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Abstract

The Poincaré model of the Lobačevskii geometry is derived from the Fermat principle.
The Lobačevskii geometry is interpreted as the Lobačevskii-Fok velocity space geometry of
moving particles. The relation of this geometry to the decay of the neutral pi-meson is
considered. The generalization of the Lobačevskii geometry is performed and the new angle
of parallelism is derived (Pardy, 2013). The light confined circularly in the optical medium is
defined as the optical black hole. The existence of the centrifugal force acting on the photon
is discussed.

Key words: The Fermat principle, light ray trajectories, optics, the Poincaré model of
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1 Introduction

The Fermat optical theorem states that the trajectory of light from point A to B in the
optical medium is the trajectory performed during the minimal time. At the same time
the trajectory of the optical ray from point A to point B with reflection on the mirror in
the reflection point C is also performed during the minimal time. This principle can be
generalized for an arbitrary number of reflection points.
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The trajectory of light passing from point A(x1, y1) to point B(x2, y2) can be de-
termined by the variational principle (Lavrentyev et al., 1950). It is the mathematical
formulation of the Fermat principle and it states that the minimal time T of light passing
from point A(x1, y1) to point B(x2, y2) is the result of the minimization of the functional

T (y, y′) =
∫ x2

x1

ds

v(y)
=
∫ x2

x1

√
1 + y′2

v(y)
dx, (1)

where v(y) is the velocity of light.
The functional T (y, y′) is the solution of the Euler-Lagrange equations with y′ = dy/dx:

∂T

∂y
− d

dx

(
∂T

∂y′

)
= 0. (2)

If v = Ay, the solutions of eq. (2) are the circles forming the Poincaré model of the
Lobačevskii geometry:

(x− C)2 + y2 = r2. (3)

Let us remark that the above method can be applied for determination of trajectory
of light in the stratified medium or in medium with reflections on the boundary.

2 The Poincaré optical model of the Lobačevskii geometry

The Lobačevskii geometry is the integral part of the general geometry called non-euclidean
geometry, or, hyperbolic geometry. The name non-Euclidean was used by Gauss to
describe a system of geometry which differs from Euclid’s in its properties of parallelism.
Such a system was developed independently by Gauss in Germany, Bolyai in Hungary and
Lobačevskii in Russia, many years ago. Another system, differing more radically from
Euclid’s, was suggested later by Riemann in Germany and Schlafli in Switzerland. The
subject was unified by Klein, who gave the names parabolic, hyperbolic, and elliptic to the
respective systems of Euclid, Gauss-Bolyai-Lobačevskii, and Riemann-Shlafli (Coxeter,
1998).

The substantial mathematical object in the Lobačevskii geometry is the angle of
parallelism defined by Lobačevskii as follows. Given a point P and a line q. The
Intersection of the perpendicular through P let be Q and PQ = x. The intersection
of line p passing through P , with q, let be R and QR = k. Then, the angle RPQ for
perpendicular distance x

Π(x) = 2 tan−1 e−x/k. (4)

is known as the Lobačevskii formula for the angle of parallelism (Coxeter, 1998;
Lobačevskii, 1914).

The Poincaré model of the Lobačevskii geometry is the physical model of the optical
trajectories in a medium with the velocity of light v = Ay.

According to Hilbert (Hilbert, 1903; McCleary, 1994), it is not possible to realize
the Lobačevskii geometry globally on surface with the constant negative curvature. The
Beltrami realization of the Lobačevskii geometry is only partial one. The famous Russian
mathematician Ostrogradskii never ackowledged the Lobačevskii geometry.

Folowing Bukreev (1951), we can investigate the Lobačevskii geometry and the
Poincaré model of it using the pseudosphere (2D manifold) with metric
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ds2 = du2 + e
2u
r dv2. (5)

by relations

v = x, re−
u
r = y, (6)

which mean that we get the line element as

ds2 =
r2

y2
(dx2 + dy2), (7)

which was used during the application of the Fermat principle of the minimal time.
The transformation (6) is the conformal mapping of the pseudo-spherical abstract sur-

face (2-dimensional continuous differentiable manifold) into the upper Poincaré half plane
in the Cartesian coordinates x, y. As an analogue to this situation it is possible to con-
sider the conformal transformation of the 4-dimensional Einstein-Riemann gravitational
manifold to the 4-dimensional Cartesian coordinates x, y, z, t of space-time. Let us still
remark that there are many inversion transformation from the Cartesian Poincaré metric
to the 2-dimensional manifold ds2, to form the integral part of the optical models of the
Lobačevskii geometry.

The trajectory of light in the Poincaré model is a trajectory passing from A(x1, y1) to
B(x2, y2) and determined by the minimal time from A(x1, y1) to B(x2, y2). It is the result
of the minimum of the functional (1).

The Poincaré circles (pseudo-straight lines) in his model are analogue of the straight
lines in the Euclidean geometry.

The theorems following from the metric (7) (Bukreev, 1951) are valid in the Poincaré
model of the Lobačevskii geometry:

Theorem 1: Only one half-circle passes through two points A,B in the Poincaré
plane.

Theorem 2: The curvilinear segment AB in the Poincaré plane is of the shortest
length.

Theorem 3: The parallels are two half-circles with the intersections on the x-axis.
Theorem 4: If point A /∈ q then there are q1 ‖ q, q2 ‖ q passing through A, with

q1 6= q2.
Theorem 5: If point A /∈ q, q1 ‖ q, q2 ‖ q, then q1, q2 divide the Poincaré plane in

four different sectors I, II, III, IV.
Let us remark that the optical distance between point A and B is not equivalent to

the mechanical distance realized by the nonelastic flexible fibre as the shortest distance
between point A and B. The Poincaré model of geometry where the light velocity is
v = Ay is the interaction model of light with the optical medium.

It is elementary to see that if we define the Poincaré problem on a sphere, then we get
so called spherical Poincaré model of the Lobačevskii geometry.

3 The Lobačevskii angle of parallelism from trigonometry

It is well known that Beltrami showed that the Lobačevskii trigonometry is the spherical
trigonometry with the imaginary radius of the sphere. Or, r → ir. Then instead of the
trigonometrical cosine and sine relation on sphere,
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cos
a

r
= cos

b

r
cos

c

r
+ sin

b

r
sin

c

r
cosA, (8)

sinA

sin a/r
=

sinB

sin b/r
=

sinC

sin c/r
, (9)

cosA = − cosB cosC + sinB sinC cos(a/r) (10)

where r is the radius of sphere and a, b, c are lengths of sides of the triangle on the sphere
and A,B,C are corresponding angles, the following relations of the Lobačevskii imaginary
pangeometry follows from the Beltrami operation:

cosh
a

r
= cosh

b

r
cosh

c

r
− sinh

b

r
sinh

c

r
cosA (11)

and

sinA

sinh a
r

=
sinB

sinh b
r

=
sinC

sinh c
r

, (12)

cosA = − cosB cosC + sinB sinC cosh
a

r
. (13)

Now, we are prepared to derive the Lobačevskii function Π(a), where a is BC in the
Lobačevskii triangle ABC and the angle B is 6 B = π/2 and 6 C = Π(a).

We have from (13)

1 = sin Π(a) cosh
a

r
. (14)

On the other hand,

cos Π(a) =
√

1− sin2 Π(a) =

√√√√1− 1

cosh2 a
r

=

√
cosh2 a

r
− 1

cosh a
r

=
sinh a

r

cosh a
r

= tanh
a

r
. (15)

Then, with tan Π = sin Π/ cos Π, we have

tan2 Π(a)

2
=

1− cos Π(a)

1 + cos Π(a)
=

1− tan a
r

1 + tan a
r

=
cosh a

r
− sinh a

r

cosh a
r

+ sinh a
r

=
e−

a
r

e
a
r

= e−
2a
r . (16)

Or,

tan
Π(a)

2
= e−

a
r . (17)

The last formula is the famous one for the Lobačevskii angle Π(a).
Let us remark that the angle of parallelism is immediately related to the decay of

the neutral pi-meson to two gamma-photons, detected by the coincidence experimental
method (Steinberger, et al., 1950). Or,
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π0 → γ + γ. (18)

The angle between velocities of the gamma photons in the rest system of neutral
meson is evidently π. However according to the special theory of relativity the angle
is transformed in the laboratory system according to the Lorentz transformation and
it is smaller than π. It is equivalent to the statement that the Lobačevskii angle Π is
smaller than π/2, or, Π < π/2. Such experiment can be considered as the confirmation of
the Lobačevskii geometry in the elementary particle physics. Similarly the decay of the
neutral η-meson η0 → γ + γ, axion A0 → γ + γ, or, the Higgs boson decay H0 → γ + γ,
are the confirmation of the Lobačevskii geometry in the elementary particle physics and
at present time can be tested in CERN.

The statement which is valid for the decay channel of the π0-meson is valid by analogy
also for all decay channels described in the Review of the Particle physics (Amsler et al.,
2008).

4 The generalized Lobačevskii geometry

Theorem: The generalized Lobačevskii formulas for triangles in generalized Lobačevskii
geometry follow from the spherical formulas (8), (9), (10) by transformation r → r + i%:

cosϕa coshχa + i sinϕa sinhχa =

[cosϕb coshχb + i sinϕb sinhχb][cosϕc coshχc + i sinϕc sinhχc] +

[sinϕb coshχb + i cosϕb sinhχb][sinϕc coshχc + i cosϕc sinhχc] cosA, (19)

sinA

sinϕa coshχa + i cosϕa sinhχa
=

sinB

sinϕb coshχb + i cosϕb sinhχb
=

sinC

sinϕc coshχc + i cosϕc sinhχc
, (20)

cosA = − cosB cosC +

sinB sinC[cosϕa coshχa + i sinϕa sinhχa], (21)

where

ϕa;ϕb;ϕc; =
ar

r2 + %2
;

br

r2 + %2
;

cr

r2 + %2
(22)

and

χa;χb;χc; =
a%

r2 + %2
;

b%

r2 + %2
;

c%

r2 + %2
. (23)
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and % is the new parameter of the new triangle on the 2D manifold and A,B,C are
corresponding triangle angles.

It follows fro eq. (21) that when A,B,C are real quantities, then it is necessary to
be sinϕa = 0, or, ϕa = lπ, l = 1, 2, 3.... Similarly, sinϕb = 0, or, ϕb = mπ,m = 1, 2, 3...,
sinϕc = 0, or, ϕc = nπ, n = 1, 2, 3.... It means that from the generalized Beltrami
operation r → r + i%, the quantization of the generalized Lobačevskii geometry of the
2D-manifold follows.

Now, we can derive the generalized Lobačevskii function Π(a), where a is BC in the
generalized Lobačevskii triangle ABC, 6 B = π/2 and 6 C = Π(a).

We have from eq. (21) for the generalized rectangular triangle:

1 = sin Π(a) coshχa, (24)

where

χa =
a%

r2 + %2
=
%

r
ϕa =

%

r
lπ; l = 1, 2, 3... (25)

We have from eq. (24):

tan
Π(a)

2
= e−χa (26)

It is evident that in the limiting case %→ 0, we get the Euclidean angle Π(a) = π/2.
While the original Lobačevskii angle Π(a) was confirmed in decay of the neutral pi-meson,
the generalized Lobačevskii angle Π(a) is expected to be confirmed in the high energy
physics by experiments in CERN and it is not excluded that the new geometry will be
revealed in the Little Bang (Dusling et al., 2011) if performed by LHC in CERN, or, in
the vicinity of the galactical nucleus.

5 The Lobačevskii-Fok velocity space

We know from the special theory of relativity that the relative velocity of two particles
with velocities v1,v2 is given by the formula (Landau et al., 1988) (c =1, for the velocity
of light):

v′ =

√
(v1 − v2)2 − (v1 × v2)2

1− v1 · v2

. (27)

The last formula can be easily transformed for v1 = v and v2 = v + dv to get new
differential form which can be considered as the length element in the velocity space,
where v1, v2, v3 are so called the Beltrami coordinates (Fok, 1955; Kagan, 1947; ibid.,
1948). Or,

dl2v =
(dv)2 − (v × dv)2

(1− v2)2
=

dv2

(1− v2)
+

v2

(1− v2)
(dθ2 + sin2 θdϕ2), (28)

where θ and ϕ are polar and the azimutal angles of the velocity v in the spherical
coordinate system.
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Using the substitution v = tanhχ, we get the line element in the velocity space as

dl2v = dχ2 + sinh2 χ(dθ2 + sin2 θdϕ2). (29)

The last line element is from the geometrical point of view the element of the
Lobačevskii space with the constant negative Gauss curvature.

The Lobačevskii space follows from the spherical element (Landau et al. 1988)

dl2 =
dr2

1− r2

a2

+ r2(dθ2 + sin2 θdϕ2). (30)

if we replace in the spherical metric the variable r by r = a sinhχ and a→ ia. Then

dl2v = a2(dχ2 + sinh2 χ(dθ2 + sin2 θdϕ2). (31)

The area of the sphere is A = 4πa2 sinh2 r and volume V goes to infinity for r goes to
infinity. So the Lobačevskii abstract space is identical with the Friedmann solution of the
Einstein equations with the negative curvature.

Let us remark that if we perform transformation r → ir+ ρ in formula (30) where we
write r2 = r.r = r.r∗, where r∗ = ρ− ir , in the form

dl2 =
dr2

1− r2+ρ2

a2

+ (r2 + ρ2)(dθ2 + sin2 θdϕ2), (32)

which is the elementary generalization of the Lobaěvskii geometry line element.
Now, if we perform the substitution

r2 + ρ2 = a2 sin2 χ, (33)

then the element (32) can be transformed into the form:

dl2 =
a4 sin2 χdχ2

a2 sinh2 χ− ρ2
+ a2 sin2 χ(dθ2 + sin2 θdϕ2) (34)

It may be easy to see that the last formula is adequate to the metric of the exotic
cosmology with the new geometrical term ρ which should not be identified with the
Einstein cosmological constant Λ.

6 The geodesic line in the Lobačevskii-Fok space of velocities

If we put dv = v̇dt, for the line element in the Lobačevskii space we get from eq. (28)
relation (

dlv
dt

)2

=
v̇2

1− v2
+

(v · v̇)2

(1− v2)2
= 2F, (35)

where the symbol 2F is introduced by definition.
Then we write (Fok, 1955):

dlv =
∫ t2

t1

√
2Fdt, (36)

where L =
√

2F is the Lagrange function, or
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L =

√√√√ v̇2

1− v2
+

(v · v̇)2

(1− v2)2
. (37)

The geodetic line from time t1 to time t2 is the solution of the Lagrange equations

d

dt

(
∂L

∂v̇k

)
− ∂L

∂vk
= 0; k = 1, 2, 3, (38)

or,

d

dt

(
1√
2F

∂F

∂v̇k

)
− 1√

2F

∂F

∂vk
= 0; k = 1, 2, 3. (39)

We use here the parameter t which is an arbitrary parameter. The interpretation of
it as time is of course possible. We choose it in such a way that

dF

dt
= 0; F = const. (40)

Then equations (39) will be equivalent to

d

dt

(
∂F

∂v̇k

)
− ∂F

∂vk
= 0; k = 1, 2, 3. (41)

As the function F is not the function of parameter t, then we can write:

∑
k

v̇k
∂F

∂v̇k
− F = const. (42)

Eq. (42) is an analogue of the definition of energy in classical mechanics in generalized
coordinates if we replace F by the Lagrange function of the massive point.

It follows from eq. (39):

∂F

∂v̇k
=

v̇k
1− v2

+
vk(v · v̇)

(1− v2)2
; k = 1, 2, 3 (43)

∂F

∂vk
= vk

(
v̇2

(1− v2)2
+ 2

(v · v̇)2

(1− v2)3

)
+
v̇k(v · v̇)

(1− v2)2
; k = 1, 2, 3. (44)

Let us introduce the vector w by the definition

wk =
v̇k

(1− v2)
. (45)

Then eqs. (43), (44) can be evidently written in the form

∂F

∂v̇k
= wk +

vk(v ·w)

(1− v2)
; k = 1, 2, 3 (46)

∂F

∂vk
= vk

(
w2 +

2(v · v̇)2

(1− v2)

)
+ vk(v ·w); k = 1, 2, 3. (47)

After t-derivation of eq. (47) and expressing v̇ as a function of w, we get
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d

dt

∂F

∂v̇k
= ẇk +

vk(v · ẇ)

(1− v2)
+

vk

(
w2 +

2(v ·w)2

(1− v2)

)
+ vk(v ·w); k = 1, 2, 3. (48)

After insertion of ∂F/∂vk (47) and equation (48) into Lagrange equation (41), we get

ẇk +
vk(v · ẇ)

(1− v2)
= 0. (49)

After multiplication of the last equation by vk we get

v · ẇ = 0, (50)

from which equation follows ẇ = 0, or, w = const. However, w is collinear with v̇, then
w · v̇ = 0, Or,

w · v = const. (51)

It gives still two linearly independent integrals of the Lagrange equations.

7 The length of the straight segment in the Lobačevskii-Fok
space

We consider the length AB as the shortest line segment from A to B in the Lobačevskii
space. Let us introduce two vectors v = v1 and v = v2. Then the parametric form of the
segment is

v = v1 + µ(v2 − v1); 0 < µ < 1. (52)

After insertion of (52) into F in (35), we get

2F =
(v2 − v1)

2 − (v1 × v2)
2

(1− v2)2
µ̇2. (53)

Putting

a =
√

(v2 − v1)2 − (v1 × v2)2, (54)

we get from eq. (36) the time integral from t1 to t2

dlv =
∫ 1

0

adµ

1− v2
(55)

Using substitution

µ =
(1− v2

1)ξ

1− v1 · v2 + (v1 · v2 − v2
1)ξ

, (56)

we get

lv =
∫ 1

0

abdξ

b2 − a2ξ2
=

1

2
ln
b+ a

b− a
, (57)
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where b = 1− v1 · v2 and

a

b
= tanh lv;

(
a

b

)2

= tanh2 lv. (58)

Or,

(v2 − v1)
2 − (v1 × v2)

2

(1− v1 · v2)
= tanh lv. (59)

The left side of (59) is the relative velocity, So

|v′| = tanh lv. (60)

Putting

v1 = tanh l1v, v2 = tanh l2v (61)

we get for v1 ‖ v2

V ′ = tanh(l2v − l1v) =
tanh l2v − tanh l1v

1− tanh l2v · tanh l1v
, (62)

Or,

V ′ =
v2 − v1

1− v1.v2

, (63)

which is the famous Einstein formula for the addition of velocities.

8 The Lobačevskii-Fok triangle in particle physics

Let us investigate the angle between vectors of the velocities velocities of the two bodies.
Let the vectors are taken with regard to the point which is in the state of rest. The vectors
are v1 and v2. Then the obligate formula for cosine of the angle of the two vectors is:

cos(v1,v2) =
v1 · v2

|v1| · |v2|
. (64)

However if the reference point of vectors is moving with the velocity u, then the angle
between vectors are given by the relativistic formula:

cosα = cos(v′1,v
′
2) =

v′1 · v′2
|v′1| · |v′2|

, (65)

where the prime symbols are vectors after the Lorentz transformations of the velocities.
The Lorentz transformation of the velocities is as follows:

v′ =
v − u + (a00 − 1) u

u2 ((u · v − u2))

a00 (1 + u · v)
. (66)

If we express v′1 and v′2 and by v1 and by v2, we then get cosine of the angle α as it
follows:

cosα =
(v1 − u) · (v2 − u)− (v1 × u) · (v2 × u)√

(v1 − u)2 − (v1 × u)2 ·
√

(v2 − u)2 − (v2 × u)2
. (67)
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This is the expression for the cosine of the angle of the triangle in the space of
Lobačevskii. In other words, this is cosine of the angle in the vertex u in the triangle with
the vertexes at points u,v1,v2 where the relative velocities v1 − u and v2 − u are sides
of the triangle and form the angle α.

It can be explained by the different way. The length element in the Lobačevskii space
corresponding to dv is

dl2v =
(dv)2 − (v × dv)2

(1− v2)2
, (68)

And the length element in the Lobačevskii space corresponding to δv is

δl2v =
(δv)2 − (v × δv)2

(1− v2)2
. (69)

Then we can define the relation for the cosine between dv and δv by the relation:

dlvδlv cosα =
dvδv − (v × dv)(v × δv)

(1− v2)2
. (70)

The angle between the relative velocities can be considered as the angle in the of the
Lobačevskii triangle. If we have three bodies moving with velocities v1,v2,v3, then the
corresponding triangle will have the vertexes in points v1,v2,v3, and the relative velocities
are the sides of the triangle. This construction is the analogue of the non-relativistic
case, but we have here the Lobačevskii triangle on the Lobačevskii 2D manifold. The
generalization of the Lobačevskii triangle to the Euler-Lobačevskii tetrahedron is evident.

Lobačevskii, in his pangeometry, presents the idea (many years before Einstein) that
his geometry is probably realized in the near vicinity of atoms and molecules and also in
the cosmical space (Norden, 1956). Now, we see that his geometry is realized in particle
physics of LHC in CERN.

9 Discussion

The article is a preamble of the unification of the Lobačevskii-Fok geometry with the
physics of elementary particles. The starting point was the Fermat principle formulated
by means of variational calculus. The Poincaré model of the Lobačevskii geometry was
derived as the optical model of the interaction of light with optical medium in space.
Beltrami showed that the Lobačevskii geometry follows from spherical geometry by the
elementary (Beltrami) operation r → ir. The operation is not involved in the famous
Euler monograph on spherical geometry (Euler, 1896). The operation was in our article
generalized to the operation r → ir + %, r.r → r.r∗, in section 4 and by, r → r + iρ,
in section 5. Symbols % and ρ are introduced as the new geometrical constants, which
should not to be identified with the Einstein cosmological constant Λ.

Fok formulated the Lobačevskii geometry physically as the geometry of the relativistic
velocity space. From this approach follows the adequate description of the decay of the
neutral pi-meson into two gamma photons.

The Fermat principle enables to get the circular optical trajectories, or in other words
the confinement of light by optical medium - so called optical black hole. It may be easy
to prove it.

Let be the index of refraction n(r) in the Euclidean plane with polar coordinates r, ϕ.
The explicit form of the Fermat principle

11



δ
∫
n(r)ds = 0 (71)

is (Marklund et al., 2002)

δ
∫
n(r)

√√√√1 + r2

(
dϕ

dr

)2

dr = 0. (72)

The last equation is equivalent to the Euler-Lagrange variational equation for the
functional F (ϕ, ϕ′)

Fϕ −
d

dr
Fϕ′ = 0. (73)

Or,

d

dr

n(r)
r2dϕ/dr√

1 + r2
(
dϕ
dr

)2

 = 0. (74)

It is evident that the elimination of dϕ/dr is as follows:

dϕ

dr
= ± C√

r4n2(r)− C2r2
. (75)

The circular trajectory is defined by equation dr/dϕ = 0 from which follows the index
of refraction for the so called optical black hole

n(r) =
const

r
. (76)

There is the Bose-Einstein condensate where the optical light pulses travel with
extremely small group velocity about 17 meters per second (Hau et al. 1999). This
is the possible way for testing the optical black hole.

Without doubt, the monochromatic optical beam is composed from photons of energy
E = h̄ω. While the rest mass of photon is zero, the relativistic mass follows from the
Einstein relation E = mc2. After identifying the relativity energy and quantum energy
of photon we have

m =
h̄ω

c2
. (77)

The centrifugal force acting on photon moving with velocity v in optical medium along
the circle with radius r is for the photon mass as follows:

Fcentrifugal =
h̄ω

c2
v2

r
. (78)

The centrifugal force and the Kapitza effect (thermal fluctuations of the index of
refraction) (Landau, et al., 1982) are the origin of the instability of the photon trajectory
in the optical medium. So, the experimental investigation of the confinement of photon
in the optical medium is meaningful at temperature T ≈ 0. There is no doubt that the
investigation of the photon trajectories is the crucial problem of the optical physics and
it is interesting for all optical laboratories over the world.
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