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Abstract. It is shown in this paper that there is a continuum set of orthogo-
nal systems relative to the weight function Z̃2(t). The corresponding integrals
cannot be obtained in known theories of Balasubramanian, Heath-Brown and
Ivic.

1. The first result

1.1. In this paper we obtain some new properties of the signal

(1.1) Z(t) = eiϑ(t)ζ
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that is generated by the Riemann zeta-function, where

(1.2) ϑ(t) = − t

2
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Let us remind that

(1.3) Z̃2(t) =
dϕ1(t)

dt
, ϕ1(t) =

1

2
ϕ(t)

where

(1.4) Z̃2(t) =
Z2(t)

2Φ′
ϕ[ϕ(t)]

=
Z2(t)

{

1 +O
(

ln ln t
ln t

)}

ln t

(see [12], (5.1)-(5.3)) and ϕ1(T ), T ≥ T0[ϕ1] is the Jacob’s ladder.

1.2. It is known that the system of trigonometric functions

(1.5)
{

1, cos
(π

l
t
)

, sin
(π

l
t
)

, . . . , cos
(π

l
nt
)

, sin
(π

l
nt
)

, . . .
}

is the orthogonal system on the segment [0, 2l]. In this direction the following
theorem holds true.

Theorem 1. Let J (2l) = ϕ1{J̊ (2l)}, where
J (2l) = J (2l,K) = [2lK, 2l(K + 1)],

J̊ (2l) = J̊ (2l,K) =





˚
2̄lK,

˚
!̋2l(K + 1)



 , 2lK ≥ T0[ϕ1],

2l ∈
Å
0,

T

lnT

ò
; K ∈ N.
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Then the system of functions

(1.6)
{

1, cos
(π

l
ϕ1(t)

)

, sin
(π

l
ϕ1(t)

)

, . . . , cos
(π

l
nϕ1(t)

)

, sin
(π

l
nϕ1(t)

)

, . . .
}

is the orthogonal system on J̊ (2l) with respect to the weight function Z̃2(t), i.e.
the following new system of integrals

∫

J̊ (2l)

cos
(π

l
mϕ1(t)

)

cos
(π

l
nϕ1(t)

)

Z̃2(t)dt =

ß
0 , m 6= n,
l , m = n,

∫

J̊ (2l)

sin
(π

l
mϕ1(t)

)

sin
(π

l
nϕ1(t)

)

Z̃2(t)dt =

ß
0 , m 6= n,
l , m = n,

∫

J̊ (2l)

sin
(π

l
mϕ1(t)

)

cos
(π

l
nϕ1(t)

)

Z̃2(t)dt = 0,

∫

J̊ (2l)

cos
(π

l
nϕ1(t)

)

Z̃2(t)dt = 0,

∫

J̊ (2l)

sin
(π

l
nϕ1(t)

)

Z̃2(t)dt = 0

(1.7)

for all m,n ∈ N is obtained, where

(A) t− ϕ1(t) ∼ (1 − c)π(t),

(B) 2l(K + 1) <
˚
2̄lK,

(C) ρ{J (2l); J̊ (2l)} ∼ (1− c)π(t) → ∞,

as K → ∞, and ρ denotes the distance of the corresponding segments, c is the
Euler constant and π(t) is the prime-counting function.

Remark 1. Theorem 1 gives the contact point between the functions ζ
(

1
2 + it

)

, π(t), ϕ1(t)
and the orthogonal system of trigonometric functions.

Remark 2. It is clear that the formulae (1.7) - for the modulated function Z̃2(t) -
cannot be obtained in the known theories of Balasubramanian, Heath-Brown and
Ivic (comp. [1]).

This paper is a continuation of the series [2]-[15].

2. New method of the quantization of the Hardy-Littlewood
integral (a special case)

2.1. We obtain from the first two formulae in (1.7)
∫

J̊ (2l)

cos2
(π

l
mϕ1(t)

)

Z̃2(t)dt =
1

2
|J (2l)|,

∫

J̊ (2l)

sin2
(π

l
mϕ1(t)

)

Z̃2(t)dt =
1

2
|J (2l)|

(2.1)

for all m ∈ N. Next, from (2.1) we obtain

Corollary 1.

(2.2)

∫

J̊ (2l)

Z̃2(t)dt = |J (2l)|; |J (2l)| = 2l.
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2.2. Let us consider now the problem concerning the solid of revolution corre-
sponding to the graph of the function (comp. [5])

Z̃(t), t ∈ [
˚

2̄lK,+∞), 2lK > T0[ϕ1].

Problem. To divide this solid of revolution on parts of equal volumes.

From (2.2) we obtain the resolution of this problem.

Corollary 2. Since

(a) [
˚
2̄lK,+∞) =

∞
⋃

r=1

J̊ (2l, r), J̊ (2l, r) = [

˚
!̌2l(K + r − 1),

˚
!̋2l(K + r)],

(b) π

∫

J̊ (2l,r)

Z̃2(t)dt = 2πl, r = 1, 2, 3, . . . ,

it follows that the sequence of points

{
˚
!̌2l(K + r − 1)}+∞

r=2

is the resolution to the Problem for arbitrary fixed 2l ∈ (0, T/ lnT ].

3. Generalization of the formula (2.2)

3.1. The following theorem holds true.

Theorem 2. Let

J (T, U) = [T, T + U ], J(T, U) = ϕ1{J̊ (T, U)}; J̊ (T, U) = [T̊ ,
˚

Ṫ + U ].

Then

(3.1)

∫

J̊ (T,U)

Z̃2(t)dt = |J (T, U)| = U,

for every T ≥ T0[ϕ1], U ∈ (0, T/ lnT ].

Remark 3. From (3.1) the general method for quantization of the Hardy-Littlewood
integral follows (comp. Corollary 2: 2lK → ∀ T ≥ T0[ϕ1], J (2l) → J (T, U)).

Next, we obtain, using the mean-value theorem in (3.1)

Corollary 3.

(3.2) Z̃2(ξ) =
|J (T, U)|
|J̊ (T, U)|

, ξ ∈ ξ(T̊ ,
˚

Ṫ + U), Z̃(ξ) 6= 0,

i.e.

Z̃2(ξ) : 1 = |J (T, U)| : |J̊ (T, U)|.
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3.2. Let {[T ′, T ′ + 1]} stands for the continuum set of segments [T ′, T ′ + 1] ⊂
[T, T + T/ lnT ]. Since

1

|J̊ (T ′, 1)|
= Z̃2(ξ), ξ = ξ(T ′) ∈ (T̊ ′,

˚
Ṫ ′ + 1)

then by the Riemann-Siegel formula

Z(t) = 2
∑

n≤
√

t
2π

1√
n
cos{ϑ(t)− t lnn}+O(t−1/4)

we obtain (see (1.4))

Corollary 4.

(3.3)
1»

|J̊ (T ′, 1)|
∼ 2√

ln ξ

∣

∣

∣

∣

∣

∣

∣

∣

∑

n≤
√

ξ

2π

1√
n
cos{ϑ(ξ)− ξ lnn}+O(ξ−1/4)

∣

∣

∣

∣

∣

∣

∣

∣

where ξ = ξ(T ′).

Remark 4. The formula (3.3) describes the complicated oscillations of the value

|J̊ (T ′, 1)| generated by the nonlinear transformation J (T ′, 1) = ϕ1{J̊ (T ′, 1)}.

4. Proof of Theorems 1 and 2

4.1. Let us remind that the following lemma is true (see [12], (5.1)-(5.3))

Lemma. For every integrable function (in the Lebesgue sense) f(x), x ∈ [ϕ1(T ), ϕ1(T+
U)] the following is true

(4.1)

∫ T+U

T

f [ϕ1(t)]Z̃
2(t)dt =

∫ ϕ1(T+U)

ϕ1(T )

f(x)dx, U ∈ (0, T/ lnT ],

where t− ϕ1(t) ∼ (1− c)π(t).

Remark 5. The formula (4.1) is true also in the case when the integral on the right-
hand side of eq. (4.1) is convergent but not absolutely (in the Riemann sense).

4.2. If ϕ1{[T̊ ,
˚

Ṫ + U ]} = [T, T+U ] then we obtain from (4.1) the following formula

(4.2)

∫

˚
T̄+U

T̊

f [ϕ1(t)]Z̃
2(t)dt =

∫ T+U

T

f(x)dx, U ∈ (0, T/ lnT ].

Next, in the case [T, T + U ] = [2lK, 2lK + 2l] = J (2l), we have

(4.3)

∫

J (2l)

F (t)dt =

∫ 2l

0

F (t)dt

for every (integrable) 2l-periodic function F (t). Then from the known formulae
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∫

J (2l)

cos
(π

l
mϕ1(t)

)

cos
(π

l
nϕ1(t)

)

dt =

ß
0 , m 6= n,
l , m = n,

∫

J (2l)

sin
(π

l
mϕ1(t)

)

sin
(π

l
nϕ1(t)

)

dt =

ß
0 , m 6= n,
l , m = n,

∫

J (2l)

sin
(π

l
mϕ1(t)

)

cos
(π

l
nϕ1(t)

)

dt = 0,

∫

J (2l)

cos
(π

l
nϕ1(t)

)

dt = 0,

∫

J (2l)

sin
(π

l
nϕ1(t)

)

dt = 0, m, n ∈ N,

by the Z̃2-transformation (see (4.2), (4.3); [T̊ ,
˚

Ṫ + U ] = J̊ (2l)) the formulae (1.7)
follow. The properties (B), (C) in Theorem 1 are identical with [13], (A1), (B1).

4.3. The formula (3.1) follows from (4.2) in the case f(x) ≡ 1.

5. Another type of the orthogonal systems

It follows from (4.2) that the continuum set S(T, 2l) of the systems
{

|Z̃(t)|, |Z̃(t)| cos
(π

l
(ϕ1(t)− T )

)

, |Z̃(t)| sin
(π

l
(ϕ1(t)− T )

)

, . . . ,

|Z̃(t)| cos
(π

l
n(ϕ1(t)− T )

)

, |Z̃(t)| sin
(π

l
n(ϕ1(t)− T )

)

, . . .
}

,

t ∈ [T̊ ,
˚

Ṫ + 2l]

for all

T ≥ T0[ϕ1], 2l ∈ (0, T/ lnT ]

is the set of orthogonal systems on [T̊ ,
˚

Ṫ + 2l].

Remark 6. Let us call the elements of the system S(T, 2l) for fixed 2l ∈ (0, T/ lnT ]
and for all T ≥ T0[ϕ1] as the clones of the known orthogonal trigonometric system

{

1, cos
(π

l
t
)

, sin
(π

l
t
)

, . . . , cos
(π

l
nt
)

, sin
(π

l
nt
)

, . . .
}

, t ∈ [0, 2l].
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of this work.
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