densityp pressurew a dimensionless parameter aHd= a/a the Hubble parameter, beimghe scale factor and
the dot denotes denotes the derivative with respect to thmicatimet. Then the Friedmann equation and conservation
equation, for a flat Friedmann-Robertson-Walker cosmglogy be written respectively as:

H?>=—p, p=-3H(p+p), (198)

6

and the equation of state for a barotropic perfect fluid, Waatvill consider in the paper, has the fopm= wp.
With the derivative of the Friedmann equation, and the dilierequation one easily obtains the “acceleration” equatio

I{Q

H = —z(l—i-w)p. (199)
Combining [I9B) and {199), one can deleteand obtains the equatidii = —3(1+ w)H?, then integrating one gets
2 1
AT (200
wheret, = tg — m beingH, = H (ty) the initial condition.
From the definition of the Hubble parameter, the followindgor for the scale factor is obtained
— ¢\ 5w
a(t) = ag ( i ) , (201)
to — s
and from the Friedmann equation, one has
8 1
p(t) (202)

"3RIt w)? (E—ty)2

The following remark is in order: if one assumég > 0, then forw > —1 one has; < ty, that is, the singularity is at
early times (Big Bang singularity), on the other handsor —1 one hag; > t¢, that is, the singularity is at late times
(Big Rip singularity) [110].

Quantum Effects: Using the same notation as [39], for a massless field confyre@upled with gravity, one has the
following expression for the trace anomaly

Tyae = 60 + 12H?H + THH + 4H?) — 128(H* + H%H) (203)

with (see for example [109])

(No + 6Ny j5 +12Ny), B = No + 11Ny /5 + 62N7) (204)

_ # _71(
& 2880m2 288072
where Ny is the number of scalar fieldsy, /, is the number of four components neutrinos avidis the number of
electromagnetic fields.

Remark IV.1. The constants andg3 come from the regularization process. For example dimeradiegularization gives
formula [204), and point-splitting gives (seel[39])= 5e—s (No+3N1/2—18N1), B = 55— (No+11/2N; jo+62N7 ).
Then, since the method of regularization influences thdsesaand it is uncertain what fields are present in our uréeer
one can considers all values of both parameters.
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Remark IV.2. The relation between the notation of this section and theodfi2l] that we used in section (Il.A.3) is

As explained in Remark I11.1, to obtain the vacuum energysitgmone can uses the trace anomBly. = pyac — 3Pvac,
and the conservation equation. The result is

Poac = 60(3H*H + HH — %HQ) — 38H*, (205)

which coincides with eq[[(192) if one only considers scakldf. Then taking into account this vacuum energy density,
the modified Friedmann equation behaves

2

K
H? = F(p + puac)- (206)

With the derivative of this last equation, the conservatiguation and the trace anomaly, one obtains the modified
acceleration equation

K2

. 1
H = —I ((1 + W)p + Pvac + g(pvac - Tvac)) . (207)

From both equations, one can deleteand one obtains the following third order differential atjan

4 . 1
B FH — poac — 5 (Pvac = Tvac) = (1 +w)

3 0 H2 - (1 + w)pvaca (208)

K2

that in terms of the Hubble parameter is given by

4 6 :
- SH-(1+ w)EHQ — 3B(w+1)H* + (18a(w + 1) —48)H?H
+60(w + 2)HH + 3a(w + 3)H? + 2aH = 0. (209)
B. a=0

In this section we consider the simplest case- 0), and we will see that, quantum effects don’t avoid the siagties.
Equation[[IR) reduces to the following first order diffeiehéquation

. S H? +38H*
H:_1+“(~ 1+ 37 ) (210)
4 = + BH?

1. First, we consider the case= 0 and > 0. Integrating equatiori_(13) one obtains

—1/H(t)+\/%l€2arctan< ?H(t)):—g(l—i-w)(t—ts)-i-\/%ﬁarctan( %MH0> (211)

e Forw < —1, whent — —oo one hasH — 0 (that is quantum effects are small at early times), on theroth

hands, whem — 7, = t, — ﬁ\/ﬁ—gz (w — arctan ( %MHO)) one hasH — oo, that is, the quantum

effects don’t avoid the Big Rip singularity that appears,at
e Forw > —1, whent — oo one hasi — 0 (that is quantum effects are small at late times), on therothe

hands, whem — 7, = t, — ﬁw/ﬂ—f (77 — arctan (1 / ﬂT“zH())) one hasd — oo, that is, the quantum
effects don’t avoid the Big Bang singularity that appears at
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2. Now we consider the cage= 0 and3 < 0. The solution of equatiof (13) is given by

= _3(1 +w)(t — ts), (212)

1 H(t)— Hy Ho+H
—1/H(t) + | B8 = Hy Ho+ Hy
°H, | Hy— H, H(t)+ Hs

e In the casev < —1 for Hy € (0, Hy/v/2) whent — —oo on hasH — 0, and whenH — H,/\/2

Hy/v2—-Hy Ho+H TN .
atts = ts + 3ag (\/_/H+ oty I | D one hasf(t;) = +oo, that is, these

solutions are singular (the scalar curvatuﬁez 6(2H? + H), diverges). FotH, € (H, /v/2, H;) when
t — —ocoon hasH — H,, however at; H diverges. And finally forH/y € (H,, oo) there is a singularity at
finite time. Effectively , whent — —oo on hasH — H, and whent — ¢, on hasH — oc.

e In the opposite case > —1, for HO € (0, H, /v/2) whent — oo on hasH — 0, and whenH — H, /v/2

Ho+H TEY ;
atty, =ty + 3 1+w (\/_/H+ oy I | = H+/0\/§++H+D one hasH (t;) = oo, that is, these

solutions are singular. Fdi, € (H+/\/_, H.)whent — oo on hasH — H., however at, H diverges.
And finally for Hy € (H,, o0) there is a singularity at finite time. Effectively, whers oo on hasH — H,
and whent — t, on hasH — oo.

C. Empty universe

Another simple case is the restriction to the invariant fmddip(t) = 0. In that case, one only needs the modified
Friedmann equation, that is, the following second orddedihtial equation
Loy ng_ﬁH4

H? = k*a(3H?H + HH — ~H?)

5 5 (213)

Remark IV.3. The solutions with7 > 0 and those withf7 < 0 decouple. To see this, we perform the change of variable
7 = H/H to make the system no-singularit= 0, then atH = 0 the system behaveés= 7?2 /2, this means that the
solutions can't cross the axid = 0.

Equation [21B) is an autonomous second order differentjahion, then since solutions are invariant under time
translations, the general solution is a one-parametenyashisolutions. Taking this into account, we will prove that
there is a one-parameter family of singular solutions.tkues look for a particular singular solution, with the follovg
behaviorH (t) = % near the singularity. Inserting this expression[in {2184 eetaining only the leading singular

terms one obtain€y1 = 37(” <—1 +4/1+ %) Here it is clear that we have to impose the condi%nz —1. Interms

of the scale factor one hagt) = ao (tf;tgs)Ci. Then, forﬁ > 0, the solution withC,. has a singularity of the type
a(ts) = 0, and the other one of the typ#t;) = co. However, when-1 < = < 0, for both values of”, the solution
satisfya(ts) = 0.

Now we can prove that there is a one-parameter family of $amgolutions whose leading term $(¢) = £+ 10

t—ts
do this, we first transform the differential equatién (2 Ir8jifirst order one performing the changed) = H(t), then
the equation becomes

2 2 2 rLos K28 4
H :fia(?)Hu—i—Huu—iH)—TH, (214)
wherew'(H) = du/dH. Using the new variable#l (t) = f—f has the formu = —CiiHQ, then if the equation is
linearized about this point one obtains, fdr— +oo, the following general solution
Wlinearized = _ L e + K|H|* 3¢ — G when  Cy #1/3 (215)
mearize C:t I{QO[(3O:|: _ 1)1
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and

1 1
Ulinearized = _C_j:HQ + K — @ In |H|a when Ci = 1/31 (216)

whereK is an arbitrary constant.
It's clear that we have to imposg, > —1/3. Then when-1 < % < 0or % > 15, one hag”y > —1/3, and then

for both values one has a one-parameter family of solutidfieen0 < % < 15, for Cy, one has a one-parameter family,
however forC_ one has to choos& = 0, that is, one only has a particular solution.

Now we can perform the qualitative analysis. Firstly, ndtattwhens < 0 there exist two de Sitter solutiorféy =
+,/—25- Making the change of variabje= /| H] (see[41. 42]), one obtains

d . .
= (07/2+ V(p)) = —3ep’p” (217)
wheree = sing(H) andV (p) = —4£za (1 + "%Bp‘l). In in the phase-space one has
p = Yy
. 218
{ j = =3ep’y = V'(p). (218)
We only consider the domaid > 0, because solutions witH > 0 and H < 0 decouple. The pointy = /Hy is

an extremum of the potenti&l, then, linearizing the syster (21), one obtains thatfat 0 the critical point(p,0) is
a saddle point, and far > 0 is a node stable. From the form of the potential, and takitgaccount that the system is
dissipative ind > 0, the following results in the phase-spdgey), with H > 0, are obtained:

1. Casex > 0,6>0

We havel” < 0in (0,00) andV (0) = 0. The(0,0) is an unstable critical point. The solutions are singularaaty
and late timesy{ — o0). Only a solution is not singular at late times, it is theadpry that arrives gi = 0 with
zero energy (it arrives at the poiftt, 0)), and only one if not singular at early times, it starts frora: 0 with zero
energy (it starts af0, 0)).

2. Casex < 0,6>0

Now, V' > 0in (0,00) andV'(0) = 0. The(0,0) is an stable critical point, and solutions are only singateearly
times. At late times they approach to the stable criticahpoi

3. Casex >0,8<0

In this case, the system has two critical poir{$.0) is an unstable critical point, an@-, 0) is stable. Solutions
are only singular at early times. At late times they osaltd shrink around to the stable point, thatjs,, 0) is a
global attractor. Moreover, there is a solution that end® dt), and only a no singular solution that startg@t0)
(starts with zero energy) and endgat , 0).

4, Casenn < 0,8 <0

This is the Starobinski model [20]. The system has two @itiwints.(0, 0) is an stable critical point, angh.;, 0)

is a saddle point. There are solutions that don’t cross te@ ax p., these solutions are singular at early and late
times, they correspond to the trajectories that can't gessop of the potential. There are other solutions that cross
twice the axep = p., they are also singular at early and late times, these toajes pass the top of the potential
bounce ap = 0 and pass once again the top of the potential. There are@wdutnat cross once the ape= p,
these solutions are singular at early times, however atitates the solutions spiral and shrink to the origin, these
solutions pass the top of the potential once and then bowre $imes inp = 0, shrinking top = 0. These last
solutions has the asymptotic behavior described in thenbégj of section 2.1.3. Finally, there is only two unstable
no-singular solution, one goes frofn,, 0) to (0, 0), and the other one is the de Sitter solutipn,, 0).

Remark IV.4. Note that equatiorflf) remains the same with the chanffét) — —H (—t), this means that solutions
with H < 0 are the time reversal of the studied above.
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Remark IV.5. For 3% < —1the values o€’y are complexes, this is due to the fact that the system camrtot(@r come
from)p — oo monotonically, because the dissipation effect is not l&migeugh compared with the potential forcel[41].

Remark IV.6. The cases = —1 (p = constant are invariant manifolds), is equivalent to theecafan empty universe
with a cosmological constant. This case was studied withtgtetail in [41].

D. The general case

The best way to study the general case is to consider thensyste

H = Y
Y = 57 (2H?/K? — p/3 — 6aH?Y +aY? + BHY) (219)
p = —3Hp(1 + w).

Wheng < 0, the system has two critical point&/+,0,0) whit Hy = +, /—#. The semi-plang = 0, H > 0 (resp.
p =0, H < 0)is an attractor (resp. a "repeller”) when> —1, and the roles are interchanged wher: —1.

What is important is to stress that in the case: 0 there isn’t bouncing solutions, because at bouncing tiramely
tp, One has-p(ty)/3 + aY?(t,) = 0, what meang(t,) = 0, but as we have seen in last sectipns 0 is an invariant
manifold where trajectories withl > 0 and those withH < 0 decouple. For this reason in the casec 0 there isn’t
stable no-singular trajectories, the only unstable ngtdar solutions are the ones that appear in the Starobinsttiein

From this last paragraph one can concludes that, to obtagingular solutions, the interesting casevis> 0. In fact,
the interesting one is > 0 andg < 0.

In that case we can use the dimensionless variable$f . t, H = H/H, Y = Y/H? andp = 6“%, then the system
=
becomes

Hl = Y
V' = = (-BH?Bp — 6aH?Y +aY? + BH*) (220)
g o= —-3Hp(1 +w),

where’ denotes the derivative with respect the titne
In these variables the critical points afe-1,0,0). The linearized system 4tl,0,0) has eigenvaluesy =

—3/2 <1 £4/14 %) and\; = —3(1 + w). Since Re;L < 0 andp = 0 is an invariant manifold, all solutions in

that semi-plane withi7 > 0 go asymptotically towards this critical point. The eigectog vz = (1, —3(1 + w), 18w (1 +
w)a/B — 2) corresponds to the eigenvalig then forw < —1, there is a solution that escapes to the de Sitter expanding
phase following the direction of the vectdy. On the other hands, when> —1 the critical point is an attractor. At the

other critical point the eigenvalues ax¢ = —3/2 (1 +4/-1+ g—ﬁ) and\; = 3(1 +w). Since Ra > 0andp =0

is an invariant manifold, all solutions in that semi-planighwii < 0 escape from this critical point. The eigenvector
U3 = (1,3(14+w), —18w(1 +w)a/ B+ 2) corresponds to the eigenvalig then forw < —1, there is a particular solution
that goes asymptotically towards the de Sitter contragtimase following the direction of the vectds. On the other
hands, whew > —1 the critical point is a repeller.

Now we look for singular solutions of the forid = C/(t — ¢,), t — <. Inserting this value of the Hubble parameter
in the conservation equation one obtajits) = |t — | ¢ (++), wherep, has to be a positive parameter. Now , when
w < —1, inserting the Hubble parameter and the energy densityeimibdified Friedmann equation one gets, once again,

the values of” obtained in section 4.3, that i,y = %0‘ (—1 +4/1+ %) , because in that case the energy goes to zero

whent — t+, and then, one obtains the same kind of result that in the gasd), the only difference is that now one
has a two-parameter family of singular solutiopg is a free parameter, and the general solution of the sy$i@jriq2a
two-parameter family due to the time invariance under {edims).

The casev > —1 is more involved. We summarize the results:

1. When-1< £ <0
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o If O < 557 there are two two-parameter families with= C../( — t,) andp, free parameter.

o If C_ = (1+ , there is a two-parameter family with = C,/(t — t,) and p, free parameter, and a
one—parameterfamlly witlhl = C_/(t — t,) andpy = 0.
o If Cy < T) < C_, there is a two-parameter family witH = C, /(t — t,) and p, free parameter, a

one-parameter family with = C_ /(t — t,) andpy = 0, and a one-parameter family wifi = m

= 16 16 6 4 3a
andpo = — gy (9(1+w>2 T8 30w F)'

o If < Oy, there are two one-parameter families with= C. /( — t) andpy = 0.

(1+ )
2. When-1= £

elf 1< ( there is a two-parameter family with = 1/( — ,) andp, free parameter.

oIf 1> , there is a one-parameter family with = 1/(¢ — ¢,) andpy = 0.

(1+w
3. When—1 > £, there aren’t singular solutions of the fotth= C/(t — ).

Remark IV.7. This result can be obtained in an equivalent way insertinggoation[(20B) the functioH = C/(t —ts).
Then, retaining the leading singular term, one obtains thkiesC. and ﬁ. Finally, transforming the differential
equation in a second order one in the same way as we have ddBeciion 1V, and linearizing around the singular
behaviors obtained above, one can see the form and the nuofilgarameters that depend the different families of
singular solutions.

To understand this summary we perform the change of varjabte./|H|. Then the modified Friedmann equation
becomes [42]

jt (p /2 + V( )) = —3ep’p? + %(1 + w)p, (221)

whereV'(p) = — g2z (1+ %2 ) = 5355, ande = sgn(H).

The casev < —1 is clear. Slncep — 0 att = t,, one essentially obtains the same results as Section |Vekenyfor
w > —1, on the right hand side of equatidn (221) one term is dissipaind the other one is anti-dissipative, moreover,
in this case both terms divergefat= .. Then if one looks for singular solutions of the foth = C/(t — t,), the first
term in the right hand side df(P4) has to be dominant. Andesthis term is of the ordelr/(# — £,)*, and the other one
is of the orderl /|t — £,|>¢(1+«) | they will appear all the situations described above.

It is also interesting to understand the form of the potdarfﬁﬁits picture appears in figure 3 of ref. [42]). It only has

1/4 1/4

a zero at the pointy = (3/2)"/* (1 +4/1+ %ﬁ) / , and two critical points gb;. = (&7 W) / (p— < p4). Then
for p > 1/4 there aren't critical points, and the potential is striégtigreasing from-oo to co. Forp < 1/4, the potential
satisfyV (0) = —o0o , V(c0) = oo and has a relative maximumpat and a relative minimum at, (a hollow). For very
small values op atp_ one hasi? = p, that is, the system is nearly to the Friedmann phase, and ahe hagH | = 1,
that is, the system is near to the de Sitter phase.

Next step is to find solutions that approximate to the Frienimane whenj¢| — oo (see [54] for the radiation case,
i.e.,w = 1/3). To do that, we consider equati@OQ) in the dimensiantasiables introduced above, and we reduce the
order performing the change of variablgy) = H(¢) wherey = H. The obtained equation is:

268u + 3(1 + w)B(y? — y*) + (18a(1 + w) — 48)yu + 6a(2 + w)ytu 4 3a(3 + w)u? + 2a(iu? + 4%u) = 0,(222)

where nowi = du/dy. Since the Friedmann solution in these variablesis= —3 (1 + w)y?, the linearized equation
about this pointq;neqrized = ur + h)is

.. 4
h+ 2yt + (Qa( b y Ay—2) h+ B =0, (223)

w
h
1+w 1+ w)?

whereA and B are some constants depending on the paramefétaindw.
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The idea to solve this equation is to take into account thaefge values oft| (small values of)), one can disregard
the termAy—2. The homogeneous equation is solved performing the chiargéy|~ ™= z, then one obtains:

. 48 —4
_ = 224

Z+9a(1+w)2y z =0, (224)

that we solve using the WKB approximation (see [55] pagg). Consequently the homogeneous equation has the two

independent solutions

2 1
h omogeneous = 1/(4w) e e Vi - |- 225
homog ) =y w0\ f30 o) V ﬂ/ay (225)
A particular solution is obtained using power series. Itiag term is
9a(1 + w)?
hparticular(y) = %Blfl (226)

Then the general solution of the linearized equation is @aprately

Ulinearized = UWF + Khhomogeneous,:t(y) + hparticular (U) for Fy> Oa (227)

whereK is an arbitrary parameter, that is, we have proved that tkea@ne-parameter family of solutions that approx-
imate to the Friedmann one for large valuestpf

Once we have seen these preliminary results, we can despridiatively the behavior of the no-singular solutions.
We start with the case < —1. We have seen that there is a one-parameter family of sokitiat at early times are in the
expanding Friedmann phase, and we have to look for no-singolutions that match, at late time, with that family. The
only no-singular solutions at early times are: a one-patanfamily that approaches asymptotically to the contregti
Friedmann phase, and a particular solution that goes asyicgdty towards the contracting de Sitter phase, follayvin
the direction(1, 3(1 4+ w), —18w(1 + w)a/3 + 2). From the systeni(24) it is easier to understand the dynarficst,
at early times the system is at the pgint with 7 > 0. Then it leaves this expanding Friedmann state and rollsxdow
either to the right or to the left. In the former case, the erse approaches to an expanding de Sitter phase (the eelativ
minimump_ ). However since is an increasing function with time, the critical points hdisappear and the potential
will be an increasing function wit, this means that the universe rolls dowmpte- 0, that is, it bounces and enters in a
decreasing phasé < 0. Then it can arrive asymptotically at the poipts or p., (the no-singular solutions at late time),
or it bounces many times in order to have enough enerdy ir 0, to arrive atp = oo (singular solution). This last
behavior can be easily understood, if one takes first intowaicthat for > 0 (resp. H < 0) the system is dissipative
(resp. anti-dissipative), and second that the energy afystem changes its sing when it bounces (see equ@tiyrof
[41]).

Finally, from the behavior of the no-singular solutionsatltime, one can deduce that one has to very fine tune the
initial conditions and the parameter&nd/ in order to obtain no-singular solutions that match thetgetlme no-singular
behaviors with the expanding Friedmann stage at early tibesause these families of solutions aren’t general solsti
(a two-parameter family).

On the other hand whesa > —1, we also have a one-parameter family of solutions that attiates are in the
expanding Friedmann phase (in terms of the variablleis corresponds to the poipt. and H > 0), and we have to
look for no-singular solutions that match, at early timethvthat family. The only no-singular solutions at early tene
are: a one-parameter family that leaves the contractireglRrann phase, in terms of the variap)ghis means, that the
system leave the relative maximym with & < 0, and rolls down to the right or to the left, but in all casescsithe
energy density is an increasing function of time in this oegithe system goes o = 0, i.e., it bounce and starts an
expanding phase. The other no-singular solution at earlg<iis a two-parameter solution (a general solution) tlzatle
the contracting de Sitter phase, in terms of the variablis means, that the system starg atwith H < 0, and then
due to the anti-dissipation (at early timesfin< 0 the energy density is very small and the dominant term is teedne
on the right hand side of equatidn(221)) the system is rettiem the hollow and rolls down towards the regidn> 0.

From these no-singular early time behavior one can condhae in order to match these early time no-singular
solutions with the expanding Friedmann phase at late time,t@s to fine tune the initial condition. And depending
on the values of the parametersand 5 we will obtain different kinds of connections. For exampte[55], different
numerical calculations have been done in the radiation, s they show the different connections in terms of both
parameters.
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