# JACOB'S LADDERS AND THE $\tilde{Z}^{2}$-TRANSFORMATION OF THE ORTHOGONAL SYSTEM OF TRIGONOMETRIC FUNCTIONS 

JAN MOSER


#### Abstract

It is shown in this paper that there is a continuum set of orthogonal systems relative to the weight function $\tilde{Z}^{2}(t)$. The corresponding integrals cannot be obtained in known theories of Balasubramanian, Heath-Brown and Ivic.


## 1. The first result

1.1. In this paper we obtain some new properties of the signal

$$
\begin{equation*}
Z(t)=e^{i \vartheta(t)} \zeta\left(\frac{1}{2}+i t\right) \tag{1.1}
\end{equation*}
$$

that is generated by the Riemann zeta-function, where

$$
\begin{equation*}
\vartheta(t)=-\frac{t}{2} \ln \pi+\operatorname{Im} \ln \Gamma\left(\frac{1}{4}+i \frac{t}{2}\right)=\frac{t}{2} \ln \frac{t}{2 \pi}-\frac{t}{2}-\frac{\pi}{8}+\mathcal{O}\left(\frac{1}{t}\right) . \tag{1.2}
\end{equation*}
$$

Let us remind that

$$
\begin{equation*}
\tilde{Z}^{2}(t)=\frac{\mathrm{d} \varphi_{1}(t)}{\mathrm{d} t}, \varphi_{1}(t)=\frac{1}{2} \varphi(t) \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{Z}^{2}(t)=\frac{Z^{2}(t)}{2 \Phi_{\varphi}^{\prime}[\varphi(t)]}=\frac{Z^{2}(t)}{\left\{1+\mathcal{O}\left(\frac{\ln \ln t}{\ln t}\right)\right\} \ln t} \tag{1.4}
\end{equation*}
$$

(see [12], (5.1)-(5.3)) and $\varphi_{1}(T), T \geq T_{0}\left[\varphi_{1}\right]$ is the Jacob's ladder.
1.2. It is known that the system of trigonometric functions

$$
\begin{equation*}
\left\{1, \cos \left(\frac{\pi}{l} t\right), \sin \left(\frac{\pi}{l} t\right), \ldots, \cos \left(\frac{\pi}{l} n t\right), \sin \left(\frac{\pi}{l} n t\right), \ldots\right\} \tag{1.5}
\end{equation*}
$$

is the orthogonal system on the segment $[0,2 l]$. In this direction the following theorem holds true.

Theorem 1. Let $\mathcal{J}(2 l)=\varphi_{1}\{\mathcal{J}(2 l)\}$, where

$$
\begin{aligned}
& \mathcal{J}(2 l)=\mathcal{J}(2 l, K)=[2 l K, 2 l(K+1)], \\
& \dot{\mathcal{J}}(2 l)=\dot{\mathcal{J}}(2 l, K)=[\overparen{2 l K}, \widehat{2 l(K+1)}], 2 l K \geq T_{0}\left[\varphi_{1}\right], \\
& 2 l \in\left(0, \frac{T}{\ln T}\right] ; K \in \mathbb{N} .
\end{aligned}
$$

[^0]Then the system of functions

$$
\begin{equation*}
\left\{1, \cos \left(\frac{\pi}{l} \varphi_{1}(t)\right), \sin \left(\frac{\pi}{l} \varphi_{1}(t)\right), \ldots, \cos \left(\frac{\pi}{l} n \varphi_{1}(t)\right), \sin \left(\frac{\pi}{l} n \varphi_{1}(t)\right), \ldots\right\} \tag{1.6}
\end{equation*}
$$

is the orthogonal system on $\dot{\mathcal{J}}(2 l)$ with respect to the weight function $\tilde{Z}^{2}(t)$, i.e. the following new system of integrals

$$
\begin{align*}
& \int_{\dot{\mathcal{J}}(2 l)} \cos \left(\frac{\pi}{l} m \varphi_{1}(t)\right) \cos \left(\frac{\pi}{l} n \varphi_{1}(t)\right) \tilde{Z}^{2}(t) \mathrm{d} t=\left\{\begin{array}{ll}
0 & ,
\end{array} \begin{array}{ll}
l, & m \neq n \\
l & ,
\end{array}\right. \\
& \int_{\dot{\mathcal{J}}(2 l)} \sin \left(\frac{\pi}{l} m \varphi_{1}(t)\right) \sin \left(\frac{\pi}{l} n \varphi_{1}(t)\right) \tilde{Z}^{2}(t) \mathrm{d} t=\left\{\begin{array}{cc}
0 & m \neq n \\
l, & m=n
\end{array}\right. \\
& \int_{\dot{\mathcal{J}}(2 l)} \sin \left(\frac{\pi}{l} m \varphi_{1}(t)\right) \cos \left(\frac{\pi}{l} n \varphi_{1}(t)\right) \tilde{Z}^{2}(t) \mathrm{d} t=0,  \tag{1.7}\\
& \int_{\dot{\mathcal{J}}(2 l)} \cos \left(\frac{\pi}{l} n \varphi_{1}(t)\right) \tilde{Z}^{2}(t) \mathrm{d} t=0, \\
& \int_{\dot{\mathcal{J}}(2 l)} \sin \left(\frac{\pi}{l} n \varphi_{1}(t)\right) \tilde{Z}^{2}(t) \mathrm{d} t=0
\end{align*}
$$

for all $m, n \in \mathbb{N}$ is obtained, where

$$
\begin{equation*}
t-\varphi_{1}(t) \sim(1-c) \pi(t) \tag{A}
\end{equation*}
$$

$$
2 l(K+1)<\overparen{2 l K}
$$

$$
\begin{equation*}
\rho\{\mathcal{J}(2 l) ; \dot{\mathcal{J}}(2 l)\} \sim(1-c) \pi(t) \rightarrow \infty \tag{C}
\end{equation*}
$$

as $K \rightarrow \infty$, and $\rho$ denotes the distance of the corresponding segments, $c$ is the Euler constant and $\pi(t)$ is the prime-counting function.

Remark 1. Theorem 1 gives the contact point between the functions $\zeta\left(\frac{1}{2}+i t\right), \pi(t), \varphi_{1}(t)$ and the orthogonal system of trigonometric functions.
Remark 2. It is clear that the formulae (1.7) - for the modulated function $\tilde{Z}^{2}(t)$ cannot be obtained in the known theories of Balasubramanian, Heath-Brown and Ivic (comp. [1]).

This paper is a continuation of the series [2]-[15].

## 2. New method of the quantization of the Hardy-Littlewood <br> INTEGRAL (A SPECIAL CASE)

2.1. We obtain from the first two formulae in (1.7)

$$
\begin{align*}
& \int_{\dot{\mathcal{J}}(2 l)} \cos ^{2}\left(\frac{\pi}{l} m \varphi_{1}(t)\right) \tilde{Z}^{2}(t) \mathrm{d} t=\frac{1}{2}|\mathcal{J}(2 l)|,  \tag{2.1}\\
& \int_{\dot{\mathcal{J}}(2 l)} \sin ^{2}\left(\frac{\pi}{l} m \varphi_{1}(t)\right) \tilde{Z}^{2}(t) \mathrm{d} t=\frac{1}{2}|\mathcal{J}(2 l)|
\end{align*}
$$

for all $m \in \mathbb{N}$. Next, from (2.1) we obtain

## Corollary 1.

$$
\begin{equation*}
\int_{\dot{\mathcal{J}}(2 l)} \tilde{Z}^{2}(t) \mathrm{d} t=|\mathcal{J}(2 l)| ;|\mathcal{J}(2 l)|=2 l \tag{2.2}
\end{equation*}
$$

2.2. Let us consider now the problem concerning the solid of revolution corresponding to the graph of the function (comp. [5])

$$
\tilde{Z}(t), t \in \widehat{2 l K},+\infty), 2 l K>T_{0}\left[\varphi_{1}\right] .
$$

Problem. To divide this solid of revolution on parts of equal volumes.
From (2.2) we obtain the resolution of this problem.
Corollary 2. Since
(a)

$$
\left.[\overparen{2 l K},+\infty)=\bigcup_{r=1}^{\infty} \dot{J}(2 l, r), \dot{\mathcal{J}}(2 l, r)=[\widehat{2 l(K+r-1}), \widehat{2 l(K+r)}\right]
$$

$$
\begin{equation*}
\pi \int_{\dot{\mathcal{J}}(2 l, r)} \tilde{Z}^{2}(t) \mathrm{d} t=2 \pi l, r=1,2,3, \ldots \tag{b}
\end{equation*}
$$

it follows that the sequence of points

$$
\{2 \widehat{2 l(K+r-1)}\}_{r=2}^{+\infty}
$$

is the resolution to the Problem for arbitrary fixed $2 l \in(0, T / \ln T]$.

## 3. Generalization of the formula (2.2)

3.1. The following theorem holds true.

Theorem 2. Let

$$
\mathcal{J}(T, U)=[T, T+U], J(T, U)=\varphi_{1}\{\dot{\mathcal{J}}(T, U)\} ; \dot{\mathcal{J}}(T, U)=[\stackrel{\circ}{T}, \widehat{T+U}]
$$

Then

$$
\begin{equation*}
\int_{\dot{\mathcal{J}}(T, U)} \tilde{Z}^{2}(t) \mathrm{d} t=|\mathcal{J}(T, U)|=U \tag{3.1}
\end{equation*}
$$

for every $T \geq T_{0}\left[\varphi_{1}\right], U \in(0, T / \ln T]$.
Remark 3. From (3.1) the general method for quantization of the Hardy-Littlewood integral follows (comp. Corollary 2: $2 l K \rightarrow \forall T \geq T_{0}\left[\varphi_{1}\right], \mathcal{J}(2 l) \rightarrow \mathcal{J}(T, U)$ ).

Next, we obtain, using the mean-value theorem in (3.1)

## Corollary 3.

$$
\begin{equation*}
\tilde{Z}^{2}(\xi)=\frac{|\mathcal{J}(T, U)|}{|\dot{\mathcal{J}}(T, U)|}, \xi \in \xi(\stackrel{\circ}{T}, \widehat{T+U}), \quad \tilde{Z}(\xi) \neq 0 \tag{3.2}
\end{equation*}
$$

i.e.

$$
\tilde{Z}^{2}(\xi): 1=|\mathcal{J}(T, U)|:|\dot{\mathcal{J}}(T, U)|
$$

3.2. Let $\left\{\left[T^{\prime}, T^{\prime}+1\right]\right\}$ stands for the continuum set of segments $\left[T^{\prime}, T^{\prime}+1\right] \subset$ $[T, T+T / \ln T]$. Since

$$
\frac{1}{\left|\dot{\mathcal{J}}\left(T^{\prime}, 1\right)\right|}=\tilde{Z}^{2}(\xi), \quad \xi=\xi\left(T^{\prime}\right) \in\left(\stackrel{\circ}{T}^{\prime}, \widehat{T^{\prime}+1}\right)
$$

then by the Riemann-Siegel formula

$$
Z(t)=2 \sum_{n \leq \sqrt{\frac{t}{2 \pi}}} \frac{1}{\sqrt{n}} \cos \{\vartheta(t)-t \ln n\}+\mathcal{O}\left(t^{-1 / 4}\right)
$$

we obtain (see (1.4))

## Corollary 4.

$$
\begin{equation*}
\frac{1}{\sqrt{\left|\mathcal{J}\left(T^{\prime}, 1\right)\right|}} \sim \frac{2}{\sqrt{\ln \xi}}\left|\sum_{n \leq \sqrt{\frac{\xi}{2 \pi}}} \frac{1}{\sqrt{n}} \cos \{\vartheta(\xi)-\xi \ln n\}+\mathcal{O}\left(\xi^{-1 / 4}\right)\right| \tag{3.3}
\end{equation*}
$$

where $\xi=\xi\left(T^{\prime}\right)$.
Remark 4. The formula (3.3) describes the complicated oscillations of the value $\left|\dot{\mathcal{J}}\left(T^{\prime}, 1\right)\right|$ generated by the nonlinear transformation $\mathcal{J}\left(T^{\prime}, 1\right)=\varphi_{1}\left\{\mathcal{J}\left(T^{\prime}, 1\right)\right\}$.

## 4. Proof of Theorems 1 and 2

4.1. Let us remind that the following lemma is true (see [12], (5.1)-(5.3))

Lemma. For every integrable function (in the Lebesgue sense) $f(x), x \in\left[\varphi_{1}(T), \varphi_{1}(T+\right.$ $U)$ ] the following is true

$$
\begin{equation*}
\int_{T}^{T+U} f\left[\varphi_{1}(t)\right] \tilde{Z}^{2}(t) \mathrm{d} t=\int_{\varphi_{1}(T)}^{\varphi_{1}(T+U)} f(x) \mathrm{d} x, U \in(0, T / \ln T] \tag{4.1}
\end{equation*}
$$

where $t-\varphi_{1}(t) \sim(1-c) \pi(t)$.
Remark 5. The formula (4.1) is true also in the case when the integral on the righthand side of eq. (4.1) is convergent but not absolutely (in the Riemann sense).
4.2. If $\varphi_{1}\{[\stackrel{\circ}{T}, \widehat{T+U}]\}=[T, T+U]$ then we obtain from (4.1) the following formula

$$
\begin{equation*}
\int_{\stackrel{\circ}{T}}^{\widehat{T+U}} f\left[\varphi_{1}(t)\right] \tilde{Z}^{2}(t) \mathrm{d} t=\int_{T}^{T+U} f(x) \mathrm{d} x, U \in(0, T / \ln T] \tag{4.2}
\end{equation*}
$$

Next, in the case $[T, T+U]=[2 l K, 2 l K+2 l]=\mathcal{J}(2 l)$, we have

$$
\begin{equation*}
\int_{\mathcal{J}(2 l)} F(t) \mathrm{d} t=\int_{0}^{2 l} F(t) \mathrm{d} t \tag{4.3}
\end{equation*}
$$

for every (integrable) $2 l$-periodic function $F(t)$. Then from the known formulae

$$
\begin{aligned}
& \int_{\mathcal{J}(2 l)} \cos \left(\frac{\pi}{l} m \varphi_{1}(t)\right) \cos \left(\frac{\pi}{l} n \varphi_{1}(t)\right) \mathrm{d} t=\left\{\begin{array}{cl}
0, & m \neq n \\
l, & m=n
\end{array}\right. \\
& \int_{\mathcal{J}(2 l)} \sin \left(\frac{\pi}{l} m \varphi_{1}(t)\right) \sin \left(\frac{\pi}{l} n \varphi_{1}(t)\right) \mathrm{d} t=\left\{\begin{array}{cc}
0, & m \neq n \\
l, & m=n
\end{array}\right. \\
& \int_{\mathcal{J}(2 l)} \sin \left(\frac{\pi}{l} m \varphi_{1}(t)\right) \cos \left(\frac{\pi}{l} n \varphi_{1}(t)\right) \mathrm{d} t=0 \\
& \int_{\mathcal{J}(2 l)} \cos \left(\frac{\pi}{l} n \varphi_{1}(t)\right) \mathrm{d} t=0, \quad \int_{\mathcal{J}(2 l)} \sin \left(\frac{\pi}{l} n \varphi_{1}(t)\right) \mathrm{d} t=0, \quad m, n \in \mathbb{N},
\end{aligned}
$$

by the $\tilde{Z}^{2}$-transformation (see $\left.(4.2),(4.3) ;[\stackrel{\circ}{T}, \widehat{T+U}]=\mathcal{J}(2 l)\right)$ the formulae (1.7) follow. The properties (B), (C) in Theorem 1 are identical with [13], (A1), (B1).
4.3. The formula (3.1) follows from (4.2) in the case $f(x) \equiv 1$.

## 5. Another type of the orthogonal systems

It follows from (4.2) that the continuum set $\mathcal{S}(T, 2 l)$ of the systems

$$
\begin{aligned}
& \left\{|\tilde{Z}(t)|,|\tilde{Z}(t)| \cos \left(\frac{\pi}{l}\left(\varphi_{1}(t)-T\right)\right),|\tilde{Z}(t)| \sin \left(\frac{\pi}{l}\left(\varphi_{1}(t)-T\right)\right), \ldots\right. \\
& \left.|\tilde{Z}(t)| \cos \left(\frac{\pi}{l} n\left(\varphi_{1}(t)-T\right)\right),|\tilde{Z}(t)| \sin \left(\frac{\pi}{l} n\left(\varphi_{1}(t)-T\right)\right), \ldots\right\} \\
& t \in[\stackrel{\circ}{T}, \widehat{T+2 l}]
\end{aligned}
$$

for all

$$
T \geq T_{0}\left[\varphi_{1}\right], 2 l \in(0, T / \ln T]
$$

is the set of orthogonal systems on $[\stackrel{\circ}{T}, \widehat{T+2 l}]$.
Remark 6. Let us call the elements of the system $\mathcal{S}(T, 2 l)$ for fixed $2 l \in(0, T / \ln T]$ and for all $T \geq T_{0}\left[\varphi_{1}\right]$ as the clones of the known orthogonal trigonometric system

$$
\left\{1, \cos \left(\frac{\pi}{l} t\right), \sin \left(\frac{\pi}{l} t\right), \ldots, \cos \left(\frac{\pi}{l} n t\right), \sin \left(\frac{\pi}{l} n t\right), \ldots\right\}, t \in[0,2 l]
$$

I would like to thank Michal Demetrian for helping me with the electronic version of this work.

## References

[1] A. Ivic, 'The Riemann zeta-function', A Willey-Interscience Pub., New York, 1985.
[2] J. Moser, 'Jacob's ladders and the almost exact asymptotic representation of the HardyLittlewood integral', (2008), arXiv:0901.3973.
[3] J. Moser, 'Jacob's ladders and the tangent law for short parts of the Hardy-Littlewood integral', (2009), arXiv:0906.0659.
[4] J. Moser, 'Jacob's ladders and the multiplicative asymptotic formula for short and microscopic parts of the Hardy-Littlewood integral', (2009), arXiv:0907.0301.
[5] J. Moser, 'Jacob's ladders and the quantization of the Hardy-Littlewood integral', (2009), arXiv:0909.3928.
[6] J. Moser, 'Jacob's ladders and the first asymptotic formula for the expression of the sixth order $|\zeta(1 / 2+i \varphi(t) / 2)|^{4}|\zeta(1 / 2+i t)|^{2}$, , (2009), arXiv:0911.1246.
[7] J. Moser, 'Jacob's ladders and the first asymptotic formula for the expression of the fifth order $Z\left[\varphi(t) / 2+\rho_{1}\right] Z\left[\varphi(t) / 2+\rho_{2}\right] Z\left[\varphi(t) / 2+\rho_{3}\right] \hat{Z}^{2}(t)$ for the collection of disconnected sets‘, (2009), arXiv:0912.0130.
[8] J. Moser, 'Jacob's ladders, the iterations of Jacob's ladder $\varphi_{1}^{k}(t)$ and asymptotic formulae for the integrals of the products $Z^{2}\left[\varphi_{1}^{n}(t)\right] Z^{2}\left[\varphi^{n-1}(t)\right] \cdots Z^{2}\left[\varphi_{1}^{0}(t)\right]$ for arbitrary fixed $n \in \mathbb{N}^{\text {}}$ (2010), arXiv:1001.1632.
[9] J. Moser, 'Jacob's ladders and the asymptotic formula for the integral of the eight order expression $\left|\zeta\left(1 / 2+i \varphi_{2}(t)\right)\right|^{4}|\zeta(1 / 2+i t)|^{4 ‘}$, (2010), arXiv:1001.2114.
[10] J. Moser, 'Jacob's ladders and the asymptotically approximate solutions of a nonlinear diophantine equation', (2010), arXiv: 1001.3019.
[11] J. Moser, 'Jacob's ladders and the asymptotic formula for short and microscopic parts of the Hardy-Littlewood integral of the function $|\zeta(1 / 2+i t)|^{4 \iota}$, (2010), arXiv:1001.4007.
[12] J. Moser, 'Jacob's ladders and the nonlocal interaction of the function $|\zeta(1 / 2+i t)|$ with $\arg \zeta(1 / 2+i t)$ on the distance $\sim(1-c) \pi(t)^{\iota},(2010)$, arXiv: 1004.0169.
[13] J. Moser, 'Jacob's ladders and the $\tilde{Z}^{2}$ - transformation of polynomials in $\ln \varphi_{1}(t)^{\prime},(2010)$, arXiv: 1005.2052.
[14] J. Moser, 'Jacob's ladders and the oscillations of the function $\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2}$ around the main part of its mean-value; law of the almost exact equality of the corresponding areas ${ }^{6},(2010)$, arXiv: 1006.4316
[15] J. Moser, 'Jacob's ladders and the nonlocal interaction of the function $Z(t)$ with the function $\tilde{Z}^{2}(t)$ on the distance $\sim(1-c) \pi(t)$ for a collection of disconneted sets‘, (2010), arXiv: 1006.5158

Department of Mathematical Analysis and Numerical Mathematics, Comenius University, Mlynska Dolina M105, 84248 Bratislava, SLOVAKIA

E-mail address: jan.mozer@fmph.uniba.sk


[^0]:    Key words and phrases. Riemann zeta-function.

