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0. Introduction 

 

The celestial spheres were the fundamental entities of the cosmological 

models developed by Plato, Eudoxus, Aristotle, Ptolemy and others, [1]. Our 

concept of the world can be considered as a modern interpretation of ideas of 

ancient greeks or, perhaps, of more old sources which we do not know. 

Example. A sphere bundle is a fiber bundle whose fiber is a n–sphere. 

Given a vector bundle E with a metric (such as the tangent bundle to a Riemannian 

manifold) one can construct the associated unit sphere bundle for which the fiber 

over a point x is the set of all unit vectors in Ex. When the vector bundle is the 

tangent bundle T(M), the unit sphere bundle is known as the unit tangent bundle, 

and is denoted UT(M). 

It is well known that a n–sphere is identified by the stereographic projection 

with  n
R  where    is a singular point. 

Definition A n–dimensional, connected, simply connected, compact, closed, 

smooth manifold nM is called a crystal sphere if there exists such a finite smooth 

triangulation on nM  which is coordinated with the smoothness structure of the 

manifold nM  i.e. every simplex (crystal) of the triangulation is an embedded 

smooth submanifold of nM  with a boundary.  
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Theorem [2]. A crystal sphere nM  is homeomorphic to the n–sphere.  

 

Further, we consider only one crystal sphere WM n   with a smooth 

triangulation considered above. We can fix some Riemannian metric g on the 

manifold nM  which defines the length of arc of a piecewise smooth curve and the 

continuous function  yx;  of the distance between two points x, nMy . The 

topology defined by the function of distance (metric)   is the same as the topology 

of the manifold nM , [3]. 

For any n–simpex n  the diameter  nd   is defined by the formula 

   yxmaxd n ; , nyx , . The diameter of the triangulation is called the 

maximal value among the diameters of the n– simplexes. It seems that the diameter 

of the triangulation can be very small (subatomic). 

In section 1, using a smooth triangulation above and the function of distance 

we consider an algorithm of extension of coordinate neighborhood (inner part of 

the canonical polyhedron) constructed in [2], [4]. The beginning of the algorithm 

we call the geometric Big Bang. The inner part of the canonical polyhedron is 

painted white and the boundary of the canonical polyhedron is painted black every 

step, the other part of the manifold which has not been still painted assumes to be 

grey (three kinds of matter from a physical point of view). A small closed  

neighborhood of the boundary of the canonical polyhedron we repaint black and 

call a geometric black hole, [4]. 

In section 2, we consider deformation of tensor fields, fiber bundles and 

operators (physical structures and equations) towards the black hole. These 

deformations are continuous and sectionally smooth and they have a very simple 

constructions on a white neighborhood where a parameter  t  of the deformations 

of structures can be considered as a local time along every piecewise smooth 

broken line  . We have got only one black point nMx 0  at the end of all 

considered algorithms (other part of the manifold is white). Let  0xB  be a small 

black closed ball with the center 0x . All the resulting parts of the deformed 

structures have been concentrated into  0xB . We consider an inversion  

(Big Bang) painting inner part of  0xB  white and other points of nM  grey and 

begin again the process above where the initial simplex is a subset of  0xB . Thus, 

Big Bangs have a cyclical nature. 

We remark that all the algorithms considered in the article are based on the 

mathematical methodology «step by step». From a physical point of view the 

processes must have explosive characters i.e. a big number of the steps of the 

algorithms must be produced almost simultaneously. 
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         1. On algorithm of extension of coordinate neighborhood  

 

1°. In this section, we consider some standart facts on a triangulation of a 

manifold.  

Let nM  be a connected, compact, closed and smooth manifold of dimension 

n and C
n
 be a cell (coordinate neighborhood) on nM . A standard simplex 

n
 of 

dimension n is the set of points x=(x1, x2, ..., xn)
n

R  defined by conditions 

0xi1,  i= n,1 ,  x1+x2+...+xn1. 

 

We consider the interval of a straight line connected the center of some face 

of 
n
 and the vertex which is opposite to this face. It is clear that the center of 

n
 

belongs to the interval. We can decompose 
n
 as a set of intervals which are 

parallel to that mentioned above. If the center of 
n
 is connected by intervals with 

points of some face of 
n
 then a subsimplex of 

n
 is obtained. All the faces of 

n
 

considered, 
n
 is seen as a set of all such subsimplexes. Let U(

n
) be some open 

neighborhood of 
n
 in R

n
. A diffeomorphism φ :  nU М

п   nn   is called 

a singular n–simplex on the manifold M
 n

. Faces, edges, the center, vertexes of the 

simplex n  are defined as the images of those of 
n
 with respect to . 

The manifold M
 n
 is triangulable, [5]. It means that for any nll 0,  such 

a finite set Ф
l
 of diffeomorphisms φ : l

М
п
 is defined that  

a) M
 n
 is a disjunct union of images   ll ФInt  , ; 

b) if lФ  then 1 l
i Ф  for every і where i : 

kk 1
 is the 

linear mapping transferring the vertexes 10 ,..., kvv  of the simplex 
1k
 in 

the vertexes ki vvv ,...€,...,0  of the simplex 
k . 

   We suppose that there exists a smooth finite triangulation on nM  which is 

coordinated with the smoothness structure of nM  and fix the triangulation. Such 

triangulations exist for manifolds of dimension 2 or 3. 

2°. In this section, we consider an algorithm of extension of white coordinate 

neighborhood. It reminds us an extension of the universe from a physical point of 

view. We have got the decomposition described in the Theorem 1 at the end where 

C 
n
 is a white cell.  

Let n
0  be some simplex of the fixed triangulation of the manifold nM . We 

paint the inner part nInt 0  of the simplex n
0   white and the boundary n

0  of 
n
0   

black. There exist coordinates on nInt 0  given by diffeomorphism φ0. A subsimplex 
nn
0

1
01    is defined by a black face nn

0
1

01    and the center с0 of n
0 . We connect 

с0 with the center d0 of the face 1
01
n  and decompose the subsimplex n

01  as a set of 

intervals which are parallel to the interval с0d0. The face 1
01
n  is a face of some 
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simplex n
1  that has not been painted. We draw an interval between d0 and the 

vertex 1v  of the subsimplex n
1  which is opposite to the face 1

01
n  then we 

decompose n
1  as a set of intervals which are parallel to the interval d0 1v . The set 

nn
101   is a union of such broken lines every one from which consists of two 

intervals where the endpoint of the first interval coincides with the beginning of 

the second interval (in the face 1
01
n ) the first interval belongs to n

01  and the 

second interval belongs to n
1 . We construct a homeomorphism (extension) 1

01 : 

 nnn IntInt 10101   . Let us consider a point х nInt 01  and let x belong to a 

broken line consisting of two intervals the first interval is of a length of s1 and the 

second interval is of a length of s2 and let x be at a distance of s from the beginning 

of the first interval. Then we suppose that  x1
01  belongs to the same broken line 

at a distance of s
s

ss




1

21  from the beginning of the first interval. It is clear that 

1
01  is a homeomorphism giving coordinates on  nnInt 101   . We paint points of 

 nnInt 101    white. Assuming the coordinates of points of white initial faces of 

subsimplex n
01  to be fixed we obtain correctly introduced coordinates on 

 nnInt 10   . The set nn
101    is called a canonical polyhedron. We paint 

faces of the boundary 1  black.  

We describe the contents of the successive step of the algorithm of extension 

of coordinate neighborhood. Let us have a canonical polyhedron 1k  with white 

inner points (they have introduced white coordinates) and the black boundary 

1 k . We look for such an n–simplex in 1k , let it be n
0  that has such a black 

face, let it be 1
01
n  that is simultaneously a face of some n–simplex, let it be n

1 , 

inner points of which are not painted. Then we apply the procedure described 

above to the pair n
0 , n

1 . As a result we have a polyhedron k  with one simplex 

more than 1k  has. Points of kInt  are painted white and the boundary k  is 

painted black. The process is finished in the case when all the black faces of the 

last polyhedron border on the set of white points (the cell) from two sides. 

After that all the points of the manifold М
п
 are painted black or white, 

otherwise we would have that М
п
 = nn MM 10   (the points of nM0  would be painted 

and those of nM1  would be not) with nM 0  and nM1  being unconnected, which 

would contradict of connectivity of М
п
.  

Thus, we have proved the following 

Theorem 1. Let nM  be a connected, compact, closed, smooth manifold of 

dimension n. Then nM  =  11, nnnn KCKC  , where С
п
 is an  

п–dimensional cell and K
п–1 

is a union of some finite number of (п–1)–simplexes of 

the triangulation. 
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3°. The main results of this section are based on the representation of C 
n
 as 

a set of piecewise smooth broken lines connecting the initial point с0 with all black 

points of the complex K
п–1 

. It reminds us the theory of strings in physics. 

We consider the initial simplex n
0  of the triangulation and its center с0. 

Drawing intervals between the point с0 and points of all the faces of n
0  we obtain 

a decomposition of n
0  as a set of the intervals. In 2° the homeomorphism  

Ψ : nInt 0 С 
п
 was constructed and Ψ  evidently maps every interval above on a 

piecewise smooth broken line   in С
п
. We denote nM

~
=М

п
 \{c0}. nM

~
 is a 

connected and simply connected manifold if М 
п
 is that. Let І = [0;1], we define a 

homotopy F: nM
~

×І nM
~

: (х; t)  у=F(x;t) in the following way 

a) F(z; t)=z for every point zK
n-1

; 

b) if a point x belongs to the broken line   in С
п
 and the distance between x 

and its limit point zK
n-1

 is s(x) then у=F(x; t) is on the same broken line   at a 

distance of (1–t)s(x) from the point z. 

It is clear that F(x;0)=х, F(x;1)=z and we have obtained the following 

Theorem 2. The spaces nM
~

 and К
п–1 

are homotopy–equivalent, in 

particular, the groups of singular homologies Hk  nM
~

 and Hk  1nK  are 

isomorphic for every k.  

Corollary 2.1. The space K
п–1 

is connected and if М
п
 is simply connected 

then К
п–1

 is simply connected too. 

Remark 1. The white coordinates are extended from the simplex n
0  in the 

simplex n
1  through the face 1

01
n  hence 1

01
nInt  has also the white coordinates. On 

the other hand there exist two linear structures (intervals, the center etc) on n
01  

induced from n
0  and n

1  respectively. Further, we set that the linear structure of 
1

01
n  is the structure induced from n

0 . 

Remark 2. In the process of getting of C
n
 in 2° we can construct a maximal 

tree L connecting by intervals all the centers of the n–simplexes of the 

triangulation via the centers of some white faces. 

Conversely, if we have such a maximal tree L connecting by intervals all the 

centers of the n–simplexes of the triangulation via the centers of some faces 

(any from two possible centers of a face can be choosed) then we can extend white 

coordinates from any simplex n
0  on the maximal cell C

n 
as it was shown in 2°. 

Thus, the maximal tree L defines the maximal cell C
3
 and white faces. 

4°. We can retract the complex 1nK  to a unique black point x0. The set of 

piecewise smooth broken lines transforms in that every step of algorithms 

considered in [2]. 
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Definition 1. a) A simplex  1,11   nkK nk  is called free if it has at 

least one free face 1k  i.e. such a face that it is not a face of any other  

k–simplex from 1nK . 

b) An edge 10
1 xx  is called semi–isolated if it is not an edge of any 

simplex from 1nK . A semi-isolated edge 1  is called isolated if it is free. 

Let us have a free simplex 1 nk K  with some free face 1k . We consider 

such a polyhedron  that   is the set of all n–simplexes having common point with 
1k . 

Theorem 3. We can redistribute coordinates of white points of the 

polyhedron   (retract the free simplex k ) i.e. construct the corresponding 

mapping   in such a way that the following conditions are fulfilled: 

a) all the points of Int  are painted white i.e. have new white coordinates, 

b) white coordinates of points of boundary faces of the polyhedron   are 

not changed. 

c)  maps broken lines having boundary black points on  
k
 onto broken 

lines having boundary black points on the boundary of the polyhedron . 

Proof of a) and b) can be found in [2] (Proposition 3). 

Proof of c) follows from n–dimensional version of proposition 3 

considered in [6]. 

Let k be a canonical polyhedron at any step of the algorithm above. Points 

of kInt  are painted white and the boundary  k is painted black, the other part of 

the manifold which has not been still painted assumes to be grey. In 2° the 

homeomorphism Ψ : k
n IntInt 0  was constructed and Ψ  evidently maps every 

interval from nInt 0  on a piecewise smooth broken line in kInt . It is easy to see 

that any procedure considered in [2] brings to a transformation such a broken line 

into another broken line connecting the center c0 of n
0  with some black point of the 

 k (by a analogy with c) of the theorem 3). At the end of all the algorithms 

considered in [2] we obtain a representation  0xCM nn   where C 
n
 has white 

painting and x0 is an unique black point in nM  i.e. we have a set piecewise smooth 

broken lines connecting c0 and x0. 

 

2. Deformation of a tensor field and a fibre bundle towards a geometric 

black hole 
 

1°. In this section, we consider the process of extension vector fields 

corresponding that of extension of the white coordinate neighborhood. 

Let k be a canonical polyhedron at any step of the algorithm from 1 and 

 nML ,  kIntL   be the principal fibre bundles of linear frames of the manifolds 
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nM  and kInt . The diffeomorphism 0  (where  nn  00  ) defines the 

coordinates (x1, ..., xn) in some neighborhood of the simplex n
0  and the 

corresponding vector fields 
nxx 






,...,

1

 on this neighborhood (a local cross–section 

of  nML ). Similarly, the diffeomorphism 1  (where  nn  11  ) defines the 

coordinates (y1, ..., yn) in some neighborhood of the simplex n
1  and the vector 

fields 
nyy 






,...,

1

 on this neighborhood. We have assumed that the white face 1
01
n  

has the equation: y1=0 (it can always be obtained by corresponding linear change 

of variables in R
n n ). The vector fields ,,1,,, nji

yx
X

ji

i 







  are defined on 

the face 1
01
n  therefore for any point 1

01
 nx   we have  

i

n

j
iji

y
xfX



 

1

 where the 

functions  xfij  are smooth. We decompose n
1  as a union of the intervals having 

the following equations: y1=t, y2=c2, y3=c3,…, yn=cn, where 0, c2,…, cn are the 

coordinates of the beginning y0 of the corresponding interval. For any point ny 1  

we assume    0yfyf ijij   where 1
010
 ny   is the beginning of the interval where 

the point y is situated. The vector fields ,,1, niX i   are defined on n
1  by the 

formula  
i

n

j
iji

y
yfX



 

1

. It is obvious that the constructed vector fields 

,,1, niX i   are continuous on nn
10    and smooth in any point 

1
0110 ,  nnn xx  . 

For the process of the extension of a coordinate neighborhood (1, 2°) we can 

consider the process of the extension of the vector fields X1,…, Xn. If these fields 

are defined on a polyhedron 1k  and in order to get a polyhedron k  we use 

simplexes nn
10 ,   then we apply the procedure described above to obtain the vector 

fields on k . As a result we obtain correctly defined vector fields X1,…, Xn on 

kInt  i.e. a cross–section of L( kInt ). 

So, we come to the following 

Proposition 4. There exists a continuous cross–section of L( kInt ):  

x (X1,…, Xn)x, kIntx  . If a point kIntx   does not belong to the 

subsimplexes of the triangulation then the cross–section above is smooth at the 

point x. 

We consider a tensor of type (r, s) on R
n
: 

  ,......0 1

1

...1

...1

0 s

r

r

s
eeeekK




   

where e1,…,en is the standard basic of R
n 
and

 
e

1
,…,e

n
 is the dual basis of R

n
*. 
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A tensor field of type (r, s) is defined on kInt :
 

  s

r

r

s
XXXXkK





  ......0 1

1

...1

...1

0                   (1) 

Since the functions r

s
k




. . .1

...1
 are constant on kInt  we obtain that the tensor field K

0
 

is O–deformable on kInt i.e. some G–structure on kInt  is defined by K
0
  

(see [7], [8]). If the cross–section (X1,…, Xn)x is smooth at a point x kInt then the 

tensor field K
0
 is also smooth at the point. 

2°. We define a geometric black hole as a small closed neighborhood of the 

black boundary of the canonical polyhedron. Then we consider deformations of 

tensor fields and operators towards the geometric black hole. 

 For any point z k  we can consider the closed geodesic ball  ,zB  of a 

small radius   0. Let Tb( k , ) )(),( 


GBHzB

kz

 . 

Definition 2. We call the set GBH() a geometric black hole of radius 0 of 

the manifold M
n
 if k \ GBH() is a cell (it is true for some small ). We paint the 

points of GBH() black. 

Any piecewise smooth broken line  considered in 1, 4° can be represented 

as = 10    where   GBH1 , 10 \   . The points of 0 are painted white 

and the points of 1  are painted black. Let the segment 0 have a length s0 and the 

segment 1  have a length s1 then (s0+s1) is a length of the broken line  from c0 to 

z k . 

Let K(x), x M 
n
, be a tensor field of type (r, s) and K

0
=K(c0) where c0 is the 

center of the initial simplex n
0  of the triangulation of M

n
. Also, deformations of 

structures were considered in [9]. So, we construct a deformation )(xK  of the 

tensor field )(xK on the manifold M 
n
. 

1) If a point z M 
n
 \ kInt  then )(zK = )(zK . 

2) If a point x k \ GBH() then )( 0
0 cKKK   where K

0
 is defined by 

the formula (1). 

3) We assume that   ,......)( 1...1

...1 1
s

r

r

s
XXXXxkxK





   

kIntx  , where X1,…, Xr are the vector fields from the proposition 4, a point x 

belongs a broken line  and s(x) is the distance from x to c0 along the broken line . 
For any point 1y  we define the tensor field 

  s

r

r

s
XXXXykyK





  ......)( 1...1

...1 1  

in the following way:    xkyk r

s

r

s







...1

...1

...1

...1
  where  10

1

0)(
)( ss

s

sys
xs 


 , s(y) is 

the distance from y to c0 along the broken line . 
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It is easy to see that the constructed tensor field K  is continuous and 

sectionally smooth, K  is not smooth on the boundary of GBH() and in the points 

of kInt  where the cross–section (X1,…, Xn)x is not smooth. 

Let L be some operator defined on the algebra (or some subalgebra) of all 

the tensor fields on the manifold M
n
 and L(K)=K1 for a tensor field K. 

Definition 3. An operator L  is called a deformation of L towards GBH() if 
it is defined by condition  L (K)= K 1. 

3°. Some standarts facts about fibre bundles are considered. We follow [10], 

[11]. 
A fiber bundle (E, π, M

n
, F) consists of manifolds (spaces) E, M

n
, F and a 

smooth (continuous) mapping nME : , furthemore each nMx  has an open 

neighborhood U such that E |u )(1 U  is diffeomorphic (homeomorphic) to 

FU   via a fiber respecting diffeomorphism (homeomorphism): 

 

 

 

 
               

E |u      FU   

                                                   

    π    pr1 

 

 

      U        U 

 

E is called the total space, M
n
 is called the base space, π is called  the 

projection, F is called standard fiber,  ,U  is called a fiber chart. 

A collection of fiber charts   ,U , such that  U  is an open cover of 

M
n
, is called a fiber bundle atlas. If we fix such an atlas, then 

    axxax ,,,1
   , where :   FFUU   is smooth 

(continuous) and  ,...x is a diffeomorphism (homeomorphism) of F for each 

 UUUx  : . Thus, we may consider the mappings  FGU  :  

with values in the group G(F), G(F)=Diff(F) is the group of all diffeomorphisms of 

F or G(F)=Homeo(F) is the group of all homeomorphisms of F. Mappings   

are called the transition functions of the bundle. They satisfy the cocycle 

conditions:      xxx     for Ux and   FIdx   for Ux . 

The collection }{  is called a cocycle of transition functions. 

Given an open cover  U  of manifold M
n
 and cocycle of transition 

functions we may construct a fiber bundle (E, π, M
n
, F). 

Principal fiber bundles and vector bundles are the most important cases of 

fibre bundles. 
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4°. In this section, we consider deformation of fiber bundles towards the 

geometric black hole.  

If   GBHWIntInt kk
n \,0:Ψ  and  WW 1

0
Ψ  then nIntW 00  . 

We consider any piecewise smooth broken line 10    from 2°. If 

 0
1

01  Ψ  and 01002 \   then 10201   . We define a 

homeomorphism nn MM :Ψ  by the following conditions: 

a) 
00 || WW ΨΨ   i.e.   001  Ψ  and   WW 0Ψ ; 

b) Ψ  maps every segment 102    on the segment 1  by the length as it was 

shown above; 

c) Ψ (z)= z  for every k
n IntMz  \ . 

It is evident that Ψ  is a sectionally–smooth homeomorphism. 

Let (E, π, M 
n
, F) be a smooth fibre bundle with a collection fibre charts 

  Ψ,U . We can choose such a triangulation, let it be initial one, that 00 UW  . 

We define   UU Ψ  and     xx 1
  ΨΨΨ . 

The open cover }{ U of the manifold M 
n
 and the cocycle }{ Ψ  defines a 

continuons and sectionally–smooth fiber bundle  FME n ,,, . 

Since   WUU  00 Ψ  it follows that the fiber bundle  FME n ,,,  is 

trivial over W i.e. 

Difinition 4. The fiber bundle  FME n ,,,  is called a deformation of the 

fibre bundle (E, π, M
n
, F) towards the  GBH . 

Such characteristics of (E, π, M 
n
, F) as connections, curvatures etc play an 

important role in the gauge theory, [11]. 

Problem. It seems to be interesting to consider good defined deformations 

of the characteristics above towards the  GBH i.e. to obtain some similar 

characteristics of  FME n ,,, . 

Remark 3. At the end of all the algorithms  considered in this article and in 

[2] we have got a representation M 
n
 =  0xCn    where nC  has white painting 

and x0 is a black point i.e.     ,0xBGBH  and the resulting parts of the 

deformed structures are concentrated into  ,0xB . We consider an inversion 

called Big Bang painting  ,0xBInt  white and begin again the processes of 

extension of coordinate neighborhood and deformations of structures where the 

initial simplex n
0  is a subset of  ,0xB . 

The set nnM 0\   is painted grey after this inversion. 

Thus, Big Bangs have a cyclycal nature. 
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                                      Conclusion 

 

We consider a crystal sphere as a geometric model of an universe where the 

world is identified with a fibre bundle of crystal spheres. The following 

mathematical notions are considered which are close to those studied in physics. 

1) Extension of white coordinate neighborhood – extension of the universe. 

2) Three paintings – three kinds of matter. 

3) The set of piecewise smooth broken lines – strings. 

4) A parameter of deformations along a line – a local time along the line. 

5) Geometric black hole – black holes (It seems that black holes observed in 

astronomy are presentations of one big black object). 

6) Deformations of tensor fields, operators, fibre bundle towards the geometric 

black hole – corresponding situations in physics. 

7) Geometric Big Bang – Big Bang. 
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