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Abstract. In this paper we develop a 2-valued reduction of many-valued logics,
into 2-valued multi-modal logics. Such an approach is based on the contextu-
alization of many-valued logics with the introduction of higher-order Herbrand
interpretation types, where we explicitly introduce the coexistence of a set of
algebraic truth values of original many-valued logic, transformed as parameters
(or possible worlds), and the set of classic two logic values. This approach is
close to the approach used in annotated logics, but offers the possibility of us-
ing the standard semantics based on Herbrand interpretations. Moreover, it uses
the properties of the higher-order Herbrand types, as their fundamental nature
is based on autoreferential Kripke semantics where the possible worlds are al-
gebraic truth-values of original many-valued logic. This autoreferential Kripke
semantics, which has the possibility of flattening higher-order Herbrand interpre-
tations into ordinary 2-valued Herbrand interpretations, gives us a clearer insight
into the relationship between many-valued and 2-valued multi-modal logics. This
methodology is applied to the class of many-valued Logic Programs, where re-
duction is done in a structural way, based on the logic structure (logic connec-
tives) of original many-valued logics. Following this, we generalize the reduction
to general structural many-valued logics, in an abstract way, based on Suszko’s
informal non-constructive idea. In all cases, by using developed 2-valued reduc-
tions we obtain a kind of non truth-valued modal meta-logics, where two-valued
formulae are modal sentences obtained by application of particular modal opera-
tors to original many-valued formulae.
Keywords: many-valued logics, modal logics, Kripke-style semantics, paracon-
sistency

1 Introduction

A significant number of real-world applications in Artificial Intelligence have to deal
with partial, imprecise and uncertain information, and that is the principal reason for
introducing the non-classic many-valued logics, for example, fuzzy, bilattice-based and
paraconsistent logics, etc..
In such cases we associate some degree of belief or a kind of measures to ground atoms.
The many-valued logics with a set of such measures (that is, ’algebraic truth-values’)
are one of the main tools that we can use for such applications.
The reduction of many-valued logics into the standard 2-valued logic was considered



by Suszko [1], where he illustrated how Lukasiewicz’s 3-valued logic could be given
a 2-valued, non truth-functional, semantics. The main point, according to Suszko, is
to make a distinction between the algebraic truth-values in W of many-valued logics,
which were supposed to play a merely referential role, while only two logical truth-
values in 2 = {0, 1} (0 for false and 1 for true value) would really exist. It is also based
on the fact that the abstract logic is based on a consequence relation that is bivalent:
given a set of logic formulae S, a formula φ can be inferred from S or not, that is, the
answer to the question ”if φ is inferred from S” can only be ’Yes’ or ’No’.
This point of view for ’logic values’ is also considered correct by other authors, and
it is also applied in the case of an ontological encapsulation [2] of many-valued alge-
braic logic programs into 2-valued logic programs. Moreover, in a 2-valued reduction,
for any propositional formula φ that has an ’algebraic truth-value’ α, we can consider
a 2-valued meta-sentence ”the truth-value of φ is α”, i.e., t(φ, α) where t is a binary
predicate for true sentences and α ∈ W an algebraic truth value. In order to avoid a
second order logic with the formula t(φ, α), we can transform it into a First Order (FO)
formula [α]φ instead, with the introduction of a modal connective [α] as in [3].
Suszko’s thesis for the reduction of every tarskian (monotonic) n-valued logic into a
2-valued logic is based on this division of a set of logic values into a subset of desig-
nated and undesignated elements, but it is quite a non-constructive result. In fact, he
does not explain how he obtained a 2-valued semantics, or how such a procedure could
be effectively applied.
In the paper by D.Batens [4], the author proposes a sort of binary print of the alge-
braic truth-values for the 2-valued reduction, where each truth-value is to be put into
one-to-one correspondence with one element of a set of conveniently long ’equivalent’
sequences of 0’s and 1’s. This method is similar to what had been proposed by D.Scott
a decade before [5]. But this method is not universally applicable and thus can not be
effectively used. Some other authors argued against Suszko’s thesis [6] using examples
of paraconsistent logic and Malinowski’s inferential many-valuedness. But recently in
[7], based on Suszko’s observations on complementarity of designated and undesig-
nated elements, a method was exhibited for the effective implementation of Suszko’s
reduction to a subclass of finite-valued truth-functional logics, whose truth-values sat-
isfy the particular assumption of separability, where the ’algebraic truth-values’ can be
individualized by means of the linguistic resources of the logic. What is important for
the present work is that they show that a reduction of truth-functional many-valued logic
into 2-valued logic will simply make it lose truth-functionality: in fact, our transforma-
tion will result in modal logics.
Consequently, the main contribution of this paper is to use a constructive approach to
Suszko’s method, and to exhibit a method for the effective implementation of 2-valued
reduction for all kinds of many-valued logics. It avoids the necessity of dividing a set of
algebraic truth-values into designated and undesignated disjoint subsets in order to de-
fine the satisfaction relation (i.e., entailment), by using the valuations (model-theoretic
semantics): the entailment S |= φ means that every model (valuation) of S is a model
of φ. For example, any rule in a many-valued logic program A ← B1, ..., Bn is sat-
isfied if, for a given valuation v, the algebraic truth-value of the head is greater than
the value of the body, i.e., if v(A) ≥ v(B1 ∧ ... ∧ Bn). More discussion about this
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truth-preserving entailment approach can be found in a new representation theorem for
many-valued logics [8].
The main motivation of this work is a theoretical investigation of the possibility of re-
ducing a many-valued into a standard 2-valued logic. It is not our aim to replace the
original many-valued logics, which are more intuitive and natural representations used
in practice. But we would like to obtain the 2-valued reductions as a canonical form
for the whole family of various many-valued logics, where we can investigate their
common properties and make comparisons between them. So, the main contribution of
this article is that we present this possible canonical reduction of any many-valued into
2-valued multi-modal logic, and the possibility of reusing the rich quantity of results
discovered for modal logics. In this way we also define the upper limit of the expressive
power for any possible many-valued logic.
Remark: In what follows we are interested in general many-valued algebras, based on
a lattice (W,≤,∧,∨) of truth values (where ordering ≤ is interpreted as truth ordering
of logic values), where the meet ∧ and join ∨ operators are the algebraic counterparts of
logic conjunction and disjunction respectively, and extended by other unary operators
(for example, by many-valued logic negation) and binary operators (for example, by
many-valued logic implication). We will denote by 0 and 1 the bottom and top elements
respectively of such a lattice W (if W is not a bounded lattice then we will add to it
these two elements). Thus we are able to reduce a bounded lattice of a many-valued
logic W into the classic 2-valued logic with the set of logic values in 2 = {0, 1} ⊂ W
(where 2 is a complete sublattice of W), in the way that the many-valued operators de-
fined in a bounded latticeW are reduced, by this two-valued reduction, into the classical
2-valued logic operators (the conjunction, disjunction, negation and material implica-
tion). Because of that, the only restriction for many-valued negation operator ∼ is that
∼ 0 = 1 and ∼ 1 = 0, such that it is antitonic (i.e., satisfies De Morgan laws be-
tween the conjunction and disjunction). The set of many-valued logic connectives will
be denoted by Σ. Two unrelated elements a, b ∈ W will be denoted by a ./ b. In order
to avoid confusion between many-valued and 2-valued conjunction and disjunctions,
where necessary, for 2-valued connectives we will use

∧
and

∨
symbols respectively.

In what follows we denote by A ⇒ B, or BA, the set of all functions from A to B, and
by An a n-folded cartesian product A× ...×A for n ≥ 1.
This paper follows the following plan:
After a short introduction to reduction methodology and to 2-valued multi-modal log-
ics, in Section 2 we present a theory for higher-order Herbrand interpretation types
(and its correspondent flattening into the ordinary Herbrand interpretations) obtained in
a process of contextualization by relativizing the truth (and falsity) of a logic formulae
to a given context (or ”possible world”). We show that this is a pre-modal development
for logics and can be used directly to define 2-valued concepts with Kripke semantics.
In Section 3 we present a number of significative examples for many-valued logics,
and show how they can be contextualized in order to be able to introduce the logic
values of a many-valued logics as particular ’logic objects’ into the language of this
contextual logic. The result of this contextualization (which renders visible logic val-
ues of a many-valued logic) is that the atoms in a Herbrand base have the higher-order
logic values: a contextual logic has the higher-order Herbrand interpretations. We show
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how these higher-order Herbrand model types can be equivalently considered as multi-
modal Kripke models, where a set of possible worlds is taken from the structure of
these higher-order types. In Section 4 we show how these techniques can be applied to
many-valued Logic Programs, and we show that they can be equivalently transformed
into 2-valued multi-modal Logic Programs. We consider two kinds of transformations:
the first one by introducing the set of unary modal operators for each algebraic logic
value, and the second one by introducing binary modal operators in the place of the
original binary many-valued logic operators. Finally, in Section 5 we develop an ab-
stract method for a 2-valued reduction of (general) many-valued logics, transforming
Suszko’s non-constructive idea into a formal method. This reduction results in a non
truth-functional 2-valued modal meta-logic, where 2-valued sentences are obtained by
applying specific modal operators to original many-valued logic formulae.

1.1 Basic methodology in constructive Suszko’s reductions

Consequently, in what follows we will consider a possible embedding of these many-
valued logics into 2-valued logic, in order to understand a basic connection between
them and the well investigated families of 2-valued sublanguages (logics) of the first
order logic language. In the past, some approaches were made in this direction, as ad-
hoc logics (for example, annotated logic), but without the real purpose of investigating
this issue. We will consider the following two approaches for predicate many-valued
logics (the propositional version can be considered as a special case, when all predi-
cate symbols have a zero arity): the first one introduces unary modal operator for each
truth value of original many-valued logic; the second approach introduces the binary
modal operator for each binary truth-valued logic operator (conjunction, disjunction,
implication) of original many-valued logic. Both of them will transform an original
truth-functional many-valued logic into non truth-functional 2-valued modal logic, as
follows:
1. In [9] it is shown that Fitting’s 3-valued bilattice logic can be embedded into an An-
notated Logic Programming that is computationally very complex and has a non stan-
dard (that is, Herbrand based) interpretation. In what follows we will use the syntactic
annotation for many-valued logic programs, with a set of logic values in W , where a
rule of the form A : f(β1, .., βn) ← B1 : β1, ..., Bn : βn , asserts ”the ’truth’ of the
atom A is at least (or is in) f(β1, .., βn) = β1 ∧ ... ∧ βn (the result of the many-valued
logic conjunction of logic values βi ∈ W).
We will extend this consideration by introducing a contextual logic, which is a syntax
variation of the annotated logic, where instead of annotated atoms B : β we will use a
couple (B, β) that is a more practical set-based denotation and can have the Herbrand
interpretations. It is fundamental and first step when we try to transform a many-valued
logic into positive 2-valued logic programs with classical conjunction and implication,
where we will use modal atoms [β]B, ([β] denotes a universal modal operator), instead
of annotated atoms. As we will see, such a contextualization of many-valued logic pro-
grams generates the higher-order Herbrand interpretations.
2. The ontological embedding [10] into a syntax of new encapsulated many-valued logic
(in some sense meta-logic for a many-valued bilattice logic) is a 2-valued, and can be
seen as a flattening of a many-valued logic, where the algebraic truth-value β ∈ W of
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original ground atom r(c1, .., ck) is deposited into the logic attribute of a new predi-
cate rF , obtained by an attribute-extension of the old predicate r with added attribute
for a many-valued logic value, so that we obtain the ’flattened’ 2-valued ground atom
rF (c1, .., ck, β). In that case, we will obtain a positive multi-modal logic program with
binary modal operators for conjunction, disjunction and implication and unary modal
operator for negation.
These two knowledge invariant 2-valued logic transformations of the original many-
valued logic program are mutually inverse: we can consider the annotations as the con-
texts for the original atoms of the logic theory. Such a context sensitive application, with
higher-order Herbrand models, can be transformed (that is, flattened) into the logic the-
ories with basic (ordinary) Herbrand interpretations, by enlarging the original predicates
with new attributes that characterize the properties of the context: in this way a context
also becomes a part of the language of a logic theory, that is, it becomes visible.
The inverse of a flattening is a predicate compression [11]. In this paper we will im-
plicitly consider only a compression of the logic attribute of the flattened predicates ob-
tained during ontological encapsulation of a many-valued logic program: the obtained
compressed predicates are identical to the predicates from the original many-valued
logic program, but the value for their ground atoms is not a value of a basic set of al-
gebraic truth-values in W but a function (higher-order value type) in 2W (the set of
all functions from W to 2). A contextualization of a many-valued logic is equivalent
to the compression of logical variables of the flattened versions of many-valued logic
programs.

Both approaches above are different from somewhat similar procedures investigated
by Pavelka in [12] by expansion of propositional Lukasiewicz’s logic with a truth-
constant β for every real value β ∈ [0, 1], and successively refined by Hájek in [13] and
brought to first order predicate systems in [14,15]. In fact in the first approach above
we do not introduce the logic constants (nullary logic operators), but unary modal op-
erators for each truth-value in W (it is applicable only to cases when W is finite set,
while in the second approach above, more general case which is valid for infinite set
W as well, we introduce only new k-ary (k ≥ 1) built-in functions obtained from a
semantic reflection of many-valued Herbrand interpretations of predicate many-valued
logics and we enlarge the domain of values of the original logic by the set of algebraic
truth-values in W .

1.2 Introduction to predicate multi-modal logic

A predicate multi-modal logic, for a language with a set of predicate symbols r ∈ P
with arity ar(r) ≥ 0 and a set of functional symbols f ∈ F with arity ar(f) ≥ 0,
is a standard predicate logic extended by a finite number of universal modal operators
2i, i ≥ 1. In this case we do not require that these universal modal operators are nor-
mal modal (that is, monotonic and multiplicative) operators as in a standard setting for
modal logics, but we do require that they have the same standard Kripke semantics. In a
standard Kripke semantics each modal operator 2i is defined by an accessibility binary
relation Ri ⊆ W × W in a given set of possible worlds W . A more exhaustive and
formal introduction to modal logics and their Kripke models can easily be found in the
literature, for example in [16].
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We define the set of terms of this predicate modal logic as follows: all variables x ∈
V ar, and constants d ∈ S are terms; if f ∈ F is a functional symbol of arity k = ar(f)
and t1, .., tk are terms, then f(t1, .., tk) is a term. We denote by T0 the set of all ground
(without variables) terms.
An atomic formula (atom) for a predicate symbol r ∈ P with arity k = ar(r) is an
expression r(t1, ..., tk), where ti, i = 1, ..., k are terms. Herbrand base H is a set of
all ground atoms (atoms without variables). More complex formulae, for a predicate
multi-modal logic, are obtained as a free algebra obtained from the set of all atoms
and usual set of classic 2-valued binary logic connectives in {∧,∨,→} for conjunction,
disjunction and implication respectively (negation of a formula φ, denoted by ¬φ is
expressed by φ → 0, where 0 is used for an inconsistent formula (has constantly value
0 for every valuation)), and a number of unary universal modal operators 2i. We define
N = {1, 2, ..., n} where n is a maximal arity of symbols in the finite set P

⋃
F .

Definition 1. We denote by M = (W, {Ri | 1 ≤ i ≤ k}, S, V ) a multi-modal Kripke
model with finite k ≥ 1 modal operators with a set of possible worlds W , the ac-
cessibility relations Ri ⊆ W × W , non empty set of individuals S, and a function
V : W × (P

⋃
F ) → ⋃

n∈N (2
⋃

S)Sn

, such that for any world w ∈ W ,
1. For any functional letter f ∈ F , V (w, f) : Sar(f) → S is a function (interpretation
of f in w).
2. For any predicate letter r ∈ P , the function V (w, r) : Sar(r) → 2 defines the exten-
sion of r in a world w, ‖r‖ = {d =< d1, ..., dk >∈ Sk | k = ar(r), V (w, r)(d) = 1}.

For any formula ϕ we define M |=w,g ϕ iff ϕ is satisfied in a world w ∈ W for a
given assignment g : V ar → S. For example, a given atom r(x1, ..., xk) is satisfied in
w by assignment g, i.e., M |=w,g r(x1, ..., xk), iff V (w, r)(g(x1), ..., g(xk)) = 1.
The Kripke semantics is extended to all formulae as follows:
M |=w,g ϕ ∧ φ iff M |=w,g ϕ and M |=w,g φ ,
M |=w,g ϕ ∨ φ iff M |=w,g ϕ or M |=w,g φ ,
M |=w,g ϕ → φ iff M |=w,g ϕ implies M |=w,g φ ,
M |=w,g 2iϕ iff ∀w′((w,w′) ∈ Ri implies M |=w′,g ϕ ) .
The existential modal operator ♦i is equal to ¬2i¬.
A formula ϕ is said to be true in a model M if for each assignment function g and
possible world w, M |=w,g ϕ. A formula is said to be valid if it is true in each model.
We denote by |φ/g| = {w | M |=w,g′ φ/g} the set of all worlds where the ground
formula φ/g (obtained from φ and an assignment g) is satisfied.

2 Contextualization: Higher-order Herbrand interpretation types

The higher-order types of Herbrand interpretations for many-valued logic programs,
where we are not able to associate a fixed logic value to a given ground atom of a Her-
brand base but a function in a given functional space, often arise in practice when we
have to deal with uncertain information. In such cases we associate some degree of be-
lief to ground atoms, or we may associate different kinds of measures as well.
But we can see approximate (uncertain) information as a kind of relativization of truth
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values for sentences as follows. Let H be Herbrand base for a logic program that han-
dles the uncertain information, and r(d) a ground atom in H that logically defines a
particular fact for which we have only an approximated information about when it hap-
pened. Thus, this atom r(d) is no longer absolutely true or false, but rather its truth
depends on the approximate temporal information about this fact: in some time points
it can be true, in other it can be false. If we consider such a temporal approximation
as a context for this ground fact r(d) ∈ H , then we obtain that the truth of r(d) is a
function from the time to the ordinary set of truth values 2 = {0, 1}. Consequently, the
truth values of ground atoms in this Herbrand base are the functions, that is, they have
a higher-order type (this term is taken from the typed lambda calculus) with respect to
the set 2 of truth values. Intuitively, the approximated information is relativized to its
context, and such a context further specifies the semantics for this uncertain informa-
tion.
The contextualization is a kind of pre-modal Kripke modeling: in fact, if we consider
a context as a Kripke ”possible world”, then the relativization of the truth to particular
contexts is equivalent to Kripke semantics for a modal logic where the truth (or falsity)
of the formulae is relativized to possible worlds. In fact, as we will see in what follows,
the higher-order Herbrand models obtained by contextualization are precursors for an
introduction of 2-valued epistemic concepts, that is, for a development of (absolute) 2-
valued logics, and it explains their role in a 2-valued reduction of many-valued logics.
The higher-order Herbrand interpretations of logic programs produce the models where
the true values for ground atoms are not truth constants but functions:

Definition 2. [17] HIGHER-ORDER HERBRAND INTERPRETATION TYPES:
Let H be a Herbrand base, then, the higher-order Herbrand interpretations are defined
by I : H → T , where T is a functional space W1 ⇒ (...(Wn ⇒ 2)...), denoted also
as (...((2Wn)Wn−1)...)W1 , and Wi, i ∈ [1, n], n ≥ 1 are the sets of parameters (the
values of given domains). In the case n = 1,W = W1, T = (W ⇒ 2), we will denote
this interpretation by I : H → 2W .

In [18] there has been developed a general method of constructing 2-valued autoepis-
temic language concepts for each many-valued ground atom with higher-order Her-
brand interpretation given in Definition 2, for which we would like to have a correspon-
dent 2-valued logic language concept. The number of such atomic concepts to be used
in the applications is always a finite subset HM of M elements of the Herbrand base H .

Definition 3. [18] EPISTEMIC CONCEPTS: Let HM be a finite sequence of N ground
atoms in H , HM a set of elements in HM , and iN : HM ↪→ H be an inclusion mapping
for this finite subset of ground atoms. We define the bijection iC : HM ' CM , with
the set of derived concepts CM = {2iA|A = πi(HM ), 1 ≤ i ≤ M}, where πi is i-th
projection, such that for any ground atom A = πi(HM ), iC(A) = 2iA.

An idea of how to pass to the possible-world Kripke semantics for modal operators 2i,
used above for an epistemic definition of concepts, is as follows: we define the set
Qi = {w | r(d) = πi(HM ) ∈ H and I(r(d))(w) = 1}.
It is easy to verify that Qi is the set of all points w ∈ W where the ground atom
r(d) = πi(HM ), for a given higher-order Herbrand model, is true. As a consequence,
we may consider W as a set of possible worlds and define this higher-order Herbrand
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model for I : H → T as a Kripke model. It follows that a higher-order language
concept 2iA is false if and only if there is not any possible world where the ground
atom A = πi(HM ) ∈ H is satisfied, and true if it is satisfied exactly in the set of
possible worlds that defines the meaning of this ground atom.
We will show, in the following definition, how to define the accessibility relations for
modal operators, used to extend an original many-valued logic by a finite set of higher-
order language concepts. For example, for any ground modal atom (”concept”) 2iA,
where A = πi(HM ), we will obtain that |2iA| ∈ {∅,W}, i.e., it is a 2-valued modal
logic formula (here ∅ is the empty set).

Definition 4. KRIPKE SEMANTICS FOR EPISTEMIC CONCEPTS :
Let I : H → T be a higher-order Herbrand interpretation type, where T denotes a
functional space W1 ⇒ (...(Wn ⇒ 2)...), with W = W1 × ...×Wn, and P is the set
of predicates in a Herbrand base H . Then, for a given sequence of language concepts
HM , a quadruple MI = (W, {Ri | 1 ≤ i ≤ M}, S, V ) is a Kripke model for this
interpretation I , such that:
1. S is a non empty set of constants.
2. A mapping (see Definition 1) V : W × P → ⋃

n∈N 2Sn

, such that for any w =
(w1, ..., wn) ∈ W , r ∈ P , and d ∈ Sn it holds: V (w, r)(d) = I(r(d))(w1)...(wn),
where Sn denotes the set of all n-tuples of constants, and 2Sn

the set of all functions
from the set Sn to the set 2.
3. Finite set of accessibility relations: for any r(d) = πi(HM ), Ri = W × Qi if
Qi 6= ∅; W ×W otherwise, where Qi = {w ∈ W | V (w, r)(d) = 1}.
Then, for any world w ∈ W and assignment g, we define the many-valued satisfaction
relation, denoted by MI |=g,w , as follows:
A1. MI |=g,w r(x1, ..., xn) iff V (w, r)(g(x1), ..., g(xn)) = 1 , for any atom,
A2.MI |=g,w 2ir(x1, ..., xn) iff ∀w’( (w, w’) ∈ Ri implies M |=g,w’ r(x1, ..., xn)),
for any ground atom r(d) = r(g(x1), ..., g(xn)) ∈ πi(HM ).

Notice that for the introduced higher-order language concepts we have that
MI |=w 2ir(d) iff ∀w’((w, w’) ∈ Ri implies M |=w’ r(d)) iff π2(Ri) = |r(d)|.
Consequently, we obtained the multi-modal Kripke models with universal modal op-
erators 2i, that is, we obtained a kind of 2-valued reduction for a many-valued atom
r(d). Obviously, this technique can only be used if the number of introduced universal
modal operators is finite.
The encapsulated information in this Kripke frame can be rendered explicit by flat-
tening a Kripke model of this more abstract vision of data, into an ordinary Herbrand
model where the original predicates are extended by set of new attributes for the hidden
information.

Definition 5. [17] FLATTENING: Let I : H → T be a higher-order Herbrand
interpretation, where T denotes a functional space W1 ⇒ (...(Wn ⇒ 2)...) and
W = W1 × ... × Wn is a cartesian product. We define its flattening into the Her-
brand interpretation IF : HF → 2, where HF = {rF (d, w) | r(d) ∈ H and w ∈ W}
is the Herbrand base of predicates rF , obtained by an extension of original predicates
r by a tuple of parameters w = (w1, ..., wn), such that for any rF (d, w) ∈ HF , it
holds that IF (rF (d, w)) = I(r(d))(w1)...(wn).
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By this flattening of the higher-order Herbrand models we again obtain a 2-valued logic,
but with a changed Herbrand base HF . It can be used as an alternative to introducing of
universal modal operators, especially when the number of such operators is not finite.
Both of these two approaches to the reduction of many-valued into 2-valued logics will
be used in the rest of this paper, and we will show that the resulting logic in both cases
is a (non truth-functional) 2-valued modal logic.

3 Contextualization of many-valued logics

In this Section we will apply the general results obtained in the previous Section 2 to
a more specific case of many-valued-logics. This is a case of many-valued logics with
uncertain, approximated or context-dependent information.
We consider only the class of many-valued logics Lmv based on a bounded lattice
W of algebraic truth values, with 2 ⊂ W , as explained in the introduction. Then the
ordering relations and operations in a bounded latticeW are propagated to the function
space WH , that is, to the set of all Herbrand interpretations, Imv : H → W . It is
straightforward [19] that this makes the function space WH itself a bounded lattice.

Definition 6. Let Lmv be a many-valued logic with a set of predicate symbols P , a
Herbrand base H , and with a many-valued Herbrand interpretation Imv : H → W .
Then its standard unique extension to all formulae is a homomorphism v : LG

mv →
W , also called a many-valued valuation, where LG

mv is the subset of all ground
formulae in Lmv . That is, for any ground formula X,Y ∈ Lmv holds that
v(∼ X) =∼ v(X) and v(X } Y ) = v(X) } v(Y ),
where } is any binary many-valued logic connective in Σ.

Let us, for example, consider the following bounded lattices:

1. Fuzzy data [13,20,21]: thenW = [0, 1] is the infinite set of real numbers from 0 to
1. For any ground atom r(d) ∈ H the p = I(r(d)) represents its plausibility. For
any two x, y ∈ W , we have that x ∧ y = min{x, y}, x ∨ y = max{x, y}, and
negation connective ∼ is determined by ∼ x = 1− x.

2. Belief quantified data [22,23,24]: then W = C[0, 1] is the set of all closed subin-
tervals over [0, 1]. For any ground atom r(d) ∈ H the (L,U) = Imv(r(d))
represents the lower and upper bounds for expert’s belief in r(d). For any two
[x, y], [x1, y1] ∈ W , we have that [x, y] ∧ [x1, y1] = [min{x, x1},min{y, y1}],
[x, y] ∨ [x1, y1] = [max{x, x1},max{y, y1}].The belief (or truth) ordering is de-
fined as follows: [x, y] ≤ [x1, y1] iff (x ≤ x1 and y ≤ y1). We define
the epistemic negation [25] of a belief [x, y] as the doubt ∼ [x, y], such that
∼ [x, y] = [∼ y,∼ x] = [1−y, 1−x]. The bottom value of this lattice is 0 = [0, 0],
while the top value is 1 = [1, 1].

3. Confidence level quantified data [26,27]: then W = C[0, 1] × C[0, 1]. For any
ground atom r(d) ∈ H we have ((L1, U1), (L2, U2)) = Imv(r(d)), where (L1, U1)
represents the lower and upper bounds for expert’s belief in r(d), while (L2, U2)
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represents the lower and upper bounds for expert’s doubt in r(d), respectively.
Let α = ([x, y], [z, v]), β = ([x1, y1], [z1, v1]) ∈ W , then,
α ∧ β = ([min{x, x1},min{y, y1}], [max{z, z1},max{v, v1}]),
α ∨ β = ([max{x, x1}, max{y, y1}], [min{z, z1},min{v, v1}]).
In this lattice we are interested in the ordering ≤ that increases the belief and
decreases the doubt of facts, that is ([x, y], [z, v]) ≤ ([x1, y1], [z1, v1]) iff
[x, y] ≤ [x1, y1] and [z1, v1] ≤ [z, v].
The negation ∼, which reverses this truth ordering, of this lattice is defined by
Ginsberg [25], with ∼ ([x, y], [z, v]) = ([z, v], [x, y]). The bottom value of this
lattice is 0 = ([0, 0], [1, 1]), while the top value is 1 = ([1, 1], [0, 0]).

4. Belnap’s bilattice based logic programs [28]: Then its truth lattice is W = B =
{f, t,>,⊥}, where 1 = t is true, 0 = f is false, > is inconsistent (both true and
false) or possible, and ⊥ is unknown. As Belnap observed, these values can be
given a truth ordering, ≤t, such that 0 ≤t > ≤t 1, 0 ≤t ⊥ ≤t 1 and ⊥ ./t >,
with α ∧ β = mint{α, β}, α ∨ β = maxt{α, β}, and the epistemic negation ∼ is
defined by: ∼ 0 = 1, ∼ 1 = 0,∼ ⊥ = ⊥, ∼ > = >.

All examples above are more than bounded lattices: they are complete distributive lat-
tices [29,30]. Thus, we consider also that for any two elements a, b ∈ W the many-
valued implication a → b for complete lattices can be defined as a reduct (the relative
pseudocomplement), that is a → b = ∨{c ∈ W | c ∧ a ≤ b}, so that a → b = 1 iff
1 ∧ a = a ≤ b.
For a given many-valued logic Lmv , we can generate a contextual logic Lct, so that for
any ground atom r(d) ∈ H with a logic value w = Imv(r(d)), we generate a contextual
atom, a couple (r(d), w) ∈ H ×W , which tell us that ”the atom r(d) in the context w
is true”. We also define the extended Herbrand base HF = {rF (d, w) | r(d) ∈ H
and w ∈ W} by extending each original atom by the logic attribute with the domain
W , and with the bijection is : HF → H ×W , such that for any extended (or flattened)
ground atom rF (d, w) ∈ HF it holds that is(rF (d, w)) = (r(d), w).
This contextualization of a many-valued logic can be represented by the following com-
mutative diagram

2W ×W eval - 2

Higher-order

H ×W

I

6

idW

6

¾
is

HF
IF

- 2

id2

6

Many-valued

W ×W

Imv

?

idW

? 4 - 2

id2

6

where eval is the application of the first argument (function) to the second argument,
id’s are the identities, and 4 is the ’diagonal’ function, such that 4(w, w′) = 1
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iff w = w′, so that a higher-order Herbrand interpretation is obtained from a many-
valued Herbrand interpretation by I = [4 ◦ (Imv × idW )], where [ ] is the currying
(λ abstraction) operator for functions. A flattened Herbrand interpretation (of a ’meta’
logic obtained by an ontological encapsulation of original many-valued logic), is equal
to: IF = eval ◦ ([4 ◦ (Imv × idW )]× idW ) ◦ is.
Intuitively, the diagram above shows that for any many-valued interpretation Imv , we
obtain a correspondent 2-valued interpretation IF (but with modified Herbrand base
HF ), and, equivalent to it, the higher-order Herbrand interpretation I .
By this contextualization of a many-valued logic we obtain the simplest case of the
higher-order Herbrand interpretation given by Definition 2, I : H → 2W , such that
for any atom r(d) ∈ H and w ∈ W holds that:
I(r(d))(w) = 1, iff w = Imv(r(d)).
The accessibility relations Ri = W × Qi, for any r(d) = πi(HM ) ∈ H , in Def-
inition 4 for a many-valued logic, does not depend on the number of ground atoms in
a Herbrand base, but only on the number of logic values in W: it comes from the fact
that to any ground atom in a consistent many-valued logic we can assign only one logic
value, so that Qi = {w ∈ W | r(d) = πi(HM ) ∈ H and I(r(d))(w) = 1} = {w} is
a singleton, with w = Imv(r(d)).
Thus, we are able to make the reduction to a 2-valued logic by an introduction of a
number of universal modal operators 2w (denoted also by [w] in what follows) with the
accessibility relation Rw = W ×Qw = W × {w}, for each w ∈ W .
Each universal modal operator [w], with the meaning ” has the value w”, is defined al-
gebraically in a lattice W as a unary operator (function) [w] : W → 2 ⊆ W , such that
for any w1 ∈ W , [w](w1) = 1 if w1 = w; 0 otherwise.
These modal operators are not monotonic operators, so that we obtain a non-normal
Kripke modal logic (for example, the necessity rule does not hold).
As we can see, we assume that the set of possible worlds of the relational Kripke frames,
used for the transformation of many-valued into multi-modal 2-valued logic, is the set
of logic values of this many-valued logic. This is an autoreferential semantics [31,32]
and a formal result of the modal transformation for higher-order Herbrand models and
the transformation of many-valued Herbrand models into higher-order Herbrand mod-
els. The philosophical assumption is, instead, that each possible world represents a level
of credibility, so that only the propositions with the right logic value (i.e., level of cred-
ibility) can be accepted by this world.

4 Reduction of many-valued into 2-valued multi-modal Logic
Programs

Let PR be a many-valued logic program, for a given many-valued logic Lmv with a
set of algebraic truth-values given by a bounded lattice W , a Herbrand base H and a
many-valued Herbrand interpretation Imv : H →W that is also a model of PR, i.e., an
interpretation that satisfies all logic clauses in a logic program PR. We denote by Mod
the subset of all Herbrand interpretations in WH that are also models of PR. Then we
will have the following two cases:
1. In the first case by introducing the set of unary modal operators for each algebraic
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logic value in W , we obtain the standard 2-valued modal logic for the satisfaction of
logic conjunction and disjunction (if a proposition is defined by the set of worlds where
it is satisfied, then the conjunction/disjunction of any two propositions is equal to the
set intersection/union respectively), by transforming many-valued ground atoms into
2-valued modal ground atoms.
2. In the second case we do not use one specific unary modal operator for each given
algebraic logic value, which can be somewhat complex issue when the cardinality ofW
is very big or infinite. We do not transform the many-valued logic connectives into the
standard 2-valued logic connectives as in the first case: instead, they will be transformed
into binary modal operators with the ternary accessibility relations . In order to obtain
a non standard modal logic in which the intersection/union properties hold for conjunc-
tion/disjunction respectively, we also need to introduce an existential modal operator
with binary accessibility relation equal to the cartesian product of possible worlds. The
semantics of this approach is more complex and transforms all original atoms of the
many-valued logic, but offers one advantage because the number of modal operators is
small, equal to the number of logic operators in the original many-valued logic.

4.1 Unary modal operators case

We will show how a many-valued logic program can be transformed into a 2-valued
multi-modal logic program without modifying the original set of atoms of a many-
valued logic program.
As we have seen, by the contextualization of a many-valued logic Lmv we obtain a
contextual logic Lct with the same Herbrand base H as the original many-valued logic
but (for a given many-valued Herbrand model Imv ∈ Mod) with a higher-order model
I = [4 ◦ (Imv × idW )] : H → 2W as has been shown by the commutative diagram
in Section 3. We are now able to apply the result of the method in Definition 4 to this
contextual logic with higher-order model types.
A simple modal formulae [w]p(x1, .., xn), where w ∈ W and p(x1, .., xn) is an atom of
the many-valued logic program PR, will be called m-atom (modal atom). A 2-valued
multi-modal logic, obtained by the substitution of original many-valued atoms by these
m-atoms, is considered the first time in the case of the 4-valued Belnap’s logics, used
for databases with incomplete and inconsistent information [10].

Definition 7. (Program Transformation: Syntax) Let PR be a many-valued lattice-
based logic program. We define its transformation in the correspondent positive multi-
modal logic program Pmm as follows (bold constants and variables denote tuples):
1. Each ground atom in the original many-valued program PR, p(c) ← α,
where α ∈ W is a fixed logic value, we transform into the following 2-valued ground
m-atom clause in Pmm: (1) [α]p(c) ←
2. Each set of original many-valued clauses in PR, with the same head, (here ∨,∧ are a
many-valued disjunction and conjunction respectively, i.e., the join and meet operators
of a lattice W , and S is a finite interval of natural numbers from 1 to n),
p(x) ← ∨j∈S( rj,1(xj,1), ..., rj,kj (xj,kj ),∼ rj,kj+1(xj,kj+1), ...,∼ rj,mj (xj,mj )),
we transform as follows:
let us denote by V arw =

⋃
j∈S{vj,1, ..., vj,kj , vj,kj+1, ..., vj,mj} the set of logic vari-

ables for atoms in this clause. Then, for each assignment g : V arw → W we define
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a new 2-valued clause with m-atoms, and with the classic 2-valued disjunction
∨

, in
Pmm :
(2) [β]p(x) ← ∨

j∈S( [αj,1]rj,1(xj,1), ..., [αj,kj
]rj,kj

(xj,kj
),

, [αj,kj+1]rj,kj+1(xj,kj+1), ..., [αj,mj ]rj,mj (xj,mj )),
where αj,i = g(vj,i), for j ∈ S, 1 ≤ i ≤ mj , and
β = ∨j∈S(g(vj,1) ∧ ... ∧ g(vj,kj

)∧ ∼ g(vj,kj+1) ∧ ...∧ ∼ g(vj,mj
)).

Consequently, based on clauses (1) and (2), we obtain a standard positive logic pro-
gram Pmm with 2-valued m-atoms.

Remark: notice that obtained positive multi-modal logic program Pmm uses only stan-
dard 2-valued logic connectives, in contrast to the original many-valued logic program
PR where the logic connectives are lattice-based (many-valued) logic operators. The
grounded program PG

mm obtained from a program Pmm, by substituting in all possi-
ble ways the variables of its atoms in all its clauses, will contain only ’modal ground
atoms’ [αkj ]rj,kj (dj,kj ). To such atomic formulae we can assign new fresh proposi-
tional symbols, so that with these propositional symbols the program PG

mm becomes a
pure 2-valued logic program.
As we can verify, the obtained multi-modal logic program Pmm is a positive logic pro-
gram (without negation in the body of clauses), so that it has a unique model (the set of
all true facts derivable from this 2-valued logic program).

Proposition 1 (Invariance) For any given many-valued logic program PR, the trans-
formed 2-valued logic program Pmm with modal atoms has the same Herbrand model
Imv : H →W as the original program PR.

Proof: We have to show that for a given logic program PR, its many-valued Herbrand
model Imv : H →W also satisfies the clauses of the positive 2-valued modal program
Pmm. We will consider their grounded versions, PRG and PG

mm respectively. Then, for
any ground fact p(c) ← α we have that Imv(p(c)) = α, so that for the modal operator
[α] : W → 2, [α](Imv(p(c))) = [α](α) = 1 and, consequently, the correspondent
modal fact in PG

mm, [α]p(c) ← , is satisfied by Imv .
Let us consider a ground clause in PRG,
(1) p(c) ← ∨j∈S( rj,1(cj,1), ..., rj,kj (cj,kj ),∼ rj,kj+1(cj,kj+1), ...,∼ rj,mj (cj,mj )),
which is satisfied by the model Imv with logic values w = Imv(p(c)) and wj,ij =
Imv(rj,ij (cj,ij )) for 1 ≤ j ≤ n and 1 ≤ i ≤ m, such that w = ∨j∈S(wj,1 ∧ ... ∧
wj,kj∧ ∼ wj,kj+1 ∧ ...∧ ∼ wj,mj ). Then, the transformation of this ground clause (1)
of PRG into the 2-valued modal clauses will be the following set of modal rules
(2) [β]p(c) ← ∨

j∈S( [αj,1]rj,1(cj,1), ..., [αj,kj ]rj,kj (cj,kj ),
, [αj,kj+1]rj,kj+1(cj,kj+1), ..., [αj,mj ]rj,mj (cj,mj )),
for all combinations of αj,i ∈ W , for j ∈ S, 1 ≤ i ≤ mj , and
β = ∨j∈S(αj,1 ∧ ... ∧ αj,kj∧ ∼ αj,kj+1 ∧ ...∧ ∼ αj,mj ).
It is easy to verify that the body of the ground rule (2) is true only iff αj,ij = wj,ij

for all j ∈ S and 1 ≤ i ≤ m, and that in that case β = w, so that [β](Imvp(c)) =
[β](w) = [β](β) = 1, that is, also the head of this rule is true, so that this clause is
satisfied. For any other combination of modal operators in every other rule (2), derived
from the rule (1), we obtain that its body is false, thus such a rule in Pmm is satisfied
by Imv . Consequently, the Herbrand model Imv also satisfies the transformed 2-valued
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logic program Pmm. From the fact that Pmm, as a positive logic program, can have only
one Herbrand model we conclude that Imv is the unique Herbrand model of Pmm, and
thus the program transformation is correct and knowledge invariant.
¤
Now we will consider a Kripke model for this transformed modal 2-valued logic pro-
gram Pmm based on Definition 4, based on the particular accessibility relations for
introduced unary modal operators previously discussed.

Definition 8. (Program Transformation: Semantics)
Let PR be a many-valued lattice-based logic program with a many-valued Herbrand
model Imv : H → W , where H is a Herbrand base with a set P of predicate sym-
bols. Its correspondent positive multi-modal logic program Pmm has the Kripke model
MI = (W, {Rw | w ∈ W}, S, V ), with Rw = W × {w} and V : W × P →⋃

n∈N 2Sn

(from Definition 1), such that for any p ∈ P with arity n, a set of con-
stants (c1, .., cn) ∈ Sn, and a world w ∈ W , V (w, p)(c1, .., cn) = 1 iff w =
Imv(p(c1, .., cn)).
Then, for any assignment g and w ∈ W , the satisfaction relation |=g,w is defined as
follows:
1. MI |=g,w p(x1, ..xn) iff V (w, p)(g(x1), .., g(xn)) = 1.
2. MI |=g,w [α]p(x1, ..xn) iff ∀y((w, y) ∈ Rα implies MI |=g,y p(x1, ..xn)).
3. MI |=g,w φ

∧
ψ iff MI |=g,w φ and MI |=g,w ψ.

4. MI |=g,w φ
∨

ψ iff MI |=g,w φ or MI |=g,w ψ.
5. MI |=g,w φ → ψ iff MI |=g,w φ implies MI |=g,w ψ.

Remark: We obtained a modal logic for the multi-modal program Pmm in Definition
7. If we denote by |ψ/g| the set of worlds where the ground formula ψ/g is satisfied,
then |p(g(x1), .., g(xn))| is a singleton set.
Thus, differently from the original ground atoms that can be satisfied in a singleton
set only, the modal atoms have a standard 2-value property, that is, they are true or
false in the Kripke model, and consequently are satisfiable in all possible worlds, or
absolutely not satisfiable in any world. Consequently, our positive modal program with
modal atoms satisfies the classic 2-valued properties:

Proposition 2 For any ground formula φ/g of a positive multi-modal logic program
Pmm in Definition 7, we have that |φ/g| ∈ {∅,W}, where ∅ is the empty set.

Proof: by structural induction :
1. |[α]p(x1, ..xn)/g| = W if α = Imv(p(g(x1), .., g(xn))); ∅, otherwise.
Let, by inductive hypothesis, |φ/g|, |ψ/g| ∈ {∅,W}, then
2. MI |=g,w φ

∧
ψ iff w ∈ |(ψ ∧

φ)/g| = |ψ/g|⋂ |ψ/g| ∈ {∅,W}.
3. MI |=g,w φ

∨
ψ iff w ∈ |(ψ ∨

φ)/g| = |ψ/g|⋃ |ψ/g| ∈ {∅,W}.
4. MI |=g,w φ → ψ iff w ∈ |φ/g| implies w ∈ |ψ/g|. Thus, φ → ψ is true in
the model MI iff |φ/g| ⊆ |ψ/g|, that is, iff vB(φ/g) ≤ vB(ψ/g) , or, alternatively,
φ/g ` ψ/g , where ` is the deductive inference relation for this 2-valued modal logic.
Thus, |φ/g → ψ/g| = (W − |φ/g|)⋃ |ψ/g| ∈ {∅,W}.
¤
The following proposition demonstrates the existence of a one-to-one correspondence
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between the unique many-valued model of the original many-valued logic program P
and this unique multi-modal positive logic program Pmm.

Proposition 3 Let PR be a many-valued logic program with a Herbrand model Imv :
H → W , then the model MI of the 2-valued multi-modal program Pmm, obtained
by the transformation defined in Definition 7, is composed by the set of true atomic
formulae ST = {[α]p(c) | p(c) ∈ H and α = Imv(p(c))}.

Proof: For any ground atom p(c) ∈ H such that its logic value in a Herbrand model
Imv : H →W , obtained by Clark’s completion [33,34,35], is equal to α = Imv(p(c)),
we have that |[α]p(c)| = {w ∈ W | MI |=w [α]p(c)} = {w ∈ W | α =
Imv(p(c))} = W . Thus, [α]p(c) is true in MI .
¤
Remark: This transformation of many-valued logic programs into positive (without
negation) logic programs (but with modal atoms), can also be used to manage the in-
consistency in 2-valued logic programs: while in the original 2-valued logic we are not
able to manage the ground atom p(c1, ..cn) that is both true and false without the explo-
sive inconsistency of all logic, in the transformed positive modal program we can have
the ground modal atoms [1]p(c1, ..cn) and [0]p(c1, ..cn) both true without generating
the inconsistency. This means that this kind of 2-valued transformation can be used for
paraconsistent logics, as shown in the example below.
Example 1: The smallest nontrivial bilattice is Belnap’s 4-valued bilattice [36,28]
W = B = {f, t,⊥,>}where t is true, f is false, > is inconsistent (both true and
false) or possible , and ⊥ is unknown. As Belnap observed, these values can be given
two natural orders: truth order, ≤t, and knowledge order, ≤k, such that f ≤t > ≤t t,
f ≤t ⊥ ≤t t, ⊥ ./t > and ⊥ ≤k f ≤k >, ⊥ ≤k t ≤k >, f ./k t. That is, the bottom
element 0 for ≤t ordering is f , and for ≤k ordering is ⊥, and the top element 1 for ≤t

ordering is t, and for ≤k ordering is >
Meet and join operators under ≤t are denoted ∧ and ∨; they are natural generalizations
of the usual conjunction and disjunction notions. Meet and join under ≤k are denoted
⊗ and ⊕, such that it holds that: f ⊗ t = ⊥, f ⊕ t = >, > ∧⊥ = f and > ∨⊥ = t.
We may use a relative pseudo-complements for the implication, defined by x ⇀ y =
∨{z | z ∧ x ≤t y}, and the pseudo-complements for the negation, ¬tx = x ⇀ f .
In Belnap’s bilattice the conflation − is a monotone function that preserves all finite
meets (and joins) w.r.t. the lattice (B,≤t), thus it is the universal (and existential, be-
cause − = ¬t − ¬t) modal many-valued operator: ” it is believed that”, which extends
the 2-valued belief of the autoepistemic logic as follows:
1. if A is true than ”it is believed that A”, i.e., −A, is true;
2. if A is false than ”it is believed that A” is false;
3. if A is unknown than ”it is believed that A” is inconsistent: it is really inconsistent to
believe in something that is unknown;
4. if A is inconsistent (that is, both true and false) then ”it is believed that A” is un-
known: really, we can not tell anything about belief in something that is inconsistent.
This belief modal operator is used to define the epistemic negation ¬, as composition
of the strong negation ¬t and this belief operator, i.e., ¬ = ¬t−.
Let us show how these modal atoms in Definitions 7 and 8 can be used for paracon-
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sistent logic, able to deal with the truth of the formulae B = A ∧ ¬A as well: when
a formula B is true then a formula A is called inconsistent, that is, has the logic value
> in the Belnap’s 4-valued logic. It is easy to see that in such a case a formula B cor-
responds to a 2-valued formula [>]A, i.e., [>]A = A ∧ ¬A, where the modal operator
[>] is an ”it is inconsistent” operator (used also as • in Logics of Formal Inconsistency
(LFI) [37] for the 3-valued sublattice B3 = {f,>, t} ⊂ B4).
But the other operator [⊥] is a modal ”it is unknown” operator, used to support an in-
complete knowledge as well. That is, when a formula [⊥]A is true, then a formula A is
called unknown, and has the value ⊥ in Belnap’s 4-valued logic.
This is the reason why we are using Belnap’s 4-valued logic for the paraconsistent data
integration [38] of partially inconsistent and incomplete information. In [38] we use the
4-valued logic directly with Moore’s autoepistemic operator [25], µ : B → B, for a
Belnap’s bilattice, defined by µ(x) = t if x ∈ {>, t}; f otherwise.
It is easy to verify that it is monotone w.r.t. ≤t, that is, it is multiplicative (µ(x ∧ y) =
µ(x) ∧ µ(u) and µ(t) = t) and additive (µ(x ∨ y) = µ(x) ∨ µ(u) and µ(f) = f ).
Consequently, it is a selfadjoint (contemporary universal and existential) modal opera-
tor, µ = ¬tµ¬t. But if we are adopting, alternatively, the proposed 2-valued reduction
for this Belnap’s 4-valued logic, we are able to use the modal operators [⊥] and [>] in
order to deal with incomplete and inconsistent information as well.

4.2 Binary modal operators case

In this subsection we will use an alternative method w.r.t. the precedent case, based
on a flattening, in order to reduce a many-valued into a 2-valued logic. The flattening
of an original many-valued lattice-based program into a modal meta logic is a kind of
ontological-encapsulation, where the encapsulation of an original many-valued logic
program into the 2-valued modal meta logic program corresponds to a flattening pro-
cess described in Definition 5. This approach is developed in a number of papers, and
more information can be found in [2,10,39,17]. Here we will present a slightly modified
version of this ontological encapsulation.
We will also introduce a new symbol e (for ”error condition”), necessary in order to
render complete the functions for a generalized interpretation and a semantic-reflection,
defined w.r.t. a particular model Imv ∈ Mod, as follows:

Definition 9. Let PR be a many-valued logic program with a set of predicate and func-
tional symbols P and F respectively, with a Herbrand model Imv : H → W where H
is a Herbrand base, with a set T0 of all ground terms and a set T =

⋃
k∈N T k

0 with
N = {1, 2, ..., n} where n is the maximal arity of symbols in P

⋃
F .

A generalized interpretation is a mapping I : P × T → W⋃{e}, such that for any
c = (c1, .., cn) ∈ T , I(p, c) = Imv(p(c)) if ar(p) = n; e otherwise.
Then, a semantic-reflection is defined by a mapping K = λI : P → (W⋃{e})T ,
where λ is the currying operator from lambda calculus.
For each p ∈ P that is not a built-in 2-valued predicate, we define a new functional
symbol κp for a mapping K(p) : T → W⋃{e}.
If p is a 2-valued built-in predicate, then the mapping κp is defined uniquely and inde-
pendently of Imv , by: for any c ∈ T ar(p)

0 , κp(c) = 1 if p(c) is true; 0 otherwise.
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We recall the well-known fact that 2-valued built-in predicates (as ≤, =, etc..) have
constant extensions in any Herbrand interpretation (they preserve the same meaning for
any logic interpretation, differently from ordinary predicates).
A semantic-reflection K, obtained from a generalized interpretation I, introduces a
function symbol κp = K(p) for each predicate p ∈ P of the original logic program
PR, such that for any c = (c1, .., cn) ∈ T , it holds that κp(c) = Imv(p(c)) if
ar(p) = n; {e} otherwise. These new function symbols will be used in a new meta
logic language, used to transform each original many-valued atom p in P into a new
atom pF obtained as an extension of the original atom p by one ”logic” attribute with
the domain of values inW . The interpretation of a function symbol κp in this new meta
logic program has to reflect the meaning of the original many-valued predicate p in the
original many-valued logic program PR. This is the main reason why we are using the
name semantic-reflection for a mapping K, because by introducing the many-valued
interpretations contained in the set of built-in functional symbols κp as objects of a
meta logic (defined in the following Definition 10), obtained logic becomes a meta-
logic w.r.t. the original many-valued logic. Consequently, we are able to introduce a
program encapsulation (flattening) transformation E , similarly as in [2], as follows:

Definition 10. (Ontological encapsulation of Many-valued Logic Programs: Syntax)
Let PR be a many-valued logic program with a set of predicate symbols P , a many-
valued Herbrand model Imv : H → W , and a semantic-reflection K. Then, the trans-
lation E of a program PR into its encapsulated syntax version PRF is as follows: for
each predicate symbol p ∈ P with arity n, we introduce a predicate symbol pF with
one more attribute with a domain in W . Then,
1. each atom p(t1, .., tn)) in PR with terms t1, ..., tn, we transform as follows
E(p(t1, .., tn)) = pF (t1, .., tn, κp(t1, .., tn)),
and we denote by PF the set of all new obtained predicates pF .
For any formula φ, ϕ ∈ Lmv we do as follows:
2. E(∼ φ) = ∼A E(φ);
3. E(φ∧ϕ) = E(φ)∧AE(ϕ); E(φ∨ϕ) = E(φ)∨E(ϕ); E(φ ← ϕ) = E(φ) ←A E(ϕ),
where ∧A,∨A and ←A) are new introduced binary symbols for the conjunction, dis-
junction and implication, at the encapsulated meta level, respectively. Thus, the ob-
tained meta program PRF = {E(φ) | φ is a clause in PR}, has a Herbrand base
HF = { pF (c1, .., cn, α) | p(c1, .., cn) ∈ H and α ∈ W}.
We denote by LF the set of formulae (free algebra) obtained from the set of predicate
letters in PF and modal operators ∼A,∧A,∨A and ←A.

Remark: the new introduced logic symbols∼A,∧A,∨A and←A for the metalogic op-
erators of negation, conjunction, disjunction and implication are not necessarily truth-
functional as are original many-valued operators (∧ and ← for example) but rather are
modal (non truth-functional). Unary operator ∼A is not a negation (antitonic) operator
but a modal operator, so that by this transformation of PR we obtain a modal logic
program RPF that is a positive logic program (without negation). Differently from a
ground many-valued formula φ ∈ Lmv , the transformed meta-formula E(φ) ∈ LF can
be only true or false in a given possible world w ∈ W for this meta modal logic (in a
given Kripke model M of obtained meta logic program PRF ).
In this definition of a meta logic program PRF , the set of mappings {κp = K(p) | p ∈
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PS} is considered as a set of built-in functions, determined by a given semantic reflec-
tion K, that extends a given set of functional symbols in F .
This embedding of a many-valued logic program P into a meta logic program PF is an
ontological embedding: it considers both the formulae of PR with their many-valued
interpretation obtained by semantic reflection (a set of built-in functions κp) of original
many-valued logic in this new modal meta logic.
Encapsulation operator E is intended to have the following property for a valuation v (a
homomorphic extension of Herbrand interpretation Imv to all formulae in Lmv given
by Definition 6) of a many-valued logic program PR:
for any ground many-valued formula φ, encapsulated meta formula E(φ) intends to
capture the notion of φ with its value v(φ) as well, in the way that ”E(φ) is true exactly
in the possible world w = v(φ)”.
In order to introduce a concept of absolute truth or falsity (not relative to a single possi-
ble world in W) for the ground meta formulae in LF , we need a kind of autoepistemic
modal operator ♦ (it is not part of a language LF obtained by ontological encapsu-
lation). Consequently, for any given ground formula Φ ∈ LF , similarly to Moore’s
autoepistemic operator, a formula ♦Φ is able to capture the 2-valued notion of ”Φ is a
semantic reflection of a many-valued logic program model Imv”.
Notice that in this encapsulation, for example, the meta-implication ←A derived from
the many-valued implication, E(φ) ←A E(ψ) = E(φ ← ψ), specifies how, for a
given clause in PR, a logic value of the body ”propagates” to the head of this clause. It
is not functionally dependent on the truth values of its arguments, thus it must be a bi-
nary modal operator. A Kripke semantics for this binary modal operators can be defined
based on the simple idea of transforming the many-valued lattice-based operator→ into
the ternary accessibility relationsR→. The idea to use ternary relations to model binary
modal operators comes from Relevance logic [40,41,42,43], but, as far as we know, this
is the first time that ternary relations have been built directly from the truth-tables for
multi-valued binary logic operators.

Definition 11. Let PR be a many-valued logic program with a set of predicate symbols
P , a many-valued Herbrand model Imv : H →W and its semantic-reflection K.
Then, the model of the flattened program PRF in Definition 10 is defined as the Kripke-
style model M = (W, {R∼,R∧,R∨,R→,R× = W ×W}, S, V ), where,
R∧ = {(x ∧ y, x, y) | x, y ∈ W}, R∨ = {(x ∨ y, x, y) | x, y ∈ W},
R→ = {(x → y, x, y) | x, y ∈ W and x ≤ y}, R∼ = {(∼ x, x) | x ∈ W},
and V : W×PF → ⋃

n∈N 2Sn×W (from Definition 1), such that for any p ∈ P with
arity n (i.e., pF ∈ PF with arity n + 1), a tuple of constants (c1, .., cn) ∈ Sn, and a
world w ∈ W , V (w, pF )(c1, .., cn, α) = 1 iff w = α = κp(c1, .., cn)),
such that, for any formula Φ, Ψ ∈ LF , the satisfaction relation |=w,g , for a given as-
signment g and a world w ∈ W , is defined as follows:
1. M |=w,g pF (x1, ..xn, α) iff V (w, pF )(g(x1), .., g(xn), α) = 1.
2. M |=w,g∼A Φ iff ∃y((w, y) ∈ R∼ and M |=y,g Φ).
3. M |=w,g ∧A(Φ, Ψ) iff ∃y, z((w, y, z) ∈ R∧ and M |=z,g Φ and M |=y,g Ψ).
4. M |=w,g ∨A(Φ, Ψ) iff ∃y, z((w, y, z) ∈ R∨ and M |=z,g Φ and M |=y,g Ψ).
5. M |=w,g ←A (Φ, Ψ) iff ∃y, z((w, y, z) ∈ R→ and M |=z,g Φ and M |=y,g Ψ).
6. M |=w,g ♦Φ iff ∃y((w, y) ∈ R× and M |=y,g Φ).

18



The binary operators ∧A,∨A and ←A for this multi-modal logic are the existential
modal operators w.r.t. the ternary relation R∧, R∨ and R→ respectively, while ∼A

and ♦ are the existential unary modal operator w.r.t the binary relation R∼ and R×,
respectively.
Instead of ∧A(E(φ), E(ψ)), ∨A(E(φ), E(ψ)) and ←A (E(φ), E(ψ)), we will use also
E(φ) ∧A E(ψ), E(φ) ∨A E(ψ) and E(φ) ←A E(ψ) respectively.

Proposition 4 For any assignment g and a formula Φ ∈ LF we have that |♦Φ/g| ∈
{∅,W}, where ∅ is the empty set. That is, for any many-valued formula φ ∈ L the
formula♦E(φ/g) is true in the Kripke-style relational modelM given by Definition 11,
so thatM is a Kripke-style model of PRF correspondent to the many-valued algebraic
model Imv of the original program PR.

Proof: In what follows we denote by v the (homomorphic) extension of a Herbrand
model Imv to all ground formulae in Imv , as defined in Definition 6.
Let us demonstrate that for any φ ∈ L, i.e., E(φ) ∈ LF , holds that
M |=w,g E(φ) iff w = v(φ/g).
1. For any atomic formula p(x1, .., xn) we have that,
M |=w,g E(p(x1, .., xn)) iff V (w, pF )(g(x1), .., g(xn), κp(g(x1), .., g(xn))) = 1
iff w = κp(g(x1), .., g(xn)) = λI(p)(g(x1), .., g(xn)) = Imv(p(g(x1), .., g(xn))) =
v(p(x1, .., xn)/g). Viceversa, if w = v(p(x1, .., xn)/g), i.e., w = Imv(p(x1, .., xn)/g) =
κp(g(x1), .., g(xn)), then V (w, pF )(g(x1), .., g(xn), κp(g(x1), .., g(xn))) = 1 and,
consequently, from point 1 of definition above, M |=w,g E(p(x1, .., xn)).
Suppose, by the inductive hypothesis, that M |=z,g E(φ) iff z = v(φ/g), and
M |=y,g E(ψ) iff y = v(ψ/g), then:
2. For any formula ϕ =∼ φ, we have that M |=w,g E(ϕ) iff M |=w,g E(∼ φ) iff
M |=w,g ∼A E(φ) iff (∃z((w, z) ∈ R∼ and M |=z,g E(φ))), that is, if
w = ∼ z (from the definition of accessibility relation R∼)
= ∼ v(φ/g) = v(∼ φ/g) (from a homomorphic property of v)
= v(ϕ/g).
Viceversa, if w = v(ϕ/g) = v(∼ φ)/g = ∼ v(φ/g) = ∼ z then, from the inductive
hypothesis, M |=w,g ∼A E(φ), i.e., M |=w,g E(ϕ).
3. For any formula ϕ = φ¯ ψ, where ¯ ∈ {∧,∨,→}, we have that M |=w,g E(ϕ)
iff M |=w,g E(φ ¯ ψ) iff ( M |=w,g E(φ) ¯A E(ψ) iff (∃y, z((w, y, z) ∈ R¯
and M |=z,g E(φ) and M |=y,g E(ψ))), that is, if
w = z ¯ y (from a definition of accessibility relation R¯)
= v(φ/g)¯ v(ψ/g) = v(φ/g ¯ ψ/g) (from a homomorphic property of v)
= v((φ¯ ψ)/g) = v(ϕ/g).
Viceversa, if w = v(ϕ/g) = v(φ¯ ψ)/g = v(φ/g)¯ v(ψ/g) = z ¯ y then, from the
inductive hypothesis, M |=w,g E(φ) ∧A E(ψ), i.e., M |=w,g E(ϕ).
Thus, for any Φ ∈ LF we have that |Φ/g| = {w} for some w ∈ W , if Φ/g = E(φ/g);
otherwise |Φ/g| = ∅.
Consequently, we have that |♦Φ/g| = {w | ∃y((w, y) ∈ R× and M |=y,g Φ)} = W
if Φ/g = E(φ/g); otherwise |♦Φ/g| = ∅. That is, each ground modal formula ♦Φ/g
for any Φ ∈ LF is a 2-valued formula.
From Definition 11 we have seen how a many-valued model Imv of a logic program PR
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uniquely determines a Kripke model M of its meta-logic modal program PRF . Let us
now show the opposite direction, that is, how a Kripke model M of a modal logic pro-
gram PRF obtained by ontological encapsulation of the original many-valued logic
program PR, determines uniquely a many-valued model Imv of the logic program PR.
That is, let us show that the set of ground atomic modal formulae♦pF (c1, ..., cn, α) for
pF (c1, ..., cn, α) ∈ HF , which are true in a Kripke model M, uniquely determines the
many-valued Herbrand model Imv of the original logic program PR:
In fact, we define uniquely the mapping Imv : H → W , as follows: for any modal
atomic formula♦pF (c1, ..., cn, α), true in the Kripke modelM, we define Imv(p(c1, ....cn))
= α. It is easy to verify that such a definition of a mapping Imv : H →W is a Herbrand
model of a many-valued logic program PR.
¤
This transformation of multi-valued logic programs into 2-valued multi-modal logic
programs can be briefly explained as follows: we transform the original multi-valued
atoms into the meta 2-valued atoms by enlarging the original atoms with a new logic
attribute with the domain of values in W . This ontological encapsulation also elimi-
nates the negation (in this case the negation ∼) by introducing a unary modal operator
∼A. The remained binary multi-valued lattice operations are substituted by the 2-valued
binary modal operators, by transforming the truth functional tables of these operators
directly into the ternary accessibility relations of this modal logic.
Remark: In addition, this ontological encapsulation of logic programs into the positive
(without the negation) modal programs, can be used, with some opportune modifica-
tions of the definitions above where a ground atom pF (c1, ..cn, α) ∈ HF is true only
for exactly one value α ∈ W , to deal with the inconsistency of 2-valued logic programs:
the resulting positive modal program will be a paraconsistent logic program, that is for
any given ground atom p(c1, ..cn) of the original 2-valued logic program that is incon-
sistent (both true and false), in the transformed consistent positive modal program we
can (consistently) have two true ground atoms, pF (c1, ..cn, 1) and pF (c1, ..cn, 0).
The relationship between these two program transformations, for finite and infinite
cases of many-valued programs, can be given by the following corollary:

Corollary 1. For any atom p(x1, .., xn) of a many-valued logic program and its two 2-
valued program transformations defined previously, the following semantic connection
holds M |=w,g E(p(x1, .., xn)) iff ”[w]p(g(x1), .., g(xn)) is true in MI”.

Consequently, we can conclude that many-valued logic programs can be equivalently
replaced by positive 2-valued multi-modal logic programs, and this reduction of many-
valued logics into modal logics also explains the good properties of many-valued logic
programs.
Moreover, we have shown that by a 2-valued reduction of many-valued logic pro-
grams we obtain a 2-valued non-truth-functional logic, and that such a logic is just
a 2-valued (multi)modal logic with a non-standard autoreferential Kripke semantics,
because modal operators are generally non monotonic, and in a second case we need
also binary modal operators.
In what follows we will generalize this 2-valued reduction presented for only Logic
Programs, to any kind of many-valued logics.
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5 A general abstract reduction of many-valued into 2-valued logics

The term ”abstract” used for this general many-valued reduction means that we do not
consider any further the specific reduction of particular functional logic operators in Σ
of a many-valued logic into correspondent modal operators, but rather a general reduc-
tion independent of them, based on structural consequence operations or matrices.
As we will see, both abstract reductions will result in a kind of 2-valued modal logic
that are not truth-functional, as we obtained in the specific case for Logic Programs in
Section 4.
In [44] Suszko’s thesis was presented. This paper is extremely dense and very short,
and thus it is not easy to understand; it is a kind of synthesis, in four pages, of some
deep reflections carried out by Suszko over forty years. Only 15 years after this pub-
lication, Malinowski’s book [45] has thrown some light on it (see especially Chapter
10, Section 10.1). Unfortunately, neither the quoted paper by Suszko nor Malinowski’s
book explicitly state Suszko’s thesis, but in another paper [46] Malinowski has writ-
ten ”Suszko’s thesis ... states that each logic, i.e., a structural consequence operation
conforming Tarski’s conditions, is logically two-valued”, and (p.73) ”each (structural)
propositional logic (L,C) can be determined by a class of logical valuations of the lan-
guage L or, in other words, it is logically two-valued”.
In what follows we will try to formally develop a reduction of a many-valued predicate
logic Lmv , with a Herbrand base H , into a 2-valued logic, based on these observations
of Suszko.
We denote, for a given set of thesis (ground formulae) Γ of a many-valued logic Lmv ,
the 2-valued structural consequence relation by Γ ` φ, which means that a ground for-
mula φ is a structural consequence of set of ground formulae in Γ , i.e., that φ ∈ C(Γ )
where C is a structural consequence operation conforming Tarski’s conditions.
We denote by V al = BH the set of Herbrand many-valued interpretations v : H → B,
v ∈ V al, for a many-valued logic Lmv with a Herbrand base H and a set of algebraic
truth-values in B. Let V alΓ ⊂ V al be a non-empty subset of models of Γ , that is, val-
uations v ∈ V alΓ that satisfy every ground formula in Γ .
Then, the truth of Γ ` φ is equivalent to the fact that every valuation v ∈ V alΓ is a
model of φ also (i.e., satisfies a ground formula φ). However, here we are not speaking
about a truth value of a many-valued ground formulae φ ∈ Lmv , but about a truth value
of a meta sentence Γ ` φ. In what follows, for a fixed set of (initial) thesis Γ ⊂ Lmv

that defines a structural many-valued logic (Γ,C), we will transform the left side con-
struct Γ ` ( ) in an universal modal operator 2Γ (”Γ -deducible”), so that a meta
sentence Γ ` φ can be replaced by an equivalent modal formula 2Γ φ in this 2-valued
meta logic.
Thus, analogously to the more specific cases for Logic Programs, also in this general
abstract 2-valued reduction we are not speaking about the two-valuedness of an original
many-valued formula, but about a modal formula of a 2-valued meta-logic obtained by
this transformation.
What remains now is to define a Kripke semantics for this modal meta-logic, denoted
by LF , obtained from a set of formulae F = {2Γ φ | φ ∈ Lmv} and the standard
2-valued logic connectives (conjunction, disjunction, implication and negation).

21



Definition 12. Given a structural many-valued logic (Γ, C), where Γ ⊂ Lmv is a sub-
set of ground formulae with a set of predicate symbols in P and a Herbrand base H ,
we define a Kripke-style model for Suszko’s reduction, M = (W,RΓ , S, V ), where
a set of possible worlds is W = V al, RΓ = V al × V alΓ , and V : W × P →⋃

n∈N 2Sn×W (from Definition 1), such that for any p ∈ P with arity n, a tuple of con-
stants (c1, .., cn) ∈ Sn, and a world w ∈ W , (a Herbrand interpretation w : H → B),
V (w, p)(c1, .., cn) = 1 iff w ∈ V alΓ .
The satisfaction relation |=w,g , for a given assignment g and a world w ∈ W , for any
many-valued formula φ, ψ, is defined as follows:
1. M |=w,g p(x1, ..xn) iff V (w, p)(g(x1), .., g(xn)) = 1.
2. M |=w,g φ iff the homomorphic extension (in Definition 6) of the Herbrand
model w is a model of the ground formula φ/g.
3. M |=w,g 2Γ φ iff ∀w′((w, w′) ∈ RΓ implies M |=w′,g φ ) .
4. M |=w,g ¬2Γ φ iff not M |=w,g 2Γ φ ,
5. M |=w,g 2Γ φ ∧2Γ ψ iff M |=w,g 2Γ φ and M |=w,g 2Γ ψ ,
6. M |=w,g 2Γ φ ∨2Γ ψ iff M |=w,g 2Γ φ or M |=w,g 2Γ ψ ,
7. M |=w,g 2Γ φ → 2Γ ψ iff M |=w,g 2Γ φ implies M |=w,g 2Γ ψ ,
where the logic connectives ∧,∨,→ and ¬ are the classic 2-valued conjunction, dis-
junction, implication and negation respectively.

Notice that a satisfaction of the 2-valued formulae of this meta-logic LF , obtained by
Suszko’s reduction of the original many-valued logic, is relative to points 3 to 7 in the
Definition above. Consequently, the two-valuedness is a property not of the original
many-valued formulae, but of the modal formulae in this non truth-functional modal
meta-logic. Let us show that this reduction is sound and complete.

Lemma 1. Given a Kripke model M = (W,RΓ , S, V ) in Definition 12, for a given
many-valued logic (Γ, C), where Γ ⊂ Lmv is a subset of ground formulae, then for
any formula φ ∈ Lmv and assignment g we have that:
φ/g ∈ C(Γ ), (i.e., Γ ` φ/g) iff 2Γ φ/g is true in M.

Proof: If Γ ` φ/g then for every w ∈ V alΓ its homomorphic extension to all ground
formulae in Lmv is a model of a ground formula φ/g ∈ Lmv . Thus,
|2Γ φ/g| = {w | ∀w′((w, w′) ∈ RΓ implies M |=w′,g φ ) }
= {w | ∀w′((w, w′) ∈ RΓ implies w′ is a model of φ/g ) }
= {w | ∀w′(w′ ∈ V alΓ implies w′ is a model of φ/g ) }
= {w | true } = W , i.e., 2Γ φ/g is true in M.
Viceversa, if 2Γ φ/g is true in M then W = |2Γ φ/g| = {w | ∀w′((w,w′) ∈ RΓ

implies M |=w′,g φ ) } = {w | ∀w′ ∈ V alΓ (w′ is a model of φ/g ) }, that is,
the following sentence has to be true: ∀w′ ∈ V alΓ (w′ is a model of φ/g ), and,
consequently, Γ ` φ/g , i.e., φ/g ∈ C(Γ ).
¤
These results confirm da Costa’s idea [47] that a reduction to 2-valuedness can be done
at an abstract level, without taking into account the underlying structure of the set of
many-valued formulae (differently from the particular case of Logic Programs given in
Section 4).
It is not necessary to make a detour by matrices in order to get this reduction. But in the
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case where we have a many-valued logic with a given matrix (B, D), where D ⊂ B is
a subset of designated algebraic truth values, then we are able to define a new modal 2-
valued reduction for such a many-valued logic, based on the existential modal operator
♦D (”D-satisfied”). It is given in the way that, for given homomorphic extension of
a valuation v : H → B, a many-valued formula φ ∈ Lmv and an assignment g, the
formula ♦Dφ/g is true iff v(φ/g) ∈ D, that is, iff v satisfies (is a model of) φ/g.
What remains now is to define a Kripke semantics for this matrix-based reduction to a
modal meta-logic, denoted by LE , obtained from a set of formulae E = {♦Dφ | φ ∈
Lmv} and standard 2-valued logic connectives (conjunction, disjunction, implication
and negation).

Definition 13. Given a many-valued logic Lmv with a given matrix (B, D), a set of
predicate symbols in P and a Herbrand base H , we define a Kripke-style model for a
matrix-based reduction by a quadruple M = (W,RD, S, V ), where a set of possible
worlds isW = B,RD = B×D, and V : W×P → ⋃

n∈N 2Sn×W (from Definition
1), such that for any p ∈ P with arity n, a tuple of constants (c1, .., cn) ∈ Sn,
V (w, p)(c1, .., cn) = 1 for exactly one world w ∈ D ⊆ W .
The satisfaction relation |=w,g , for a given assignment g and a world w ∈ W , for any
many-valued formula φ, ψ ∈ Lmv , is defined as follows:
1. M |=w,g p(x1, ..xn) iff V (w, p)(g(x1), .., g(xn)) = 1.
2. M |=w,g φ iff w = v(φ/g) ∈ D, where v is the unique homomorphic exten-
sion (Definition 6) of a mapping v : H → B defined by: for each p(c1, ..., cn) ∈ H ,
v(p(c1, ..., cn)) = y such that V (y, p)(c1, .., cn) = 1.
3. M |=w,g ♦Dφ iff ∃w′((w,w′) ∈ RD and M |=w′,g φ ) .
4. M |=w,g ¬♦Dφ iff not M |=w,g ♦Dφ ,
5. M |=w,g ♦Dφ ∧ ♦Dψ iff M |=w,g ♦Dφ and M |=w,g ♦Dψ ,
6. M |=w,g ♦Dφ ∨ ♦Dψ iff M |=w,g ♦Dφ or M |=w,g ♦Dψ ,
7. M |=w,g ♦Dφ → ♦Dψ iff M |=w,g ♦Dφ implies M |=w,g ♦Dψ ,
where the logic connectives ∧,∨,→ and ¬ are the classic 2-valued conjunction, dis-
junction, implication and negation respectively.

Notice that in this case we obtained an autoreferential semantics [31,32] and that a sat-
isfaction of the 2-valued formulae of this meta-logic LE , obtained by the matrix-based
reduction of original many-valued logic, is relative to points 3 to 7 in the Definition
above. Consequently, the two-valuedness is a property not of the original many-valued
formula, but of the modal formula in this non truth-functional modal meta-logic.
Let us show that this matrix-based reduction is sound and complete.

Lemma 2. Let M = (W,RD, S, V ) be a Kripke model, given in Definition 13, for
a many-valued logic Lmv with a matrix (B, D). We define a many-valued Herbrand
interpretation v : H → B as follows: for each p(c1, ..., cn) ∈ H ,
v(p(c1, ..., cn)) = w, where w is the unique value that satisfies V (w, p)(c1, ..., cn) = 1.
Then, for any formula φ ∈ Lmv and an assignment g, we have that,
” the homomorphic extension of v is a model of φ/g” iff ♦Dφ/g is true in M.

Proof: If the homomorphic extension of v is a model of φ/g then w′ = v(φ/g) ∈ D,
thus, |♦Dφ/g| = {w | ∃w′((w, w′) ∈ RD and M |=w′,g φ ) }
= {w | ∃w′((w, w′) ∈ RD and w′ = v(φ/g) } = {w | true } = W ,
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i.e., ♦Dφ/g is true in M.
Viceversa, if ♦Dφ/g is true in M then W = |♦Dφ/g| = {w | ∃w′((w,w′) ∈ RD and
M |=w′,g φ ) } = {w | ∃w′ ∈ D (w′ = v(φ/g)) }, that is, the following sentence has
to be true: ∃w′ ∈ D (w′ = v(φ/g)), and, consequently, it must hold that v(φ/g) ∈ D,
i.e., the homomorphic extension of v is a model of φ/g.
¤

6 Conclusion

As we mentioned, real-world problems often have to be resolved by applying Arti-
ficial Intelligence techniques by means of many-valued logics (fuzzy, paraconsistent,
bilattice-based, etc..), therefore, the investigation of the general properties of these non
standard many-valued logics is a very important issue. Based on Suszko’s thesis, in
this paper we analyzed a different possibility of reducing these many-valued logics into
2-valued logics, in order to be able to compare their original many-valued properties
based on such obtained 2-valued logic. Our approach, however, is formal and construc-
tive, in contrast to Suszko’s nonconstructive approach based on a distinction between
designated and undesignated algebraic truth-values.
We introduced a kind of a contextualization for many-valued logics that is similar to
the special annotated logics case, but which gives us the possibility of continuing to use
the standard Herbrand models as well. In this paper we have shown how many-valued
logic programs can be equivalently transformed into contextual logic programs with
higher-order Herbrand interpretations. We have shown that the flattening of such higher-
order Herbrand interpretations leads to 2-valued logic programs, identical to meta logic
programs obtained by an ontological encapsulation of the original Many-valued logic
programs [2,10] with modal logic connectives. From the other side, the properties of
higher-order Herbrand types, with a possibility of introducing the Kripke semantics for
them, are the basis for an equivalent transformation of many-valued Logic Programs
into the 2-valued multi-modal Logic Programs with modal atoms.
We also developed a general abstract 2-valued reduction for any kind of many-valued
logics, based on informal Suszko’s thesis, and have shown the Kripke semantics for
obtained 2-valued modal meta-logics, for both Suszko’s (non-matrix) and matrix-based
cases.
Consequently, any kind of reduction of a many-valued logic into 2-valued logic results
in a non truth-functional modal meta-logic, which obviously is not an original ”refer-
ence” many-valued logic. This process is explained by the fact that this reduction is
based on new sentences about the original many-valued sentences, and that, by avoid-
ing the second order syntax of these meta-sentences, what is required is the introduction
of new modal operators in this equivalent but 2-valued meta-logic. As presented in the
case of Logic Programming and general structural many-valued logics, this is a general
approach to 2-valued reductions.
This results consolidate an intuition that the many-valued logics, used for uncertain,
approximated and context-dependent information, can be embedded into multi-modal
logics with possible world semantics, which are well investigated sublanguages of the
standard First-order logic language with very useful properties.
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This method can be used for paraconsistent logics as well, as shown in an example for
the 4-valued Belnap’ bilattice, and explains why the paraconsistent logics can be for-
malized by modal logics as well.
Further investigation: It is well known, by Definition 2 in [48,49], that any 2-valued
modal logic can be equivalently transformed into a truth-valued many-valued logic with
a complete distributive lattice of its ”algebraic functional” logic values (so called com-
plex algebras over powerset of possible worlds), as for example the complex algebra
for a (modal) intuitionistic logic is a Heyting algebra over the powerset of possible
worlds. Here we demonstrated that, additionally, every truth-functional many-valued
logic can be reduced into a non truth functional modal (meta) logics. There does re-
main an open question: are all 2-valued non truth-functional logics necessarily modal
logics? Consider, for example, the paraconsistent da Costa’s Cn system [50] for which
the relational Kripke semantics has not still been defined.
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31. Z.Majkić, “Autoreferential semantics for many-valued modal logics,” Journal of Applied
Non-Classical Logics (JANCL), Volume 18- No.1, pp. 79–125, 2008.
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39. Z.Majkić, “Truth and knowledge fixpoint semantics for many-valued logic programming,”
19th Workshop on (Constraint) Logic Programming (W(C)LP 2005), February 21-25, Ulm,
Germany, 2005.

40. A.Urquhart, “Semantics for relevant logics,” The Jurnal of Symbolic Logic, Vol.37, Issue 1,
pp. 159–169, 1972.

41. R.Routley and R.K.Meyer, “Semantics of entailment I,” In H. Leblanc, ed. Truth Syntax and
Modality, North-Holland, Amsterdam, pp. 199–243, 1973.
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48. Z.Majkić, “Weakening of intuitionistic negation for many-valued paraconsistent da Costa
system,” Notre Dame Journal of Formal Logics, Volume 49, Issue 4, pp. 401–424, 2008.
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