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Abstract
A recent thermal ghost imaging experiment implemented in the Wu’s group [Chin. Phys. Lett. 279, 074216 (2012)] showed

that both positive and negative images can be constructed by applying a novel algorithm. This algorithm allows to form the
images with use of partial measurements from the reference arm, even which never passes through the object, conditioned
on the object arm. In this paper, we present a simple theory which explains the experimental observation, and provides an
in-depth understanding of conventional ghost imaging. In particular, we theoretically show that the visibility of formed images
through such an algorithm is not bounded by the standard value 1

3
. In fact, it can ideally grow up to unity (with reduced

imaging quality). Thus, the algorithm described here not only offers an alternative way to decode spatial correlation of thermal
light, but also mimics a “bandpass filter” to remove the constant background such that the visibility or imaging contrast is
improved. We further show that conditioned on one still object present in the test arm, it is possible to construct its image by
sampling the available reference data.
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I. INTRODUCTION

In classical optics, the spatial distribution of a physical object is estimated through the imaging process by measuring
the emitted optical radiation, or by making use of an optical wave that interacts with the object, via transmission
or reflection. An extended detector such as a CCD camera or an array detector is usually applied to measure the
spatial distribution of the optical intensity. In an interferometric system, the spatial distribution of the optical field
is inferred from measurements of the light intensity [1]. The emergence of coherence theory [2, 3] in 1960s spurred
the development of new type of imaging systems based on measurements of the second-order correlation function
(i.e., measuring intensity correlation or the photon coincidence counts) at pairs of points in the detection plane. A
well-known example of imaging an object emitting thermal light is stellar imaging using a Hanbury-Brown-Twiss
(HBT) intensity-correlation interferometer [4], where the maximum visibility achievable is limited by 1

3 .
The development of ghost imaging (GI) offers an intriguing optical technique to acquire the object’s transverse

transmittance pattern by means of photocurrent correlation measurements. The unique features of GI are that
an image of the object is reconstructed by correlating the intensities of two spatially correlated beams. One of
the beam illuminates the object and is detected by a bucket detector which has no spatial resolution. The other
reference beam undergoes only free-space diffraction before impinging on a scanning pinhole detector or a CCD
camera with high spatial resolution. The first GI demonstration [5] explored entangled paired photons generated from
spontaneous parametric down conversion together with photon-counting bucket and pinhole detectors more than
a decade ago. Subsequent realizations with classical and especially (pseudo-)thermal light sources [6–15] triggered
ongoing effort on applying GI to remote sensing applications [16]. Unquestionably, the visibility of thermal-light GI
in those experiments can never bypass the standard limit 1

3 . However, whether the nature of pseudothermal GI can
be interpreted as classical intensity correlations [17–19] or is fundamentally a two-photon interference effect [11, 20]
is still under debate. Nonetheless, using GI for practical applications has attracted considerable attention in the
community.

Recently, Shapiro proposed a modified version of thermal GI, called computational GI (CGI), in which the spatial
intensity distribution measured in the reference beam is computed offline instead [21]. CGI differs from previous
thermal GI by replacing the rotating ground glass (RGG) with a spatial light modulator. The image is obtained by
correlating the calculated field patterns with the measured intensities at the object arm. This CGI technique has
been confirmed by two recent experiments [22, 23]. To reduce the burden of the computation in the virtual reference
arm, the demonstrations of compressive GI [23, 24] provide a way by utilizing prior knowledge on the object for
reducing the number of acquired measurements, without (significantly) sacrificing the image quality. Although these
achievements are impressive, the image formation still fully relies on the precise measurements from both sides, the
test arm and the reference arm, no more beyond the frame of previous thermal GI [6–15].

Very recently, a different but interesting observation on thermal GI was made by Luo in Wu’s group [25]. Their
experimental setup [see Fig. 1(b)] was similar as others [9–12, 15] and the data collections as well, except for processing
the data to form the image. She found that the reconstruction of the image can be conditionally obtained through
partial measurements from the reference arm (even it never traverses the object) by introducing a novel algorithm.
This finding is significant and differs from the image formation in conventional GI in the sense that through the
algorithm, the images of the object can be compute from the reference arm. She also found that the constructed
images can be either positive or negative. We notice that a negative image was constructed in a lately reported
experiment [26]. However, the physics of forming such a negative image is fundamentally different from the one
observed in Wu’s experiment. Consistent with previous results in the literature, no image is observable by using all
the measurements in the reference arm.

Inspired by Luo’s observation, here we wish to provide a theoretical description on the experiment. Our theory
not only offers a physical explanation on their findings, but also allows an in-depth understanding of thermal GI. In
particular, we theoretically find that the method (or algorithm) discovered by Luo would allow to construct images
with the visibility arbitrarily close to unity, well beyond 1

3 , but with the sacrifice of the image quality. This leads
us to give an interesting interpretation on the algorithm. That is, it may act as a “bandpass filter” to subtract the
DC background in thermal GI and thus enhances the image contrast. Besides, we further argue that, as an inverse
problem, it would be possible to retrieve “partial” image of the object only using the measurements from the reference
arm conditioned on the number of objects present in the test arm, from the statistical viewpoint. Here “partial” means
that one can never precisely (or with 100% confidence) predict what the object is. Since the image formation only uses
a bit information (akin to Yes or No) from the test arm, at first view, one might mistakenly draw a conclusion that
the test (i.e. object) arm could be fully removed from the setup and the image was still achievable. In Sec. II, we will
resolve this puzzle by emphasizing that, to form the real image of the object with 100% confidence, spatial correlation
of thermal light is indispensable, as required in all thermal GIs. Last, we emphasize that albeit the images are formed
by mainly using the data from the reference arm, the process belongs to the second-order correlation measurement. In
this paper, we take the thermal GI as an example, but the algorithm ascribed here can be extended to thermal ghost
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interference [27, 28] as well as GI and ghost interference with nonclassical light [29, 30] in the high-gain case. The
binary operation for decoding the spatial correlation introduced here provides an alternative way for image formation.
Based upon these findings ascribed above, we anticipate that our work will be useful for practical applications of GI
and ghost interference.

II. A NOVEL ALGORITHM FOR GHOST IMAGING

For completeness, we will first give a brief review on conventional thermal-light GI, then move onto the new
observation on the image construction by using a portion of samplings from the reference arm conditioned on the
object side. The goal of this paper is to find the physics behind Wu’s experiment and provide a reasonable and
consistent picture. The examination of the visibility or image contrast also allows us theoretically to predict that the
image processing discussed here outperforms the conventional one.

A. Brief Review of Thermal Ghost Imaging

To give an interpretation on the experiment done by Luo et al [25], we take the thermal lensless GI as an example to
develop our theory. To ease the discussion, we begin with a brief review on the pseudothermal-light GI as schematically
shown in Fig. 1(a), using semiclassical photodetection theory. In the conventional pseudothermal GI, the test field
Eb generated by passing a cw laser through a slowly RGG and a 50-50 beam splitter illuminates an object and is
detected by a bucket detector Db. The reference field Er propagates freely towards to a CCD camera Dr. The
product of the photocurrents from Db and Dr, which is proportional to the second-order correlation function G(2), is
time averaged to produce the ghost image of the object. It is convenient to write the positive-frequency part of the
electromagnetic field Ej(~rj , tj) (j = b, r) as a superposition of its longitudinal and transverse modes under the Fresnel
paraxial approximation,

Ej(~ρj , zj , tj) =

∫
d~κdωẼj(~κ, ω)gj(~κ, ω; ~ρj , zj)e

−iωtj , (1)

where Ẽj(~κ, ω) is the complex amplitude for the mode of angular frequency ω and transverse wavevector ~κ. The
Green’s function, gj(~κ, ω; ~ρj , zj), which ascribes the propagation of each mode in space, can be evaluated as [31, 32],

gb(~κ, ω; ~ρb, zb) = ei
ωzb
c

∫
d~ρoA(~ρo)e

−i czb|~κ|
2

2ω ei~ρo·~κ, (2)

gr(~κ, ω; ~ρr, zr) = ei
ωzr
c e−i

czr|~κ|2
2ω ei~ρr·~κ. (3)

Here A(~ρo) is the aperture function of the object and ~ρo (~ρr) is the transverse coordinate in the object (CCD camera)
plane. zb is the distance from the output surface of the RGG to the object plane and zr is the length between the
light source and Dr. The second-order correlation function G(2) is defined as [2, 3]

G(2)(~ρr) = 〈E∗rErE∗bEb〉, (4)

where 〈·〉 denotes the ensemble average. With use of Eqs. (1)-(3), after some algebra, Eq. (4) becomes [8–14]

G(2)(~ρr) = G0 +G0

∣∣∣∣∫ d~ρoA(~ρo)δ(~ρo − ~ρr)
∣∣∣∣2 , (5)

or in terms of the normalized second-order correlation function g(2),

g(2)(~ρr) = 1 +

∣∣∣∣∫ d~ρoA(~ρo)δ(~ρo − ~ρr)
∣∣∣∣2 , (6)

where G0 is a constant. In the derivation of Eq. (5), we have applied the lensless imaging condition zb = zr. In
the literature, Eq. (5) [as well as Eq. (6)] summarizes most of important properties of thermal GI. For example, the
lensless ghost image is established through the intensity correlation measurement of the two beams, as confirmed from
the second term on the right hand side of Eq. (5), while the first term only contributes to a featureless background.
The maximum visibility cannot pass the limit 1

3 , due to this background. Moreover, the point-to-point mapping
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FIG. 1: (Color online) Conventional pseudothermal ghost imaging setup (a) and the experimental setup used in [25] (b). RGG
represents the rotating ground glass.

relationship between the object plane and the imaging plane is evidenced by the Dirac δ-function. Furthermore, no
image is available if only looking at one arm.

B. Conditioned Image Formation from the Reference Arm

We turn our attention now to the experimental setup employed in Ref. [25], see Fig. 1(b). In their experiment,
they recorded the data in both paths same as the conventional thermal GI experiments, see Refs. [12, 15]. The major
difference arises from the data processing to obtain the image. In Luo’s experiment, she introduced a novel algorithm
(which will be discussed shortly) to conditionally produce the image from the reference arm instead of the traditional
way by simply correlating two photocurrents through the correlator. Their experimental demonstration indicated that
images can be constructed with partial reference films by conditioning on a bit information from the object arm. The
conditional image formation from the reference arm led us to rethink the imaging process of thermal or chaotic GI. We
are interested in understanding the physics behind, in particular, the mechanism that allows to conditionally retrieve
the object’s information using the films recorded by the reference CCD camera. Before proceeding the discussion, we
emphasize that the experiment is still a two-arm experiment. Although the images are mainly formed with use of the
reference measurements, the bit information from the object arm is necessary and indispensable.

To attain definite answers to those questions, let us consider the following experiment [see Fig. 1(b)] with total N
realizations done in both bucket and reference detectors. Conventional GI and CGI use precise correlation between
the two arms. In the experiment done by Luo and her coworkers [25], however, they showed that the image can be
conditionally formed with a portion of reference samplings by applying a novel algorithm (explained below). Such an
interesting observation introduces a new way of detecting the correlation between two sides. To show quantitatively
whether it is possible to conditionally form the image of the object utilizing the data recorded in the reference arm,
we begin with discretizing the second-order correlation function (6) in terms of these N samplings. The spatial
distribution of the object A(~ρo) appearing in Eq. (6) can be recovered through the following linear operation:

1 + |A(~ρo)|2 =
1

N

N∑
j=1

Bj
〈B〉

Ij(~ρr)

〈I(~ρr)〉
, (7)

where 〈B〉 ≡ 1
N

∑N
j=1Bj represents the average value of the measured intensities {Bj} over total N realizations

in the object arm, 〈I(~ρr)〉 ≡ 1
N

∑N
j=1 Ij(~ρr) stands for the average intensity distribution over N realizations in

the reference arm, and Ij(~ρr) denotes the intensity distribution recorded at spatial point Dr of the CCD camera
plane while its twin party Bj at the bucket detector Db. Equation (7) clearly implies that in conventional thermal
GI, the image is constructed experimentally by a linear superposition of the intensities Ij(~ρ) with the weights Bj
[6, 7, 9–12, 14, 15, 22, 23]. One should also note that in Eq. (7) the intensity distribution Ij(~ρr) be interpreted as
(1/2)[Ij(~ρr) + Ij(~ρr)|A(~ρo)|2δ~ρo~ρr ]. The physics for Ij(~ρr) is now clear: the first term gives the background because of
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the lack of spatial correlation, while the second with correlation forms the image. It is easy to find that utilizing all
measurements as in conventional GI, it is difficult to obtain a negative image from Eq. (7). However, Eq. (7) already
implies that the spatial distribution of the object, |A(~ρo)|, can be, in fact, conditionally retrieved from the reference
arm by introducing the following algorithm

{ +1, if Bj − 〈B〉 > 0;
−1, if Bj − 〈B〉 < 0.

(8)

To see how this works, we rewrite Eq. (7) as

|A(~ρo)|2 =
1

N

N∑
j=1

(
Bj
〈B〉
− 1

)
Ij(~ρr)

〈I(~ρr)
, (9)

by using the identity 1 = 1
N

∑N
j=1[Ij(~ρr)/〈I(~ρr)〉]. It is interesting to note that the rule (8) introduces a binary

operation for data processing. Moreover, it would allow one to obtain either a positive or negative image of the object
with partial measurements from the reference arm, conditioned on the bucket side. To verify this, it is a simple matter
of fact by substituting (8) into Eq. (9), which yields

±|A(~ρo)|2 ∼=
1

M

M<N∑
j=1

sgn

(
Bj
〈B〉
− 1

)
Ij(~ρr)

〈I(~ρr)〉
, (10)

with

sgn(x) = {
1, if x > 0;
0, if x = 0;
−1, if x < 0.

Before proceeding the discussions, few remarks on Eqs. (8) and (10) are in order: (a) Whether the constructed

image is positive or negative is fully determined by the sign of 1
M

∑M<N
j=1 sgn(Bj − 〈B〉) with M realizations. (b) By

summing all measurements in the reference arm, Eq. (10) statistically reduces to a featureless intensity distribution,
which coincides with previous conclusions. (c) The average intensity value 〈B〉 in the test arm plays the role of being
a reference number or a pointer to evaluate the correlation. It roughly divides the data into three blocks: one block
fluctuates above 〈B〉; the second below 〈B〉; and the third around 〈B〉. In the experiment, in fact, this value can be
chosen from one of the middle values in the third block from the bucket detector. This is exactly implemented by
Luo and her coworkers [25] in their experiment. That is, instead of really calculating the average intensity 〈B〉, one
first needs to reorder the intensities recorded by Db, say, from the largest to the smallest; and the partner intensity
patterns recorded by Dr are then accordingly re-sorted. Whether the formed image is positive or negative is simply
dependent on Ij , whose partners Bj are above or below the middle Bmid. In Fig. 2, we used a flow chart to illustrate
the method. Suppose in an experiment, 7 measurements were performed in each arm. By reordering Bj and setting
I5 as the reference intensity 〈B, the positive images can be constructed by summing I1, I3, and I7; while the negative
ones can be formed by adding I2, I4, and I6. (d) The algorithm described here may be useful for the compressive GI
[22, 23]. Since above or below 〈B〉 the formed images have a relative high visibility (explained below), these samplings
are more helpful for image constructions than those around 〈B〉. Thus, compressive measurements are allowable. (e)
The resolution of the image may be affected by the introduced algorithm (8). A concrete discussion on this issue is
beyond the scope of the current paper, and will be addressed somewhere else.

Finally, let us look at the issue of the visibility (or image contrast). Interestingly, the algorithm introduced in Eq.
(8) could allow to construct images with visibility well beyond 1

3 . This conclusion seems apparently contradict with
our common knowledge learnt from the HBT experiment [4]. How could this be true? To resolve the contradiction,
we rewrite Eq. (7) as

|A(~ρo)|2 =
1

N

N∑
j=1

(
Bj
〈B〉
− 1

)[
Ij(~ρo)

〈I(~ρo)〉
− 1

]
. (11)

Again, we have applied the identities 1 = 1
N

∑N
j=1[Ij(~ρr)/〈I(~ρr)〉] and 1 = 1

N

∑N
j=1(Bj/〈B〉). Note that Eq. (11) is

a reformulation of the intensity correlation fluctuation in the HBT measurements. Moreover, Eq. (11) states that if
the runs Bj are greater (or lower) than 〈B〉, their twin parties Ij(~ρo) are also bigger (or lower) than 〈I(~ρo)〉. In light
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FIG. 2: (Color online) Illustration of the algorithm described in the context. By reordering the data, positive (or negative)
images can be formed, for example, by summing some of I1, I3, and I7 (or I2, I4, and I6).

of college optics, we know that the visibility of the image is defined as

V = ±Imax − Imin

Imax + Imin
, (12)

where Imax and Imin are the maximum and minimum intensities, respectively, and ± are for positive and negative
images. It is known that the fluctuation of thermal light with average intensity Ī is equal to Ī [3]. Alternatively,
the instantaneous intensities far away from Ī have much larger fluctuations than Ī but with smaller probability of
production. If we now choose M measurements Ij(~ρo), whose correlated parties Bj are far above or below 〈B〉 in the
first or second block mentioned above by satisfying M � N , it is not difficult to verify that the visibility (12) of the
formed image from the reference arm can be made arbitrarily close to ±1. For the positive image, we have

V =

∑M
j=1

Ij(~ρo)
〈I(~ρo)〉

∣∣∣
max
−M∑M

j=1
Ij(~ρo)
〈I(~ρo)〉

∣∣∣
max

+M
< 1, (13)

by noticing the fact Ij(~ρo)/〈I(~ρo)〉 � 1. However, for the negative image we have

−V =
M −

∑M
j=1

Ij(~ρo)
〈I(~ρo)〉

∣∣∣
min

M +
∑M
j=1

Ij(~ρo)
〈I(~ρo)〉

∣∣∣
min

< 1, (14)

with Ij(~ρo)/〈I(~ρo)〉 � 1. Such a high visibility is comparable with that obtained with entangled photon pairs [5],
where the visibility of almost 100% is usually considered as a signature of using biphotons without background
subtraction. The price of achieving a high visibility shown in Eqs. (13) and (14) is paid by using only a small portion
of samplings but discarding the majority. Consequently, this may result in the deduction of the image quality, e.g., the
spatial resolution. So, a better quality would compromise with a reduced visibility. With use of more reference data,
the contrast of precise image of the object will eventually drop to the ideal limit 1/3, in agreement with textbook
knowledge. From Eqs. (13) and (14), the ascribed method shows a way to eliminate the constant background from
the G(2) or g(2) measurement [reference to Eq. (5) or Eq. (6)]. That is, the intensities that well distribute around
the average value more contribute to the background and hence result in a lower visibility. From this point of view,
the algorithm discussed in this paper behaves as an imaginary DC blocker, even which was not really present in the
detection system. It is also obvious that mixing measurements above and below the (average) reference pointer will
decrease the visibility substantially. Last, the discussion presented here reveals the nature of thermal GI and shines
a new light for understanding the amplitude fluctuation of stochastic process, especially, thermal light.

C. Further Discussions

Before ending the discussions, we wish to add further few remarks. First of all, the algorithm presented here is also
applicable to thermal ghost interference [27, 28] as well as ghost imaging and ghost interference with optical parametric
amplifier [29] or four-wave mixing [30], because of their comparability with thermal light. In comparison with thermal
light, for nonclassical light the Gaussian thin lens equation is required to realize the point-to-point mapping between
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the object plane and the imaging plane. Secondly, the topic ascribed here may be useful for analyzing some features
in optical encryption [23], such as key compressibility and vulnerability to eavesdropping. Thirdly, as an inverse
problem, one might speculate that with the help of a super-fast computer, the image of the object could be ultimately
identified from the reference arm simply through evaluating all kinds of permutations and combinations. In other
words, one would expect to recover the spatial correlation through this numerical random-data processing. However,
one problem arises against such an apparent paradox. That is, one at least needs to know the number of objects
placed in the test arm. If only one object is present, it may be possible to deduce its spatial distribution only with the
measurements from the reference arm, but with less than 100% confidence. That means partial but not full knowledge
about the object’s profile could be read out in the case. The reduced confidence stems from the lack of knowledge
from the object side, i.e., the lack of the precise spatial correlation of thermal light.

To make the point clear, let us imagine that in a thermal GI experiment with total P measurements, due to some
unknown reasons one completely loses the data from the bucket detector. The only information which we have in
mind is that only one still object is present in the object arm. The question now is: Could we still use the films
recorded in the reference CCD to form the image? The answer to this question is Yes. Recall Eq. (10) which tells
that if a conditionally formed image with partial Q reference measurements is positive, the image with rest P − Q
measurements would be negative. Here Q is chosen to be either greater or lower than P

2 . The shapes of two images
look the same (similar as the complementarity principle in college optics books). Due to lack the data from the object
side the formed images may have poor visibility in most time. If the visibility is too poor to recognize what the
image looks like, one then exchanges, say, T measurements from previous Q and P −Q measurements and repeats the
procedure stated above, untill one can describe what the object is from the images with acceptable visibility. Here T
should be bigger than 1 but less than minimum(Q, P2 ).

Based upon this finding, our protocol admits numerical image formation with a single detector from a statistical
viewpoint. Caution should be urged in the statement, that is, the condition is only one object in the test arm. Here,
we emphasize again that to have a ghost image of the object with 100% confidence as observed in Refs. [9–12, 14–16],
the spatial correlation of light is indispensable and the measurements from both arms are necessary. It is certainly
true that by sorting a random set of noise pictures to get an image, but one can get any image. This is known to
people who study vision, it is what we do when we look through a bunch of bushes and think we see on an object that
is not there. Some anthropologist think that this is survival trait for humans from the days when it was important
to know if a lion was waiting in the bushes to attack us. Seeing such patterns in random systems was important even
if it meant that a lot of times, there was no lion waiting [33]. From this aspect, the topic presented in this paper
shares a link with random data processing. Along with the increase of the number of objects, it turns out to be a
more difficult and eventually impossible task to discriminate them one by one from the noise. Based on this point, the
algorithm may further reveal its advantages over conventional full correlation measurements in multi-channel thermal
GI setups. For instance, simultaneous performing thermal GI with two or more than two objects in the same runs.
Further discussions on this issue might be presented elsewhere.

In comparison with CGI, the current scheme conditionally forms the image with use of partial measurements from
the reference arm; while CGI forms the image precisely using all the measurements from both the bucket side and the
computed reference side, same as conventional GI. Both schemes obtain the image through introducing an algorithm.
However, the present method is more useful if the measurements from the object arm were lost.

III. SUMMARY

In summary, we provide a theory to explain a recent thermal GI experiment [25] in which either a positive or
a negative image can be constructed with only partial measurements from the reference arm by applying a novel
algorithm (8). In contrast with conventional GI, the algorithm offers a new way to decipher the spatial correlation
of thermal light (by sacrificing the quality). Particularly, we theoretically predict that the scheme used by Luo can
outperform conventional GI in that the images can have a visibility higher than 1

3 , and ideally approaching the unity.
Unity visibility used to be thought of a signature of using entangled photons, where no background subtraction is
required. We further show that it is possible to numerically form the image by sampling the reference data, if the
data from the object side is lost. The condition is that only one still object is present in the test arm. The results
presented here not only are consistent with all previous research on GI, but also lend new insights on the nature of
the GI formation. Although the origin of formed images seems from the first-order correlation function, in fact they
originate from the second-order correlation function [see Eq. (10)] in the sense that a bit information from the object
arm is utilized. Although the presented discussion is made on the spatial correlation of thermal light, it is expected
that the described algorithm would be applicable to the temporal domain (e.g. temporal ghost imaging with thermal
light). Finally, the new features and properties discovered in this paper may be useful for turning GI into reality.
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