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Abstract.- The order parameter in superconductivity of cuprates is inves-
tigated in the framework of the Bogoliubov theory. By using a simplifying
assumption about the electronic states, it is predicted an effective critical tem-
perature T ∗

c > Tc associated to the coherent gap ∆0. A connection between
∆0 and the antinodal pseudogap ∆PG is proposed allowing for a comprehensive
picture of the main experimental features of cuprates superconductors.

The high temperature superconductivity (SC) in cuprate based materials
is one of the most intensely investigated topics in condensed matter physics.
It has been about twenty-four years since the seminal paper of Bednorz and
Muller [1] sparked the race to attain the highest SC critical temperature(Tc)
[2]. Much efforts have been spent to explain the pairing nature of electrons in
the SC phase of cuprates, but yet physicists remain undecided on what model
among the ones so far proposed worths general consensus [3]. However, in
recent years several features concerning the SC and the normal state have been
unveiled so making the matter a little more clear. It is known that, due to
high electronic repulsion, undoped CuO2 planes are Mott insulators turned to
antiferromagnetic (AF) states [3]. Injection of small quantities of holes destroys
the long-range AF order and give rise to phenomenologically rich electronic
systems. Below a temperature T*, depending on the doping level, the normal
phase show a gap of width dependent on the electron momentum (pseudogap,
PG). As the doping level increases a small doping interval initially is found
where the electronic system shows a glassy phase with partial electron and hole
localization [4,5]. Further increasing the doping, open Fermi contours appear
across the nodal directions in the momentum space, usually referred to as Fermi
arcs [6].

By means of ARPES measurements, it was found that the SC gap exhibits
the universal form ∆0 cos 2θk over an angular range larger than the Fermi arc
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[7]. Beyond this, the spectral weight of the SC states decreases against the one
of the PG states [7]. Experiments also show that Tc is approximately related
both to ∆0 and to the extension of Fermi arcs by [8,9]

2∆0 α/(π/4) = 4.3 kBTc , (1)

where the angle α spans the half-Fermi arc as measured from the nodal direction
[8]. Thus, the bell-shaped curve of Tc versus the hole concentration is strongly
dependent on the way the shrinking PG hamper the full expression of the SC gap
and the Fermi contour. On this regard, it is worth to point out that available
data does not allow to find an unambiguous connection between the competing
gaps, because of their very different behaviors [11,12].

In this paper, some points concerning the order parameter are reconsidered
on the light of the Bogoliubov theory. By using a simplifying assumption about
the electronic state distribution, worthy for semi-quantitative discussion, an
effective critical temperature T ∗

c > Tc is predicted associated to the coherent
gap ∆0. A connection is proposed between ∆0 and the antinodal pseudogap
∆PG, consistent with experimental findings in cuprates superconductors. At
the end of this paper, a formal construction of the anisotropic pairing matrix is
proposed.

According to the Bogoliubov theory, the order parameter satisfies [13,14]

∆k =
1

2

∑

k′

Gk,k′∆k′

√

ξ2k′ +∆2

k′

, (2)

where ξk are the energies of quasi-particle states with respect to the Fermi level.
Here it is used the convention according to which the minus sign of the pairing
interaction is explicitated in the Bogoliubov Hamiltonian [14]. In agreement
with the d-like form of ∆k, we will use Gk,k′ = G cos 2θk cos 2θk′ where, for
simplicity, G is assumed to be independent of k and k′. This position will be
discussed later in more detail. Simple calculus leads to

2∆0 = 3.52 Γ0 kTc , (3)

where for the case of closed Fermi surface Γ = 1.22 [15].
Differently from the usual approach [15], a reduced angular range will be

considered in the sum (2). The reason is that, because of competition with
PG states, when approaching the antinodal direction, there may be not enough
states allowing for coherent pairing [16]. Thus an effective angle α∗ is here
introduced, not necessarily coincident with the angular extension α of the half-
Fermi arc. On this ground, eq. (3) is replaced by

2∆0 = 3.52 Γ (α∗) kT ∗

c , (4)

where Γ (α∗) ≥ Γ0 ( Γ (π/4) = Γ0). Thus, T ∗

c is to be distinguished from Tc

since the former pertains to the closure of gap ∆0 [11] and the latter to the
drop of the superfluid density [7]. Actually, there are spectroscopic evidences of
presence of coherent pairing above Tc [8, 16, 17]. Loss of phase rigidity [17] or
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gap nucleation in nanoscale regions [11] are invoked to explain the signals of the
phase-incoherent superconductivity. However, besides the proposed interpreta-
tions, it is reasonable to assume that the vanishing of the residual SC phase
is signed by T ∗

c , like the main drop of the phase-coherent superconductivity is
signed by Tc.

To get into more details, it is convenient to use a simplifying model for
the electron states. For this purpose, let us assume that states contributing to
pairing lie within an energy span ±δε around the Fermi such that δε << kT ∗

c .
If Ω0 is the density of states at the Fermi level, eq. (2) leads to

∆0 = 8Ω0Gδε sin2 α∗ , (5)

3.52 Θ (α∗) kT ∗

c = 2∆0 , (6)

Θ (α∗) =
1

3.52

4 sin2 α∗

α∗

2
− 1

8
sin 4α∗

, (7)

A numerical check shows that Θ (α∗) /Γ (α∗) ≃ 1.2 within the range [0, π/4].
It is interesting that for small angles eqs (6) and (7) lead to (12/π) kT ∗

c ≃

2∆0 α∗/(π/4), which mimics the equation expected for Tc with α = α∗.
In the model dealt-with, ∆0 is related to the pairing strength in a very

simple way. If PG and SC shares the same dependence on G, eq. (5) insights
what connection may be established between them. It was suggested, on this
regard, that competition may be originated by the same microscopic interactions
underlying the pairing mechanism [7]. Thus, the pairing strength may enter in
the particle self-consistent field to determine the pseudogap amplitude ∆PG.
Therefore, it is not meaningless to assume ∆PG ∝ G, so that

∆0 = γ∆PG sin2 α∗ , (8)

where γ is a suitable factor. Eventually, the latter could also include adjustments
required to account for interactions among CuO2 planes [8]. Since in overdoped
cuprates ∆0 can be larger than ∆PG , it can be expected that γ & 2.

It may be helpful to consider some numerical examples by using data from
ARPES detailed investigations of Bi2201 superconductors [7]. The overdoped
sample, there labelled as OD29K, was found with ∆PG ≃ ∆0 ≃ 14 meV and
Tc = 29K. The half coherence arc was estimated at about 37◦ measured from
the nodal direction. By using this figure as α∗, γ = 2.75 is obtained so that
eq. (6) leads to T ∗

c = 59K (2∆0/kT
∗

c = 5.6). By using the same γ for the
underdoped sample (UD23K, Tc=23K), showing ∆PG ≃ 62meV and ∆0 ≃

19 meV , we get α∗ = 19.2◦ which is close to the estimated 20.4◦. In this case,
T ∗

c = 48.5K (2∆0/kT
∗

c = 9.4). Discrepancy is obtained for the optimally doped
sample (OP35K, Tc = 35K), showing ∆PG ≃ 34meV and ∆0 ≃ 18 meV , which
allows α∗ = 26◦ against the estimated 30◦.

In place of any further comment, it is convenient to present a comprehensive
(but quite qualitative) picture of the obtained results by using the above data.
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For this purpose, two hypothetical curves for the coherence and the Fermi angles
versus hole concentration, shown in fig. 1, are used in eqs.(1),(5-8). Reference
angles α are obtained by means of eq. (1) by using data from ref [7]. In both
curves, the zero points are added as an assumption. In fig. 2, the curve for
∆0 is calculated by using γ = 2.75 and ∆PG(meV ) = 75 (1 − x) (which is a
rough estimation for the material dealt with [8]) where x=0.05+(p-0.05)/0.225
(about the range where Tc 6= 0 [8]), symbol p meaning the hole concentration
within [0.005,0.275]. For comparison, the typical curve Tc ∝ x(1 − x) is also
drawn by circles. Finally, it is to be noted that fig.2 appears quite similar to
the analogous one reported in ref. [8].

As for the interaction matrix, some insights are suggested by experiments
according to which pairing take place along the O-Cu-O lattice directions in the
CuO2 plane [18]. Conjugated electrons may interact either along the X or Y
directions, reminiscent of the residual AF interaction. Thus, probabilities can
be associated to pairs in such a way that the mean interaction matrix can be
written as a tensor contraction like

Gk,k′ =
∑

λ1,λ2,,λ
′

1
,λ′

2

G
λ1,λ2,,λ

′

1
,λ′

2

k,k′ ρλ1,λ2ρ′λ
′

1
,λ′

2 , (9)

where ρ and ρ’ are suitable probability matrices of pairs. The more simplest
form for ρ, satisfying Tr(ρ)=1, is the diagonal one

ρ =

(

cos2 θ 0
0 sin2 θ

)

, (10)

For language convenience, let us define the mean polarization of the pair along
the direction θ as Pθ = ρ11 − ρ22 = cos 2θ. Thus, polarizations Pθ = ±1 merely
means pairs capable of interaction along only one of the two main directions O-
Cu-O. Nodal directions, Pθ = 0, are the ones where polarization sign changes.

Based on these positions, we are allowed to use a 2x2 matrix Gλ,,λ′

k,k′ where
meaning of elements can be easily understood by considering pairs moving along
the main directions. The diagonal terms represent processes where incoming and
outcoming pairs maintain the same X or Y directions. Since these are expected
to be equivalent, the relative terms can be assumed to be equal. The non-
diagonal terms correspond to processes where the outcoming pairs are polarized
on the direction orthogonal with respect to the ones of the incoming pairs.
Depending on the interaction features, a phase factor may be associated to
these terms so that, in a little more general way, the anisotropic properties of
the pairing matrix can be represented as

[

G11

k,k′ G12

k,k′

G21

k,k′ G22

k,k′

]

= gk,k′

[

1 exp(−iϕ)
exp(iϕ) 1

]

,

where the s- and d-like cases correspond to ϕ = 0,±2π and ϕ = ±π, respectively.
In conclusion, by properly handling the Bogoliubov theory with some sim-

plifying assumptions, several points concerning the order parameter and its
relation with the critical temperatures can be accounted for. Hopefully, the
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picture here presented may become an useful canvas for future investigations in
the concealed matter of high temperature superconductivity.
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Captions

Figure 1.- Models of coherence and Fermi angle curves versus the hole doping
concentration. Triangles and circles are obtained by using data from ref. [7] in
eq. 8 and in eq. (1), respectively. The zero points an assumption.

Figure 2.- Pseudogap (∆PG), coherent gap (∆0) and critical temperature curves
versus the hole doping concentration: curve of ∆0 is obtained form eq. (8); curve
of T ∗

c is obtained from eqs. (6) and (7); curve of Tc is obtained from eqs. (1).
Curve drawn by circles shows the typical form Tc ∝ x(1−x) where x stands for
the normalized hole concentration (see text).
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