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Abstract

According to classical general relativity, a spherically symmetric static
spacetime involves an essential singularity at 7 = 0 and a Schwarzschild
singularity at r = 2GM/c®. We show that when quantum field effects in
terms of quantum stresses are included, Einstein field equations yield a
non-trivial spacetime without any singularity.

1 Introduction

The existence of spacetime singularities in classical general relativity has been
established under some very general conditions, both for spherically symmet-
ric and axially symmetric vacuum solutions to Einstein field equation [1] and
coupled Einstein-Maxwell equations [2]. In fact the Schwarzschild spacetime is
the first case of spherically symmetric solutions of vacuum field equations corre-
sponding uniquely to a static gravitational field (Birkhoff theorem [3]). Whereas
it is possible to find solution to the Einstein field equations with matter-energy
sources violating the no-hair theorem and its generalizations [4], physical im-
plications of these solutions have remained special. Existence of singularities
in classical field theory however entails many theoretical anomalies including
the infinite mass (energy) problem. On the other hand material properties of
a system cannot be separated from quantum aspects of the phenomena. Quan-
tum effects such as wave-particle duality and quantum interference leaves any
classical field theory incomplete when attempting to describe matter (energy)
and its interactions. The question thus naturally arises whether in a spacetime
description of gravity involving quantum effects spacetime singularities persist.

Here we show that within the framework of the general theory of relativity
this is not necessarily the case. We show that even in the so-called vacuum
field (exterior spacetime) case, Einstein field equations possess solutions that



are singularity free. The derivation followed here rests on two assumptions.
First, the quantum density function is the primary physical representation of the
material properties of a system. Secondly, the quantum field can interact with
the gravitational field. Thus in the exterior region spacetime can be modified
by a non-zero quantum field density.

We use throughout the Greek indices to designate the spacetime coordinates
t,r, 0, .

2 Einstein Field Equations

We consider the spacetime metric

ds? = 22 — 22 qr2 12402 — 12 sin? 0dyp?, (1)

around a spherically symmetric static mass distribution with matter-energy
stresses described by the covariant stress energy-momentum tensor

Tuv = pmmvuUy+pmuyty + Py, (2)

with m being the elementary particle (field) mass, p = p(r, t) the quantum den-
sity function related to the wave function 1 as p = |1/)|2, and u, = —(D/p)0.p,
P,, = —(h*/2m)d,0,p where D = h/2m. The first term in the stress tensor
(2) corresponds to the Newtonian mass density p,,, and the last two terms rep-
resent quantum stresses in the system. The quantum stresses depend on the
quantum density function and may not be zero for the exterior region. A reduc-
tion of (2) to the flat 3-space indicates that the P,, can be interpreted as due
to shape stresses in the field, where as pmu,u, corresponds to the stationaty
flow stresses.
Putting into Einstein field equations
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R,ul/ - ig,uvR = 7CTT[LV7 (3)

the corresponding set of coupled non-identical equations for the stationary fields
are

e M1 —2r)N)—1=0, (4)
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,

where the prime indicates differentiation with respect to r.



3 Spacetime Geometry

From equation (5) we obtain

2GM (r
oy 26M0), -
where .
M(r) = %/0 r2T,.dr, (8)
is the total mass enclosed within a sphere of radius r. Also, we have \' = —v/.

Let R denote the stellar radius, then the total mass can be written as
Mtotal = M(R) + M? (9)
where

R 2
4
M(R) = /O Z—;der, (10)

is the mass contained inside the star. In the exterior region there are no material
stresses, therefore T,, = 0 in equation (10). However, corresponding to the
quantum field stresses in the region, we have for the quantum mass term

1\75/004”;2
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To explicitly calculate the quantum mass, we make use of the energy con-
servation equation including the quantum potential —h? (0, (r\/p)) / (2mr/p)
which gives,

(PTT + pmurz) dr. (11)
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where p is the quantum density function for the mass distribution with total
mass M and total energy F.

For the non-trivial case when p is not a constant, equation (12) gives for the

quantum density function

(12)

A,
plr) = —ze 22, (13)

where \7! = V—2mE/h? and A = e2R/3/27rA is the normalization constant
for the exterior region (R,00). With E > 0, we therefore denote A = i where

a = +/h?/2mE, so that

cos2(r — R)/a]

= 14
o(r) = X2~ (14)
under the assumption that the quantum density function p is real.
Also, using equation (12), equation (11) can be written as
~ B2 [ dmr? 10p
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We notice that in the second term of equation (15) we have by integration by
parts

> 0
| 5P <ol -1 (16)

using the normalization of quantum density function over (R, o00). The rhs of
equation (16) is a constant, and in equation (15) can be absorbed by re-scaling
M. The remaining term thus gives for any point r in space

—~ KM . 2r

M=- sin —. (17)
m a

We denote in equation (17) —h2/m by C, and re-scale M by C, and also r by
ma. Here the sign of C' depends on the elementary mass m. We can now denote
the total mass as determined in the exterior region by M and thus have for the
spacetime metric

-1
ds? = (1 — 7“75 sin 271'7") dt* — (1 — 7"75 sin 27rr) dr® — dQ?, (18)

where 75 = 2GM/c? and dQ? = r2df? + 2 sin? Adp?. Since, except at r = 0,
there is no point where rg sin 27 = r holds, the Schwarzschild singularity is re-
moved. Also, as r — 0, sin 27 /r approaches 27, and the coordinate singularity
does not occur also.

4 Conclusions

The modified mass M depends on the signature of the elementary mass m,
thus the case of similar mass sign implies a repulsive gravitational potential.
The relative sign different between M and and m is indicative of whether the
corresponding energy densities in the field are alike or opposite. The presence of
mass m however does not violate the equivalence principle of general relativity,
for the field potential has no explicit dependence on the field mass, in fact one
can scale the physical units so that —h?/m is unity. However, it indicates that
the quantum effects enter the otherwise classical field potential solely by the
quantum interference term sin 27r.
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