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Abstract

According to classical general relativity, a spherically symmetric static
spacetime involves an essential singularity at r = 0 and a Schwarzschild
singularity at r = 2GM=c2. We show that when quantum �eld e¤ects in
terms of quantum stresses are included, Einstein �eld equations yield a
non-trivial spacetime without any singularity.

1 Introduction

The existence of spacetime singularities in classical general relativity has been
established under some very general conditions, both for spherically symmet-
ric and axially symmetric vacuum solutions to Einstein �eld equation [1] and
coupled Einstein-Maxwell equations [2]. In fact the Schwarzschild spacetime is
the �rst case of spherically symmetric solutions of vacuum �eld equations corre-
sponding uniquely to a static gravitational �eld (Birkho¤ theorem [3]). Whereas
it is possible to �nd solution to the Einstein �eld equations with matter-energy
sources violating the no-hair theorem and its generalizations [4], physical im-
plications of these solutions have remained special. Existence of singularities
in classical �eld theory however entails many theoretical anomalies including
the in�nite mass (energy) problem. On the other hand material properties of
a system cannot be separated from quantum aspects of the phenomena. Quan-
tum e¤ects such as wave-particle duality and quantum interference leaves any
classical �eld theory incomplete when attempting to describe matter (energy)
and its interactions. The question thus naturally arises whether in a spacetime
description of gravity involving quantum e¤ects spacetime singularities persist.
Here we show that within the framework of the general theory of relativity

this is not necessarily the case. We show that even in the so-called vacuum
�eld (exterior spacetime) case, Einstein �eld equations possess solutions that
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are singularity free. The derivation followed here rests on two assumptions.
First, the quantum density function is the primary physical representation of the
material properties of a system. Secondly, the quantum �eld can interact with
the gravitational �eld. Thus in the exterior region spacetime can be modi�ed
by a non-zero quantum �eld density.
We use throughout the Greek indices to designate the spacetime coordinates

t; r; �; '.

2 Einstein Field Equations

We consider the spacetime metric

ds2 = e2�(r)dt2 � e2�(r)dr2 � r2d�2 � r2 sin2 �d'2; (1)

around a spherically symmetric static mass distribution with matter-energy
stresses described by the covariant stress energy-momentum tensor

T�� = �mmv�v�+�mu�u� + P�� ; (2)

with m being the elementary particle (�eld) mass, � = �(r; t) the quantum den-
sity function related to the wave function  as � = j j2, and u� � �(D=�)@��;
P�� � �(~2=2m)@�@�� where D = ~=2m. The �rst term in the stress tensor
(2) corresponds to the Newtonian mass density �m, and the last two terms rep-
resent quantum stresses in the system. The quantum stresses depend on the
quantum density function and may not be zero for the exterior region. A reduc-
tion of (2) to the �at 3-space indicates that the P�� can be interpreted as due
to shape stresses in the �eld, where as �mu�u� corresponds to the stationaty
�ow stresses.
Putting into Einstein �eld equations

R�� �
1

2
g��R = �

8�G

c4
T�� ; (3)

the corresponding set of coupled non-identical equations for the stationary �elds
are

e�2� (1� 2r�0)� 1 = 0; (4)

e�2� (1� 2r�0)� 1 = �8�G
c4

r2Trr; (5)

�00 + �02 � �0�0 + �0 � �0
r

= 0; (6)

where the prime indicates di¤erentiation with respect to r.
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3 Spacetime Geometry

From equation (5) we obtain

e�2� = 1� 2GM(r)
c2r

; (7)

where

M(r) � 4�

c2

Z r

0

r2Trrdr; (8)

is the total mass enclosed within a sphere of radius r. Also, we have �0 = ��0.
Let R denote the stellar radius, then the total mass can be written as

Mtotal =M(R) + fM; (9)

where

M(R) �
Z R

0

4�r2

c2
Trrdr; (10)

is the mass contained inside the star. In the exterior region there are no material
stresses, therefore Trr = 0 in equation (10). However, corresponding to the
quantum �eld stresses in the region, we have for the quantum mass term

fM �
Z 1

R

4�r2

c2
�
Prr + �mur

2
�
dr: (11)

To explicitly calculate the quantum mass, we make use of the energy con-
servation equation including the quantum potential �~2

�
@rr(r

p
�)
�
=
�
2mr

p
�
�

which gives,
�0

r�
� �02

4�2
+
�00

2�
= �2mE

~2
; (12)

where � is the quantum density function for the mass distribution with total
mass M and total energy E.
For the non-trivial case when � is not a constant, equation (12) gives for the

quantum density function

�(r) =
iA

r2
e�2r=�; (13)

where ��1 =
p
�2mE=~2 and A = e2R=�=2�� is the normalization constant

for the exterior region (R;1). With E > 0, we therefore denote � = i� where
� =

p
~2=2mE, so that

�(r) =
cos[2(r �R)=�]

2��r2
; (14)

under the assumption that the quantum density function � is real.
Also, using equation (12), equation (11) can be written as

fM = �~
2

m

Z 1

R

4�r2

c2

�
E�+

1

r

@�

@r

�
dr: (15)
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We notice that in the second term of equation (15) we have by integration by
parts Z 1

R

(r
@�

@r
)dr = r� j1R �1; (16)

using the normalization of quantum density function over (R;1). The rhs of
equation (16) is a constant, and in equation (15) can be absorbed by re-scalingfM . The remaining term thus gives for any point r in space

fM = �~
2M

m
sin

2r

�
: (17)

We denote in equation (17) �~2=m by C, and re-scale fM by C, and also r by
��. Here the sign of C depends on the elementary mass m. We can now denote
the total mass as determined in the exterior region by fM and thus have for the
spacetime metric

ds2 =
�
1� rS

r
sin 2�r

�
dt2 �

�
1� rS

r
sin 2�r

��1
dr2 � d
2; (18)

where rS � 2GM=c2 and d
2 = r2d�2 + r2 sin2 �d'2. Since, except at r = 0,
there is no point where rS sin 2�r = r holds, the Schwarzschild singularity is re-
moved. Also, as r ! 0, sin 2�r=r approaches 2�, and the coordinate singularity
does not occur also.

4 Conclusions

The modi�ed mass fM depends on the signature of the elementary mass m,
thus the case of similar mass sign implies a repulsive gravitational potential.
The relative sign di¤erent between M and and m is indicative of whether the
corresponding energy densities in the �eld are alike or opposite. The presence of
mass m however does not violate the equivalence principle of general relativity,
for the �eld potential has no explicit dependence on the �eld mass, in fact one
can scale the physical units so that �~2=m is unity. However, it indicates that
the quantum e¤ects enter the otherwise classical �eld potential solely by the
quantum interference term sin 2�r.
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