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Abstract

For a Coxeter system (G,S) the multi-parametric alternating subalgebra H+(G) of the Hecke
algebra and the alternating subgroup B+(G) of the braid group are defined. Two presentations
for H+(G) and B+(G) are given; one generalizes the Bourbaki presentation for the alternating
subgroups of Coxeter groups, another one uses generators related to edges of the Coxeter graph.

1. Introduction

Let (G,S) be an arbitrary Coxeter system. The alternating subgroup G+ is an index 2 subgroup of
the Coxeter group G (we will omit the reference to S, as in G+ or, see below, in H(G), etc). In
[1], a presentation of the alternating group G+ is suggested. In this “Bourbaki” presentation, one
vertex of the Coxeter graph plays a particular role. In [10], a different presentation has been given
for alternating subgroups of Coxeter groups. In this presentation, the generators are related to the
oriented edges of the Coxeter graph; for an irreducible Coxeter system (G,S), no particular vertex is
distinguished.

The Hecke algebra H(G) associated to the Coxeter group G is a flat deformation of the group
ring of G. In [11], an analogue of the Hecke algebra is defined, in the one-parameter setting, for the
alternating subgroups of the Coxeter groups. Here we extend this definition to the general multi-
parameter situation and call the resulting algebra, denoted by H+(G), “the alternating subalgebra of
the Hecke algebra”. The algebra H+(G) is an index 2 subalgebra (see Section 2 for precise definitions)
of the Hecke algebra H(G) and is a flat deformation of the group ring of G+. The algebra H+(G) is
among the deformations of the group ring of G+ studied in [5].

In addition, associated to a Coxeter system (G,S), there is a braid group B(G). Similarly to the
alternating subgroup G+ of G, we define an “alternating subgroup” B+(G) of the braid group B(G).

We give a presentation à la Bourbaki for the alternating subalgebra H+(G) of the Hecke algebra
and for the alternating subgroup B+(G) of the braid group B(G). The Bourbaki presentation of B+(G)
(as well as the Bourbaki presentation of G+) can be obtained by the Reidemeister–Schreier rewriting
process [12, 13]; we present however a different proof. Then we prove a presentation of H+(G) and
B+(G) with generators related to the oriented edges of the Coxeter graph.

One advantage of the presentation of H+(G) with generators related to edges of the Coxeter
graph is that, passing from the defining relations for G+ to the defining relations for H+(G), only
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the characteristic equations for the generators are deformed. This is similar to the situation of the
Coxeter group G and its Hecke algebra H(G).

For type A, the presentations for the chain of algebras H+(An) and the chain of groups B+(An)
with generators related to edges of the Coxeter graph are local and stationary, in the sense of [14]; for
types B and D these presentations of the chains of algebras H+(Bn) and H

+(Dn), and the chains of
groups B+(Bn) and B+(Dn) are local and eventually stationary. This extends results obtained in [10]
for the alternating subgroups of Coxeter groups.

The paper is organized as follows. In Section 2 we give the definition of the alternating subalgebra
H+(G) of the Hecke algebra, as the even, for a certain grading, subalgebra of the Hecke algebra H(G).
The Bourbaki presentation of H+(G) and the presentation of H+(G) with generators related to edges
of the Coxeter graph are proved in Sections 3 and 4. In Section 5 we give analogues of these two
presentations for the alternating subgroups of the braid groups. In Appendix, we obtain a recurrence
relation and the generating function for the coefficients in the defining relations of the alternating
subalgebras of the Hecke algebra.

Notation. Certain defining relations in this text involve a parameter m ∈ Z>0 ∪∞. It is understood
that if m = ∞, the relation is absent.

For any non-negative integer k, {a, b}k denotes the product abab . . . with k factors (by convention
{a, b}0 := 1); for example {a, b}1 := a, {a, b}2 := ab and {a, b}3 := aba. We also set, for any
non-negative integer k, {a, b}−k := {b, a}k.

2. Definition of the alternating subalgebra of the Hecke algebra

Let (G,S) be a Coxeter system: S is the set of generators, S = {s0, . . . , sn−1}; the defining relations
of the Coxeter group G are encoded by a symmetric matrix m with mii = 1 and 2 ≤ mij ∈ Z>0 ∪∞
for 0 ≤ i < j ≤ n− 1:

G = 〈 s0, . . . , sn−1| (sisj)
mij = 1 for i, j = 0, . . . , n − 1 such that i ≤ j 〉. (1)

The sign character is the unique homomorphism ǫ : G → {−1, 1} such that ǫ(si) = −1 for i =
0, . . . , n− 1. Its kernel G+ := ker(ǫ) is called the alternating subgroup of G.

Recall that si and sj are conjugate in the group G iff there are some i1, . . . , ir ∈ {0, . . . , n − 1}
such that mii1 ,mi1i2 , . . . ,mirj are odd, see, e.g., [6]. Let (q0, . . . , qn−1) be a set of indeterminates such
that qi = qj if mij is odd. Let A be the ring of Laurent polynomials in qi, i = 0, . . . , n − 1, over C.
The Hecke algebra H(G) is the algebra over A generated by g0, . . . , gn−1 with the defining relations:

g2i = (qi − q−1
i )gi + 1 for i = 0, . . . , n− 1, (2)

{gi, gj}mij
= {gj , gi}mij

for i, j = 0, . . . , n− 1 such that i < j. (3)

The algebra H(G) is a flat deformation of the group ring AG: H(G) has a basis whose elements are
in one-to-one correspondence with the elements of G (see chap. IV, sec. 1 exercise 23 in [1], [3] and
[4] for different proofs).

The assignment gi 7→ −g−1
i extends to an involutive homomorphism φ : H(G) → H(G) of algebras,

φ2 = id. Thus, H(G) = H+(G)⊕H−(G), whereH+(G) andH−(G) are eigenspaces of φ corresponding
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to eigenvalues +1 and −1; the involution φ defines a Z2-grading on H(G). The subalgebra H+(G) of
even elements is called the alternating subalgebra of the Hecke algebra H(G).

Let B = B+ ⊕ B− be a Z2-graded associative algebra. Assume that B− contains an invertible
element f . Then the left multiplication by f gives an isomorphism of vector spaces B+ and B−. We
then say that B+ is a subalgebra of index 2 of B. Define the following elements of H(G):

fi :=
1

qi + q−1
i

(gi + g−1
i ) =

2gi − (qi − q−1
i )

qi + q−1
i

, i = 0, . . . , n− 1.

Since f2i = 1 and φ(fi) = −fi, i = 0, . . . , n − 1, H+(G) is a subalgebra of index 2 of H(G); therefore,
H+(G) is a flat deformation of the group ring AG+.

The elements fi, i = 0, . . . , n− 1, form a generating set of H(G). The algebra H+(G) is generated
by the elements fifj, i, j = 0, . . . , n − 1 and i 6= j.

Let βi := (qi − q−1
i )/(qi + q−1

i ), i = 0, . . . , n − 1. Since the expression {gi, gj}mij
− {gj, gi}mij

is

antisymmetric with respect to i ↔ j, the defining relations (3) of H(G), in terms of the elements fi,
i = 0, . . . , n − 1, can be rewritten in the form

mij
∑

k=1

a
(mij )
k

(

{fi, fj}k − {fj, fi}k
)

+

mij−1
∑

k=0

b
(mij)
k

(

{fi, fj}k + {fj, fi}k
)

= 0 . (4)

The leading coefficient a
(mij )
mij is non-zero and we normalize it to be a

(mij )
mij = 1. With this choice,

a
(mij )
k , b

(mij )
k ∈ Z[βi, βj ] are polynomials in βi, βj with integer coefficients; a

(mij)
k is symmetric while

b
(mij)
k is antisymmetric with respect to βi ↔ βj .

Lemma 1. We have

a
(mij)
k = 0 if k 6≡ mij (mod 2), (5)

b
(mij )
k = 0 for any k. (6)

Proof. The algebra Dij with the generators gi and gj and the defining relations (2)–(3) is a flat defor-
mation of the group ring of the dihedral group. The elements 1, {gi, gj}k , {gj, gi}k, k = 1, . . . ,mij −1,
and {gi, gj}mij

form a basis B of Dij . Denote by ρij the expression in the left hand side of (4). As φ

is an automorphism of Dij, the relation φ(ρij) = 0 holds in the algebra Dij. Assume that there exists

k 6≡ mij(mod 2) such that a
(mij)
k 6= 0 or b

(mij )
k 6= 0. Then ρij − (−1)mijφ(ρij) = 0 can be rewritten as

a relation between the elements of B, a contradiction. Thus,

a
(mij )
k = 0 and b

(mij)
k = 0 if k 6≡ mij (mod 2). (7)

If mij is odd then βi = βj , so the expression {gi, gj}mij
−{gj , gi}mij

, rewritten in terms of the elements

fi, fj, is antisymmetric with respect to fi ↔ fj; thus b
(mij )
k vanish. Assume, for mij even, that there

exists an even k such that b
(mij )
k 6= 0. Then, taking into account (7), we can rewrite ρij + fiρijfi as a

relation between the elements of B, a contradiction. �
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To conclude, we obtain the following set of defining relations of H(G):

f2i = 1 for i = 0, . . . , n− 1, (8)

and, multiplying the relation (4) by (−1)mij {fi, fj}mij
,

mij
∑

k=1

a
(mij)
k

(

(fifj)
mij+k

2 − (fifj)
mij−k

2

)

= 0 for i, j = 0, . . . , n − 1 such that i < j (9)

with the restriction (5).
For the types A and B, the algebra H+(G) was introduced in [8, 9]. For equal parameters, qi = q,

the coefficients a
(mij )
k have been calculated in [11]. We study the coefficients a

(mij)
k with arbitrary qi

and qj in the Appendix.

3. Bourbaki presentation

Let (G,S) be a Coxeter system with the Coxeter matrix m. We first recall the Bourbaki presentation
of G+ suggested in [1], chap. IV, sec. 1, exercise 9 (see [2] for a proof). The alternating group G+ is
isomorphic to the group generated by R1, . . . , Rn−1 with the defining relations:

{

Rm0i

i = 1 for i = 1, . . . , n− 1,

(R−1
i Rj)

mij = 1 for i, j = 1, . . . , n − 1 such that i < j.
(10)

The isomorphism with G+ is given by Ri 7→ s0si for i = 1, . . . , n − 1. The Bourbaki presentation of
the alternating group G+ depends on the choice of a generator carrying the subscript 0.

We prove in this Section a presentation of H+(G) similar to the Bourbaki presentation (10) of G+.

Proposition 2. For a Coxeter system (G,S) with the Coxeter matrix m, the alternating subalgebra

H+(G) of the Hecke algebra is isomorphic to the algebra A with the generators Y ±1
1 , . . . , Y ±1

n−1 and the

defining relations















m0i
∑

k=1

a
(m0i)
k

(

Y
m0i+k

2

i − Y
m0i−k

2

i

)

= 0 for i = 1, . . . , n− 1,

mij
∑

k=1

a
(mij )
k

(

(Y −1
i Yj)

mij+k

2 − (Y −1
i Yj)

mij−k

2

)

= 0 for i, j = 1, . . . , n− 1 such that i < j.
(11)

Proof. Define a map ψ from the set of generators {Y1, . . . , Yn−1} to the algebra H+(G) by

Yi 7→ f0fi for i = 1, . . . , n − 1.

Due to the relations (8)–(9), this map extends to a (surjective) homomorphism, which we denote again
by ψ, from the algebra A to H+(G). We shall prove that ψ is an isomorphism.

The left hand side of the first relation in (11) is invariant under the following sequence of operations:
replace Yi by Y

−1
i and then multiply by −Y m0i

i . One can verify directly that the left hand side of the
second relation in (11) is invariant under the following sequence of operations: replace Yi by Y

−1
i , Yj
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by Y −1
j , then multiply from the left by −Y −1

j (YjY
−1
i )mij and from the right by Yj. Therefore the map

defined by ω : Yi 7→ Y −1
i extends to an involutive automorphism of the algebra A.

With the help of ω, we define the cross-product Ã of the algebra A with the cyclic group C2 with
two elements. Let f be the generator of the group C2. As a vector space, Ã is isomorphic to A⊗AC2.
The generators of Ã are the elements Y ±1

1 , . . . , Y ±1
n−1 with the defining relations (11), and in addition

the generator f with the defining relations f2 = 1 and fYi = Y −1
i f , i = 1, . . . , n− 1. The map

f 7→ f0 and Yi 7→ f0fi for i = 1, . . . , n− 1,

extends to a morphism of algebras ψ1 : Ã → H(G). The verification is straightforward (use (8)-(9)).
On the other hand, one directly verifies that the map

f0 7→ f and fi 7→ fYi for i = 1, . . . , n− 1,

extends to a morphism of algebras ψ2 : H(G) → Ã. Moreover, the morphisms ψ1 and ψ2 are mutually
inverse. The restriction of ψ2 to H+(G) is the morphism inverse to ψ. �

4. Presentation using edges of the Coxeter graph

Let (G,S) be a Coxeter system with the Coxeter matrix m. We first recall the presentation given in
[10] of G+; it uses edges of the Coxeter graph G of (G,S).

Recall that vertices, indexed by the subscripts 0, 1, . . . , n−1, of the Coxeter graph G are in one-to-
one correspondence with the generators s0, . . . , sn−1 of G; vertices i and j are connected if and only
if mij ≥ 3 and then the edge between i and j is labeled by the number mij. In the sequel the edge
between vertices i and j is denoted by (ij).

If G is not connected, let G1,G2, . . . ,Gm be its connected components. We choose an arbitrary
vertex ia of Ga for a = 1, . . . ,m; we add an edge between il and il+1 for l = 1, . . . ,m − 1 and label
it by the number 2. The obtained connected graph Gc we call a connected extension of the Coxeter
graph G.

The presentation in [10] uses an orientation - chosen arbitrarily - of edges of the connected extension
Gc of the Coxeter graph. For concreteness, if there is an edge between i and j with i < j, we orient it
from i to j. We associate a generator rij to each oriented edge of Gc. For a generator rij we denote
by rji the inverse, rji := r−1

ij .

Definition 3. Two edges (ij) and (kl) of Gc are said to be not connected if {i, j} ∩ {l,m} = ∅ and

there is no edge connecting any of the vertices {i, j} with any of the vertices {l,m}.

The alternating group G+ is isomorphic [10] to the group with the generators rij and the defining
relations



























(rij)
mij = 1 for all generators rij,

rii1ri1i2 . . . riai = 1 for cycles with edges (ii1), (i1i2) . . . , (iai),

(rijrjk)
2 = 1 for rij , rjk such that i < k and mik = 2,

(rijrjkrkl)
2 = 1 for rij , rjk, rkl such that i < l and mil = 2,

rijrlm = rlmrij if (ij) and (lm) are not connected.

(12)
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The isomorphism with G+ is given by rij 7→ sisj for all generators rij .
We generalize this presentation to a presentation of H+(G). Associate an element yij to each

generator rij of G+, and set, for all yij, yji := y−1
ij .

Proposition 4. The alternating subalgebra H+(G) of the Hecke algebra is isomorphic to the algebra

Y with the generators yij and the defining relations



















































mij
∑

k=1

a
(mij )
k (y

mij+k

2

ij − y
mij−k

2

ij ) = 0 for all generators yij,

yii1yi1i2 . . . yiai = 1 for cycles with edges (ii1), (i1i2) . . . , (iai),

(yijyjk)
2 = 1 for yij, yjk such that i < k and mik = 2,

(yijyjkykl)
2 = 1 for yij, yjk, ykl such that i < l and mil = 2,

yijylm = ylmyij if (ij) and (lm) are not connected.

(13)

(14)

(15)

(16)

(17)

Let c1, . . . , cl be a set of generators of the fundamental group of Gc. In the set of the defining relations
it is sufficient to impose the relation (14) for the cycles ca, a = 1, . . . , l.
Proof of the Proposition. Notice that if m0i = 2 then the first relation in (11) reduces to Y 2

i = 1 and
also that, if mij = 2 then the second relation in (11) reduces to (Y −1

i Yj)
2 = 1. Due to this fact, the

proof is very similar to the proof in [10] in the classical situation (that is, for the presentation (12) of
G+). So we only sketch it. The following map

yij 7→

{

Y −1
i Yj if i 6= 0,

Yj if i = 0,
(18)

extends to an algebra homomorphism Φ : Y → H+(G).
Define now the map Ψ from the set of generators {Y1, . . . , Yn−1} of H+(G) to Y by

Ψ : Yi 7→ Ỳi := y0i1yi1i2 . . . yiki for all i = 1, . . . , n− 1, (19)

where (0, i1, i2, . . . , ik, i) is an arbitrary path from the vertex 0 to the vertex i in Gc. The map Ψ is
well-defined since the element Ỳi does not depend on the chosen path, due to the relation (14). The
map Ψ extends to an algebra homomorphism from H+(G) to Y, which we still denote by Ψ. Moreover
Ψ and Φ are mutually inverse. �

Remark. The defining relations (13)–(17) of the algebra H+(G) are deformations of the defining
relations (12) of the group G+. Only the characteristic equation for the generators is deformed. This
is similar to the Hecke algebra situation (passing from the relations (1) to the relations (2)–(3), only
the characteristic equation for the generators is deformed). This phenomenon does not appear in the
deformation of the Bourbaki presentation (10) of G+ to the Bourbaki presentation (11) of H+(G).
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5. Alternating subgroups of braid groups

5.1 Definition

Let (G,S) be a Coxeter system with the Coxeter matrix m. The braid group B(G) is the group
generated by g0, . . . , gn−1 with the defining relations:

{gi, gj}mij
= {gj , gi}mij

for i, j = 0, . . . , n− 1 such that i < j. (20)

Extend the sign character to the group B(G), that is, define the homomorphism ǫ : B(G) → {−1, 1}
by ǫ(gi) = −1 for i = 0, . . . , n − 1. The kernel, B+(G) := ker(ǫ), we call the alternating subgroup
of the braid group B(G). The group B+(G) is generated by the elements gigj (and their inverses),
i, j = 0, . . . , n− 1.

Remark. There is a natural Z2-grading of the group ring of B(G) defined by ǫ. Let π be the natural
surjection of the group ring of B(G) to the Hecke algebra H(G) (the quotient by the relation (2)).
Recall the grading on H(G) defined by the involution φ. It should be noted that φπ 6= πǫ, the image
of B+(G) under π does not belong to H+(G); in other words, the grading on H(G) is not induced by
π from the grading on the group ring of B(G).

5.2 Bourbaki presentation for alternating subgroups of braid groups

We extend the Bourbaki presentations (10) and (11) of the group G+ and the algebra H+(G) to the
group B+(G). The presentation depends on a choice of a generator g0, carrying the subscript 0, among
the generators of B(G).

Proposition 5. For a Coxeter system (G,S) with the Coxeter matrix m, the alternating sub-

group B+(G) of the braid group is isomorphic to the group B with the generators R0, . . . ,Rn−1 and

R′
0, . . . ,R

′
n−1 and the defining relations















R′
0 = 1 ,

{R′
i,Rj}mij

= {R′
j ,Ri}mij

for i, j = 0, . . . , n− 1 such that i < j,

{Ri,R
′
j}mij

= {Rj ,R
′
i}mij

for i, j = 0, . . . , n− 1 such that i < j.

(21)

Proof. Define a map ψ from the set of generators of B to B+(G) by

Ri 7→ g0gi, i = 0, . . . n− 1, and R
′
i 7→ gig

−1
0 , i = 0, . . . n− 1. (22)

One directly verifies that ψ extends to a homomorphism, which we still denote by ψ, from B to B+(G).
Moreover, the homomorphism ψ is surjective. Indeed, for i, j = 0, . . . , n− 1, we have gigj = ψ(R′

iRj).
We shall prove that ψ is actually an isomorphism.

Define a map ω from the the set of generators of B to B by

Ri 7→ R
′
iR0, i = 0, . . . n− 1, and R

′
i 7→ R

−1
0 Ri, i = 0, . . . n− 1.

It is straightforward to verify that ω defines an automorphism of B. Moreover, the automorphism ω2

is inner: for any x ∈ B, we have ω2(x) = R
−1
0 xR0.
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The automorphism ω generates the action of the infinite cyclic group C on B. Let B ⋊ C be the
corresponding semidirect product; the group B⋊C is generated by the generators of B and an element
g, and we add to the defining relations of B the relation gxg−1 = ω(x) for each generator x of B.

Now let Q be the quotient of the group B ⋊ C by the relation g2 = R
−1
0 . The following map

g 7→ g−1
0 , Ri 7→ g0gi, i = 0, . . . , n − 1, and R

′
i 7→ gig

−1
0 , i = 0, . . . , n− 1,

extends to a homomorphism ψ1 from Q to B(G). The verification is the same as for the map ψ, given
by (22), with, in addition, the verification of the relations in Q concerning the generator g; these are
satisfied by construction.

The following map
gi 7→ g−1

Ri, i = 0, . . . , n− 1,

extends to a homomorphism ψ2 from B(G) to Q. We omit the straightforward calculations here.
Moreover, the morphisms ψ1 and ψ2 are mutually inverse. The restriction of ψ2 to B+(G) is the

inverse of ψ; thus, the homomorphism ψ, given by (22), is the required isomorphism between B and
B+(G). �

Remarks. (i) Denote by τ the standard anti-automorphism of the group B(G), sending gi to gi,
i = 0, . . . , n − 1. The action of τ on the generators of the Bourbaki presentation is given by

Ri → R
′
iR0 and R

′
i → R

−1
0 Ri, i = 0, . . . , n − 1.

(ii) The Coxeter group G is the quotient of the braid group B(G) by the relations g2i = 1,
i = 0, . . . , n − 1. In the alternating setting, we have a similar result; the alternating subgroup G+

of the Coxeter group G is the quotient of the group B+(G) by the relations R0 = 1 and R′
i = R

−1
i ,

i = 1, . . . , n − 1. Indeed, in this quotient, the relations (21) reduce to

{

R
m0j

j = 1 for j = 1, . . . , n − 1,

(R−1
i Rj)

mij = 1 for i, j = 1, . . . , n− 1 such that i < j.

These are the defining relations of the Bourbaki presentation of G+, see (10).

(iii) The Reidemeister–Schreier rewriting process [12, 13] (see e.g. [7] for a more recent exposition),
allows to find a presentation of a subgroup H of a group G, given a presentation of G and a suitable
information about H. We apply this process to the subgroup B+(G) of B(G). Decompose B(G) into
the disjoint union of its right cosets with respect to B+(G), B(G) = B+(G) ∪ B+(G)g0. For any
a ∈ B(G), define a ∈ {1, g0} by B+(G)a = B+(G)a and let S := {g0, g1, . . . , gn−1}. The Reidemeister–
Schreier rewriting process asserts that B+(G) is isomorphic to the group with a set of generators S

and a set of defining relations D defined as follows.

• Elements of S are in one-to-one correspondence with elements γ(a, g) := ag(ag)−1, g ∈ S and
a ∈ {1, g0}, such that ag(ag)−1 6= 1; we obtain generators Ri ∈ S, i = 0, . . . , n − 1, corresponding
to g0gi(g0gi)

−1 = g0gi, and generators R′
i ∈ S, i = 1, . . . , n − 1, corresponding to gi(gi)

−1 = gig
−1
0 .

Define for convenience R′
0 := 1.

• For a word w= gi1 . . . gik in the the alphabet S let π(w) := γ̂(1, gi1)γ̂(gi1 , gi2) . . . γ̂(gi1 . . . gik−1
, gik)

where γ̂(1, g0) := R′
0 = 1 and, otherwise, γ̂(a, g) is the generator corresponding to γ(a, g). The

relations π(a {gi, gj}mij
)=π(a {gj , gi}mij

), a ∈ {1, g0} and i, j = 0, . . . , n − 1, i < j, form the set D.
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It is straightforward to see that the relations in D are {R′
i,Rj}mij

= {R′
j ,Ri}mij

and {Ri,R
′
j}mij

=

{Rj ,R
′
i}mij

, i, j = 0, . . . , n− 1, i < j.

Thus, the presentation of the Proposition 5 coincides with the one obtained by the Reidemeister–
Schreier rewriting process (with {1, g0} as the “Schreier transversal”) for the subgroup B+(G) of
B(G). For the alternating subgroup G+ of the Coxeter group G the Reidemeister–Schreier rewriting
process leads to the presentation (10).

(iv) The set of generators in the presentation of B+(G) given by the Proposition 5 is, in general,
not minimal. For example, if there is some j ∈ {1, . . . , n − 1} such that m0j = 2, then the second
and third relations in (21) (for i = 0) imply that R′

j = RjR
−1
0 = R

−1
0 Rj . Furthermore, if there is some

j ∈ {1, . . . , n− 1} such that m0j is odd, then the second and third relations in (21) (for i = 0) imply

that R
m0j−1

2

j = (R′
jR0)

m0j−1

2 R′
j and R0(R

′
jR0)

m0j−1

2 = R

m0j+1

2

j . Thus, we have that

R
′
j = R

−
m0j+1

2

j R0R

m0j−1

2

j for j = 1, . . . , n− 1 such that m0j is odd.

Nevertheless, in general, both sets, Ri and R′
i, of generators are needed. Consider, for example,

the braid group U generated by g0 and g1 and the defining relations g0g1g0g1 = g1g0g1g0 (that is,
{g0, g1}4 = {g1, g0}4). In this case, the generators for the alternating subgroup suggested by the
Proposition 5 are g20 , g0g1 and g1g

−1
0 . The element g1g

−1
0 does not belong to the subgroup generated

by g20 and g0g1. Indeed, let Ū be the quotient of U by the normal subgroup generated by g20 and let ḡi be
the images of gi in Ū . It is known that Ū is isomorphic to S2⋉C

2, where S2 is the symmetric group on
2 elements and C is the infinite cyclic group; S2 acts on C

2 by permuting the two copies of C. Suppose
that there exists an integer x such that ḡ1ḡ0 = (ḡ0ḡ1)

x. If x = 1, that is ḡ1ḡ0 = ḡ0ḡ1, then the group Ū
would be isomorphic to S2 ×C, which is impossible. Assume that x 6= 1. We have (ḡ1ḡ0)

2 = (ḡ0ḡ1)
2x

which, together with the defining relation (ḡ1ḡ0)
2 = (ḡ0ḡ1)

2 leads to (ḡ0ḡ1)
2(x−1) = 1, contradicting to

the fact that Ū is infinite. A similar calculation shows that the element g0g1 ∈ U does not belong to
the subgroup generated by g20 and g1g

−1
0 .

(v) The elements Ri, i = 0, . . . , n− 1, generate the alternating subgroup of the braid group of any
simply-laced type, see the remark (v). We give the presentation for the alternating subgroup of the
braid group of type A. Label the generators of the braid group B(An) in the standard way; that is,
B(An) is generated by g0, g1, . . . , gn−1 with the defining relations:

{

gigi+1gi = gi+1gigi+1 for i = 0, . . . , n− 2,

gigj = gjgi for i, j = 0, . . . , n− 1 such that |i− j| > 1.
(23)

The group B+(An) is isomorphic to the group generated by R0,R1, . . . ,Rn−1 with the defining relations:






















































R0R1R0 = R2
1R

−1
0 R2

1,

R0Rj = RjR0 for j = 2, . . . , n − 1,

R2R1R2 = R2
1R

−1
0 R2R

−1
0 R2

1,

R2R
2
1R2 = R0R1R2R

−1
0 R1R0,

R2
1Rj = RjR1R0, RjR

2
1 = R0R1Rj for j = 3, . . . , n − 1,

RiRi+1Ri = Ri+1RiRi+1 for i = 2, . . . , n− 2,

RiRj = RjRi for i, j = 2, . . . , n− 1 such that |i− j| > 1.

(24)
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The verification that this presentation is equivalent to (21) for the type A is straightforward once one
notices that here we have R′

1 = R
−1
0 R2

1R
−1
0 and R′

j = RjR
−1
0 = R

−1
0 Rj for j = 2, . . . , n− 1.

It is interesting to note that in terms of generators R̄0 := R
−1
0 and Ri, i = 1, . . . , n − 1, one can

rewrite all relations (24) without inverses of generators and define thus a monoid of positive elements.

5.3 Presentation using edges of the Coxeter graph of alternating subgroups of

braid groups

The group B+(G) admits a presentation similar to the presentations of the group G+ and the algebra
H+(G), see (12) and the Proposition 4. Associate, as in Section 4, a generator rij to any oriented
edge (the edges are oriented from i to j if i < j) of the graph Gc. Set rji := r

−1
ij for all generators rij.

Proposition 6. For a Coxeter system (G,S) with the Coxeter matrix m, the alternating subgroup

B+(G) of the braid group is isomorphic to the group i generated by the elements rij and t0, . . . , tn−1

with the defining relations



















































rii1ri1i2 . . . riai = 1 for cycles with edges (ii1), (i1i2) . . . , (iai),

rijrjktk = rkjrjiti, tkrijrjk = rkjrjiti if i < k and mik = 2,

rijrjkrkltl = rlkrkjrjiti, tlrijrjkrkl = rlkrkjrjiti if i < l and mil = 2,

(rijtj)
mij

2 = (rjiti)
mij

2 , (tjrij)
mij

2 = (rjiti)
mij

2 if mij > 2 and mij is even,

(rijtj)
mij−1

2 rij = (rjiti)
mij−1

2 , (rijtj)
mij+1

2 = ti(rjiti)
mij−1

2 if mij > 2 and mij is odd,

rijrlm = rlmrij if (ij) and (lm) are not connected.

(25)

Proof. The proof is similar to the proof of the Proposition 4. We skip the calculations and indicate
below only the mutually inverse isomorphisms between the group i and the group B+(G) with the
presentation of the Proposition 5:

rij 7→ R
′
iR

′−1
j and ti 7→ R

′
iRi, i = 0, . . . , n − 1,

and

R0 7→ t0, R
′
0 7→ 1, Ri 7→ r0i1ri1i2 . . . riaiti and R

′
i 7→ riia . . . ri2i1ri10, i = 1, . . . , n− 1,

where, for i = 1, . . . , n− 1, (0, i1, i2, . . . , ia, i) is a path in the graph Gc from the vertex 0 to the vertex
i. The second map is well-defined since the image of Ri (respectively, of R

′
i) does not depend on the

chosen path, due to the first relation in (25). �

The isomorphism between the group generated by the elements rij and t0, . . . , tn−1 with the defining
relations (25) and the subgroup B+(G) of the braid group B(G) is given by:

ti 7→ g2i , i = 0, . . . , n− 1, and rij 7→ gig
−1
j , for all generators rij. (26)

Remarks. (i) The action of the standard anti-automorphism τ (see remark (i) after the proof of the
Proposition 5) on the generators of the presentation given by the Proposition 6 is

ti 7→ ti, i = 0, . . . , n− 1, and rij 7→ t
−1
j rjiti, for all generators rij.
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(ii) This remark is the analogue, for this presentation, of the remark (ii) after the proof of the
Proposition 5. The alternating subgroup G+ of the Coxeter group G is the quotient of the group
B+(G), with the presentation (25), by the relations ti = 1, i = 0, . . . , n − 1. Indeed, in this quotient,
the relations (25) reduce immediately to the defining relations (12) of G+.

(iii) In the type A situation, with the same labeling of the Coxeter graph as in remark (v) after
the proof of the Proposition 5, the presentation using edges of the Coxeter graph is the following. Set
ri := ri−1i, i = 1, . . . , n − 1. The group B+(An) is isomorphic to the group generated by r1, . . . , rn−1

and t0, . . . , tn−1 with the defining relations:






















riri+1ti+1 = r
−1
i+1r

−1
i ti−1, ti+1riri+1 = r

−1
i+1r

−1
i ti−1 for i = 1, . . . , n− 2,

riri+1ri+2ti+2 = r
−1
i+2r

−1
i+1r

−1
i ti−1, ti+2riri+1ri+2 = r

−1
i+2r

−1
i+1r

−1
i ti−1 for i = 1, . . . , n− 3,

ritiri = r
−1
i t

−1
i , (riti)

2 = ti−1r
−1
i ti−1 for i = 1, . . . , n− 1,

rirj = rjri for i, j = 1, . . . , n− 1 such that |i− j| > 2.

(27)

It is immediate to check (with the help of the isomorphism (26)) that the following relations are
satisfied

rirj = rjri, ritj = tjri, titj = tjti if |i− j| > 2.

So the presentation (27) of the chain of the groups B+(An) is local and stationary, in the sense of [14].

Appendix. Coefficients in the defining relations of the alternating

subalgebras

The coefficients a
(mij )
k appearing in (9), (11) and (13) are easy to calculate for small mij . We define,

in this Appendix, certain integers α
(m)
k,l,l′ in terms of which the elements a

(mij )
k , for any mij, can be

expressed. We give the recurrent (in m) relations for α
(m)
k,l,l′ and find the generating function for α

(m)
k,l,l′.

In the one-parameter situation, we recover a closed formula from [11] for a
(mij )
k .

Recursion. Let f1 and f2 be the generators of an algebra with the defining relations f21 = f22 = 1.

Define the elements α
(m)
k,l,l′ ∈ Z, with m, l, l′ ∈ Z≥0 and k ∈ Z, by

{(f1 + x), (f2 + y)}m =
∑

l,l′≥0

xlyl
′
∑

k∈Z

α
(m)
k,l,l′ {f1, f2}k . (28)

By construction, for a given m, only a finite number of elements α
(m)
k,l,l′ are non-zero; we have:

α
(m)
k,l,l′ 6= 0 ⇒ |k| ≤ m− l − l′, k ≡ m− l − l′ (mod 2), l ≤ ⌊(m+ 1)/2⌋ and l′ ≤ ⌊m/2⌋ .

Here ⌊x⌋ is the integer part of x. The coefficients a
(mij )
k , in terms of α

(m)
k,l,l′, read

a
(mij )
k =

∑

l,l′≥0

βliβ
l′

j (α
(mij )
k,l,l′ − α

(mij )
−k,l′,l) .
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Lemma 7. The elements α
(m)
k,l,l′ satisfy the following initial condition and recursion:

α
(0)
k,l,l′ = δ0k δ

0
l δ

0
l′ , (29)

α
(m+1)
k,l,l′ = α

(m)
k−1,l′,l + α

(m)
−k,l′,l−1 , (30)

where δij is the Kronecker delta.

Proof. The initial condition (29) is obviously verified. For the recurrence relation (30), one only has
to notice that {(f1 + x), (f2 + y)}m+1 = (f1 + x) {(f2 + y), (f1 + x)}m and then use the induction
hypothesis and f1 {f2, f1}k = {f1, f2}k+1 for any k ∈ Z. �

Generating function. Let C(t, u, v, s) :=
∑

m,l,l′≥0

∑

k∈Z

α
(m)
k,l,l′ t

mulvl
′

sk. The formulas (29)–(30) imply

C(t, u, v, s)− 1 = tsC(t, v, u, s) + tuC(t, v, u, s−1) . (31)

Exchanging, in (31), u and v, or replacing s by s−1, or doing both simultaneously, we obtain the
following system of equations:









1 −ts 0 −tu
−ts 1 −tv 0
0 −tu 1 −ts−1

−tv 0 −ts−1 1

















C(t, u, v, s)
C(t, v, u, s)
C(t, u, v, s−1)
C(t, v, u, s−1)









=









1
1
1
1









.

Inverting the matrix in the left hand side, we find the generating function

C(t, u, v, s) =
1 + t(u+ s) + t2(vs+ us−1 − s−2 − uv) + t3(1− u2)(v − s−1)

1− t2(s2 + s−2 + 2uv) + t4(u2 − 1)(v2 − 1)
. (32)

One-parameter situation, qi = qj. Now βi = βj and the coefficients a
(mij )
k in terms of α

(m)
k,L , read

a
(mij )
k =

∑

L≥0

βLi (α
(mij )
k,L − α

(mij )
−k,L ) , where α

(m)
k,L :=

∑

l,l′≥0 : l+l′=L

α
(m)
k,l,l′ . (33)

Define D(t, u, s) :=
∑

m,L≥0

∑

k∈Z

α
(m)
k,L t

muLsk. By definition, D(t, u, s) = C(t, u, u, s). By (32),

D(t, u, s) =
1 + t(u− s−1)

1− t(s+ s−1) + t2(1− u2)
=

(1− ts−1) + tu

(1− ts)(1− ts−1)
d(t, u, s) , (34)

where

d(t, u, s) :=

(

1−
t2u2

(1− ts)(1− ts−1)

)−1

. (35)
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The even in u part of D(t, u, s) is

1

1− ts
d(t, u, s) =

∑

a,b,c≥0

(a+ b)!(a + c− 1)!

a! (a − 1)! b! c!
t2a+b+c u2a sb−c . (36)

The odd in u part of D(t, u, s) is

tu

(1− ts)(1− ts−1)
d(t, u, s) =

∑

a,b,c≥0

(a+ b)!(a + c)!

a! a! b! c!
t2a+1+b+c u2a+1 sb−c . (37)

Thus α
(m)
k,L (L,m ∈ Z≥0; k ∈ Z) vanish unless L ≤ m, |k| ≤ m− L and m+ k ≡ L (mod 2), and then



















α
(m)
k,L =

(

(m+ k)/2
(m+ k − L)/2

)(

(m− k − 2)/2
(m− k − L)/2

)

, L ≡ 0 (mod 2) ,

α
(m)
k,L =

(

(m+ k − 1)/2
(m+ k − L)/2

)(

(m− k − 1)/2
(m− k − L)/2

)

, L ≡ 1 (mod 2) .

(38)

For k ≥ 0, α
(m)
−k,L = α

(m)
k,L if L ≡ 1 (mod 2), and α

(m)
−k,L =

m− k

m+ k
α
(m)
k,L if L ≡ 0 (mod 2). Substituting

into (33), one finds

a
(mij)
k =

⌊(m−1)/2⌋
∑

p=0

β2pi
2k

mij + k
α
(mij )
k, 2p for k = 1, . . . ,mij. (39)

The formulas (38) and (39) appear in [11].

Examples. We write explicitly the relation (13) for mij ≤ 6 (this is all what is needed for the finite
Coxeter groups other than the dihedral groups Dn with n > 6) in the multiparameter setting:

• for mij = 2, y2ij = 1 ;

• for mij = 3, y3ij = β2i (yij − y2ij) + 1 ;

• for mij = 4, y4ij = 2βiβj(yij − y3ij) + 1 ;

• for mij = 5, y5ij = 3β2i (yij − y4ij) + (β4i + β2i )(y
2
ij − y3ij) + 1 ;

• for mij = 6, y6ij = 4βiβj(yij − y5ij) + (3β2i β
2
j + β2i + β2j )(y

2
ij − y4ij) + 1 .

The one-parameter situation is obtained when one sets βi = βj .

Acknowledgment. We thank I. Marin for useful discussions.
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[2] Brenti F., Reiner V. and Roichman Y., Alternating subgroups of Coxeter groups, J. Combin. Theo.
A 115(5) (2008) 845–877. ArXiv: math/0702177

13

http://arxiv.org/abs/math/0702177


[3] Casselman B., The construction of Hecke algebras associated to a Coxeter group, in: Harmonic
Analysis on Reductive, p-adic Groups, Contemporary Math. 543 (2011) 91–102.

[4] Eriksson K., A combinatorial proof of the existence of the generic Hecke algebra and R-
polynomials, Math. Scand. 75 (1994) 169–177.

[5] Etingof P. and Rains E., New deformations of Coxeter groups II, Geom. Funct. Anal. 17 (2008)
1851–1871. ArXiv: math/0604519

[6] Humphreys J., Reflection groups and Coxeter groups, Cambridge University Press (1990).

[7] Lyndon R. and Schupp P., Combinatorial Group Theory, Springer (1977).

[8] Mitsuhashi H., The q-analogue of the alternating group and its representations, J. Algebra 240(2)
(2001) 535–558. ArXiv: math/9912121

[9] Mitsuhashi H., Z2-graded Clifford system in the Hecke algebra of type Bn, J. Algebra 264(1)
(2003) 231–250.

[10] Ogievetsky O. and Poulain d’Andecy L., Alternating subgroups of Coxeter groups and their spinor

extensions, to appear. ArXiv: 1112.6347

[11] Ratliff L., The alternating Hecke algebra and its representations, PhD thesis, Sydney Univ. (2007).

[12] Reidemeister K., Knoten und Gruppen, Abh. Math. Sem. (Hamburg) 5 (1926) 7–23.

[13] Schreier O., Die Untergruppen der freien Gruppen, Abh. Math. Sem. (Hamburg) 5 (1927) 161–183.

[14] Vershik A., Local stationary algebras, Amer. Math. Soc. Trans. 148(2) (1991) 1–13.

14

http://arxiv.org/abs/math/0604519
http://arxiv.org/abs/math/9912121

	1 . Introduction
	2 . Definition of the alternating subalgebra of the Hecke algebra
	3 . Bourbaki presentation
	4 . Presentation using edges of the Coxeter graph
	5 . Alternating subgroups of braid groups
	5.1 Definition
	5.2 Bourbaki presentation for alternating subgroups of braid groups
	5.3 Presentation using edges of the Coxeter graph of alternating subgroups of braid groups

	Appendix.  Coefficients in the defining relations of the alternating subalgebras.1cm

