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ontinues a study of QFTand gravity within the s
ope of the measurability
on
ept introdu
ed in his previous works [1℄�[7℄. In [8℄it has been demonstrated that, in the 
ontext of theequivalen
e-prin
iple appli
ability boundaries (EPAB), aperturbation theory for QFT in terms of measurablequantities as applied to the s
alar model ϕ4 is free fromultra-violet divergen
es (UVD).The prin
ipal obje
tive of the present manus
ript is toextend the methods and results from [8℄ to the theoriesof a more general type, in parti
ular to the Yang-Mills�elds intera
ting with fermions.The stru
ture of this paper is as follows.Se
tion 2 presents in short the preliminary informationne
essary for understanding of the essen
e of this work.In Se
tion 3 the 
orrelation between the measurabilityand the latti
e approa
h in QFT is revealed. Se
tion4 is 
entral in this presentation. In its �rst part theprin
ipal result asso
iated with the model ϕ4 from [8℄is elu
idated. In the se
ond part of this se
tion it isshown that the methods and results presented in the�rst part may be generalized to the quantum theoryof gauge �elds intera
ting with fermion �elds of thematter. Moreover, the general me
hanism enabling oneto demonstrate, within the s
ope of EPAB, the absen
eof UVD in a perturbation theory of any Latti
e QuantumField Theory (LQFT),and of its 
ontinuous limit.II. IMPORTANT PRELIMINARYINFORMATION BRIEFLYA. Measurability Con
ept in Quantum Theory andGravityIn this Se
tion we brie�y 
onsider some of the resultsfrom [1℄�[7℄ whi
h are essential for subsequent studies.Without detriment to further 
onsideration, in the initialde�nitions we lift some unne
essary restri
tions and makeimportant spe
i�
ations.Presently, many resear
hers are of the opinion thatat very high energies (Plank's or trans-Plan
k's) the

ultraviolet 
uto� exists that is determined by somemaximal momentum.Therefore, it is further assumed that there is a maximalbound for the measurement momenta p = pmaxrepresented as follows:
pmax

.
= pℓ = ~/ℓ, (1)where ℓ is some small length and τ = ℓ/c is the
orresponding time. Let us 
all ℓ the primary lengthand τ the primary time.Without loss of generality, we 
an 
onsider ℓ and τ atPlank's level, i.e. ℓ ∝ lp, τ = κtp, where the numeri
al
onstant κ is on the order of 1. Consequently, we have

Eℓ ∝ Ep with the 
orresponding proportionality fa
tor,where Eℓ
.
= pℓc.Explanation. In the theory under study it is notassumed from the start that there exists some minimallength lmin and that ℓ is su
h. In fa
t, the minimallength is de�ned with the use of Heisenberg's Un
ertaintyPrin
iple (HUP) ∆x · ∆p ≥ 1

2~ or of its generalizationto high (Plan
k) energies � Generalized Un
ertaintyPrin
iple (GUP) [9℄�[17℄, for example, of the form [9℄
∆x ≥ ~

∆p
+ α′l2p

∆p

~
, (2)where α′ is a 
onstant on the order of 1. Evidently thisformula (2) initially leads to the minimal length ℓ̃ on theorder of the Plan
k length ℓ̃

.
= 2

√
α′lp. Besides, otherforms of GUP [17℄ also lead to the minimal length.Thus, we should note that in all the works lmin isa
tually (but not expli
itly) introdu
ed on the basisof some measuring pro
edure (di�erent forms of theGeneralized Un
ertainty Prin
iple (GUP)). In any formGUP in turn is a high-energy generalization of HUP.But in the original proof of HUP a planar geometry ofthe initial spa
e-time was a
tively used [18℄. Extensionof this prin
iple to other pairs of 
onjugate variablesis also valid only for quantum me
hani
s in the planargeometry spa
e [19℄. As HUP is a lo
al prin
iple, atlow energies in the 
urved spa
e-time, by virtue ofEinstein's Equivalen
e Prin
iple, we 
an 
onsider that ina fairly small neighborhood of any point the geometry



is planar an hen
e HUP is valid too. But all the resultsobtained point to the fa
t that lmin should be at a levelof lp,i.e. lmin ∝ lp, or even should be smaller. As notedin the Se
tion 2 of [7℄, at the Plan
k s
ales Einstein'sEquivalen
e Prin
iple is obviously inappli
able, andthere is no way to use the measuring pro
edure ignoringthe spa
e geometry at these s
ales. Meantime, noneof the GUP forms [17℄ makes an e�ort to in
lude itand is hardly 
ompletely 
orre
t. Moreover, there aresome serious arguments against GUP as demonstratedin Se
tion IX of the review paper [17℄. The foregoing
onsiderations support argumentation against theintrodu
tion of lmin from the start.Be
ause of this, in the present work the validity of thisprin
iple is not implied from the start too. GUP is givenmerely as an example. As pmax (1) is taken at Plan
k'slevel, it is 
lear that HUP is inappli
able. Taking thisinto 
onsideration, the existen
e of a 
ertain minimallength ℓ̃ is not mandatory. So, we start from the primarylength ℓ and the primary time τ . The whole formalism,developed in [1℄�[6℄ on 
ondition that ℓ is the minimallength, is valid for the 
ase when ℓ is the primarylength but now we 
an lift the formal requirement forinvolvement of lmin in the theory from the start.There is one more barrier for the use of lmin in thetheory as indi
ated in [16℄ and other works (for example,[17℄). In the above-mentioned papers, it has been notedthat there is a nonzero minimal un
ertainty in position,i.e. lmin implies that there is no physi
al state whi
his a position eigenstate sin
e an eigenstate would, of
ourse, have zero un
ertainty in position. So, in this
ase in a quantum theory we have the momentumrepresentation rather than the position representation,and the quantum theory be
omes very depleted.The question arises whether the introdu
tion of pmax isnaturally asso
iated with the involvement of a minimallength. But this is the 
ase only when at the energies
Emax 
orresponding to pmax we have the substantiatedmeasuring pro
edure. Unfortunately, this is not the
ase.Note that in the 
anoni
al QFT in 
ontinuous spa
e-time (i.e. without lmin)[20℄�[23℄ measurements ofthe 
ontributions in the loop amplitudes involve thestandard 
ut-o� pro
edure for some large (maximal)momentum pcut

.
= pmax. Then it is demonstrated thatthe theory at low energies p≪ pcut is in fa
t independentof the sele
tion of pcut .

= pmax. Of 
ourse, the theorystill remains to be 
ontinuous [20℄�[23℄. In this 
ase wemake another step forward, relating the 
orrespondinglength ℓ = ~/pmax to pmax and 
onstru
ting on its basisa low-energy theory very 
lose to the initial 
ontinuoustheory. Now we have the naturally derived parameter
ℓ for the 
onstru
tion of a high-energy deformation ofthis theory at the energies E ≈ Emax within the s
opeof determining the physi
al theory deformation [24℄. So,we start from the primary length ℓ and the primarytime τ . The whole formalism, developed in [1℄�[6℄ on
ondition that ℓ is the minimal length, is valid for the


ase when ℓ is the primary length but now we 
an liftthe formal requirement for involvement of lmin in thetheory from the start.In what follows we mainly make referen
es to [6℄ and[7℄. In parti
ular, the basi
 de�nitions PrimaryMeasurability,Generalized Measurability,Primarily Measurable Quantities(PMQ),Primarily Measurable Momenta(PMM),Generalized Measurable Quantities(GMQ)and the like are given in Se
tion II of [6℄.Besides, in Se
tion III from [6℄ it has been demonstratedhow, at low energies E ≪ Ep, the arbitrary metri
 gµν(x)may be derived in terms of measurable quantities.It should be noted that in virtue of assumption in[7℄ observables in measurable theory are PrimarilyMeasurable Quantities.B. Relativisti
 Invarian
e, Equivalen
e Prin
ipleAppli
ability Boundary, and QFT in Flat Spa
eThe 
anoni
al quantum �eld theory (QFT) [20℄� [23℄is a lo
al relativisti
ally-invariant theory 
onsidered in
ontinuous spa
e-time with a plane geometry, i.e with thelo
al Minkowskian metri
 ηµν(x). And this assumptionis valid for all the energy range. Still, it is quite 
lear thatthe quantum pro
esses asso
iated with QFT (parti
le
ollisions, de
ay,...) 
an introdu
e perturbations into thespa
e-time geometry, varying its 
urvature. But as QFTis a lo
al theory, a strong Equivalen
e Prin
iple (EP)[25℄ enables one, in a su�
iently small region Vr ofthe �xed point, to 
onsider spa
e-time as a �at spa
e inthis 
ase too. Consequently, we naturally think aboutthe appli
ability boundary of this prin
iple. In Se
tion 2of [7℄ this problem has been thoroughly studied.In essen
e, su�
iently small Vr means that the region
V ′ , for whi
h x ∈ V ′

r′ ⊂ Vr with r′ < r (here r, r′ are
hara
teristi
 spatial sizes of Vr and V ′
r, respe
tively),satis�es the 
ondition gµν(x) ≡ ηµν(x), where ηµν(x) isMinkowskian metri
. In this way we 
an 
onstru
t thesequen
e

... ⊂ V ′′

r′′
⊂ V ′

r′ ⊂ Vr,

... < r
′′

< r′ < r (3)The problem arises, is there any lower limit for thesequen
e in formula (3)?The answer is positive. Currently, there is no doubtthat at very high energies (on the order of Plan
kenergies E ≈ Ep), i.e. on Plan
k s
ales, l ≈ lpquantum �u
tuations of any metri
 gµν(x) are so highthat in this 
ase the geometry determined by gµν(x)is repla
ed by the �geometry� following from quantumfoam that is de�ned by great quantum �u
tuations of
gµν(x),i.e. by the 
hara
teristi
 spatial sizes of thequantum-gravitational region (for example, [26℄�[31℄).The above-mentioned geometry is drasti
ally di�eringfrom the lo
ally smooth geometry of 
ontinuous spa
e-time and EP in it is no longer valid [32℄�[39℄. A
tually,2



the quantum foam is not geometry in a 
ommonsense as lo
ally it is determined by a set of di�erentmetri
s, ea
h of whi
h is taken into 
onsideration withits statisti
al weight [29℄.From this it follows that the region Vr,t with the
hara
teristi
 spatial size r ≈ lp (and hen
e with thetemporal size t ≈ tp) is the lower (approximate) limit forthe sequen
e in (3).In this way EP has the appli
ability boundary that, atleast, lies in the region of Plan
k energies and hen
ethe relativisti
 invarian
e must be violated at the sameenergy s
ales be
ause its appli
ability ne
essitates spa
e-time with the lo
ally �at geometry, just supported byEP.It should be noted that initially strong EP has beenformulated for the ma
ros
opi
 
ase (i.e. for the spa
e-time domains of great size) that is beyond quantum
onsideration. On extension of this prin
iple tomi
ros
opi
 domains, the problem of its appli
abilityboundaries is absolutely natural.It is di�
ult to �nd the exa
t lower limit for the sequen
ein formula (3) � it seems to be dependent on the pro
essesunder study. Se
tion 2 of [7℄ presents the arguments thatit should be asso
iated with the energy s
ales E ≪ Ep.Therefore, it is assumed that the Equivalen
e Prin
iple isvalid for the lo
ally smooth spa
e-time and this suggeststhat all the energies E of the parti
les in the most generalform meet the ne
essary 
ondition
E ≪ Ep. (4)As validity of RI requires the appli
ability of EP, we 
an
onsider the 
ondition (4) a ne
essary 
ondition for thevalidity of RI. Then, if not stipulated otherwise, we 
anassume that the 
ondition (4) is valid.The 
anoni
al quantum �eld theory (QFT) [20℄� [23℄is a lo
al theory 
onsidered in 
ontinuous spa
e-timewith a lo
al plane geometry, i.e with the Minkowskianmetri
 ηµν(x) . In addition, it is assumed that allobje
ts in QFT are point-like. However, as noted above,this assumption will be true to a 
ertain limit: theassumptions that (a) even lo
al spa
e-time geometry isplane and (b) all obje
ts in QFT are point-like havenatural appli
ability boundaries dire
tly spe
ifying theEP appli
ability boundary.Within the s
ope of the 
anoni
al QFT, the pro
ess ofpassage to more higher energies without a 
hange in thelo
al 
urvature has no limits [20℄�[23℄, just this fa
t isthe reason for ultraviolet divergen
es in QFT.However, on passage to the Plan
k energies E ≈ Ep(Plan
k s
ales l ≈ lp), the spa
e in the Plan
kneighborhood Vr,t of the point x one 
annot 
onsider�at even lo
ally and in this 
ase (as noted above) EP isnot valid.Then we introdu
e the following assumption:Assumption 2.1In the 
anoni
al QFT in 
al
ulations of the quantities itis wrong to sum (or same 
onsider within a single sum)

the 
ontributions 
orresponding to spa
e-time manifoldswith lo
ally nonzero or zero 
urvatures sin
e these
ontributions are asso
iated with di�erent pro
esses:(1) with the existen
e of a gravitational �eld that, inprin
iple, 
an hardly be ex
luded; (2) in the absen
e of agravitational �eld.From the start, we 
an isolate the 
ase when EP is validand hen
e RI takes pla
e (at su�
iently low energies,spe
i�
ally satisfying the 
ondition (4)) from the 
aseswhen EP be
omes invalid (for example, Plan
k energies
E ≈ Ep).Remark 2.2A

ording to Assumption 2.1, we should 
onsider twolimiting 
ases:(a)low energies E ≪ Ep and(b)very high (essentially maximal) energies E ≈ Ep.Then it should be noted that, as all the experimentallyinvolved energies E are low, they satisfy 
onditiona). Spe
i�
ally, for LHC maximal energies are
∼ 10TeV = 104GeV , that is by 15 orders of magnitudelower than the Plan
k energy ∼ 1019GeV .Moreover, the 
hara
teristi
 energy s
ales of allfundamental intera
tions also satisfy 
ondition a).Indeed, in the 
ase of strong intera
tions this s
ale is
ΛQCD ∼ 200MeV ; for ele
troweak intera
tions this s
aleis determined by the va
uum average of a Higgs bosonand equals υ ≈ 246GeV ; �nally, the s
ale of the (GrandUni�
ation Theory (GUT)) MGUT lies in the range of
∼ 1014GeV −−1016GeV . It is obvious that all the above�gures satisfy 
ondition a).Thus, only the expe
ted 
hara
teristi
 energy s
ale ofquantum gravity satis�es 
ondition b).From Remark 2.2 it dire
tly follows that even veryhigh energies arising on uni�
ation of all the intera
tiontypes MGUT ≈ 1014GeV− ∼ 1016GeV ,(ex
ept ofgravitational),satisfy the 
ondition (4).At the same time, it is 
lear that the RI validityrequirement in 
anoni
al QFT [20℄� [23℄,due to thea
tion of Lorentz boost (or same hyperboli
 rotations)(formula (3) in [40℄), results in however high momentaand energies. But it has been demonstrated thatunlimited growth of the momenta and energies isimpossible be
ause in this 
ase we fall within the energyregion, where the 
onventional quantum �eld theory isinvalid. This se
tion supports the validity of the fa
tin the general 
ase of the 
anoni
al QFT in 
ontinuousspa
e-time as well.Note that at the present time there are experimentalindi
ations that RI is violated in QFT on passageto higher energies (for example, [41℄). Besides, oneshould note important re
ent works asso
iated withEP appli
ability boundaries and violation in nu
leiand atoms at low energies (for example [42℄). We
an mention other works indi
ating the appli
abilityboundaries of EP for spe
i�
 pro
esses, espe
iallyasso
iated with the 
ontext of this paper (for example,3



[43℄,[44℄). Pro
eeding from the above, the requirementfor RI and EP is possible only within the s
ope of the
ondition (4).Due to the 
ondition E ≪ Ep and to the results of Se
tion2 in [7℄, all 
on
lusions made in this se
tion are validboth for the 
anoni
al Quantum theory in 
ontinuousspa
e-time, [20℄� [23℄, and for its measurable analog inSe
tion 2 of [7℄,(Subse
tion 2.1 in the present paper).Remark 2.3Why in 
anoni
al QFT it is so important never forgetabout the fa
t that spa
e-time has a �at geometry, orthe same possesses the Minkowskian metri
 ηµν(x)?Simply, in the 
ontrary 
ase we should refuse from somefruitful methods and from the results obtained by thesemethods in 
anoni
al QFT, in parti
ular from Wi
krotation [23℄. In fa
t, in this 
ase the time variable isrepla
ed by t 7→ it
.
= tE , and the Minkowskian metri


ηµν(x) is repla
ed by the four-dimensional Eu
lideanmetri

ds2 = dt2E + dx2 + dy2 + dz2. (5)Clearly, su
h repla
ement is possible only in the 
asewhen from the start spa
e-time (lo
ally) has a �atgeometry, i. e. possesses the Minkowskian metri


ηµν(x). This is another argument supporting the keyrole of the EP appli
ability boundary. Otherwise, whenwe go beyond this boundary, Wi
k rotation be
omesinvalid. Naturally, some other methods of 
anoni
alQFT will lose their for
e too.2.2.1 In this paper we 
onsider two limiting energys
ales:E ≪ Ep and E ≈ Ep. Of 
ourse, the wholeenergy range 0 < E ≤ Ep is not redu
ed to theses
ales. But, assuming that the onset of the Universe hadstarted from the energies 
lose to the Plan
k energies Epand its expansion was very fast, the above boundary isreasonable. An additional argument in support is the fa
tthat, as noted in Remark 2.2, the energy ranges for allthe fundamental models 
ombining various intera
tionsare asso
iated with these s
ales.2.2.2 It is 
lear that the equivalen
e-prin
ipleappli
ability boundaries (EPAB) in ea
h spe
i�

ase are dependent on the parti
ular pro
esses studiedin parti
le physi
s. In what follows we 
onsider only theenergy range E ≪ Ep assuming that the 
ommon EPABlies within 0 < E ≤≈ 10−2Ep.III. QFT IN MEASURABLE FORM ASLATTICE FIELD THEORYFrom Se
tion 4 in [7℄ it follows dire
tly that themeasurable approa
h generates a Latti
e QuantumField Theory (LQFT). Hereinafter we use the symbols,terms, and results from the (LQFT) [45℄,[46℄.Then it is assumed that the theory under study is
onsidered in a su�
iently large hyper
ubi
 box withthe edge length L and spa
e-time size L4, where L =

NLℓ,NL ≫ 1. In general, not ne
essarilyNL is an integernumber.For 
onvenien
e, let us introdu
e the following:
Ω
.
= L4. (6)Assuming that t varies over the interval 0 ≤ t ≤ T, T 6=

L, (6) will take the form (formula (2.3) in [46℄)
Ω
.
= V T = L3T. (7)In what follows, when not stated otherwise, we assume

T = L and hen
e formula (7) takes the form (6).Without loss of generality, we 
an assume that all integer
Nxµ

are equal to ea
h other and are equal to someinteger N ≫ 1 maximally high in the absolute value.Then, a

ording to the present 
onsideration, in themeasurable form there arises a latti
e model of theposition representation with a = ℓ/N , where a is thelatti
e distan
e or same latti
e spa
ing (se
tion 2.5 from[45℄).In line with the general approa
h, in LQFT we have [45℄
L = aM =

ℓ

N
M, i.e.

L

M
=

ℓ

N
, (8)where M ≫ 1 is an integer number. It is obvious that

M/N = NL, i.e. M ≫ NL.As L is great, also without loss of generality, it is assumedthat the periodi
 boundary 
onditions (formula (2.58) in[45℄)) are valid
φ(x+ L) = φ(x). (9)Then all formulae of LQFT in the position representation(Se
tions 2.5,2.6 in [45℄) are valid for the measurableform of a 
ontinuous theory. And formula (2.54) from[45℄

∑

x

f(x) →
L∫

0

d4xf(x),M → ∞, a =
L

M
,

L fixed (10)may be rewritten for su
h 
onsideration with substitutionof f(x) → L under the integration sign for f(x) →
Lmeas,{N} within the summation, and a→ ℓ/N , where Land Lmeas,{N} are 
orrespondent formulae in 
ontinuousand measurable 
ases.Sin
e ℓ is also a �xed quantity, it is 
lear that the
onditions M → ∞ and N → ∞ in the 
ase understudy are equivalent, representing the thermodynami
limit that gives a 
ontinuous pattern. Note that inthis 
ase we 
an use the results from Se
tions 2.5 and2.6 of [45℄,assigning at as the temporal latti
e distan
e
at

.
= τ/Nt, where τ/Nt is taken from formula (4) in [6℄.Thus, in the 
oordinate representation the studiedlatti
e of measurable quantities may be regarded as a
anoni
al spa
e-time latti
e of LQFT, with the spa
ing

a = ℓ/N and temporal distan
e at = τ/Nt.4



In this 
ase all the basi
 operators in Se
tions 2.5and 2.6 of [45℄ have their analogs in the present work.Spe
i�
ally, �nite-di�eren
es operators ∂µϕx, ∂
′
µϕx fromformulae (2.55),(2.56) in [45℄ and formulae of Se
tion 2.3in [47℄ in the present paper 
orrespond to the operators

∆

∆N

from formula (9) in [6℄ for positive and negativevalues ofN. The transfer-operator T̂ may be 
onstru
tedfor the latti
e of interest, with the spa
ing a = ℓ/Nand temporal distan
e at = τ/Nt, in a

ordan
e withformulae (2.71),(2.74) of [45℄, so all the formulae fromSe
tion 2.6 in [45℄ are valid for this 
ase. We assumethat at = a.For the latti
e values of momenta, in the momentumrepresentation, a

ording to formula (2.81) in [45℄, wehave
pµ(latt) = nµ

2π

L
, (11)where nµ are integers.Consequently, the latti
e edge in the momentumrepresentation ∆pµ(latt) adopts the value

∆pµ(latt) =
2π

L
∝ 1

NL
, (12)where it is assumed that ~ = 1.At the same time, the integer numbers nµ are varyingin magnitude over the interval [0, NLN ],, where NLN =

L/a (formula (2.82) in [45℄). As a result, in the 
ase ofinterest a maximum value of the momentum along anyaxis will be given by
platt,max =

π

a
=

π

ℓ/N
=
πN

ℓ

.
= Λ. (13)Formula (13) gives an expli
it expression for a maximallatti
e momentum platt,max = Λ. To be more exa
t,the momenta are restri
ted to the so-
alled �rst Brillouinzone (BZ) B (formula (1.218) from [46℄)

B .
= {p|−π

a
< pµ ≤ π

a
}. (14)It is 
lear that platt,max = Λ ≫ pℓ. As follows fromformula (13), Λ ∝ Npℓ, N ≫ 1,i.e. the boundary of BZ

Λ passes far beyond the region of the physi
al energyvalues.But due to the 
ondition E ≪ Ep, we 
onsider only a low-energy part of the latti
e, the momenta of whi
h are givenas p ≈ ~

N∗ℓ with |N∗| ≫ 1. Be
ause of this, in the 
aseunder study only parti
ular momenta may be maximal(so-
alled �maximally rea
hable� momentum) pmax,reachand pmax,reach ≪ platt,max.In this way BZ in formula (14) is narrowed signi�
antly
−pmax,reach ≤ pµ ≤ pmax,reach, (15)where pmax,reach ≪ pℓ.As a = ℓ/N ,where N ≫ 1, when the mass m is �xed,

am is 
lose to zero and hen
e the 
orrelation length ξ(formula (1.224) in [46℄)
ξ ≡ 1

am
=

N

ℓm
(16)is �nite but very great. Passage to a 
ontinuum limit

ξ → ∞ means going to N → ∞. In this 
ase, within the
onstant fa
tor m−1, we have
ξ =

N

ℓ
∝ Npℓ ≈ Nppl ∝ platt,max = Λ. (17)From formulae (13),(15) it follows dire
tly that

pmax,reach =
pl

Ñ
=

Λ

NÑ
,N ≫ 1, Ñ ≫ 1. (18)Then, pro
eeding from the formulae above, in the 
ase ofinterest (BZ) B (14) is narrowed to BN

BN
.
= {p| −π

NÑa
< pµ ≤ π

NÑa
}, N ≫ 1, Ñ ≫ 1. (19)Latti
e summation in the general 
ase is given by formula(2.7) from [46℄

∫

p∈B

.
=

∫

B

≡ 1

a4Ω

∑

p∈B

. (20)In the 
ase under study the latti
e summation takes theform
∫

p∈BN

.
=

∫

BN

≡ 1

a4Ω

∑

p∈BN

. (21)Respe
tively, on passage to the thermodynami
 limit
L→ ∞, T → ∞, in the general 
ase we arrive at formula(2.8) in [47℄

∫

p∈B

=
1

(2π)4

∫ π
a

−π
a

d4p. (22)In the 
ase of interest (22) is transformed to
∫

p∈BN

=
1

(2π)4

∫ π

NÑa

−π

NÑa

d4p. (23)Remark 3.1As a rule, in the literature devoted to LQFT it is assumedthat the latti
e edge a is equal to 1. Then the formulafor the �rst Brillouin zone B (14) is of the form
B .
= {p| − π < pµ ≤ π}. (24)Whereas for the �short-
ut� Brillouin zone BN (19) wehave

BN
.
= {p| −π

NÑ
< pµ ≤ π

NÑ
}, N ≫ 1, Ñ ≫ 1, (25)with the 
orresponding 
hanges in all other formulae.5



IV. PERTURBATION THEORY INCONTINUOUS AND MEASURABLE CASESA. Simple S
alar Model ϕ4The 
anoni
al Lagrangian for model ϕ4 in 
ontinuousspa
e-time has the form [20℄
L =

1

2
(∂µϕ)

2 − m2
0

2
ϕ2 − g0

4!
ϕ4 (26)where L0

.
= 1

2 ((∂µϕ)
2 −m2

0ϕ
2) is free �elds Lagrangianand LI

.
= − g

4!ϕ
4 is intera
tion Lagrangian and g is adimensionless 
onstant (in four dimensions).Using in measurable form operator ∆

∆Nxµ

from formula(9) in [6℄, we 
an easily obtain, instead of L itsmeasurable form
Lmeas,{N} =

1

2
(

∆

∆Nxµ

ϕmeas)
2 − 1

2
m2

0ϕ
2
meas −

−g0
4!
ϕ4
meas (27)and instead L0 with the 
orresponding Klein�Gordonequation or KGE

(� +m2
0)φ = 0 (28)their measurable forms

Lmeas,{N},0 =
1

2
(

∆

∆Nxµ

φmeas)
2 − m2

0

2
φ2meas (29)and

(�Nxµ
+m2

0)φmeas = 0 . (30)Within the s
ope of a perturbation theory, let us 
onsiderexamples of Feynman diagrams, whi
h give UVD forthe ϕ4-model in 
anoni
al QFT in 
ontinuous spa
e-time[20℄ � [23℄, to �nd what are the 
orresponden
es with ameasurable pi
ture.Now we 
onsider one-loop 
orre
tions for the two- andfour-vertex fun
tions:
(a) (b)FIG. 1: Diagrams (a) and (b).Then the quantity G(0), quadrati
ally divergent over themomentum k (asso
iated with the diagram (a) in Fig.1,formula (9.1) in [20℄)

G(0) = g0

∫
d4k

(2π)4
G̃(k) = g0

∫
d4k

(2π)4
1

k2 −m2
0

(31)


orresponds in a measurable pi
ture to the integral,�nite over k with |N∗| = ∞

G(0, N∗)
.
= g0

pN∗∫

−pN∗

d4k

(2π)4
1

k2 −m2
0

. (32)Similarly, another divergent diagram�graph of theorder O(g2), whose 
ontribution is represented by thelogarithmi
ally divergent integral (formula (9.2) in [20℄)
g20

∫
d4k

(2π)8
1

(k2 −m2
0)((p1 + p2 − k)2 −m2

0)
(33)in a measurable 
onsideration will be asso
iated withthe �nite quantity

g20

pN′
∗∫

−pN′
∗

d4k

(2π)8
1

(k2 −m2
0)((p1 + p2 − k)2 −m2

0)
. (34)(Here in the measurable 
ase the right-hand sides offormulae (32),(34) should have the 
orresponding sumsinstead of the integrals but,in virtue the �nal part ofSe
tion 3 the sums may be repla
ed by the 
orrespondingintegrals).It should be noted that we 
an pass to Eu
lidean spa
e-time by means of Wi
k rotation (Remark 2.4) for better
onvergen
e of the integrals. Then, with the help ofan analyti
al extension, we 
an return to Minkowskianspa
e-time. This is a standard method both for QFT andLQFT [45℄,[46℄.The 
ontinuum a
tion of the theory (26)in Eu
lidean spa
e-time is of the form (formula (2.17)from [47℄)

S =

∫
d4x(

1

2
(∂µϕ)

2 +
m2

0

2
ϕ2 +

g0
4!
ϕ4), (35)and the 
orresponding latti
e a
tion has the followingform:

Smeas,{N} = a4
∑

x

(
1

2
(
∆

∆N

ϕmeas)
2 +

1

2
m2

0ϕ
2
meas +

+
g0
4!
ϕ4
meas).(36)For the latti
e values of momenta, in the momentumrepresentation take pla
e the formulae (11),(12).However, here the di�
ulty arises � the 
orrespondinglatti
e in the momentum representation on L4 is uniformwith the latti
e spa
ing in formula (12).In the 
onsidered 
ase the latti
e of measurablemomenta is nonuniform with the latti
e spa
ing

△pµ(meas) =
1

(N∗ − κ)(N∗ − κ∓ 1)ℓ
, (37)where κ is an integer number, |κ| ≪ |N∗| ≫ 1.As shown in [7℄, in order to use the results from [45℄, itis required that the 
ondition

△pµ(latt) ≈ △pµ(meas) (38)6



be ful�lled.As follows from formula (37) and [7℄ this is the 
ase when
NL ≈ (N∗)2. (39)This 
ondition is quite natural 
onsidering that L maybe 
hosen no matter how large but �nite.Now in the same way we 
onsider the momentumrepresentation and Fourier transformation of the abovementioned latti
e (formula (1.171) in [46℄)

G(x− y; a) =

π/a∫

−π/a

d4p

(2π)4
eip(x−y)G̃(p; a) =

=

∫

p∈B

d4p

(2π)4
eip(x−y)G̃(p; a). (40)Then we 
an use the results of [46℄ to �nd, how well a
ontinuous propagator of the momentum representationis approximated by the �latti
e� propagator in thisrepresentation. As it has been noted, all 
al
ulationsin [46℄ are �rst performed in Eu
lidean spa
e-time andfollowed by the analyti
al extension to Minkowskianspa
e.In virtue, using formula (1.173) from [46℄, we have

G̃(p; a) = {
4∑

µ=1

a−24 sin2
apµ
2

+m2}−1. (41)But it has been shown that in the 
ase under studythe momenta p are taken only from the subset BN .Consequently, pµ ∝ 1/Nµ, |Nµ| ≫ 1. As a = ℓ/N,N ≫
1, the argument of the fun
tion sin2 is ∝ 1/(NNµ), i.e.it is very 
lose to zero. Further we use a simple property� sinx ≈ x for x 
lose to 0. Immediately, within a higha

ura
y, by formula (41) we 
an obtain

G̃(p; a) = {
4∑

µ=1

a−24
a2p2µ
4

+m2}−1 =

= {
4∑

µ=1

p2µ +m2}−1 = (p2 +m2)−1 (42)in a good agreement with the 
orresponding formula in a
ontinuous pi
ture, i.e. for a→ 0 ([46℄, formula (1.178)).Thus, these 
omputations on
e again demonstrate thatin a measurable form at low energies E ≪ Ep thetheory studied is to a high a

ura
y 
oin
ident with the
orresponding theory in the 
ontinuous 
ase.Perturbation theory and Feynman rules for presentlatti
e are analogous to a 
ontinuous theory but theyhave the intera
tion term
S(1) = a4

∑

x

g0
4!
ϕ4
meas. (43)

As distin
t from a 
ontinuous 
onsideration, by thelatti
e approa
h all Feynman graphs satisfy thefollowing properties in momentum spa
e ([46℄,p.64) inthe general 
ase:ea
h line is asso
iated with the propagator
∆̃(q) ≡ (m2

0 + q̂2)−1;ea
h vertex is an end point of four lines and is asso
iatedwith the fa
tor −g0;at in inner verti
es momentum 
onservation holdsmodulo 2π;loop momenta should to be integrated over the �rstBrillouin zone B with the integration measure ∫
p∈B

;there is in overall fa
tor (2κ)−n/2 resulting from ournormalization of the latti
e s
alar �eldsformally UVD appear only in the 
ontinuum limit, i.e.when a→ 0.Note that in the se
ond point −g0 should be repla
edby −g0,BN
, and it seems that the fourth item should berepla
ed byloop momenta should be integrated over the short-
utBrillouin zone,BN with the integration measure ∫

p∈BN

.As, for N ≫ 1, the latti
e edge a = ℓ/N is verysmall and hen
e the 
orrelation length ξ (formula (16))is very great but not in�nite, the indi
ated latti
e in thespa
e-time and momentum representation is a
tuallynot distin
t from a 
ontinuous 
onsideration for themomenta satisfying BZ B (14).Thus, as dire
tly follows from formula (19), weshould in
lude the 
ontributions made only by verysmall momenta p in B,i.e. for p ∈ BN . Taking this intoa

ount, further we use the known formulae of LQFTfor small momenta (Se
tion 2 in [46℄)).We assume that the �eld ϕ(x) in a symmetri
 phase
〈ϕ(x)〉 = 0, (44)i.e. Z2-symmetry of ϕ(x) 7→ −ϕ(x) is the 
ase, whereasGreen's fun
tions with an odd number of argumentsvanish.As it has been 
orre
tly noted in Se
tion 2 of [21℄:�...Renormalization has its own intrinsi
 physi
al basisand is not brought about solely by the ne
essity toexpurgate in�nities. Even in a totally �nite theory wewould still have to renormalize physi
al quantities�.This is asso
iated with the fa
t that the theoreti
al initial(bare) quantities (massm0,
harge q0 and so on) 
an di�erdrasti
ally from the real (physi
al) quantities (mR,qRand so on).But be
ause in this 
ase in the measurablepi
ture at energies E ≪ Ep a low-energy part of the7



latti
e is involved, very 
lose to 
ontinuous spa
e-time,there is a possibility to derive QFT without in�nities,when renormalization of the theory is understood as apassage from some �nite quantities to the other.Next, we present brie�y the results from [8℄.In the general 
ase a one-loop 
orre
tion to the two-vertexfun
tion (diagram (a)) takes the form ([47℄,p.53):
Γ(2)(p,−p) = −(p̂2 +m2

0)−
g0
2
J1(m0) ≡

≡ −(p̂2 +m2
R), (45)

where, as a rule, the term O(g20) in the right-hand side isomitted and the designations from Se
tion 2 in [46℄ areused: ∆̃(q) ≡ (m2
0 + q̂2)−1, Jn(m0) ≡

∫

B(q)

∆̃(q)n. Herewhere mR is the renormalized mass in the general 
aseand B(q̃) is (BZ) for the variable q̃.But, pro
eeding from the earlier results, in 
onsidered
ase it follows that Γ(2)(p,−p) should be repla
ed by
Γ(2)(p,−p,BN ) = −(p̂2 +m2

0,BN
)− g0,BN

2
J1(m0,BN ) ≡ −(p̂2 +m2

R,BN
), (46)where p ∈ BN ,

Jn(m0,BN ) ≡
∫

BN (q)

∆̃(q)n, (47)andm0,BN
, g0,BN

� 
orresponding baremass and 
oupling
onstant within BN . Here, BN (q̃) is the narrowed (BZ)
BN for the variable q̃, and in the right side (46) thereis no term O(g20,BN

) and mR,BN
are the experimentalvalues of mass obtained for the energies on the order of

BN . Naturally, we 
an suppose that the renormalized(i.e. experimental) values of mass mR and 
oupling
onstant gR at energiesE ≪ Ep should not depend on thewhole domain of B, the limiting values of whi
h are mu
hgreater than Ep. Besides, in any region satisfying the
ondition E ≪ Ep they are independent of this domainand hen
e we have mR,BN
= mR, gR,BN

= gR.In virtue of the 
ondition mR,BN
= mR and 
onsideringthe terms O(g20),O(g20,BN

), we 
an rewrite formula (45)as (formula (2.93) in [46℄)
m2

R = m2
0 +

g0
2
J1(m0) +O(g20), (48)and formula (46) as

m2
R,BN

= m2
R = m2

0,BN
+

g0,BN

2
J1(m0,BN

,BN ) +

+O(g20,BN
). (49)Similar 
al
ulations may be performed for the 
oupling
onstant too. Spe
i�
ally, let Γ

(4)
R (p1, p2, p3, p4) bethe renormalized four-point fun
tion. Then, for therenormalized 
oupling 
onstant gR, we have ([46℄,formula(2.96))

gR = −Γ
(4)
R (0, 0, 0, 0) = g0 −

3

2
g20J2(m0) +O(g30), (50)And, sin
e gR,BN

= gR, we have
gR,BN

= gR = −Γ
(4)
R,BN

(0, 0, 0, 0) =

= g0,BN
− 3

2
g20,BN

J2(m0,BN
,BN ) +O(g30,BN

). (51)

As follows from the four last equations, sin
e left sidesof ea
h pair of these equations are equal, whereas theintegrals J1(m0) and J1(m0,BN ) and hen
e J2(m0) and
J2(m0,BN ) are greatly di�ering (be
ause in the se
ond
ase the integration domain is drasti
ally narrowed), thequantitiesm0,m0,BN

and g0, g0,BN
should also di�er fromea
h other. And this really is the 
ase.A

ording to formulae (2.110),(2.111) from [46℄ in thegeneral 
ase, for bare quantities in the one-loop order wehave

m2
0 = m2

R +
gR
2
J1(mR) +O(g2R)

g0 = gR +
3

2
g2RJ2(mR) +O(g3R). (52)Then, 
onsidering the equalities, we 
an rewritemR,BN

=
mR, gR,BN

= gR (52) in the one-loop order in themeasurable pi
ture under study as follows:
m2

0,BN
= m2

R +
gR
2
J1(mR,BN ) +O(g2R)

g0,BN
= gR +

3

2
g2RJ2(mR,BN ) +O(g3R). (53)BZ BN is a narrow low-energy (in fa
t 
entral) part ofthe total BZ B. From this it follows that the integrals

J1(mR,BN ), J2(mR,BN ) are low-energy 
omponents ofthe integrals J1(mR), J2(mR), respe
tively,and hen
ethey are small.As it has been noted in [47℄, by the latti
e approa
h ultra-violet divergen
e (UVD) in QFT appear on passage to atheory in 
ontinuous spa
e-time, i.e. for a→ 0. However,in this measurable pi
ture we study the latti
e per serather than the 
ontinuum limit. As this takes pla
e,UVD of a 
ontinuous theory in this 
ase are asso
iatedwith the quantities lying beyond the boundary of Ep and,in parti
ular, beyond that of the narrowed BZ, i.e. BN .Be
ause we are most interested in the experimental(renormalized) quantities of mR, gR whi
h are 
oin
identin the 
ases BN and B and de�ned within the energy8



range E ≪ Ep, formula (53) demonstrates that barequantities 
an be also de�ned at low energies E ≪ Epand in terms of �narrow� BZ BN . For the two-loop orderthe foregoing algorithm remains valid, ex
epting greater
omplexity of the formulae (for example formula (2.85)in [46℄).It is important that all formulae of a perturbation theoryin the two-loop order in ameasurable 
onsideration 
anbe derived in the same way as in the one-loop order bysubstitution of the short-
ut Brillouin zone BN for the
orresponding integrals around loop momenta over the�rst Brillouin zone B.It should be noted that the 
ase of symmetry violation(44),i.e. 〈ϕ(x)〉 6= 0 (Se
tion 2.2.3 in [46℄) has noprin
ipal di�eren
es from our 
onsideration. We 
anderive all the basi
 formulae in the measurable pi
tureat low energies E ≪ Ep repla
ing the Brillouin zone Bby the short-
ut Brillouin zone BN in all the relevantformulae in Se
tion 2.2.3 from [46℄.Next we 
onsider the limiting transition of this LQFT inthe general 
ase to a theory in 
ontinuous spa
e-time, i.e.when a → 0. As a = ℓ/N,N ≫ 1, we get N → ∞, andfrom formula (14)it is inferred that full (BZ) B → ∞.It is obvious that the right and left sides of formulae(45),(52),..., where we have full (BZ) B, tend to in�nity.Pre
isely this is demonstration of UVD in 
anoni
al QFTin 
ontinuous spa
e-time.Sin
e we are interested parti
ularly in the short-
utBrillouin zone BN that is invariable, due to formulae(19) (or same (25)), the left and right sides of the
orresponding formulae (46),((53)),... for N → ∞always are �nite limited quantities and hen
e we have noUVD on passage to the 
ontinuum limit in the present
onsideration.The prin
ipal distin
tion of the earlier results, e.g.[46℄,[47℄, from those obtained in this paper is the fa
tthat in the previous works bare quantities m0 and g0take in�nite values on passage to the 
ontinuum limit, asis a

epted by 
anoni
al QFT in 
ontinuous spa
e-time(for example, Se
tion 10.2 in [22℄), whereas in this paperthey are �nite quantities obtained within the energy range
E ≪ Ep.B. Gauge-invariante Lagrangians With theFermions FieldsThe above-mentioned results for the s
alar model ϕ4are also valid for the theory of a more general type,in parti
ular, for the Yang-Mills �elds. In the latti
eform, for s
alar �elds we 
an use the well-known andevaluated methods [48℄,for example, the Wi
k rotationfrom Minkowski spa
e to imaginary times ((4.1) as in[48℄):

xE0 = ixM0 ,

kE0 = −ikM0 , (54)

ψ(x) Uµ(x) ψ(x+ µ̂)

Uν(x+ µ̂)

ψ(x+ µ̂+ ν̂)U†
µ(x+ ν̂)ψ(x+ ν̂)

U†
ν (x)

FIG. 2: The plaquette.where the se
ond line of this formula presents the Wi
krotation in momentum spa
e.Then, for the statisti
al sum, the Wi
k rotation gives theEu
lidean fun
tional integral e−SE ((4.2) in [48℄)
eiSM −→ e−SE (55)the 
onvergen
e of whi
h is mu
h better than the initialfun
tional integral eiSM . Besides, in this 
ase the
orresponding Feynman integral of QFT, in fa
t, be
omesthe partition fun
tion of the 
orresponding statisti
alsystem.In the 
ase under study, the latti
e gauge theoriesare most 
onveniently 
onsidered with the use of theapproa
h proposed by K.Wilson [49℄, be
ause it retainsthe gage invarian
e. And this is very important as, in themeasurable form, the gauge invarian
e may be retainedtoo, see Se
tion 4.4 of [7℄.Thus in the measurable pi
ture we 
an use allthe formula asso
iated with the latti
e gauge theory,spe
i�
ally, the Wilson formalism [48℄.We start with Eu
lidean a
tion of Yang-Mills �eldsintera
tion with fermions in 
ontinuous spa
e-time ((5.1)in [48℄)

S =

∫
d4x

[
ψ(x)

(
6D +mf

)
ψ(x) +

+
1

2
Tr
[
Fµν(x)Fµν (x)

]] (56)Then its dis
retization a

ording to Wilson takes theform ((5.2) given in [48℄)9



SW = a4
∑

x

[
− 1

2a

∑

µ

[
ψ(x)(r − γµ)Uµ(x)ψ(x + aµ̂)

+ψ(x+ aµ̂)(r + γµ)U
†
µ(x)ψ(x)

]
+ ψ(x)

(
m0 +

4r

a

)
ψ(x)

]

+
1

g20
a4
∑

x,µν

[
Nc − ReT r[Uµ(x)Uν(x + aµ̂)U †

µ(x+ aν̂)U †
ν (x)]

] (57)where x = an, 0 < r ≤ 1 and, as usual, 6D .
= γµDµ.In what follows the notation is similar to that fromSe
tion 5 in [48℄ for the latti
e spa
ing a = ℓ/N, |N | ≫ 1. Then, a

ording to (5.12) in [48℄ and by virtue offormulae (14)�(21) of this paper, in the general 
ase forthe Fourier transforms of the latti
e we have

ψ(x) =

∫ π
a

−π
a

d4p

(2π)4
eixp ψ(p) =

∫

B

d4p

(2π)4
eixp ψ(p),

ψ(x) =

∫ π
a

−π
a

d4p

(2π)4
e−ixp ψ(p) =

∫

B

d4p

(2π)4
e−ixp ψ,

Aµ(x) =

∫ π
a

−π
a

d4k

(2π)4
ei(x+aµ̂/2)k Aµ(k) =

∫

B

d4k

(2π)4
ei(x+aµ̂/2)k Aµ. (58)But, 
onsidering the results of Se
tion 4 and, parti
ularly,formulae (19),(23),(25), the formula (58) may berewritten as

ψ(x) =

∫

BN

d4p

(2π)4
eixp ψ(p),

ψ(x) =

∫

BN

d4p

(2π)4
e−ixp ψ,

Aµ(x) =

∫

BN

d4k

(2π)4
ei(x+aµ̂/2)k Aµ. (59)Consequently, the Krone
ker delta in position spa
e inthe general 
ase is as follows:

δxy = a4
∫ π

a

−π
a

d4p

(2π)4
ei(x−y)p = a4

∫

B

d4p

(2π)4
ei(x−y)p. (60)and in 
onsidered 
ase

δxy = a4
∫

BN

d4p

(2π)4
ei(x−y)p. (61)Here, the latti
e spa
ing a is not normalized to 1purposely, i.e., BN is given by (19).

Note that the inverse Fourier transforms in the
onsidered measurable 
ase are of the same form as inthe general 
ase and are given by formula (5.13) in [48℄
ψ(p) = a4

∑

x

e−ixpψ(x)

ψ(p) = a4
∑

x

eixpψ(x)

Aµ(k) = a4
∑

x

e−i(x+aµ̂/2)kAµ(x) (62)and 
orrespondingly
δ(4)(p) =

a4

(2π)4

∑

x

e−ixp. (63)However, in the general 
ase p ∈ B, k ∈ B and in themeasurable 
onsideration p ∈ BN , k ∈ BN .Remark 4.1It is 
onvenient to use formula (25) for BN when thevalue of a is �xed. Sin
e ±π
NÑa

= ±π
NÑℓ/N

= ±π
Ñℓ

, BN maybe represented as a domain with the boundaries whi
hare evidently independent of a
BN

.
= {p|−π

Ñℓ
< pµ ≤ π

Ñℓ
, Ñ ≫ 1} .

= BÑ . (64)10



In this way formula (64) indi
ates that a �width� (orsame size) of BÑ depends only on the number Ñ , i.e.,on EPAB. For gauge theories, in the general 
ase we 
anuse the same methods as in Se
tion 4.1 with due regard for the results of Se
tions 2,3. Spe
i�
ally, for the �rst-order Wilson a
tion at gauge 
oupling in the general 
aseof the quark-quark-gluon vertex in momentum spa
e wehave (formula (5.16) in [48℄):
Sqqg = − ig0

2
a4
∑

x,µ

(
ψ(x)(r − γµ)Aµ(x)ψ(x + aµ̂)− ψ(x+ aµ̂)(r + γµ)Aµ(x)ψ(x)

)

= − ig0
2
a4
∑

x,µ

∫

B

d4p

(2π)4

∫

B

d4k

(2π)4

∫

B

d4p′

(2π)4
eix(p+k−p′)eiakµ/2 × (65)

×
(
ψ(p′)(r − γµ)Aµ(k)ψ(p)e

iapµ − ψ(p′)e−iap′
µ (r + γµ)Aµ(k)ψ(p)

)
=

=
ig0
2

∑

µ

∫

B

d4p

(2π)4

∫

B

d4k

(2π)4

∫

B

d4p′

(2π)4
(2π)4δ(4)(p+ k − p′)eiakµ/2

×
(
ψ(p′)γµAµ(k)ψ(p)(e

iapµ + e−iap′
µ) + rψ(p′)Aµ(k)ψ(p)(−eiapµ + e−iap′

µ)
)

=
ig0
2

∑

µ

∫

B

d4p

(2π)4

∫

B

d4k

(2π)4

∫

B

d4p′

(2π)4
(2π)4δ(4)(p+ k − p′)eiakµ/2

×
(
ψ(p′)γµAµ(k)ψ(p)e

iapµ/2e−iap′
µ/2 · 2 cos a(p+ p′)µ

2

+rψ(p′)Aµ(k)ψp)e
iapµ/2e−iap′

µ/2 · (−2i) sin
a(p+ p′)µ

2

)
.Consequently, in the 
onsidered pattern, taking into a

ount Remark 4.1, we have

Sqqg,N =
ig0
2

∑

µ

∫

BÑ

d4p

(2π)4

∫

BÑ

d4k

(2π)4

∫

BÑ

d4p′

(2π)4
(2π)4δ(4)(p+ k − p′)eiakµ/2

×
(
ψ(p′)γµAµ(k)ψ(p)e

iapµ/2e−iap′
µ/2 · 2 cos a(p+ p′)µ

2

+rψ(p′)Aµ(k)ψp)e
iapµ/2e−iap′

µ/2 · (−2i) sin
a(p+ p′)µ

2

)
. (66)On going to the 
ontinuous limit, in the general 
ase, i.e., for formula (65), we have

lim
a→0

Sqqg =

∫ ∞

−∞

d4p

(2π)4

∫ ∞

−∞

d4k

(2π)4

∫ ∞

−∞

d4p′

(2π)4
(2π)4δ(4)(p+ k − p′) ·

·ig0
∑

µ

ψ(p′)γµAµ(k)ψ(p). (67)11



FIG. 3: Loop diagrams for the self-energy of the gluon on thelatti
e,whi
h have a 
ontinuum analog.In this 
ase we get
lim
a→0

Sqqg.N =

∫

BÑ

d4p

(2π)4

∫

BÑ

d4k

(2π)4

∫

BÑ

d4p′

(2π)4
(2π)4δ(4)(p+ k − p′) ·

·ig0
∑

µ

ψ(p′)γµAµ(k)ψ(p). (68)The quantities in formulae (66) and (68) are �nite assummation in the 
orresponding formulae is performedfor the same �nite domain of momenta BÑ . Thedi�eren
e is in the fa
t that the �rst is dependent onthe latti
e spa
ing a, whereas the se
ond is not. But, as
a = ℓ/N,N ≫ 1 is very small, the value of Sqqg,N is 
lose to lima→0 Sqqg.N . From point 2.2.2 of Se
tion 2 it followsthat the number Ñ ≫ 1 determines the appli
abilityboundaries of EPAB and we always have Ñ ≥ 102. In thegeneral 
ase Ñ is a variable and it should be dependenton the pro
esses under study.
All the methods 
onsidered in Se
tions 3,4.1 and 4.2 arealso good for loop Feynman diagrams, for example, forsimple loop diagrams in Figure 3. In this 
ase, similarto formulae of Se
tions 4.1,4.2, the Brillouin zone B is
ontra
ted to BÑ ,and the renormalized (experimental)quantities mf,R and gR (
oupling 
onstant g0) are
oin
ident with mf,R,BN

and with gR,BN
. In line withSe
tion 4.1, at a → 0, the initial Brillouin zone B → ∞.However, BÑ remains invariant, as follows form formula(64) indi
ating that BÑ is independent of a.Then, similar to formulae (52),(53), bare the quantities

m0 and g0 may be expressed in terms of the �nitequantities mf,R,BN
and gR,BN

, and the integrals over the�nite domain BÑ . This means that they remain �nite onpassage to the 
ontinuous limit a→ 0.From this it follows dire
tly that in this 
ase, similarto the s
alar model ϕ4, all the loop 
ontributions ina perturbation theory may be expressed in terms ofthe �nite quantities and integrals from the bounded(narrow,
entral) Brillouin zone mf,R,BN
that remainsinvariant for a → 0 and leads to the �nite perturbationtheory both in the latti
e variant and on passage to the
ontinuous limit.It should be noted that in the latti
e 
onsiderationthe number of loop Feynman diagrams may be greater.

Spe
i�
ally, apart from the diagrams shown in Figure 3whi
h have their analog in the 
ontinuous 
ase, we 
anhave pure latti
e diagrams, in parti
ular, to ensure thetheory gauge invarian
e (for example, lower row in Figure6 in [48℄). Of 
ourse, all the above 
al
ulations are validfor these diagrams too.V. CONCLUSION5.1 It is 
lear that for all other models of QFT in thegeneral 
ase the 
al
ulations and the results of Se
tion 4are valid. Spe
i�
ally, in the latti
e representation, forall models in ea
h parti
ular 
ase we should determinethe following:5.1.1 EPAB for the spe
i�
 model and the 
orrespondingnumber Ñ from formula (64);5.1.2 �nite values of the 
orresponding latti
e loop
ontributions for the �
ontra
ted� Brillouin zone BÑ ;5.1.3 �nite values of the quantities bare for all theparameters of the model m0, g0, .... in terms of theexperimental values of these parameters mR, gR, .... and12



of the above-mentioned �nite loop 
ontributions derivedwithin the energy ranges from BÑ ;5.1.4 in this 
ase passing to the 
ontinuous limitmeans repla
ing of the latti
e loop 
ontributions in point5.1.2 by the 
orresponding integrals over BÑ .So, due to the results from Se
tion 4 and points5.1.1�5.1.4, both the latti
e model and its 
ontinuouslimit are free from the ultraviolet divergen
es.It should be noted that, when in the measurablepi
ture we take into a

ount in point 5.1.2 the latti
eloop 
ontributions only for observable quantities, theywill be smaller than in the 
anoni
al 
ase of the latti
emodel in line with the results from Se
tion III of [8℄.5.2 The proposed approa
h is based on a pre
iseevaluation of EPAB, i.e., of the number Ñ , in everyparti
ular 
ase. In the paradigm of the lo
al planegeometry, the growing pre
ision of evaluation of Ñshould be asso
iated with more and more higher ordersof the quantum 
orre
tions.As noted in Remark 2.2,initially, it has been assumedthat we should 
onsider only two (in a sense extreme)energy regions: low energies E ≪ Ep and very highenergies E ≈ Ep. Still, it is not impossible that the

problem solved may lead to some intermediate energieslying in the interval between the two indi
ated regions.It is 
lear that, from the beginning or by de�nition,these energies should have lower and upper bounds. Asin this 
ase EP would be violated, QFT in this energyrange would be a theory with the parti
ular lo
ally-unavoidable nontrivial metri
 g̃µν(x) (unredu
ed to theMinkowskian metri
 ηµν(x)) that should be dependenton the pro
esses under study. Then this theory wouldbe the ultraviolet �nite QFT in 
urved spa
e-time [50℄.5.3 The subje
t-matter of this work is asso
iatedwith su
h a problem as experimental dete
tion of aquantum foam. At the present time, the relevantresults are still in
onsistent [51℄ due to inadequate
apa
ity of the data available and insu�
ient pre
isionof the experiments. (The situation resembles that in
hronology of the dete
tion of gravitational waves reli
tin
luding.)Nevertheless, an a
tive sear
h in this dire
tion is inprogress [52℄, [53℄.Con�i
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