
ON THE MODEL OF A SKEW–SELFADJOINT OPERATOR WITH A

SIMPLE SPECTRUM ON A HILBERT QUATERNION MODULE

c© Karpenko I. I., Tyshkevich D. L.
Taurida National V. I. Vernadsky University

Department of Mathematics and Informatics

Vernadsky ave., 4, Simferopol, 95007, Ukraine

e-mail: dtyshk@inbox.ru, i karpenko@inbox.ru

Abstract. In this work we construct the model of a skew–selfadjoint operator with a

simple spectrum acting on a Hilbert quaternion bimodule. This result is based on the

Spectral Theorem for a skew–selfadjoint operator. In the case of a bounded normal

operator this Spectral Theorem was announced in the report [3]. The more detailed

research was carried out in the paper [4].

In the same paper we pointed out that the given reasonings enable us to prove corre-

sponding results for a unbounded skew–selfadjoint operators too. Results of this article

essentially develop the results1 of the paper [1].
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Introduction

On the skew field of quaternions H and R–containing subfields of H. For reader’s

convenience recall some definitions and facts concerning quaternions.

The real quaternionic skew-field H is a four-dimensional associative division algebra

of a rank 4 over R with the basis {1, i, j, k} and multiplication rules

i2 = −1 j2 = −1 k2 = −1

ij = k jk = i ki = j

ji = −k kj = −i ik = −j

For any q ∈ H there exist unique q0, q1, q2, q3 ∈ R such that q = q0 + q1i+ q2j + q3k

(real representation of q). Also it is useful to deal with the vector form of quaternion

q = q0 + ~q where ~q = q1i+ q2j + q3k is the vector or imaginary part of q (if q = ~q then q

is called to be a vector or an imaginary quaternion).

For instance the vector form for the product of quaternions q and p is nothing more

than the well-known formula of multiplication qp = q0p0−(~q, ~p)+
(
[~q, ~p ]+p0~q+q0~p

)
. Here

1Note that since the issue of [1] investigations of spectral problems in infinite–dimensional Hilbert

(bi)modules were not carried out as far as we know. As it seems for us our papers [4, 5] are the first in

this row after [1].
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(·, ·) is the usual scalar product and [·, ·] is the vector product on the three–dimensional

space R〈i, j, k〉 of vector quaternions. Conjugate of q is defined by q = q0−q1i−q2j−q3k.

The map q → q is an involution on H, and qq = qq =
∑3

t=0 q
2
t ∈ R. One can define

the absolute value |q| of q by |q| = (qq)1/2. Thus, we can consider H as a normed

algebra. An imaginary quaternion whose absolute value equals 1 is called an imaginary

unit. From this point of view one can consider the set of complex numbers C as a real

subalgebra of H : C = R〈1, i〉. Inclusion C in H allows us to obtain the complex (or

symplectic) representation of a quaternion. Namely, for q = q0 + q1i+ q2j + q3k we have

q = (q0 + q1i) + (q2 + q3i)j = z1 + z2j where z1, z2 ∈ C.

Often it is useful to restrict not oneself by choice of a concrete field; e.g. C. In fact

C is just a specimen of a field in H, which extends R. Everywhere in this paper we

denote such a field by F. F is a commutative and associative division algebra over R; and

dimension of F is greater than 1. Hence by Frobenius theorem dimension of F equals 2;

and F is isomorphic to C.

A field F is uniquely determined by some nonreal quaternion. Indeed, let q ∈ F \ R.

Write down this quaternion in the vector form: q = q0 + ~q. Then we have

~q = q − q0 ∈ F \ {0}. Let f := 1
|~q|
~q. The vector system {1, f} is linear independent.

Hence it is a basis of F as a two–dimensional R–algebra. These arguments show that

any two nonreal elements of F have proportional vector parts, and this condition is nec-

essary and sufficient for quaternions with the corresponding vector parts to commute.

Thus, we can characterize any subfield of H satisfying the above conditions as a set of all

quaternions commuting with some fixed nonreal quaternion. In addition this necessary

and sufficient condition implies possibility for a corresponding imaginary unit f to be

determined by F up to ±1.

Consider now H as a real Euclidean space with dimension 4. Choose any normed

quaternion φ to be orthogonal to 1, f . Then we have φ2 = (φ, φ) = −1. The quater-

nion fφ (= [f, φ]) is orthogonal to 1, f, φ; and fφ = [f, φ] = −[φ, f ] = −φf . Hence

(fφ)2 = −1. Thus, the system {1, f, φ, fφ} is an R–basis of H; and this basis consists

of 1 and three imaginary units. This fact allows us to define the unique decomposi-

tion q = q0 + q̃1f + q̃2φ + q̃3fφ which implies an analogue of a complex decomposition

q = (q0+ q̃1f)+(q̃2+ q̃3f)φ = u1+u2φ (u1, u2 ∈ F). Note that a corresponding quaternion

φ for a field F is not uniquely determined.

Agreements and notations. In the paper we use substantially accepted notations.

Some notations we define as one goes along (e.g. Lin, Clos, p. 4).

”Linear operator” in H–bimodule means a right–side linear operator. (All the results

presented here hold true if term ”bimodule” one change by term ”right module”. Con-

sideration of precisely bimodules is connected with the tradition of our previous papers).

An operator of right multiplication Rqx := xq (x ∈ H), q ∈ H, plays a significant

role in studying operators on quaternion bimodules (Rq is not H–linear but it is F–linear
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where the field F is generated by q; see above). It is useful to emphasize the following

simple properties of an operator of right multiplication which we use throughout the paper

without any special comments: Rp+q = Rp +Rq; Rpq = RqRp.

Note that an R–linear operator A is F–linear iff RfA = ARf (f is an imaginary unit

generating F). F–linear operator A is H–linear iff RφA = ARφ.

For further consideration we fix an imaginary unit f and a field F generated by f . In

conclusion note that all arguments concerning F–modules (orthogonality; etc.) copy the

corresponding ones for C–modules because of isometrical isomorphism2 between F and C.

In this case we use the corresponding notations ⊥F, ⊕F; etc.

The model of a skew–selfadjoint operator with a simple spectrum

Spectral Theorem. The spectral theorem for a skew–selfadjoint operator mentioned in

introduction can be written as follows.

Theorem 1. Let A be a skew–selfadjoint operator acting on a Hilbert quaternion bimodule

H (whose domain D(A) is dense in H), F be an R–containing subfield of H. Then there

exists a spectral measure E defined on the Borel σ–algebra B(f+) (consisting of all Borel

subsets of the half–axis f+ = {τf | τ > 0}), skew–selfadjoint operator J commuting with

E and satisfying the condition J2 = −I such that the following equalities hold

D(A) = {h ∈ H |

∫

σF+
(A)

|q|2〈E(dq)h, h〉 < ∞} ; (1)

A =

∫

f+

R−qfJE(dq) . (2)

The integral in (2) is understood as a strong limit

Ah = lim
n→∞

∫

[0,nf ]

R−qfJE(dq)h , h ∈ D(A).

We can determine

E(α) :=

{
EF(α) + EF(−α), 0 6∈ α,

EF(α) + EF(−α)− EF({0}), 0 ∈ α

(
α ∈ B(f+)

)
(3)

where EF is a F–linear spectral measure defined on Borel subsets of the axis f = fR; i.e.

the spectral measure of A where A acts on H as on a F–module. The last is isometrically

2We pay reader’s attention to the following remarkable phenomenon arising in the quaternion theory

of functions and operators. This phenomenon is connected with the relation between such notions as

”equality” and ”isomorphism”. Although every such a field F is isomorphic to C and therefore it is ”not

interesting” from the algebraic point of view nevertheless it is a unique ”copy” of C in H. This fact

becomes crucial for analysis. In particular our theory of differentiability of functions of a quaternionic

variable ([2]) is based precisely on ”playing by” these properties.
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isomorphic to H as to a C–module, therefore, we can use the classical spectral theorem

for constructing EF. In addition, J and EF are connected by the formula

J = Rf

(
EF(f+)− EF(f−)

)
(4)

where f− = {τf | τ < 0} is the negative half–axis of F. Concerning (3) note that

H–linearity of E is equivalent to validity of the equality

EF(α)Rφ = RφEF(−α)
(
α ∈ B(f+)

)
. (5)

In particular, putting H+ = EF(f+)H we have the decomposition

H = H+ ⊕F RφH
+. (6)

A skew–selfadjoint operator with a simple spectrum. Let A be a skew–selfadjoint

operator acting on a Hilbert quaternion bimodule H . By theorem 1 every such an operator

determines the spectral measure E and the corresponding operator J commuting with E.

Denote by I the set of all (bounded) intervals ∆ of half-axis

f+; ∆ = [af, bf ]; a, b ∈ R; 0 6 a < b.

Definition 1. A is called to be an operator with a simple spectrum if there exists a

generating vector g ∈ H :

Clos Lin{E(∆)g | ∆ ∈ I} = H (7)

(Lin is the (right-side) H–span, Clos is the H–norm closure).

A special generating vector. Now we prove the key fact for further consideration of

existence of a generating vector g with the property

Jg = Rfg. (8)

Let T = {Ti}i∈I be a set of operators on H , g ∈ H is a vector. Define

C(T , g) = Clos Lin{Tig | i ∈ I}; CF(T , g) = Clos LinF{Tig | i ∈ I}

(LinF is the (right–side) F–span). The following properties are quite elementary:

CF(T , g1 + g2) ⊆ Clos
(
CF(T , g1) + CF(T , g2)

)
; (9)

C(T , g) = Clos
(
CF(T , g) +RφCF(T , g)

)
. (10)

If the set T is closed respectively to the product of operators then we have

h ∈ CF(T , g) ⇒ CF(T , h) ⊆ CF(T , g) (if ∀ i, j ∈ I TiTj ∈ T ) (11)

(the same is true for C(·, ·)). Denote

E = {E(∆) | ∆ ∈ J }, EF = {EF(∆) | ∆ ∈ J }.

By use of (9) — (11) the following relations can be easily derived from the properties of

a spectral measure:

∀ g ∈ H CF(EF, g) ⊆ H+; (12)
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g ∈ H+ ⇒ C(E , g) = CF(EF, g); (13)

∀ g ∈ H C(E , Rφg) = RφC(E , g); (14)

h⊥F CF(EF, g) ⇒ CF(EF, h+ g) = CF(EF, h)⊕F CF(EF, g). (15)

Statement 1. Let A be an operator with a simple spectrum. Then there exists3 a gener-

ating vector g satisfying (8).

Proof. Let y be an arbitrary generating vector for A. Then we have

H = C(E , y). (16)

By (6) for some vectors y+, x+ ∈ H+ y = y+ +Rφx
+. Denote

Y+ = CF(EF, y
+), X+ = CF(EF, x

+). (17)

Then we have

CF(E , y)
(9)

⊆ Clos
(
C(E , y+) + C(E , Rφx

+)
) (14),(13),(17)

= Clos(Y+ +RφX
+). (18)

Hence

RφCF(E , y) ⊆ Clos(RφY
+ + X+). (19)

Furthermore,

H
(16),(10),(18),(19)

⊆ Clos
(
Y+ +RφX

+ +RφY
+ + X+

) (6),(12)
=

= Clos
(
(Y+ + X+)⊕F Rφ(Y

+ + X+)
)
= Clos(Y+ + X+)⊕F Rφ Clos(Y

+ + X+);
(20)

then by (6), (12)

H+ = Clos(Y+ + X+). (21)

Let v+ be an F–orthogonal projection of the vector x+ on H+ ⊖F X+; and

x+ = v+ + w+, w+ ∈ X+. Let g = y+ + v+. Since g ∈ H+; therefore, by (4) g sat-

isfies (8). Now we can easily prove that g is a generating vector. Denote V+ = CF(E , v
+).

By (11)

CF(E , w
+) ⊆ Y+. (22)

Hence

Y+ + X+ = Y+ + CF(EF, v
+ + w+)

(15)
= Y+ +V+ + CF(EF, w

+)
(22),(15)
= Y+ ⊕F V

+. (23)

On the other hand

H+ (21),(23)
= CF(EF, y

+)⊕F CF(EF, v
+)

(15)
= CF(EF, y

+ + v+)
(13)
= CF(E , g). (24)

By (24), (10), (6) we obtain H = C(E , g); i.e. g is a generating vector. �

3The main idea how to construct a special generating vector in statement 1 is borrowed from the [1,

Prop. 5.2].
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Model. Further we assume that a generating vector g of a skew–selfadjoint operator A

with a simple spectrum satisfies (16).

Consider the operator

(Qh)(λ) = λh(λ)

acting on the H–bimodule L2
σ(f+,H) of all square integrable by a measure σ H–valued

functions on the half–axis f+. Since the domain of Q is

D(Q) =
{
h ∈ L2

σ |

∫

f+

|λ|2 |h(λ)|2σ(dλ) < ∞
}
;

therefore, by standard arguments one can show that Q is a skew–selfadjoint operator.

To find out the spectral measure EF we use a slight modification of the stan-

dard algorithm which was considered in our paper [4]. In particular, for any inter-

val (af, bf), −∞ < a < b < ∞; and any function h from D(Q) which has the form

h(λ) = h1(λ) + h2(λ)φ where h1(λ), h2(λ) ∈ F we have

EF

(
(af, bf)

)
h(λ) = χ(a,b)(−λf)h1(λ) + χ(a,b)(λf)h2(λ)φ =

= χ(af,bf)(λ)h1(λ) + χ(−bf,−af)(λ)h2(λ)φ.

Then for any α ∈ B(f)

EF(α)h(λ) = χα(λ)h1(λ) + χ−α(λ)h2(λ)φ.

Hence for α ∈ B(f+\{0})

EF(α)h(λ) = χα(λ)h1(λ), EF(−α)h(λ) = χα(λ)h2(λ)φ;

and, finally,

E(α)h(λ) = χα(λ)h(λ).

If α ∈ B(f+), 0 ∈ α, then
{
EF(α)h(λ) = χα(λ)h1(λ) + h̃2(λ)φ,

EF(−α)h(λ) = h̃1(λ) + χα(λ)h2(λ)φ

where

h̃r(λ) =

{
hr(0), λ = 0,

0, λ 6= 0,
(r = 1, 2).

By the equality

EF({0})h(λ) =

{
h(0), λ = 0,

0, λ 6= 0

one can also obtain the equality

E(α)h(λ) = χα(λ)h(λ).
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By virtue of (4) and above formulae the corresponding operator J for Q has the form

(Jh)(λ) = (h1(λ)− h2(λ)φ)f.

(almost everywhere and except 0)

Define the step function

g(λ) = αk, λ ∈ ∆k =
(
(k − 1)f, kf

)
, αk ∈ f+\{0},

with the condition
∑

|αk|
2σ(∆k) < ∞. This function generates Q in the sense of defi-

nition 1. Indeed, the (right) quaternionic span of the set of functions E(∆)g coincides

with the set of all finite step functions and this set is dense in L2
σ(f+,H). Note that

(Jg)(λ) = αkf, λ ∈ ∆k; i.e. Jg = Rfg. Briefly denote L2
σ(f+,H) by L2

σ.

Theorem 2. Let A be a skew–selfadjoint operator with a simple spectrum acting on a

Hilbert quaternion bimodule H, g be a generating vector, σ(α) = 〈E(α)g, g〉 be a measure

defined on the σ–algebra B(f+). Then the map Φ : L2
σ → H determined by the integral

Φh =

∫

f+

Rh(λ)E(dλ)g,

sets an isometric isomorphism between L2
σ and H such that

AΦh =

∫

f+

Rλh(λ)E(dλ)g.

Proof. Denote

G =
{
ĥ ∈ H | ∃h ∈ L2

σ : ĥ =

∫

f+

Rh(λ)E(dλ)g
}
= ℑ(Φ)

(range of Φ). Let ∆ be an interval of f+. Then χ∆ ∈ L2
σ; and

Φχ∆ =

∫

f+

E(dλ)gχ∆(λ) =

∫

∆

E(dλ)g = E(∆)g.

Hence G is dense in H . Let ĥ ∈ G. Then 〈ĥ, ĥ〉H =
∫
f+
〈E(dλ)g, ĥ〉h(λ). Since

〈E(α)g, ĥ〉 =

∫

f+

〈E(α)g, E(dλ)gh(λ)〉 =

∫

f+

h(λ)〈E(dλ)E(α)g, g〉 =

=

∫

α

h(λ)〈E(dλ)g, g〉 =

∫

α

h(λ)σ(dλ);

therefore,

〈ĥ, ĥ〉H =

∫

f+

|h(λ)|2σ(dλ) = 〈h(λ), h(λ)〉L2
σ

.
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Thus, Φ isometrically maps the dense subset of L2
σ onto a dense subset of G. Density of

L2
σ yields closedness of G. Hence G = H ; and Φ is an unitary operator.

Next prove the second part of the theorem. Let h be a finite function from L2
σ with a

support [af, bf ]; ĥ =
∫
f+
Rh(λ)E(dλ)g. To prove that ĥ ∈ D(A) we consider the integral

∫
f+
|λ|2〈E(dλ)ĥ, ĥ〉. Since

〈E(α)ĥ, ĥ〉 =

∫

f+

h(ν)〈E(α)ĥ, E(dν)g〉 =

∫

f+

h(ν)〈ĥ, E(α)E(dν)g〉 =

∫

α

h(ν)〈ĥ, E(dν)g〉

and

〈ĥ, E(β)g〉 =

∫

f+

〈E(dξ)g, E(β)g〉h(ξ) =

∫

β

〈E(dξ)g, g〉h(ξ) =

∫

β

σ(dξ)h(ξ);

therefore,

〈E(α)ĥ, ĥ〉 =

∫

α

|h(ν)|2σ(dν).

Hence ∫

f+

|λ|2〈E(dλ)ĥ, ĥ〉 =

∫

f+

|λ|2|h(λ)|2σ(dλ) =

∫

[af,bf ]

|λ|2|h(λ)|2σ(dλ) < ∞.

Further, for any vector ĥ = Φh ∈ D(A) Aĥ =
∫
f+
R−λfJE(dλ)ĥ. Since

E(α)ĥ =

∫

f+

E(α)Rh(nu)E(dν)g =

∫

f+

Rh(ν)E(α)E(dν)g =

∫

α

Rh(ν)E(dν)g;

therefore, by linearity of R−λf and J ; and commutativity of J and E we have

Aĥ =

∫

f+

R−λfJRh(λ)E(dλ)g =

∫

f+

Rh(λ)R−λfE(dλ)Jg =

∫

f+

Rh(λ)R−λfE(dλ)Rfg =

=

∫

f+

Rh(λ)RλE(dλ)g =

∫

f+

Rλh(λ)E(dλ)g.

�

Thus, on the set of finite functions from L2
σ the equality AΦ = ΦQ holds true (or, in

other words, A = ΦQΦ−1). As a consequence we obtain the main result of this paper.

Theorem 3. Any skew–selfadjoint operator with a simple spectrum acting on a Hilbert

quaternion bimodule is unitarily equivalent to the operator of left multiplication by an

independent variable on a functional bimodule L2
σ.
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