
1 
 

Second draft 

 

Bifurcations and the Field Structure of the Standard Model 

Ervin Goldfain 

Advanced Technology and Sensor Group, Welch Allyn Inc, Skaneateles Falls, NY 

 

Abstract 

 
We have recently conjectured that the flow from the ultraviolet (UV) to the infrared (IR) sector of any 

multivariable field theory approaches chaotic dynamics in a universal way. A key assumption of this 

conjecture is that the flow evolves in far-from-equilibrium conditions and it implies that the end-point 

attractor of effective field theories replicates the geometry of multifractal sets. Our conclusions are further 

reinforced here in the framework of nonlinear dynamical systems and bifurcation theory. In particular, it 

is found that steady-state perturbations near the IR attractor induce formation of Dark Matter structures 

while oscillatory perturbations lead to the field content of the Standard Model.  
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1. Introduction and motivation 

The Renormalization Group (RG) is a well-established framework for the analysis of 

complex physical systems at both ends of the energy scale. Over the years, the principles 

and methods of RG have found a wide range of applications, from critical behavior in 

Statistical Physics and Condensed Matter to perturbative and non-perturbative models in 
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Quantum Field Theory (QFT) [7, 26, 42]. An appealing feature of RG equations is that 

they resemble the evolution equations of dynamical systems [16-17, 20]. In particular, 

the Callan-Symanzik equation stems from the independence of QFT from its subtraction 

point, which is on par with self-similarity of autonomous flows approaching attractors.  

In the Wilsonian formulation of the RG, the flow in coupling space is associated with the 

trajectory of QFT towards a subspace of relevant and marginal operators. Conventional 

wisdom asserts that the attractors of the RG flow consist of a finite number of isolated 

fixed points (FP). There is now mounting evidence that this assumption is too restrictive, 

that RG flows – echoing the onset of turbulence in fluid mechanics – may evolve towards 

limit cycles or tori as well as strange attractors, the latter denoting invariant sets having 

chaotic structure [20, 38-41]. 

The goal of this work is to extrapolate the conventional RG paradigm to a framework 

which minimizes the potential loss of generality due to simplifying assumptions. To this 

end, we posit that all trajectories connecting the UV and IR sectors of a generic field 

theory are characterized by the following initial conditions:  

a) a large count of independent or coupled variables,  

b) a large count of independent or coupled control parameters,  

c) far-from-equilibrium settings, 

d) non-perturbative and non-integrable dynamics.   

In our view, the motivation for this extended framework is that the combined use of a) to 

d) enable a more realistic picture of complex dynamics that is likely to define the UV to 

IR flow. This view is backed up by many examples. For instance, integrable dynamical 

systems are isomorphic to free, non-interacting theories, which are unable to account for 
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the arrow of time in transient regimes, the physics of self-organization and complex 

evolution outside equilibrium [19, 24-25]. Another instance is provided by Sakharov’s 

non-equilibrium conditions for baryogenesis and the observed baryon asymmetry of the 

Universe [35]. 

Our paper is organized as follows: the interpretation of RG flows as autonomous 

dynamical systems is detailed in section 2. Section 3 delves into the universal theory of 

flows evolving in far-from-equilibrium conditions and their reduction to normal form 

equations. The bifurcations generated by these equations and their connection to the 

structure of SM and Dark Matter form the topic of next three sections. Conclusions are 

summarized in the last section. 

We caution the reader on the introductory and tentative nature of this work. Our sole goal 

is to draw attention to the many unexplored implications of nonlinear science and 

complexity theory on the dynamics of the SM and beyond. Additional research is needed 

to reject or expand the body of ideas discussed here.  

2. RG flows as autonomous dynamical systems   

The RG flow in the space of couplings g   is a continuous map R    called 

the “beta function” and associated with [20] 
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 ( , ( , )) ( , )s g s g        (3) 

where the “RG time” is 
0

)log (


  and   is the RG scale. A FP (equilibrium or 

conformal point) of (1) is a coupling 0g   for which 0 0( , )R g g  . The FP of the RG 

flow are associated with zero or infinite correlation lengths and are accordingly classified 

as “trivial” or “non-trivial”. The existence of FP reflects the asymptotic approach towards 

scale-invariance and it relates to the self-similarity of fractal structures [see e.g. 7].  A 

subset     is an invariant set of the flow if 

 ( , ) ( , )
t
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Likewise, the continuous time flow of autonomous dynamical systems is described by the 

differential equation  
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where 
nx R  and : n nf R R  is a function on the n-dimensional phase space nR  [4]. 

There are two ways of relating (5) to a map iteration of the phase space onto itself, namely, 

a) Working in discrete time ( 0  ) turns (5) into  

 1 0 ( ) ( )n n n nx x f x F x     ,  0( )nx x n   (6) 

b) If (1) has periodic solutions 0( ) (0)x T x x   for some 0T  , one takes a hyperplane 

1nR 
 of dimension 1n  transverse to the orbit ( )x   through 0x  and evaluates the 
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distribution of neighboring intersections of the orbit with this hyperplane (the method of 

Poincaré sections).  

Many dynamical systems and maps are dependent on a number of control parameters  

mR . In this case, (5) and (6) take the form 

 
( )

( ( ), ( ))
d x

f x
d


  


   (7) 

 1 0 ( , ) ( , )n n n nx x f x F x        (8a) 

Of particular interest is the long-term evolution of (6)-(8), which reflects the behavior of 

the large k th iterate of the flow in phase-space,  ( )kF x , 1k  . By definition, a period-

k FP of map (6) satisfies the condition  

 
( )* ( *) *k

n k n nx F x x     (8b) 

Some flows may converge to specific attractors like a FP or a periodic orbit or erratically 

wander inside a bounded region (  ).  If all iterates remain “trapped” in (  ) for x , then 

(  ) forms an invariant set [5-6]. Moreover, if (  ) has a fine structure, or if there is 

sensitive dependence on initial conditions (two nearby points get farther apart under a 

large number of iterates of f ), then (  ) represents a strange set.  

3. Flows in far-from-equilibrium field theory 

Quantum Field Theories are known to become scale-invariant at large distances. Viewed 

in the context of conformal field theory, this property is typically associated with the FP 

structure of the RG flow [7, 26, 42]. Starting from this observation, we conjecture below 
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that all field theories evaluated at sufficiently low-energy scales emerge from an 

underlying system of high-energy entities called primary variables. Let the UV sector of 

field theory be described by a large set of such variables  , 1,2,...,,ix x i n  , 1n , 

whose mutual coupling and dynamics is far-from-equilibrium. The specific nature of the 

UV variables is irrelevant to our context, as they can take the form of irreducible objects 

such as, but not limited to, spinors, quaternions, twistors, strings, branes, loops, knots, 

bits of information and so on. 

The downward flow of  ix x  may be mapped to a system of ordinary differential 

equations having the universal form  

 ' ( ( ), ( ), ( ))x f x D      (9) 

Here, , ,D   denote, respectively, the control parameters vector  , 1,2,...j j m   , the 

evolution parameter and the dimension of the embedding space. If the dimension of the 

embedding space is taken to be independent variable or control parameter, the system (9) 

further reduces to 

 ' ( ( ), ( ))x f x     (10) 

It is reasonable to assume that the flow (9) or (10) occurs in the presence of non-vanishing 

perturbations induced by far-from-equilibrium conditions. These may surface, for 

example, from primordial density fluctuations in the early Universe or from unbalanced 

vacuum fluctuations in the UV regime of QFT. 

To make explicit the effect of perturbations, we resolve ( )x   into a reference stable state 

( )sx   and a deviation generated by perturbations, i.e.,       
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 ( ) ( ) ( )sx x y     (11) 

Direct substitution in (10) yields the set of homogeneous equations 

 ' ({ }, ) ({ }, )s sy f x y f x      (12) 

Further expanding around the reference state leads to 

 ' ( , ) ({ }, )ij s j i j
j

y L x y h y     (13) 

where i jL  and ih  denote, respectively, the coefficients of the linear and nonlinear 

contributions induced by the deviations from the reference state. Here, i jL  represents a 

n n  matrix dependent on the reference state and on the control parameters vector. 

Under the assumption that parameters   stay close to their critical values ( )c  , it can 

be shown that either (1) or (2) undergoes bifurcations and they can be mapped to a closed 

set of universal equations referred to as normal forms [1-3]. If, at c   perturbations 

are non-oscillatory (steady-state), the normal form equations are 

 2' ( )cz uz      (14a) 

 3' ( )cz z uz      (14b) 

 2' ( )cz z uz      (14c) 

If perturbations are oscillatory at c  , the normal form equation is instead given by 

 
2

0' [( ) ]cz i z uz z        (15) 
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where 
0  is the frequency of perturbations at the bifurcation point and both u  and z  are 

complex-valued. It can be shown that (15) belongs to a rich spectrum of Andronov-Hopf 

bifurcation scenarios involving limit cycles [1-3, 27-33].  

We end the section with the following observation: of particular interest is to augment the 

conditions a) to c) of section 1 with the assumption that (9) and (10) exhibit memory 

effects. These effects may be naturally attributed to a non-local dynamic regime that is 

far-from-equilibrium, whose characterization requires fractional calculus instead of 

ordinary calculus on smooth manifolds [ ]. If (9) and (10) evolve in low-fractality 

conditions defined by arbitrarily small deviations from four-dimensionality of ordinary 

spacetime, the parameter 4 1D     may be thought as a predominant control 

parameter.  The condition 4 1D     describes the minimal fractal manifold (MFM) 

configuration of spacetime near the IR attractor of (9) and (10) [9]. One then proceeds 

with the identification , 0c c       in (14) and (15), which shows that the four-

dimensional spacetime represents the asymptotic limit of the MFM at the critical point 

4D  .        

In summary, the outcome of this analysis is that the multivariable dynamics (9) and (10) 

reduces in the long-run to a lower dimensional system of universal equations with the 

emerging variable z  playing the role of an effective order parameter. If, in addition, (9) 

and (10) carry low-amplitude non-local effects, the predominant control parameter near 

the IR attractor may be assumed to be  4 1D    . 

… 
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4. Universal bifurcations of the normal form equations 

… 

5. Flavor replication in the Standard Model 

The paradigm outlined above hints that the family structure of the Standard Model 

unfolds from letting (15) develop sequential bifurcations. One possible scenario is that 

the gluon octet emerges as twofold replica of the electroweak boson quartet as in 

 
  1,2,...,8( )i iW W Z g  


  (1.1) 

Likewise, color quartets may surface as twofold replicas of lepton doublets, namely,  
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c c

s s
 
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  

 
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   R G

R G

t t

b b
 

 
  

 
  (1.4) 

 1R G B     (1.5) 

Finally, the Higgs scalar arises as topological condensate of gauge bosons having anti-

parallel spins. The simplest combination of weakly-coupled gauge bosons condensing into 

a spin-zero state is given by [  ]  
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c W W Z g W W Z g                 (1.6) 

The number of SM flavors is constrained by anomaly cancelation [  ] and by the closure 

relationship [  ],  

 
16

2

1

( ) 1i

j EW

m

M

   (1.7) 

…  

One can argue that it may also be fixed by demanding marginal stability of the 

perturbative RG flow [  ].   

6. Cantor Dust as underlying content of Dark Matter  

… 

7. Concluding remarks 

… 
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