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This paper presents, within the scope of the earlier introduced measurability concept, a study of
the ultra-violet behavior quantum field theories. It is demonstrated that in the case of the natural
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is discussed.
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I. INTRODUCTION

In this paper the author continues a study of QFT
and gravity within the scope of the measurability
concept, introduced in his previous works [1]-[7]. In [§]
it has been demonstrated that, in the context of the
equivalence-principle applicability boundaries (EPAB), a
perturbation theory for QFT in terms of measurable
quantities as applied to the scalar model ¢* is free from
ultra-violet divergences (UVD).

The principal objective of the present manuscript is to
extend the methods and results from [8] to the theories
of a more general type, in particular to the Yang-Mills
fields interacting with fermions.

The structure of this paper is as follows.

Section 2 presents in short the preliminary information
necessary for understanding of the essence of this work.
In Section 3 the correlation between the measurability
and the lattice approach in QFT is revealed. Section
4 is central in this presentation. In its first part the
principal result associated with the model ¢* from [§]
is elucidated. In the second part of this section it is
shown that the methods and results presented in the
first part may be generalized to the quantum theory
of gauge fields interacting with fermion fields of the
matter. Moreover, the general mechanism enabling one
to demonstrate, within the scope of EPAB, the absence
of UVD in a perturbation theory of any Lattice Quantum
Field Theory (LQFT),and of its continuous limit.

II. IMPORTANT PRELIMINARY
INFORMATION BRIEFLY

A. Measurability Concept in Quantum Theory and
Gravity

In this Section we briefly consider some of the results
from [1]-[7] which are essential for subsequent studies.
Without detriment to further consideration, in the initial
definitions we lift some unnecessary restrictions and make
important specifications.

Presently, many researchers are of the opinion that
at very high energies (Plank’s or trans-Planck’s) the

ultraviolet cutoff exists that is determined by some
maximal momentum.
Therefore, it is further assumed that there is a maximal

bound for the measurement momenta p = pmaz
represented as follows:

Drmaz = Pt = h/& (1)
where ¢ is some small length and 7 = {¢/c is the

corresponding time. Let us call ¢ the primary length
and 7 the primary time.

Without loss of generality, we can consider ¢ and 7 at
Plank’s level, i.e. ¢ o< l,, 7 = kt,, where the numerical
constant x is on the order of 1. Consequently, we have
E; o< E, with the corresponding proportionality factor,
where Eg = prec.

Explanation. In the theory under study it is not
assumed from the start that there exists some minimal
length [,,;, and that ¢ is such. In fact, the minimal
length is defined with the use of Heisenberg’s Uncertainty
Principle (HUP) Az - Ap > 1h or of its generalization
to high (Planck) energies — Generalized Uncertainty
Principle (GUP) [9]-[17], for example, of the form [9]
h 2 Ap

AmZAp—i—ozlph, (2)
where o is a constant on the order of 1. Evidently this
formula (2) initially leads to the minimal length ¢ on the

order of the Planck length ¢ = 2\/&/l,. Besides, other
forms of GUP [17] also lead to the minimal length.
Thus, we should note that in all the works [,,;, is
actually (but not explicitly) introduced on the basis
of some measuring procedure (different forms of the
Generalized Uncertainty Principle (GUP)). In any form
GUP in turn is a high-energy generalization of HUP.
But in the original proof of HUP a planar geometry of
the initial space-time was actively used [18]. Extension
of this principle to other pairs of conjugate variables
is also valid only for quantum mechanics in the planar
geometry space [19]. As HUP is a local principle, at
low energies in the curved space-time, by virtue of
Einstein’s Equivalence Principle, we can consider that in
a fairly small neighborhood of any point the geometry



is planar an hence HUP is valid too. But all the results
obtained point to the fact that [,,;, should be at a level
of ly,i.e. Lnin o< lp, or even should be smaller. As noted
in the Section 2 of [7], at the Planck scales Einstein’s
Equivalence Principle is obviously inapplicable, and
there is no way to use the measuring procedure ignoring
the space geometry at these scales. Meantime, none
of the GUP forms [17] makes an effort to include it
and is hardly completely correct. Moreover, there are
some serious arguments against GUP as demonstrated
in Section IX of the review paper [17]. The foregoing
considerations support argumentation against the
introduction of [,,;, from the start.

Because of this, in the present work the validity of this
principle is not implied from the start too. GUP is given
merely as an example. As pq. (1) is taken at Planck’s
level, it is clear that HUP is inapplicable. Taking this
into consideration, the existence of a certain minimal
length ¢ is not mandatory. So, we start from the primary
length ¢ and the primary time 7. The whole formalism,
developed in [1]-[6] on condition that ¢ is the minimal
length, is valid for the case when ¢ is the primary
length but now we can lift the formal requirement for
involvement of [,,;, in the theory from the start.

There is one more barrier for the use of [,,;, in the
theory as indicated in [16] and other works (for example,
[17]). In the above-mentioned papers, it has been noted
that there is a nonzero minimal uncertainty in position,
i.e. lmnin implies that there is no physical state which
is a position eigenstate since an eigenstate would, of
course, have zero uncertainty in position. So, in this
case in a quantum theory we have the momentum
representation rather than the position representation,
and the quantum theory becomes very depleted.

The question arises whether the introduction of p,,q. is
naturally associated with the involvement of a minimal
length. But this is the case only when at the energies
Epaz corresponding to pq. we have the substantiated
measuring procedure. Unfortunately, this is not the
case.

Note that in the canonical QFT in continuous space-
time (i.e.  without Ul,:,)[20]-[23] measurements of
the contributions in the loop amplitudes involve the
standard cut-off procedure for some large (maximal)
momentum Peyt = Pmaz. Lhen it is demonstrated that
the theory at low energies p < peye is in fact independent
of the selection of peyt = pmaz- Of course, the theory
still remains to be continuous [20]-[23]. In this case we
make another step forward, relating the corresponding
length £ = h/pmax t0 Pmar and constructing on its basis
a low-energy theory very close to the initial continuous
theory. Now we have the naturally derived parameter
¢ for the construction of a high-energy deformation of
this theory at the energies E =~ FE,,,, within the scope
of determining the physical theory deformation [24]. So,
we start from the primary length ¢ and the primary
time 7. The whole formalism, developed in [1]-[6] on
condition that ¢ is the minimal length, is valid for the

case when ¢ is the primary length but now we can lift
the formal requirement for involvement of [,,;, in the
theory from the start.

In what follows we mainly make references to [6] and

[7]. In particular, the basic definitions Primary
Measurability, Generalized Measurability,
Primarily Measurable Quantities(PMQ),
Primarily Measurable Momenta(PMM),
Generalized Measurable Quantities(GMQ)

and the like are given in Section II of [6].

Besides, in Section IIT from [6] it has been demonstrated
how, at low energies E' < E,,, the arbitrary metric g,,, (x)
may be derived in terms of measurable quantities.

It should be noted that in virtue of assumption in
[7] observables in measurable theory are Primarily
Measurable Quantities.

B. Relativistic Invariance, Equivalence Principle
Applicability Boundary, and QFT in Flat Space

The canonical quantum field theory (QFT) [20]- [23]

is a local relativistically-invariant theory considered in
continuous space-time with a plane geometry, i.e with the
local Minkowskian metric 7, (Z). And this assumption
is valid for all the energy range. Still, it is quite clear that
the quantum processes associated with QFT (particle
collisions, decay,...) can introduce perturbations into the
space-time geometry, varying its curvature. But as QFT
is a local theory, a strong Equivalence Principle (EP)
[25] enables one, in a sufficiently small region V), of
the fixed point, to consider space-time as a flat space in
this case too. Consequently, we naturally think about
the applicability boundary of this principle. In Section 2
of [7] this problem has been thoroughly studied.
In essence, sufficiently small V,. means that the region
V', for which 7 € V., C V, with ' < 7 (here 7,7/ are
characteristic spatial sizes of V, and V), respectively),
satisfies the condition ¢, (Z) = 1., (T), where 1., (T) is
Minkowskian metric. In this way we can construct the
sequence

e CV i CV CVy,
L<r <y <r (3)

The problem arises, is there any lower limit for the
sequence in formula (3)?

The answer is positive. Currently, there is no doubt
that at very high energies (on the order of Planck
energies £ ~ E,), i.e. on Planck scales, | =~ [,
quantum fluctuations of any metric g,,(T) are so high
that in this case the geometry determined by g,.,(T)
is replaced by the "geometry” following from quantum
foam that is defined by great quantum fluctuations of
9 (T),i.e. by the characteristic spatial sizes of the
quantum-gravitational region (for example, [26]-[31]).
The above-mentioned geometry is drastically differing
from the locally smooth geometry of continuous space-
time and EP in it is no longer valid [32]-[39]. Actually,



the quantum foam is not geometry in a common
sense as locally it is determined by a set of different
metrics, each of which is taken into consideration with
its statistical weight [29].

From this it follows that the region V;3 with the
characteristic spatial size ¥ ~ [, (and hence with the
temporal size t & t,)) is the lower (approximate) limit for
the sequence in (3).

In this way EP has the applicability boundary that, at
least, lies in the region of Planck energies and hence
the relativistic invariance must be violated at the same
energy scales because its applicability necessitates space-
time with the locally flat geometry, just supported by
EP.

It should be noted that initially strong EP has been
formulated for the macroscopic case (i.e. for the space-
time domains of great size) that is beyond quantum
consideration. On extension of this principle to
microscopic domains, the problem of its applicability
boundaries is absolutely natural.

It is difficult to find the exact lower limit for the sequence
in formula (3) — it seems to be dependent on the processes
under study. Section 2 of [7] presents the arguments that
it should be associated with the energy scales I < F,.
Therefore, it is assumed that the Equivalence Principle is
valid for the locally smooth space-time and this suggests
that all the energies E of the particles in the most general
form meet the necessary condition

E < E,. (4)

As validity of RI requires the applicability of EP, we can
consider the condition (4) a necessary condition for the
validity of RI. Then, if not stipulated otherwise, we can
assume that the condition (4) is valid.

The canonical quantum field theory (QFT) [20]- [23]
is a local theory considered in continuous space-time
with a local plane geometry, i.e with the Minkowskian
metric 10, (T) . In addition, it is assumed that all
objects in QFT are point-like. However, as noted above,
this assumption will be true to a certain limit: the
assumptions that (a) even local space-time geometry is
plane and (b) all objects in QFT are point-like have
natural applicability boundaries directly specifying the
EP applicability boundary.

Within the scope of the canonical QFT, the process of
passage to more higher energies without a change in the
local curvature has no limits [20]-[23], just this fact is
the reason for ultraviolet divergences in QFT.

However, on passage to the Planck energies £ ~ E,
(Planck scales [ ~ [,), the space in the Planck
neighborhood V; 3 of the point T one cannot consider
flat even locally and in this case (as noted above) EP is
not valid.

Then we introduce the following assumption:

Assumption 2.1
In the canonical QFT in calculations of the quantities it
is wrong to sum (or same consider within a single sum)

the contributions corresponding to space-time manifolds
with locally monzero or zero curvatures since these
contributions are associated with different processes:
(1) with the existence of a gravitational field that, in
principle, can hardly be excluded; (2) in the absence of a
gravitational field.

From the start, we can isolate the case when EP is valid
and hence RI takes place (at sufficiently low energies,
specifically satisfying the condition (4)) from the cases
when EP becomes invalid (for example, Planck energies
E~ E,).

Remark 2.2

According to Assumption 2.1, we should consider two
limiting cases:

(a)low energies £ <« E, and

(b)very high (essentially maximal) energies E' ~ Ej,.
Then it should be noted that, as all the experimentally
involved energies E are low, they satisfy condition
a). Specifically, for LHC maximal energies are
~ 10TeV = 10*GeV, that is by 15 orders of magnitude
lower than the Planck energy ~ 10°GeV .

Moreover, the characteristic energy scales of all
fundamental interactions also satisfy condition a).
Indeed, in the case of strong interactions this scale is
Agcep ~ 200MeV; for electroweak interactions this scale
is determined by the vacuum average of a Higgs boson
and equals v & 246GeV; finally, the scale of the (Grand
Unification Theory (GUT)) Mgy lies in the range of
~ 10'GeV — —10'GeV. Tt is obvious that all the above
figures satisfy condition a).

Thus, only the expected characteristic energy scale of
quantum gravity satisfies condition b).

From Remark 2.2 it directly follows that even very
high energies arising on unification of all the interaction
types Mgur ~ 10%GeV— ~ 105GeV (except of
gravitational),satisfy the condition (4).

At the same time, it is clear that the RI wvalidity
requirement in canonical QFT [20]- [23]|,due to the
action of Lorentz boost (or same hyperbolic rotations)
(formula (3) in [40]), results in however high momenta
and energies. But it has been demonstrated that
unlimited growth of the momenta and energies is
impossible because in this case we fall within the energy
region, where the conventional quantum field theory is
invalid. This section supports the validity of the fact
in the general case of the canonical QFT in continuous
space-time as well.

Note that at the present time there are experimental
indications that RI is violated in QFT on passage
to higher energies (for example, [41]). Besides, one
should note important recent works associated with
EP applicability boundaries and violation in nuclei
and atoms at low energies (for example [42]). We
can mention other works indicating the applicability
boundaries of EP for specific processes, especially
associated with the context of this paper (for example,



[43],[44]). Proceeding from the above, the requirement
for RI and EP is possible only within the scope of the
condition (4).

Due to the condition £ < E, and to the results of Section
2 in [7], all conclusions made in this section are valid
both for the canonical Quantum theory in continuous
space-time, [20]- [23], and for its measurable analog in
Section 2 of [7],(Subsection 2.1 in the present paper).

Remark 2.3

Why in canonical QFT it is so important never forget
about the fact that space-time has a flat geometry, or
the same possesses the Minkowskian metric 7, (Z)?
Simply, in the contrary case we should refuse from some
fruitful methods and from the results obtained by these
methods in canonical QFT, in particular from Wick
rotation [23]. In fact, in this case the time variable is
replaced by ¢t — it = tg, and the Minkowskian metric
N (T) is replaced by the four-dimensional Euclidean
metric

ds® = dt%, + da* + dy* + dz2. (5)

Clearly, such replacement is possible only in the case
when from the start space-time (locally) has a flat
geometry, i. e. possesses the Minkowskian metric
N (T). This is another argument supporting the key
role of the EP applicability boundary. Otherwise, when
we go beyond this boundary, Wick rotation becomes
invalid. Naturally, some other methods of canonical
QFT will lose their force too.

2.2.1 In this paper we consider two limiting energy
scales:E < E, and E =~ E,. Of course, the whole
energy range 0 < E < E, is not reduced to these
scales. But, assuming that the onset of the Universe had
started from the energies close to the Planck energies E,
and its expansion was very fast, the above boundary is
reasonable. An additional argument in support is the fact
that, as noted in Remark 2.2, the energy ranges for all
the fundamental models combining various interactions
are associated with these scales.

2.2.2 It is clear that the equivalence-principle
applicability boundaries (EPAB) in each specific
case are dependent on the particular processes studied
in particle physics. In what follows we consider only the
energy range E < E, assuming that the common EPAB
lies within 0 < B <= 10*2Ep.

III. QFT IN MEASURABLE FORM AS
LATTICE FIELD THEORY

From Section 4 in [7] it follows directly that the
measurable approach generates a Lattice Quantum
Field Theory (LQFT). Hereinafter we use the symbols,
terms, and results from the (LQFT) [45],[46].

Then it is assumed that the theory under study is
considered in a sufficiently large hypercubic box with
the edge length L and space-time size L*, where L =

Nr¢, Nr, > 1. In general, not necessarily Nz, is an integer
number.
For convenience, let us introduce the following:

Q="rL (6)

Assuming that ¢ varies over the interval 0 <t < T,T #
L, (6) will take the form (formula (2.3) in [46])

Q=VT = LT. (7)

In what follows, when not stated otherwise, we assume
T = L and hence formula (7) takes the form (6).
Without loss of generality, we can assume that all integer
N, are equal to each other and are equal to some
integer N > 1 maximally high in the absolute value.
Then, according to the present consideration, in the
measurable form there arises a lattice model of the
position representation with a = ¢/N, where a is the
lattice distance or same lattice spacing (section 2.5 from
[43]).

In line with the general approach, in LQFT we have [45]

L 4

12 .
L—(ZM—NM,Z.C.Mfﬁ, (8)

where M > 1 is an integer number. It is obvious that
M/N = NL, ie. M > NL.

As L is great, also without loss of generality, it is assumed
that the periodic boundary conditions (formula (2.58) in
[45])) are valid

¢(z+ L) = ¢(). 9)

Then all formulae of LQFT in the position representation
(Sections 2.5,2.6 in [45]) are valid for the measurable
form of a continuous theory. And formula (2.54) from
[45]

xT

L
Zf(x) —>/d4xf(x),M—>oo,a: %,
0

L fized (10)

may be rewritten for such consideration with substitution
of f(xr) — L under the integration sign for f(z) —
Loneas, (N} Within the summation, and a — /N, where £
and L,eqs,{n} are correspondent formulae in continuous
and measurable cases.

Since ¢ is also a fixed quantity, it is clear that the
conditions M — oo and N — oo in the case under
study are equivalent, representing the thermodynamic
limit that gives a continuous pattern. Note that in
this case we can use the results from Sections 2.5 and
2.6 of [45],assigning a; as the temporal lattice distance
a; = 7/Ny, where 7/Ny is taken from formula (4) in [6].
Thus, in the coordinate representation the studied
lattice of measurable quantities may be regarded as a
canonical space-time lattice of LQFT, with the spacing
a = ¢/N and temporal distance a; = 7/N.



In this case all the basic operators in Sections 2.5
and 2.6 of [45] have their analogs in the present work.
Specifically, finite-differences operators 9,,¢., (%apx from
formulae (2.55),(2.56) in [45] and formulae of Section 2.3
in [47] in the present paper correspond to the operators

A~ from formula (9) in [6] for positive and negative

values of N. The transfer-operator 7' may be constructed
for the lattice of interest, with the spacing a = ¢/N
and temporal distance a; = 7/N;, in accordance with
formulae (2.71),(2.74) of [45], so all the formulae from
Section 2.6 in [45] are valid for this case. We assume
that a; = a.

For the lattice values of momenta, in the momentum
representation, according to formula (2.81) in [45], we
have

2T
pu(latt) = Tl (11)

where n,, are integers.

Consequently, the lattice edge in the momentum
representation Ap,,(latt) adopts the value
21 1

where it is assumed that A = 1.

At the same time, the integer numbers n, are varying
in magnitude over the interval [0, N, N],, where N, N =
L/a (formula (2.82) in [45]). As a result, in the case of
interest a maximum value of the momentum along any
axis will be given by

T T TN
=—=—=— =A. 13
Platt,max p E/N 7 ( )
Formula (13) gives an explicit expression for a maximal
lattice momentum pqstmaz = A. To be more exact,

the momenta are restricted to the so-called first Brillouin
zone (BZ) B (formula (1.218) from [46])

. —Tr v
B:{P|7 <pu < g}~ (14)

It is clear that pigtt,mae = A > pe. As follows from
formula (13), A o Nps, N > 1,i.e. the boundary of BZ
A passes far beyond the region of the physical energy
values.

But due to the condition £ < FE,, we consider only a low-
energy part of the lattice, the momenta of which are given
as p ~ & with |[N*| > 1. Because of this, in the case
under study only particular momenta may be maximal
(so-called "maximally reachable” momentum) pmaz reach

and Pmaz,reach <K Platt,maz-
In this way BZ in formula (14) is narrowed significantly

—Pmaz,reach § Pu < Pmazx,reach; (15)

where Pmaz,reach <K Pe-
As a = ¢{/N,where N > 1, when the mass m is fixed,

am is close to zero and hence the correlation length &
(formula (1.224) in [46])

1 N
—_— = 1
am Im (16)

§

is finite but very great. Passage to a continuum limit
& — oo means going to N — oco. In this case, within the
constant factor m’l, we have

N
f = 7 X sz ~ Nppl X Platt,maz = A. (17)

From formulae (13),(15) it follows directly that

Pl A N
max,reac :T:—~,N>>]—,N>> 1. 18
Pmazreach =5 = NN (18)

Then, proceeding from the formulae above, in the case of
interest (BZ) B (14) is narrowed to By

_7T 7T ~
By ={p|—m— <p, < —— )} N>1,N>1. (19
A {pINNa P, NNa} (19)

Lattice summation in the general case is given by formula

(2.7) from [46]
. 1

peEB B

In the case under study the lattice summation takes the

form
/ = / = % > (21)
Bar

PEBN pEBN

Respectively, on passage to the thermodynamic limit
L — 00, T — 00, in the general case we arrive at formula

(2.8) in [47]
[ = L =)

peEB

In the case of interest (22) is transformed to

| =G [ (23)

pEBN NNa

Remark 3.1

As arule, in the literature devoted to LQFT it is assumed
that the lattice edge a is equal to 1. Then the formula
for the first Brillouin zone B (14) is of the form

B={p|—m<p, <7} (24)

Whereas for the “short-cut” Brillouin zone Bar (19) we
have

—T Y ~
By ={p|—=<p, < —=} N>1,N>1, 25
% {pINN I NN} (25)

with the corresponding changes in all other formulae.



IV. PERTURBATION THEORY IN
CONTINUOUS AND MEASURABLE CASES

A. Simple Scalar Model ¢*

The canonical Lagrangian for model ¢* in continuous
space-time has the form [20]

L= B0 (26)

4l
where Lo = 1((0,9)? — m3y?) is free fields Lagrangian
and L = —%4,04 is interaction Lagrangian and g is a
dimensionless constant (in four dimensmns)

Using in measurable form operator A from formula

1nstead of L its

2
m
(a;ﬁp)Q - 70 2

N =

(9) in [6], we can easily obtain,
measurable form

1 A 1
Emeas,{N} = 5 (chmeasf - §m050meas -
8o
T Pmeas (27)

and instead Lo with the corresponding Klein—Gordon
equation or KGE

@ +md)é=0 (28)
their measurable forms
1 A 2 m(Q) 2
= —(— - — 2
‘Cmeas,{N},O 2 (ANXM (bmeaé) 2 meas ( 9)
and
(On,. 4+ mE) dmeas =0 . (30)

X

Within the scope of a perturbation theory, let us consider
examples of Feynman diagrams, which give UVD for
the p*-model in canonical QFT in continuous space-time
[20] — [23], to find what are the correspondences with a
measurable picture.

Now we consider one-loop corrections for the two- and
four-vertex functions:

O

(a) (b)
FIG. 1: Diagrams (a) and (b)
Then the quantity G(0), quadratically divergent over the

momentum k (associated with the diagram (a) in Fig.1,
formula (9.1) in [20])

60 = [ 35760 =80 [ o G

corresponds in a measurable picture to the integral,
finite over k with |[N*| = oo

Tk
1
G(0,N,) = . 32
oN)te [ G @
—PN.
Similarly, another divergent diagram—graph of the
order O(g?), whose contribution is represented by the

logarithmically divergent integral (formula (9.2) in [20])

5 [ d'k 1
%/"@ﬂgﬁgm@«m+pzm2m@ (33)

in a measurable consideration will be associated with
the finite quantity

P!

, d*k 1
@ [ @ 2 —md) (i +pe P2 —m) Y

—Pn

(Here in the measurable case the right-hand sides of
formulae (32),(34) should have the corresponding sums
instead of the integrals but,in virtue the final part of
Section 3 the sums may be replaced by the corresponding
integrals).

It should be noted that we can pass to Euclidean space-
time by means of Wick rotation (Remark 2.4) for better
convergence of the integrals. Then, with the help of
an analytical extension, we can return to Minkowskian
space-time. This is a standard method both for QFT and
LQFT [45],[46].The continuum action of the theory (26)
in Euclidean space-time is of the form (formula (2.17)
from [47])

1 m3
5= [da(; @+ e

and the corresponding lattice action has the following
form:

Smeas,{N} Z

+5%6,  (39)

1 2 2
A @meas) +§m090meas+

g0 4
+ 4' Sameas) (36)

For the lattice values of momenta, in the momentum
representation take place the formulae (11),(12).
However, here the difficulty arises — the corresponding
lattice in the momentum representation on L* is uniform
with the lattice spacing in formula (12).

In the considered case the lattice of measurable
momenta is nonuniform with the lattice spacing

1
(N* —r)(N* — k¥ )0

Ap,(meas) = (37)

where £ is an integer number, |k| < |[N*| > 1.
As shown in [7], in order to use the results from [45], it
is required that the condition

Apy(latt) = Ap,(meas) (38)



be fulfilled.
As follows from formula (37) and [7] this is the case when

Ny ~ (N*)2. (39)

This condition is quite natural considering that L may
be chosen no matter how large but finite.
Now in the same way we consider the momentum
representation and Fourier transformation of the above
mentioned lattice (formula (1.171) in [46])

T/a
d4 N
Gz —y;a) = / (27:))4@@(1 VG (p;a) =

—7/a

= [ G Gma). )

pEB

Then we can use the results of [46] to find, how well a
continuous propagator of the momentum representation
is approzimated by the ’lattice” propagator in this
representation. As it has been noted, all calculations
in [46] are first performed in Fuclidean space-time and
followed by the analytical extension to Minkowskian
space.

In virtue, using formula (1.173) from [46], we have

4
G(pia) = “24in? 222 42yt (41
(o) = (™" B +mt) )

But it has been shown that in the case under study
the momenta p are taken only from the subset Bas.
Consequently, p, o< 1/N,,|N,| > 1. Asa={/N,N >
1, the argument of the function sin® is o< 1/(NN,,), i.e.
it is very close to zero. Further we use a simple property
—sinz &~ x for x close to 0. Immediately, within a high
accuracy, by formula (41) we can obtain

B 4 a2p?
G(p;a) = {Z a*24—4“ +m?} 7 =

= i +m? = +m?)! (42)

in a good agreement with the corresponding formula in a
continuous picture, i.e. for a — 0 ([46], formula (1.178)).
Thus, these computations once again demonstrate that
in a measurable form at low energies £ < E, the
theory studied is to a high accuracy coincident with the
corresponding theory in the continuous case.

Perturbation theory and Feynman rules for present
lattice are analogous to a continuous theory but they
have the interaction term

go
S =q? Z E@fneas' (43)

As distinct from a continuous consideration, by the
lattice approach all Feynman graphs satisfy the
following properties in momentum space ([46],p.64) in
the general case:

each line is associated with the
Alg) = (m§ +4¢*) 7"

propagator

each vertex is an end point of four lines and is associated
with the factor —gg;

at In inner vertices momentum conservation holds
modulo 27;

loop momenta should to be integrated over the first

Brillouin zone B with the integration measure [ ;
pEB
there is in overall factor (2x)~"/? resulting from our

normalization of the lattice scalar fields

formally UVD appear only in the continuum limit, i.e.
when a — 0.

Note that in the second point —gg should be replaced
by —go.8,, and it seems that the fourth item should be
replaced by

loop momenta should be integrated over the short-cut
Brillouin zone,Bxr with the integration measure [
pEBN

As, for N > 1, the lattice edge a = ¢/N is very
small and hence the correlation length ¢ (formula (16))
is very great but not infinite, the indicated lattice in the
space-time and momentum representation is actually
not distinct from a continuous consideration for the
momenta satisfying BZ B (14).

Thus, as directly follows from formula (19), we
should include the contributions made only by very
small momenta p in B,i.e. for p € By. Taking this into
account, further we use the known formulae of LQFT
for small momenta (Section 2 in [46])).

We assume that the field p(z) in a symmetric phase

{¢(x)) =0, (44)

i.e. Zg-symmetry of p(z) — —p(x) is the case, whereas
Green’s functions with an odd number of arguments
vanish.

As it has been correctly noted in Section 2 of [21]:
”...Renormalization has its own intrinsic physical basis
and is not brought about solely by the necessity to
expurgate infinities. Even in a totally finite theory we
would still have to renormalize physical quantities”.
This is associated with the fact that the theoretical initial
(bare) quantities (mass mg,charge go and so on) can differ
drastically from the real (physical) quantities (mg,qr
and so on).But because in this case in the measurable
picture at energies £ < E, a low-energy part of the



lattice is involved, very close to continuous space-time,
there is a possibility to derive QFT without infinities,
when renormalization of the theory is understood as a
passage from some finite quantities to the other.

Next, we present briefly the results from [8].

In the general case a one-loop correction to the two-vertex
function (diagram (a)) takes the form ([47],p.53):

r® (p, —p) = —(p* + md) — %Jl(mo) =
=—(p* +m%),  (45)

F(2)(p7 -D, BN) = 7(132 + m(Q),BN) -

where p € By,

Tn(mo, By) = / Alg)", (47)
Bar(q)

and mo 5, , 80,8, — corresponding bare mass and coupling
constant within Byr. Here, Bar(q) is the narrowed (BZ)
By for the variable ¢, and in the right side (46) there
is no term O(gg 53,.) and mpp, are the experimental
values of mass obtained for the energies on the order of
Byr. Naturally, we can suppose that the renormalized
(i.e. experimental) values of mass mg and coupling
constant gr at energies ¥ < FE), should not depend on the
whole domain of 5, the limiting values of which are much
greater than E,. Besides, in any region satisfying the
condition £ < E, they are independent of this domain
and hence we have mp 5., = MR, &R, By = &R-

In virtue of the condition mpg z,, = mgr and considering
the terms O(gg), O(g§ 5,.), we can rewrite formula (45)
as (formula (2.93) in [46])

mh = mi + 271 (mo) + O(gd). (48)
and formula (46) as

2 2 2 £0,8x
MR By = MR =My, T 9

Ji(mo,By, By) +

+0O(g5 5, )- (49)
Similar calculations may be performed for the coupling

constant too.  Specifically, let Fg)(pl,pg,pg,m) be
the renormalized four-point function. Then, for the
renormalized coupling constant gr, we have ([46],formula
(2.96))

3
gr = -T(0,0,0,0) = go — 58072(mo) + O(g7), (50)

And, since gr g, = gr, we have
~Iis,(0,0,0,0) =

3
= 80,Bx — §g%7BNJ2(mO,BNaBN) + O(gg,BN) (5]‘)

gR,By — &R =

20,Br

where, as a rule, the term O(g2) in the right-hand side is
omitted and the designations from Section 2 in [46] are
used: A(q) = (mg +¢*) ", Ju(mo) = [ A(g)". Here
B(q)

where mp is the renormalized mass in the general case
and B(q) is (BZ) for the variable §.

But, proceeding from the earlier results, in considered
case it follows that T'?)(p, —p) should be replaced by

Ji(mo, By) = — (P> + m% 5,,), (46)

As follows from the four last equations, since left sides
of each pair of these equations are equal, whereas the
integrals Ji(mg) and Jy(mo, Byr) and hence Ja(mg) and
Ja(mo, Bar) are greatly differing (because in the second
case the integration domain is drastically narrowed), the
quantities mg, mo g, and go, o,5,, should also differ from
each other. And this really is the case.

According to formulae (2.110),(2.111) from [46] in the
general case, for bare quantities in the one-loop order we
have

mf = m% + L1 () + O(eh)
3
g =gr + 5%?%«72(7”1%) +O(gh)- (52)

Then, considering the equalities, we can rewrite mpg 5, =
Mg, 8RBy = &r (52) in the one-loop order in the
measurable picture under study as follows:

mE i, = mh + S (ma. By) + Olgh)
3 )
20,8y = 8R T ig%{b(mm By) + O(gSR)' (53)

BZ By is a narrow low-energy (in fact central) part of
the total BZ B. From this it follows that the integrals
Ji(mp, By), Jo(mp, Byr) are low-energy components of
the integrals Ji(mg), JJo(mpg), respectively,and hence
they are small.

As it has been noted in [47], by the lattice approach ultra-
violet divergence (UVD) in QFT appear on passage to a
theory in continuous space-time, i.e. for @ — 0. However,
in this measurable picture we study the lattice per se
rather than the continuum limit. As this takes place,
UVD of a continuous theory in this case are associated
with the quantities lying beyond the boundary of E, and,
in particular, beyond that of the narrowed BZ, i.e. Bys.
Because we are most interested in the experimental
(renormalized) quantities of mp, gr which are coincident
in the cases By and B and defined within the energy



range E <« E,, formula (53) demonstrates that bare
quantities can be also defined at low energies F < E,
and in terms of "narrow” BZ Bys. For the two-loop order
the foregoing algorithm remains valid, excepting greater
complexity of the formulae (for example formula (2.85)
in [46]).

It is important that all formulae of a perturbation theory
in the two-loop order in a measurable consideration can
be derived in the same way as in the one-loop order by
substitution of the short-cut Brillouin zone Bas for the
corresponding integrals around loop momenta over the
first Brillouin zone B.

It should be noted that the case of symmetry violation
(44),i.e.  {p(x)) # 0 (Section 2.2.3 in [46]) has no
principal differences from our consideration. We can
derive all the basic formulae in the measurable picture
at low energies I/ < E, replacing the Brillouin zone B
by the short-cut Brillouin zone B, in all the relevant
formulae in Section 2.2.3 from [46].

Next, we consider the limiting transition of this LQFT in
the general case to a theory in continuous space-time, i.e.
when a — 0. Asa =/{¢/N,N > 1, we get N — oo, and
from formula (14)it is inferred that full (BZ) B — oo.
It is obvious that the right and left sides of formulae
(45),(52),..., where we have full (BZ) B, tend to infinity.
Precisely this is demonstration of UVD in canonical QF T
in continuous space-time.

Since we are interested particularly in the short-cut
Brillouin zone Bxs that is invariable, due to formulae
(19) (or same (25)), the left and right sides of the
corresponding formulae (46),((53)),... for N — oo
always are finite limited quantities and hence we have no
UVD on passage to the continuum limit in the present
consideration.

The principal distinction of the earlier results, e.g.
[46].[47], from those obtained in this paper is the fact
that in the previous works bare quantities mo and g
take infinite values on passage to the continuum limit, as
is accepted by canonical QFT in continuous space-time
(for example, Section 10.2 in [22]), whereas in this paper
they are finite quantities obtained within the energy range
E < E,.

B. Gauge-invariante Lagrangians With the
Fermions Fields

The above-mentioned results for the scalar model ¢*
are also valid for the theory of a more general type,
in particular, for the Yang-Mills fields. In the lattice
form, for scalar fields we can use the well-known and
evaluated methods [48],for example, the Wick rotation
from Minkowski space to imaginary times ((4.1) as in
[48]):

xéﬂ = m{)”,
kOE = _ik(J)\/[a (54)

(x4 D) Uﬁ(erV) V(x4 f+ D)
O < O
Ul(z) Y A U(z+p)
O > O
¥(x) Un () Y(z+ )

FIG. 2: The plaquette.

where the second line of this formula presents the Wick
rotation in momentum space.

Then, for the statistical sum, the Wick rotation gives the
Euclidean functional integral e =% ((4.2) in [48])

My ¢~ 5 (55)

the convergence of which is much better than the initial
functional integral ¢**». Besides, in this case the
corresponding Feynman integral of QF T, in fact, becomes
the partition function of the corresponding statistical
system.

In the case under study, the lattice gauge theories
are most conveniently considered with the use of the
approach proposed by K.Wilson [49], because it retains
the gage invariance. And this is very important as, in the
measurable form, the gauge invariance may be retained
too, see Section 4.4 of [7].

Thus in the measurable picture we can use all
the formula associated with the lattice gauge theory,
specifically, the Wilson formalism [48].

We start with Euclidean action of Yang-Mills fields
interaction with fermions in continuous space-time ((5.1)
in [48])

S = /d4:p l@(x)( ,D+mf)1/)(:£) +

F3Tr B (@) ()] (56)

2

Then its discretization according to Wilson takes the
form ((5.2) given in [48])



wo= ')
T

B+ o)+ 3,000 + To) (mo+ ) w(@]

—;;{ )(r =) U (@) + aj)

gg L gt > [N ReTr[U(2)U, (z + af))U}(z + av)UJ (z)] (57)
T, pv
where z = an, 0 <r <1 and, as usual, D =~*D,,. Then, according to (5.12) in [48] and by virtue of

In what follows the notation is similar to that from  formulae (14)—(21) of this paper, in the general case for
Section 5 in [48] for the lattice spacing @ = ¢/N,|N|> 1.  the Fourier transforms of the lattice we have

(2m) (2m)
B
o A ean Ak oran
_ i(x+ 2)k _ +afi/2)k
Anta) = [ g TN Alh) = [ e e A (58
“ B
But, considering the results of Section 4 and, particularly, Note that the inverse Fourier transforms in the
formulae (19),(23),(25), the formula (58) may be  considered measurable case are of the same form as in
rewritten as the general case and are given by formula (5.13) in [4§]
d'p iy 4 —iz
= Y(p) = a e Py (x
vw) = [ e o) = @t Ee i)
Bar _ -
_ My bp) = a* e Pi(x)
p —ixp
w(fﬂ) = (27'(')4 € T/% z
By Au(k?) I Ze—i(:c+aﬂ/2)kAM(I) (62)
4
A () = / Tk iteransk g, (59) .
(2m) and correspondingly
Bar
Consequently, the Kronecker delta in position space in (5(4) = & Z —iap, (63)
the general case is as follows:
y Todhyp A dp However, in the general case p € B,k € B and in the
bzy = a / @)t Hrmwp = g / (2r)? e (60)  measurable consideration p € By, k € By-.
_x )
. . Remark 4.1
and in considered case It is convenient to use formula (25) for BN when the
4 1 i :IZZT = :,I.:Tr =
5 g d*p Jrr— (61) value of a is fixed. Since NNa = NNUN N@, By may
v (2m)4 ’ be represented as a domain with the boundaries which
B are evidently independent of a
Here, the lattice spacing a is not normalized to 1
purposely, i.e., Byr is given by (19). By = {p| < Pu = N@’N > 1} = By. (64)
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In this way formula (64) indicates that a “width” (or
same size) of By depends only on the number N, i.e.,
on EPAB. For gauge theories, in the general case we can
use the same methods as in Section 4.1 with due regard

for the results of Sections 2,3. Specifically, for the first-
order Wilson action at gauge coupling in the general case
of the quark-quark-gluon vertex in momentum space we
have (formula (5.16) in [48]):

Sqqg

Consequently, in the considered pattern, taking into

ZgO 42(
Z90 o d4k d*p' ix(p+k—p') iak, /2
Z/ / ) eT\PTRTP e X
B

(T = A1 T 42,08, 900

90 d*k dp Y454) _ o \eiaku /2
Z/ / 48/(27r) (2)5 (p+k p)

(B VAV + %) 4 T ) A ) e +

g0 Z/ / d*k B/g;) 21)4 5@ (p + k — pl)eiokn/2

/
) <E(p/)7MA“(k)w(p)ewp“m@wplﬂ/Q - 2cos w

a(p+p’>u>
wpLE )

—i—r@(p’)AH(k:)wp)emp“/267“””;/2 - (—24) sin

(r = ) Au(@)b(@ + afi) = Pa + o) + 7) Au(@) ()

(65)

e—iap;))

account Remark 4.1, we have

On going to the continuous limit, in the general case, i.e.,

_ Zgo d*k d4 T (4) iak, /2
QQ!]N - Z/ / )48/ (27_‘_) (2 ) d (p+k p)

/
) (E(p/)fmA“(k)w(p)ewp“m@iap:L/Q - 2cos w

/

(66)

for formula (65), we have

lim S,y = 2m) W (p+k—p) -
qaag

< dlp [ d'k [ dYp
a—0 /_Oo (2m)* /_Oo (2m)* /_oo (2m)*
‘190 Zg(p )V Au(k)

¥(p).
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(67)
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FIG. 3: Loop diagrams for the self-energy of the gluon on the
lattice,which have a continuum analog.

In this case we get

~
\

oo

/
-

The quantities in formulae (66) and (68) are finite as
summation in the corresponding formulae is performed
for the same finite domain of momenta Bg. The
difference is in the fact that the first is dependent on
the lattice spacing a, whereas the second is not. But, as
a=/{/N,N > 1is very small, the value of Sy4 ~ is close

All the methods considered in Sections 3,4.1 and 4.2 are
also good for loop Feynman diagrams, for example, for
simple loop diagrams in Figure 3. In this case, similar
to formulae of Sections 4.1,4.2, the Brillouin zone B is
contracted to By,and the renormalized (experimental)
quantities myr and gr (coupling constant go) are
coincident with my r 5, and with gr 5, . In line with
Section 4.1, at a — 0, the initial Brillouin zone B — oc.
However, By remains invariant, as follows form formula
(64) indicating that By is independent of a.

Then, similar to formulae (52),(53), bare the quantities
mo and gp may be expressed in terms of the finite
quantities my r 5, and ggr B, , and the integrals over the
finite domain Bg. This means that they remain finite on
passage to the continuous limit a — 0.

From this it follows directly that in this case, similar
to the scalar model ¢*, all the loop contributions in
a perturbation theory may be expressed in terms of
the finite quantities and integrals from the bounded
(narrow,central) Brillouin zone my g 5, that remains
invariant for a — 0 and leads to the finite perturbation
theory both in the lattice variant and on passage to the
continuous limit.

It should be noted that in the lattice consideration
the number of loop Feynman diagrams may be greater.

/ (62l7rp)l4 @2m)*Wp+k—p) -

By

12

igo > (P Au(R)P(p)- (68)

to limg—0 Sqqq.n. From point 2.2.2 of Section 2 it follows
that the number N > 1 determines the applicability
boundaries of EPAB and we always have N > 102. In the
general case N is a variable and it should be dependent
on the processes under study.

Specifically, apart from the diagrams shown in Figure 3
which have their analog in the continuous case, we can
have pure lattice diagrams, in particular, to ensure the
theory gauge invariance (for example, lower row in Figure
6 in [48]). Of course, all the above calculations are valid
for these diagrams too.

V. CONCLUSION

5.1 It is clear that for all other models of QFT in the
general case the calculations and the results of Section 4
are valid. Specifically, in the lattice representation, for
all models in each particular case we should determine
the following:

5.1.1 EPAB for the specific model and the corresponding
number N from formula (64);

5.1.2 finite values of the corresponding lattice loop
contributions for the "contracted” Brillouin zone B;

5.1.3 finite values of the quantities bare for all the
parameters of the model mg,gg,.... in terms of the
experimental values of these parameters mg, gg,.... and



of the above-mentioned finite loop contributions derived
within the energy ranges from By;

5.1.4 in this case passing to the continuous limit
means replacing of the lattice loop contributions in point
5.1.2 by the corresponding integrals over B .

So, due to the results from Section 4 and points
5.1.1-5.1.4, both the lattice model and its continuous
limit are free from the ultraviolet divergences.

It should be noted that, when in the measurable
picture we take into account in point 5.1.2 the lattice
loop contributions only for observable quantities, they
will be smaller than in the canonical case of the lattice
model in line with the results from Section III of [§].

5.2 The proposed approach is based on a precise
evaluation of EPAB, i.e., of the number N, in every
particular case. In the paradigm of the local plane
geometry, the growing precision of evaluation of N
should be associated with more and more higher orders
of the quantum corrections.

As noted in Remark 2.2 initially, it has been assumed
that we should consider only two (in a sense extreme)
energy regions: low energies £ < E, and very high
energies £ ~ E,. Still, it is not impossible that the

problem solved may lead to some intermediate energies
lying in the interval between the two indicated regions.
It is clear that, from the beginning or by definition,
these energies should have lower and upper bounds. As
in this case EP would be violated, QFT in this energy
range would be a theory with the particular locally-
unavoidable nontrivial metric g, (x) (unreduced to the
Minkowskian metric 7, (z)) that should be dependent
on the processes under study. Then this theory would
be the ultraviolet finite QFT in curved space-time [50].

5.3 The subject-matter of this work is associated
with such a problem as experimental detection of a
quantum foam. At the present time, the relevant
results are still inconsistent [51] due to inadequate
capacity of the data available and insufficient precision
of the experiments. (The situation resembles that in
chronology of the detection of gravitational waves relict
including.)

Nevertheless, an active search in this direction is in
progress [52], [53].
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