Crystal spheres and a geometric concept of the world.

Alexander A. Ermolitski
IIT-BSUIR
Minsk, Belarus
E-mail: ermolitski@mail.by

Abstract

A geometric concept of the world (W) is considered where the manifold W is identified with a locally trivial fibre bundle $p r: W \rightarrow U$ of so-called crystal spheres over a manifold U called the universal time. For every point $p \in U$ $M^{n}=p r^{-1}(p)$ is a n-dimensional crystal sphere and close crystal spheres are called the parallel universes. There exists a geometric black hole on the smooth manifold M^{n}. Tensor fields, fibre bundles, operators (physical structures and equations) can be deformed towards the black hole into continuous and sectionally smooth those, further, they can be retracted together with the black hole into a small black ball to initiate the Big Bang.

Keywords: Crystal spheres, Riemannian metric, smooth triangulation, homotopies, deformations of tensor fields and fiber bundles.

MSC(2000): 53C21, 57M20, 57M40, 57M50

0. Introduction

The celestial spheres were the fundamental entities of the cosmological models developed by Plato, Eudoxus, Aristotle, Ptolemy and others, [1]. Our concept of the world can be considered as a modern interpretation of ideas of ancient greeks or, perhaps, of more old sources which we do not know.

Example. A sphere bundle is a fiber bundle whose fiber is a n-sphere. Given a vector bundle E with a metric (such as the tangent bundle to a Riemannian manifold) one can construct the associated unit sphere bundle for which the fiber over a point x is the set of all unit vectors in E_{x}. When the vector bundle is the tangent bundle $T(M)$, the unit sphere bundle is known as the unit tangent bundle, and is denoted $U T(M)$.

It is well known that a n-sphere is identified by the stereographic projection with $\mathbf{R}^{n} \cup\{\infty\}$ where $\{\infty\}$ is a singular point.

Definition A n-dimensional, connected, simply connected, compact, closed, smooth manifold M^{n} is called a crystal sphere if there exists such a finite smooth triangulation on M^{n} which is coordinated with the smoothness structure of the manifold M^{n} i.e. every simplex (crystal) of the triangulation is an embedded smooth submanifold of M^{n} with a boundary.

Theorem [2]. A crystal sphere M^{n} is homeomorphic to the n-sphere.
Further, we consider only one crystal sphere $M^{n} \subset W$ with a smooth triangulation considered above. We can fix some Riemannian metric g on the manifold M^{n} which defines the length of arc of a piecewise smooth curve and the continuous function $\rho(x ; y)$ of the distance between two points $x, y \in M^{n}$. The topology defined by the function of distance (metric) ρ is the same as the topology of the manifold $M^{n},[3]$.

For any n-simpex δ^{n} the diameter $d\left(\delta^{n}\right)$ is defined by the formula $d\left(\delta^{n}\right)=\max \rho(x ; y), x, y \in \delta^{n}$. The diameter of the triangulation is called the maximal value among the diameters of the n-simplexes. It seems that the diameter of the triangulation can be very small (subatomic).

In section 1, using a smooth triangulation above and the function of distance we consider an algorithm of extension of coordinate neighborhood (inner part of the canonical polyhedron) constructed in [2], [4]. The beginning of the algorithm we call the geometric Big Bang. The inner part of the canonical polyhedron is painted white and the boundary of the canonical polyhedron is painted black every step, the other part of the manifold which has not been still painted assumes to be grey (three kinds of matter from a physical point of view). A small closed neighborhood of the boundary of the canonical polyhedron we repaint black and call a geometric black hole, [4].

In section 2 , we consider deformation of tensor fields, fiber bundles and operators (physical structures and equations) towards the black hole. These deformations are continuous and sectionally smooth and they have a very simple constructions on a white neighborhood where a parameter $t(\gamma)$ of the deformations of structures can be considered as a local time along every piecewise smooth broken line γ. We have got only one black point $x_{0} \in M^{n}$ at the end of all considered algorithms (other part of the manifold is white). Let $\bar{B}\left(x_{0}\right)$ be a small black closed ball with the center x_{0}. All the resulting parts of the deformed structures have been concentrated into $\bar{B}\left(x_{0}\right)$. We consider an inversion (Big Bang) painting inner part of $\bar{B}\left(x_{0}\right)$ white and other points of M^{n} grey and begin again the process above where the initial simplex is a subset of $\bar{B}\left(x_{0}\right)$. Thus, Big Bangs have a cyclical nature.

We remark that all the algorithms considered in the article are based on the mathematical methodology «step by step». From a physical point of view the processes must have explosive characters i.e. a big number of the steps of the algorithms must be produced almost simultaneously.

1. On algorithm of extension of coordinate neighborhood

$\mathbf{1}^{\circ}$. In this section, we consider some standart facts on a triangulation of a manifold.

Let M^{n} be a connected, compact, closed and smooth manifold of dimension n and C^{n} be a cell (coordinate neighborhood) on M^{n}. A standard simplex Δ^{n} of dimension n is the set of points $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \boldsymbol{R}^{n}$ defined by conditions

$$
0 \leq x_{i} \leq 1, i=\overline{1, n}, x_{1}+x_{2}+\ldots+x_{n} \leq 1
$$

We consider the interval of a straight line connected the center of some face of Δ^{n} and the vertex which is opposite to this face. It is clear that the center of Δ^{n} belongs to the interval. We can decompose Δ^{n} as a set of intervals which are parallel to that mentioned above. If the center of Δ^{n} is connected by intervals with points of some face of Δ^{n} then a subsimplex of Δ^{n} is obtained. All the faces of Δ^{n} considered, Δ^{n} is seen as a set of all such subsimplexes. Let $U\left(\Delta^{n}\right)$ be some open neighborhood of Δ^{n} in \boldsymbol{R}^{n}. A diffeomorphism $\varphi: U\left(\Delta^{n}\right) \rightarrow M^{n}\left(\delta^{n}=\varphi\left(\Delta^{n}\right)\right)$ is called a singular n-simplex on the manifold M^{n}. Faces, edges, the center, vertexes of the simplex δ^{n} are defined as the images of those of Δ^{n} with respect to φ.

The manifold M^{n} is triangulable, [5]. It means that for any $l, \quad 0 \leq l \leq n$ such a finite set Φ^{l} of diffeomorphisms $\varphi: \Delta^{l} \rightarrow M^{n}$ is defined that
a) M^{n} is a disjunct union of images $\varphi\left(\operatorname{Int} \Delta^{l}\right), \varphi \in \Phi^{l}$;
b) if $\quad \varphi \in \Phi^{l}$ then $\varphi \circ \varepsilon_{i} \in \Phi^{l-1}$ for every i where $\varepsilon_{i}: \Delta^{k-1} \longrightarrow \Delta^{k}$ is the linear mapping transferring the vertexes v_{0}, \ldots, v_{k-1} of the simplex Δ^{k-1} in the vertexes $v_{0}, \ldots, \bigoplus_{i}, \ldots v_{k}$ of the simplex Δ^{k}.
We suppose that there exists a smooth finite triangulation on M^{n} which is coordinated with the smoothness structure of M^{n} and fix the triangulation. Such triangulations exist for manifolds of dimension 2 or 3.
$\mathbf{2}^{\circ}$. In this section, we consider an algorithm of extension of white coordinate neighborhood. It reminds us an extension of the universe from a physical point of view. We have got the decomposition described in the Theorem 1 at the end where C^{n} is a white cell.

Let δ_{0}^{n} be some simplex of the fixed triangulation of the manifold M^{n}. We paint the inner part $\operatorname{Int} \delta_{0}^{n}$ of the simplex δ_{0}^{n} white and the boundary $\partial \delta_{0}^{n}$ of δ_{0}^{n} black. There exist coordinates on Int δ_{0}^{n} given by diffeomorphism φ_{0}. A subsimplex $\delta_{01}^{n-1} \subset \delta_{0}^{n}$ is defined by a black face $\delta_{01}^{n-1} \subset \delta_{0}^{n}$ and the center c_{0} of δ_{0}^{n}. We connect c_{0} with the center d_{0} of the face δ_{01}^{n-1} and decompose the subsimplex δ_{01}^{n} as a set of intervals which are parallel to the interval $c_{0} d_{0}$. The face δ_{01}^{n-1} is a face of some
simplex δ_{1}^{n} that has not been painted. We draw an interval between d_{0} and the vertex v_{1} of the subsimplex δ_{1}^{n} which is opposite to the face δ_{01}^{n-1} then we decompose δ_{1}^{n} as a set of intervals which are parallel to the interval $d_{0} v_{1}$. The set $\delta_{01}^{n} \cup \delta_{1}^{n}$ is a union of such broken lines every one from which consists of two intervals where the endpoint of the first interval coincides with the beginning of the second interval (in the face δ_{01}^{n-1}) the first interval belongs to δ_{01}^{n} and the second interval belongs to δ_{1}^{n}. We construct a homeomorphism (extension) φ_{01}^{1} : $\operatorname{Int} \delta_{01}^{n} \rightarrow \operatorname{Int}\left(\delta_{01}^{n} \cup \delta_{1}^{n}\right)$. Let us consider a point $x \in \operatorname{Int} \delta_{01}^{n}$ and let x belong to a broken line consisting of two intervals the first interval is of a length of s_{1} and the second interval is of a length of s_{2} and let x be at a distance of s from the beginning of the first interval. Then we suppose that $\varphi_{01}^{1}(x)$ belongs to the same broken line at a distance of $\frac{s_{1}+s_{2}}{s_{1}} \cdot s$ from the beginning of the first interval. It is clear that φ_{01}^{1} is a homeomorphism giving coordinates on $\operatorname{Int}\left(\delta_{01}^{n} \cup \delta_{1}^{n}\right)$. We paint points of $\operatorname{Int}\left(\delta_{01}^{n} \cup \delta_{1}^{n}\right)$ white. Assuming the coordinates of points of white initial faces of subsimplex δ_{01}^{n} to be fixed we obtain correctly introduced coordinates on $\operatorname{Int}\left(\delta_{0}^{n} \cup \delta_{1}^{n}\right)$. The set $\sigma_{1}=\delta_{0}^{n} \cup \delta_{1}^{n}$ is called a canonical polyhedron. We paint faces of the boundary $\partial \sigma_{1}$ black.

We describe the contents of the successive step of the algorithm of extension of coordinate neighborhood. Let us have a canonical polyhedron σ_{k-1} with white inner points (they have introduced white coordinates) and the black boundary $\partial \sigma_{k-1}$. We look for such an n-simplex in σ_{k-1}, let it be δ_{0}^{n} that has such a black face, let it be δ_{01}^{n-1} that is simultaneously a face of some n-simplex, let it be δ_{1}^{n}, inner points of which are not painted. Then we apply the procedure described above to the pair $\delta_{0}^{n}, \delta_{1}^{n}$. As a result we have a polyhedron σ_{k} with one simplex more than σ_{k-1} has. Points of $I n t \sigma_{k}$ are painted white and the boundary $\partial \sigma_{k}$ is painted black. The process is finished in the case when all the black faces of the last polyhedron border on the set of white points (the cell) from two sides.

After that all the points of the manifold M^{n} are painted black or white, otherwise we would have that $M^{n}=M_{0}^{n} \cup M_{1}^{n}$ (the points of M_{0}^{n} would be painted and those of M_{1}^{n} would be not) with M_{0}^{n} and M_{1}^{n} being unconnected, which would contradict of connectivity of M^{n}.

Thus, we have proved the following
Theorem 1. Let M^{n} be a connected, compact, closed, smooth manifold of dimension n. Then $M^{n}=C^{n} \cup K^{n-1}, C^{n} \cap K^{n-1}=\varnothing$, where C^{n} is an n-dimensional cell and K^{n-1} is a union of some finite number of ($n-1$)-simplexes of the triangulation.
3°. The main results of this section are based on the representation of C^{n} as a set of piecewise smooth broken lines connecting the initial point c_{0} with all black points of the complex K^{n-1}. It reminds us the theory of strings in physics.

We consider the initial simplex δ_{0}^{n} of the triangulation and its center c_{0}. Drawing intervals between the point c_{0} and points of all the faces of δ_{0}^{n} we obtain a decomposition of δ_{0}^{n} as a set of the intervals. In 2° the homeomorphism $\boldsymbol{\psi}:$ Int $\delta_{0}^{n} \rightarrow C^{n}$ was constructed and $\boldsymbol{\psi}$ evidently maps every interval above on a piecewise smooth broken line γ in C^{n}. We denote $\tilde{M}^{n}=M^{n} \backslash\left\{c_{0}\right\} . \tilde{M}^{n}$ is a connected and simply connected manifold if M^{n} is that. Let $I=[0 ; 1]$, we define a homotopy $F: \tilde{M}^{n} \times I \rightarrow \tilde{M}^{n}:(x ; t) \mapsto y=F(x ; t)$ in the following way
a) $F(z ; t)=z$ for every point $z \in K^{n-1}$;
b) if a point x belongs to the broken line γ in C^{n} and the distance between x and its limit point $z \in K^{n-1}$ is $s(x)$ then $y=F(x ; t)$ is on the same broken line γ at a distance of $(1-t) s(x)$ from the point z.

It is clear that $F(x ; 0)=x, F(x ; 1)=z$ and we have obtained the following
Theorem 2. The spaces \tilde{M}^{n} and K^{n-1} are homotopy-equivalent, in particular, the groups of singular homologies $H_{k}\left(\tilde{M}^{n}\right)$ and $H_{k}\left(K^{n-1}\right)$ are isomorphic for every k.

Corollary 2.1. The space K^{n-1} is connected and if M^{n} is simply connected then K^{n-1} is simply connected too.

Remark 1. The white coordinates are extended from the simplex δ_{0}^{n} in the simplex δ_{1}^{n} through the face δ_{01}^{n-1} hence Int δ_{01}^{n-1} has also the white coordinates. On the other hand there exist two linear structures (intervals, the center etc) on δ_{01}^{n} induced from δ_{0}^{n} and δ_{1}^{n} respectively. Further, we set that the linear structure of δ_{01}^{n-1} is the structure induced from δ_{0}^{n}.

Remark 2. In the process of getting of C^{n} in $\mathbf{2}^{\circ}$ we can construct a maximal tree L connecting by intervals all the centers of the n-simplexes of the triangulation via the centers of some white faces.

Conversely, if we have such a maximal tree L connecting by intervals all the centers of the n-simplexes of the triangulation via the centers of some faces (any from two possible centers of a face can be choosed) then we can extend white coordinates from any simplex δ_{0}^{n} on the maximal cell C^{n} as it was shown in $\mathbf{2}^{\circ}$. Thus, the maximal tree L defines the maximal cell C^{3} and white faces.
$\mathbf{4}^{\circ}$. We can retract the complex K^{n-1} to a unique black point x_{0}. The set of piecewise smooth broken lines transforms in that every step of algorithms considered in [2].

Definition 1. a) A simplex $\delta^{k} \in K^{n-1}(k=\overline{1, n-1})$ is called free if it has at least one free face δ^{k-1} i.e. such a face that it is not a face of any other k-simplex from K^{n-1}.
b) An edge $\delta^{1}=x_{0} x_{1}$ is called semi-isolated if it is not an edge of any simplex from K^{n-1}. A semi-isolated edge δ^{1} is called isolated if it is free.

Let us have a free simplex $\delta^{k} \in K^{n-1}$ with some free face δ^{k-1}. We consider such a polyhedron σ that σ is the set of all n-simplexes having common point with δ^{k-1}.

Theorem 3. We can redistribute coordinates of white points of the polyhedron δ (retract the free simplex δ^{k}) i.e. construct the corresponding mapping φ_{σ} in such a way that the following conditions are fulfilled:
a) all the points of Int σ are painted white i.e. have new white coordinates,
b) white coordinates of points of boundary faces of the polyhedron σ are not changed.
c) φ_{σ} maps broken lines having boundary black points on δ^{k} onto broken lines having boundary black points on the boundary of the polyhedron σ.

Proof of a) and b) can be found in [2] (Proposition 3).
Proof of c) follows from n-dimensional version of proposition 3 considered in [6].

Let σ_{k} be a canonical polyhedron at any step of the algorithm above. Points of $I n t \sigma_{k}$ are painted white and the boundary $\partial \sigma_{k}$ is painted black, the other part of the manifold which has not been still painted assumes to be grey. In 2° the homeomorphism $\boldsymbol{\psi}:$ Int $\delta_{0}^{n} \rightarrow$ Int $_{k}$ was constructed and ψ evidently maps every interval from $I n t \delta_{0}^{n}$ on a piecewise smooth broken line in Int $_{k}$. It is easy to see that any procedure considered in [2] brings to a transformation such a broken line into another broken line connecting the center c_{0} of δ_{0}^{n} with some black point of the $\partial \sigma_{k}$ (by a analogy with c) of the theorem 3). At the end of all the algorithms considered in [2] we obtain a representation $M^{n}=C^{n} \cup\left\{x_{0}\right\}$ where C^{n} has white painting and x_{0} is an unique black point in M^{n} i.e. we have a set piecewise smooth broken lines connecting c_{0} and x_{0}.

2. Deformation of a tensor field and a fibre bundle towards a geometric black hole

$\mathbf{1}^{\circ}$. In this section, we consider the process of extension vector fields corresponding that of extension of the white coordinate neighborhood.

Let σ_{k} be a canonical polyhedron at any step of the algorithm from 1 and $L\left(M^{n}\right), L\left(I n t \sigma_{k}\right)$ be the principal fibre bundles of linear frames of the manifolds
M^{n} and Int $_{k}$. The diffeomorphism φ_{0} (where $\delta_{0}^{n}=\varphi_{0}\left(\Delta^{n}\right)$) defines the coordinates $\left(x_{1}, \ldots, x_{n}\right)$ in some neighborhood of the simplex δ_{0}^{n} and the corresponding vector fields $\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}$ on this neighborhood (a local cross-section of $L\left(M^{n}\right)$). Similarly, the diffeomorphism φ_{1} (where $\delta_{1}^{n}=\varphi_{1}\left(\Delta^{n}\right)$) defines the coordinates $\left(y_{1}, \ldots, y_{n}\right)$ in some neighborhood of the simplex δ_{1}^{n} and the vector fields $\frac{\partial}{\partial y_{1}}, \ldots, \frac{\partial}{\partial y_{n}}$ on this neighborhood. We have assumed that the white face δ_{01}^{n-1} has the equation: $y_{1}=0$ (it can always be obtained by corresponding linear change of variables in $\boldsymbol{R}^{n} \supset \Delta^{n}$). The vector fields $X_{i}=\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial y_{j}}, \quad i, j=\overline{1, n}$, are defined on the face δ_{01}^{n-1} therefore for any point $x \in \delta_{01}^{n-1}$ we have $X_{i}=\sum_{j=1}^{n} f_{i j}(x) \frac{\partial}{\partial y_{i}}$ where the functions $f_{i j}(x)$ are smooth. We decompose δ_{1}^{n} as a union of the intervals having the following equations: $y_{1}=t, y_{2}=c_{2}, y_{3}=c_{3}, \ldots, y_{n}=c_{n}$, where $0, c_{2}, \ldots, c_{n}$ are the coordinates of the beginning y_{0} of the corresponding interval. For any point $y \in \delta_{1}^{n}$ we assume $f_{i j}(y)=f_{i j}\left(y_{0}\right)$ where $y_{0} \in \delta_{01}^{n-1}$ is the beginning of the interval where the point y is situated. The vector fields $X_{i}, i=\overline{1, n}$, are defined on δ_{1}^{n} by the formula $X_{i}=\sum_{j=1}^{n} f_{i j}(y) \frac{\partial}{\partial y_{i}}$. It is obvious that the constructed vector fields $X_{i}, \quad i=\overline{1, n}, \quad$ are continuous on $\delta_{0}^{n} \cup \delta_{1}^{n}$ and smooth in any point $x \in \delta_{0}^{n} \cup \delta_{1}^{n}, x \notin \delta_{01}^{n-1}$.

For the process of the extension of a coordinate neighborhood $\left(\mathbf{1}, \mathbf{2}^{\circ}\right)$ we can consider the process of the extension of the vector fields X_{1}, \ldots, X_{n}. If these fields are defined on a polyhedron σ_{k-1} and in order to get a polyhedron σ_{k} we use simplexes $\delta_{0}^{n}, \delta_{1}^{n}$ then we apply the procedure described above to obtain the vector fields on σ_{k}. As a result we obtain correctly defined vector fields X_{1}, \ldots, X_{n} on Int σ_{k} i.e. a cross-section of $L\left(\right.$ Int $\left.\sigma_{k}\right)$.

So, we come to the following
Proposition 4. There exists a continuous cross-section of L(Int $\left.{ }_{k}\right)$: $x \rightarrow\left(X_{1}, \ldots, X_{n}\right)_{x}, x \in$ Int $_{k}$. If a point $x \in$ Int $_{k}$ does not belong to the subsimplexes of the triangulation then the cross-section above is smooth at the point x.

We consider a tensor of type (r, s) on \boldsymbol{R}^{n} :
$K^{0}=\sum k_{\mu_{1 . .} \mu_{s}}^{\lambda_{1} \lambda_{r}}(0) e_{\lambda_{1}} \otimes \ldots \otimes e_{\lambda_{r}} \otimes e^{\mu_{1}} \otimes \ldots \otimes e^{\mu_{s}}$,
where e_{1}, \ldots, e_{n} is the standard basic of \boldsymbol{R}^{n} and e^{1}, \ldots, e^{n} is the dual basis of $\boldsymbol{R}^{n} *$.

A tensor field of type (r, s) is defined on $\operatorname{Int} \sigma_{k}$:
$K^{0}=\sum k_{\mu_{1} \mu_{\mu_{s}}}^{\lambda_{1}, \lambda_{s}}(0) X_{\lambda_{1}} \otimes \ldots \otimes X_{\lambda_{r}} \otimes X^{\mu_{1}} \otimes \ldots \otimes X^{\mu_{s}}$
Since the functions $k_{\mu_{1}, \mu_{s}}^{\lambda_{1} \lambda_{r}}$ are constant on Int σ_{k} we obtain that the tensor field K^{0} is O-deformable on Int $_{k}$ i.e. some G-structure on $\operatorname{Int} \sigma_{k}$ is defined by K^{0} (see [7], [8]). If the cross-section $\left(X_{1}, \ldots, X_{n}\right)_{x}$ is smooth at a point $x \in$ Int $_{k}$ then the tensor field K^{0} is also smooth at the point.
$\mathbf{2}^{\circ}$. We define a geometric black hole as a small closed neighborhood of the black boundary of the canonical polyhedron. Then we consider deformations of tensor fields and operators towards the geometric black hole.

For any point $z \in \partial \sigma_{k}$ we can consider the closed geodesic ball $\bar{B}(z, \varepsilon)$ of a small radius $\varepsilon>0$. Let $T b\left(\partial \sigma_{k}, \varepsilon\right)=\bigcup_{z \in \partial \sigma_{k}} \bar{B}(z, \varepsilon)=G B H(\varepsilon)$.

Definition 2. We call the set $G B H(\varepsilon)$ a geometric black hole of radius $\varepsilon>0$ of the manifold M^{n} if $\sigma_{k} \backslash G B H(\varepsilon)$ is a cell (it is true for some small ε). We paint the points of GBH(ε) black.

Any piecewise smooth broken line γ considered in $\mathbf{1}, \mathbf{4}^{\circ}$ can be represented as $\gamma=\gamma_{0} \cup \gamma_{1}$ where $\gamma_{1}=\gamma \cap G B H(\varepsilon), \gamma_{0}=\gamma \backslash \gamma_{1}$. The points of γ_{0} are painted white and the points of γ_{1} are painted black. Let the segment γ_{0} have a length s_{0} and the segment γ_{1} have a length s_{1} then $\left(s_{0}+s_{1}\right)$ is a length of the broken line γ from c_{0} to $z \in \partial \sigma_{k}$.

Let $K(x), x \in M^{n}$, be a tensor field of type (r, s) and $K^{0}=K\left(c_{0}\right)$ where c_{0} is the center of the initial simplex δ_{0}^{n} of the triangulation of M^{n}. Also, deformations of structures were considered in [9]. So, we construct a deformation $\bar{K}(x)$ of the tensor field $K(x)$ on the manifold M^{n}.

1) If a point $z \in M^{n} \backslash \operatorname{Int}_{k}$ then $\bar{K}(z)=K(z)$.
2) If a point $x \in \sigma_{k} \backslash G B H(\varepsilon)$ then $\bar{K}=K^{0}=K\left(c_{0}\right)$ where K^{0} is defined by the formula (1).
3) We assume that $K(x)=\sum k_{\mu_{1}, \ldots \mu_{s}}^{\lambda_{1} \lambda_{r}}(x) X_{1} \otimes \ldots \otimes X_{\lambda_{r}} \otimes X^{\mu_{1}} \otimes \ldots \otimes X^{\mu_{s}}$, $x \in$ Int $_{k}$, where X_{1}, \ldots, X_{r} are the vector fields from the proposition 4, a point x belongs a broken line γ and $s(x)$ is the distance from x to c_{0} along the broken line γ. For any point $y \in \gamma_{1}$ we define the tensor field

$$
\bar{K}(y)=\sum \bar{k}_{\mu_{1}, \ldots \mu_{s}}^{\lambda_{1}}(y) X_{1} \otimes \ldots \otimes X_{\lambda_{r}} \otimes X^{\mu_{1}} \otimes \ldots \otimes X^{\mu_{s}}
$$

in the following way: $\bar{k}_{\mu_{1}, \mu_{s}}^{\lambda_{1}} \lambda_{r}(y)=k_{\mu_{1}, \mu_{s}}^{\lambda_{1}, \lambda_{s}}(x)$ where $s(x)=\frac{s(y)-s_{0}}{s_{1}}\left(s_{0}+s_{1}\right), s(y)$ is the distance from y to c_{0} along the broken line γ.

It is easy to see that the constructed tensor field \bar{K} is continuous and sectionally smooth, \bar{K} is not smooth on the boundary of $G B H(\varepsilon)$ and in the points of $\operatorname{Int} \sigma_{k}$ where the cross-section $\left(X_{1}, \ldots, X_{n}\right)_{x}$ is not smooth.

Let L be some operator defined on the algebra (or some subalgebra) of all the tensor fields on the manifold M^{n} and $L(K)=K_{1}$ for a tensor field K.

Definition 3. An operator \bar{L} is called a deformation of L towards $G B H(\varepsilon)$ if it is defined by condition $\bar{L}(K)=\bar{K}_{1}$.
$\mathbf{3}^{\circ}$. Some standarts facts about fibre bundles are considered. We follow [10], [11].

A fiber bundle (E, π, M^{n}, F) consists of manifolds (spaces) E, M^{n}, F and a smooth (continuous) mapping $\pi: E \rightarrow M^{n}$, furthemore each $x \in M^{n}$ has an open neighborhood U such that $E_{\mid u} \cong \pi^{-1}(U)$ is diffeomorphic (homeomorphic) to $U \times F$ via a fiber respecting diffeomorphism (homeomorphism):

E is called the total space, M^{n} is called the base space, π is called the projection, F is called standard fiber, (U, ψ) is called a fiber chart.

A collection of fiber charts $\left(U_{\alpha}, \psi_{\alpha}\right)$, such that $\left\{U_{\alpha}\right\}$ is an open cover of M^{n}, is called a fiber bundle atlas. If we fix such an atlas, then $\psi_{\alpha} \circ \psi_{\beta}^{-1}(x, a)=\left(x, \psi_{\alpha \beta}(x, a)\right)$, where $\quad \psi_{\alpha \beta}:\left(U_{\alpha} \times U_{\beta}\right) \times F \rightarrow F$ is smooth (continuous) and $\psi_{\alpha \beta}(x, \ldots)$ is a diffeomorphism (homeomorphism) of F for each $x \in U_{\alpha \beta}:=U_{\alpha} \cap U_{\beta}$. Thus, we may consider the mappings $\psi_{\alpha \beta}: U_{\alpha \beta} \rightarrow G(F)$ with values in the group $G(F), G(F)=\operatorname{Diff}(F)$ is the group of all diffeomorphisms of F or $G(F)=\operatorname{Homeo}(F)$ is the group of all homeomorphisms of F. Mappings $\psi_{\alpha \beta}$ are called the transition functions of the bundle. They satisfy the cocycle conditions: $\psi_{\alpha \beta}(x) \circ \psi_{\beta \gamma}(x)=\psi_{\alpha \gamma}(x)$ for $x \in U_{\alpha \beta \gamma}$ and $\psi_{\alpha \alpha}(x)=I d_{F}$ for $x \in U_{\alpha}$. The collection $\left\{\psi_{\alpha \beta}\right\}$ is called a cocycle of transition functions.

Given an open cover $\left\{U_{\alpha}\right\}$ of manifold M^{n} and cocycle of transition functions we may construct a fiber bundle $\left(E, \pi, M^{n}, F\right)$.

Principal fiber bundles and vector bundles are the most important cases of fibre bundles.
4°. In this section, we consider deformation of fiber bundles towards the geometric black hole.

If $\boldsymbol{\psi}:$ Int $_{0}^{n} \rightarrow$ Int $_{k}, W=\sigma_{k} \backslash G B H(\varepsilon)$ and $W_{0}=\boldsymbol{\psi}^{-1}(W)$ then $W_{0} \subset \operatorname{Int} \delta_{0}^{n}$. We consider any piecewise smooth broken line $\gamma=\gamma_{0} \cup \gamma_{1}$ from $\mathbf{2}^{\circ}$. If $\gamma_{01}=\boldsymbol{\psi}^{-1}\left(\gamma_{0}\right)$ and $\gamma_{02}=\gamma_{0} \backslash \gamma_{01}$ then $\gamma=\gamma_{01} \cup \gamma_{02} \cup \gamma_{1}$. We define a homeomorphism $\overline{\boldsymbol{\psi}}: M^{n} \rightarrow M^{n}$ by the following conditions:
a) $\overline{\boldsymbol{\psi}}_{\mid W_{0}}=\boldsymbol{\psi}_{\mid W_{0}}$ i.e. $\overline{\boldsymbol{\psi}}\left(\gamma_{01}\right)=\gamma_{0}$ and $\overline{\boldsymbol{\psi}}\left(W_{0}\right)=W$;
b) $\overline{\boldsymbol{\psi}}$ maps every segment $\gamma_{02} \cup \gamma_{1}$ on the segment γ_{1} by the length as it was shown above;
c) $\overline{\boldsymbol{\psi}}(z)=z$ for every $z \in M^{n} \backslash$ Int $_{k}$.

It is evident that $\bar{\psi}$ is a sectionally-smooth homeomorphism.
Let (E, π, M^{n}, F) be a smooth fibre bundle with a collection fibre charts $\left(U_{\alpha}, \Psi_{\alpha}\right)$. We can choose such a triangulation, let it be initial one, that $W_{0} \subset U_{0}$. We define $\bar{U}_{\alpha}=\overline{\boldsymbol{\psi}}\left(U_{\alpha}\right)$ and $\overline{\boldsymbol{\psi}}_{\alpha \beta}(x)=\boldsymbol{\psi}_{\alpha \beta}\left(\overline{\boldsymbol{\psi}}^{-1}(x)\right)$.

The open cover $\left\{\bar{U}_{\alpha}\right\}$ of the manifold M^{n} and the cocycle $\left\{\bar{\Psi}_{\alpha \beta}\right\}$ defines a continuons and sectionally-smooth fiber bundle ($\left.\bar{E}, \bar{\pi}, M^{n}, F\right)$.

Since $\bar{U}_{0}=\bar{\psi}\left(U_{0}\right) \supset W$ it follows that the fiber bundle $\left(\bar{E}, \bar{\pi}, M^{n}, F\right)$ is trivial over W i.e.

Difinition 4. The fiber bundle $\left(\bar{E}, \bar{\pi}, M^{n}, F\right)$ is called a deformation of the fibre bundle $\left(E, \pi, M^{n}, F\right)$ towards the $G B H(\varepsilon)$.

Such characteristics of $\left(E, \pi, M^{n}, F\right)$ as connections, curvatures etc play an important role in the gauge theory, [11].

Problem. It seems to be interesting to consider good defined deformations of the characteristics above towards the $G B H(\varepsilon)$ i.e. to obtain some similar characteristics of $\left(\bar{E}, \bar{\pi}, M^{n}, F\right)$.

Remark 3. At the end of all the algorithms considered in this article and in [2] we have got a representation $M^{n}=C^{n} \cup\left\{x_{0}\right\}$ where C^{n} has white painting and x_{0} is a black point i.e. $\operatorname{GBH}(\varepsilon)=\bar{B}\left(x_{0}, \varepsilon\right)$ and the resulting parts of the deformed structures are concentrated into $\bar{B}\left(x_{0}, \varepsilon\right)$. We consider an inversion called Big Bang painting $\operatorname{Int} \bar{B}\left(x_{0}, \varepsilon\right)$ white and begin again the processes of extension of coordinate neighborhood and deformations of structures where the initial simplex δ_{0}^{n} is a subset of $\bar{B}\left(x_{0}, \varepsilon\right)$.

The set $M^{n} \backslash \delta_{0}^{n}$ is painted grey after this inversion.
Thus, Big Bangs have a cyclycal nature.

Conclusion

We consider a crystal sphere as a geometric model of an universe where the world is identified with a fibre bundle of crystal spheres. The following mathematical notions are considered which are close to those studied in physics.

1) Extension of white coordinate neighborhood - extension of the universe.
2) Three paintings - three kinds of matter.
3) The set of piecewise smooth broken lines - strings.
4) A parameter of deformations along a line - a local time along the line.
5) Geometric black hole - black holes (It seems that black holes observed in astronomy are presentations of one big black object).
6) Deformations of tensor fields, operators, fibre bundle towards the geometric black hole - corresponding situations in physics.
7) Geometric Big Bang - Big Bang.

References

[1] M.I. Crowe, "World from antiquity to Copernian revolution", Dover Publication, New York, 2001.
[2] A.A. Ermolitski, "On the generalized Poincare conjecture", 2012, on-line, Intellectual Archive, mathematics (ID - 976).
[3] D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche geometrie im grossen", Springer, Berlin, 1968 (in German).
[4] A.A. Ermolitski, "On a geometric black hole of a compact manifold", 2012, on-line, Intellectual Archive, mathematics (ID - 180).
[5] J.R. Munkres, "Elementary differential topology", Princeton University Press, Princeton, 1966.
[6] A.A. Ermolitski, "Three-dimensional compact manifold and the Poincare conjecture", 2008, arXiv: 0807.0577.
[7] A.A. Ermolitski, "Riemannian manifolds with geometric structures", BSPU, Minsk, 1998 (in Russian), (English version in arXiv: 0805.3497).
[8] S. Kobayashi, "Transformation groups in differential geometry", Springer, Berlin-New York, 1972.
[9] A.A. Ermolitski, "Deformations of structures, embedding of a Riemannian manifold in a Kaehlerian one and geometric antigravitation", Banach Center Publications, Warszawa, Vol. 76, 2007, 505-514.
[10] D. Husemoller, "Fibre bundles", McGraw-Hill Book Company, New York, 1966.
[11] P.W. Michor, "Gauge theory for fiber bundles", Amer Inst of Physics, 1991.

