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Montréal (Québec) H3C 3J7, Canada.
(Dated: March 8, 2011)

Recent experiments on thin-film microcavities give evidence of Bose condensation of exciton-
polariton states. Inspired by these observations, we consider the possibility that such exotic “half-
light/half matter” states could be observed in thin-film organic semiconductors where the oscillator
strength is generally stronger than in inorganic systems. Here we present a theoretical model
and simulations of macroscopic exciton-polartiton condensates in anthracene thin films sandwiched
within a micro-meter scale resonant cavity and establish criteria for the conditions under which
BEC could be achieved in these systems. We consider the effect of lattice disorder on the threshold
intensities necessary to create polartion superfluid states and conclude that even allowing for up to
5% angular disorder of the molecules within the crystal lattice, the superfluid transition remains
sharp.

I. INTRODUCTION

Over the past few years there has been consid-
erable interest in the dynamics of cavity polaritons
in low-dimensional inorganic microcavities.1–8 In the
strong coupling regime, where the photon-exciton in-
teraction is larger than the exciton and photon damp-
ing rates, photons within the cavity and excitons
within the material become coherently coupled to form
bosonic quasi-particles termed “polaritons”.9–11 Macro-
scopic Bose-Einstein condensate (BEC) states have re-
cently been reported in GaAs and in CdTd/CdMgTe
microcavities4,11–13 and recent reports give evidence
of polariton condensation in one-dimensional ZnO
microwires.14

Polaritons obey a dispersion relation that splits into
two branches with an avoided crossing near the intersec-
tion of the cavity dispersion and the exciton resonance
frequency. In a typical inorganic quantum-well semicon-
ductor microcavity, the Rabi splitting between Wannier-
Mott excitons and the cavity modes is typically on the
order of 10 meV. However, for organic systems (with
Frenkel excitons) exciton oscillator strengths are consid-
erably higher than their inorganic counterparts and con-
sequently the Rabi splittings can be on the order of 100
meV.15,16 While polariton lasing has been reported in
organic microcavities,17 thus far, polariton BEC has not
been in these systems. This paper is also motivated by
the recent reports of BEC of a two-dimensional photon
gas in a dye-filled optical microcavity.18 In these exper-
iments, the strong coupling requirement is not met and
the quasi-particles within the cavity are indeed best de-
scribed as photons rather than polaritons.

In this paper, we consider the preparation and dynam-
ics of BEC states in an organic microcavity consisting
of an acene thin-film sandwiched within a microcavity of

thickness L. To date, the evidence for BEC has not been
reported in organic semiconductor microcavity systems.
Whereas in inorganic systems, the electronic states are
best described as Wannier excitons with weakly bound
electron-hole pairs, in organic semiconductors the exci-
tons are Frenkel excitons that are largely localized on
a single molecular unit. Consequently, their electronic
transition moments are generally larger compared to in-
organic systems resulting stronger coupling to the photon
field and consequently larger Rabi splittings.

b
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FIG. 1: Anthracene unit-cell in the {a,b} crystalographic
plane. Arrows indicate the direction of the So → S1 elec-
tronic transition dipole moment.

While BEC in atomic systems involves weakly inter-
acting particles, these systems are not uniform since the
condensate is influenced by the form of the trapping po-
tential. While liquid 4He, for example, is also a BEC con-
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densate, perturbative treatments can not be used on this
system due to strong inter-particle interactions and corre-
lations. Consequently, polaritons offer a unique glimpse
into BEC physics since the shape of the condensate state
itself is unambiguous for a uniform system. The specific
signature of a BEC state in the form of a spontaneous co-
herence offers a unique opportunity to study localization
effects in two-dimensional systems with varying degrees
of spatial disorder.

In a cavity system, the disorder can be introduced
either by speckles within the optical field, by the ori-
entational disorder of the molecular sites, or by site-
energy disorder within a perfectly periodic crystal struc-
ture. The role of disorder is an interesting issue since it
would allow one to probe indirectly at least the transi-
tion between the superfluid and Mott insulating regime.
There has been some speculation that a Bose-glass phase
is intermediate between the superfluid and Mott insulat-
ing phases implying that disorder transforms the Mott
insulting phase to a Bose-glass. However, other theo-
ries suggest that disorder can change the Mott insulating
phase directly to a superfluid. Recent experimental ev-
idence involving trapped atoms indicate the transition
is disorder-induced and reversible for superfluid and co-
existing superfluid-Mott insulator phases. Furthermore,
spatial disorder plays a key role in the fractional quantum
Hall effect and vortex pinning in type-II superconductors.

Our analysis begins with a molecular-level description
of a single layer of polyacene molecules in which the local
electronic excitations are described within the Frenkel ex-
citon model with dipole-dipole couplings determined by
quantum chemistry. The local excitons interact with a
single mode of the photon field within the dipole approxi-
mation and we determine the polariton dispersion curves
by diagonalizing the full exciton+photon Hamiltionian
for a given configuration of the lattice molecules. This
treatment allows us to take an arbitrary configuration of
the molecules within the lattice and generate polariton
dispersions. In Sec. III we adopt a field-theoretical ap-
proach developed by Carusotto and Ciuti which treats
the cavity as a non-equilibrium steady-state system.19–24

This allows us to identify steady-state polaritons as pa-
rameterized by the intensity of the driving field. We then
use the Bogoliubov prescription to separate fluctuations
from the stationary solution and use this to determine
the excitation spectra for the lower polariton branch.
We then consider the response of the system to inhomo-
geneous perturbations within the cavity and show that
above a threshold intensity for the driving field, the scat-
tering signal collapses to a single point indicating the
onset of superfluidity.

The cut-off temperature for the amplification is ulti-
mately determined by the binding energy of the exciton.
Because this is large in organic semiconductors (hundreds
of meV), parametric amplification should be readily ob-
servable at significantly higher temperatures than in in-
organic quantum-well microcavities, even at room tem-
perature.
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FIG. 2: Polariton/exciton dispersion curves for (a) co-parallel
(← · · · ←) and (b) co-facial (↑ · · · ↑) aligned dipoles.

II. THEORETICAL MODEL

Polaritons are composite quasi-particles that form due
to the strong coupling between excitons and the radiation
field. Denote â† as an operator that creates an excitation
with energy εx and â as an operator which removes an
excitation with {â, â†} = 1 and with similar operators

for the radiation field, [ψ̂k, ψ̂
†
k′ ] = δkk′ which create and

remove photons with wave-vector k. The Hamiltonian
describing the coupled exciton/photon system is given
by

H = εxâ
†â+

∑
k

~ωkψ̂†kψ̂k +
ΩR
2

(â†ψ̂k + ψ̂†kâ) (1)

where ΩR is the Rabi frequency which depends upon
the number of photons in a given mode k, the oscillator
strength of the transition, and the orientation of the exci-
tation’s transition moment relative to the polarization of
the photon. Close to the resonance condition ~ωk = εx,
the energy eigenstates of system are best described in a
mixed or entangled representation of the system given by(

â†

ψ̂†k

)
=

(
cos θk sin θk
− sin θk cos θk

)(
L̂†k
Û†k

)
(2)

where the mixing angle is given by tan 2θk = ΩR/(εx −
~ωk) where the U†k and L†k operators are quasi-particle
operators which create polaritons in the upper (U) or
lower (L) branches with energy

E±k =
εx + ~ωk

2
∓

√(
εx − ~ωk

2

)2

+ ~2Ω2
R

where + denotes the upper polariton (UP) and − denotes
the lower polariton (LP) branches respectively.

Within a microcavity, the photons obey standing-wave
boundary conditions such that the transverse modes are
quantized giving rise to the dispersion

εk = (~c/η)
√
k2 + (2πn/L)2 (3)



3

-20 -10 0 10 20
1.4

1.6

1.8

2.0

2.2

2.4

k HΜm-1L

ΕHk
LH

eV
L

(a)

-20 -10 0 10 20
1.4

1.6

1.8

2.0

2.2

2.4

k HΜm-1L
ΕHk

LH
eV

L
(b)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

k HΜm-1L

f p
,

f x

fp

fx

(c)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

k HΜm-1L

f p
,

f x

fp

fx

(d)

FIG. 3: Polariton energy levels vs. photon wave-vector for
a finite anthracene slab. The thick blue curve corresponds
to the lower polariton branch (LP) while the thick red curve
is the cavity dispersion. At two upper polariton branches
can as well as evidenced by the avoided crossings within the
exciton bands. (a) Exciton-polariton dispersion for perfectly
ordered anthracene lattice. (b)Exciton-polariton dispersion
when δθ̄ = 15◦ of orientational disorder is included in the slab
model. (c,d)Exciton fx and photon fp fraction for dispersions
in (a,b)

where η is the refractive index and n = 1, 2, · · · is the
index of the transverse mode. About k = 0, the cavity
dispersion is quadratic

εk ≈ ∆ +
~2k2

2m∗
+ · · · (4)

where m∗ = 2πη/cL is the effective mass of the cavity
photon and ∆ = 2π~c/Lη is the cut-off energy for the

cavity. From this point onward, operators ψ̂†k and ψ̂k

create and remove photons within the microcavity and
index k refers to the photon wavevector in the plane of
the slab.

We can extend this simple model to describe the inter-
action between a photon field and slab of molecular sites
within the cavity. First, we assume that the excitons are
local to the molecular sites and can be described within
the Frenkel exciton model using the Hamiltonian9

Hex =
∑
i

εiâ
†
i âi +

∑
i6=j

Jij(â
†
i âj + â†j âi) (5)

where the operators â†i and âi create and remove exci-

tons at site i located at ri. In the absence of internal re-
laxation processes, the exciton dynamics within the film
are determined by the exchange integral Jij . Within the
point-dipole approximation, this can be written as

Jij =
1

η2

(
3(µi · rij)(~µj · rij)

r5ij
− ~µi · µj

r3ij

)
(6)

where ~µi are transition moments for the So → S1 elec-
tronic transition on a given site and rij = ri − rj is the
vector connecting the centers of molecules i and j. Fig. 1
shows the “herringbone” arrangement of the anthracene
molecules within a single crystallograpic plane.

The coupling between the cavity modes and the exci-
tons is given by

Ω̂/2 = γ
∑
ik

~ε · ~µi
√

εi
Nεk

(eik·xi â†i ψ̂k + e−ik·xi ψ̂†kâi) (7)

where N is the number of sites within the 2D slab and ~ε
is the polarization vector of the photon. The model used
here has been used in a variety of contexts, notably by
Agranovich and Gartstein in their recent study of low-
energy exciton-polaritons in one-dimensional systems.9

The site-model is particularly attractive since it al-
lows us to parameterize it using both spectroscopic and
quantum-chemical information about a specific molecu-
lar system.

One should, in principle, add to our model the fact that
the excitons are composite quasi-particles consisting of
bound electron/hole pairs. For organic systems, the ex-
citon binding energy is in the range of 0.4 to 0.5eV and
the electron and hole largely reside on the same molecular
site, which justifies the use of the Frenkel exciton model
for these systems.25–27 An important feature which we
do neglect, however, is the coupling between the local
site exciton and the internal vibrational motions of the
molecule itself. In organic systems, such vibronic cou-
plings play important roles in the spectroscopy and dy-
namics of conjugated systems.27–31

Since we are interested in polaritons in molecular crys-
tals, we need to consider how the crystallographic ar-
rangement and possible molecular disorder will affect
the formation of polariton states within such a system.
With this in mind we consider an ordered 2D array of
acene molecules within a microcavity. At 290 K, poly-
acene systems typically form monoclinic crystals with
two molecules per unit cell in the plane containing the
molecular y axis oriented alternately ±20◦ from the crys-
tallographic b direction. When viewed from above the
plane, we see the “herringbone” packing geometry char-
acteristic of polyacene molecular crystals. The electronic
transition moment for the So → S1 transition lies along
the molecular y axes and hence lies in a plane parallel to
the reflectors.

Consider the case of a molecular dimer (such as two
polyacenes) interacting with a photon field where we let

â1 and â†1 denote exciton operators for one monomer
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and â2 and â†2 be exciton operators for the other with
the exchange interaction denoted by J . In the “local”

{ψ̂k, â1, â2} basis, we can write

H = ~ωkψ̂†kψ̂k + ε1â
†
1â1 + ε2â

†
2â2

+ J(â†1â2 + â†2â1) (8)

+ ΩR/2(ψ̂†k(â1 + â2) + h.c.) (9)

Taking ε1 = ε2, H can be brought into block-diagonal
form by creating Davydov exciton states via

D̂± = (â1 ± â2)/
√

2 (10)

which results in

H̃ = ~ωkψ̂†kψ̂k + (ε1 + J)D̂†+D̂+

+ (ε1 − J)D̂†−D̂−

+ ΩR(ψ̂†kD̂+ + D̂†+ψ̂k)/2 (11)

Taking the transition moments parallel in the same plane
where θ is the angle between the transition moment and
the centers of the two molecules, i.e. ↗ · · · ↗, the ex-
change coupling is given by

J = − µ2

R3η

(
2 cos2(θ)− sin2(θ)

)
(12)

For 0 < θ < cos−1(1/
√

3), J < 0 and the dimers form

a J-aggregate while for angles cos−1(1/
√

3) < θ < π/2,
J > 0 and the dimers form an H aggregate. At θ =
cos−1(1/

√
3) = 54.7◦, the exchange coupling vanishes

and no exciton splitting occurs.
We now note that only the symmetric Davydov state

is coupled to the photon field and we can use a unitary
transformation to define the upper and lower polariton
branches(

D̂+

ψ̂k

)
=

(
cosφk sinφk
− sinφk cosφk

)(
L̂k
Ûk

)
(13)

where the mixing angle is given by tan 2φk = ΩR/(ε1 −
~ωk) where the U†k and L†k operators are quasi-particle
operators which create polaritons in the upper (U) or
lower (L) branches with dispersion

E±k =
(ε1 + J) + ~ωk

2
∓

√(
(ε1 + J)− ~ωk

2

)2

+ ~2Ω2
R(14)

Consequently, for a molecular dimer, we have three
states: the upper and lower polarition states and a dark
exciton state. The relative ordering of the exciton energy
levels depends upon the sign of J , which in turn depends
upon angle between the co-facial stacking planes. For J-
aggregates, J < 0 the bright state is lower in energy than
the dark state where as for H-aggregates J > 0 and the
dark exciton state is lower in energy. In Fig. 2 we com-
pare the dispersion curves for a molecular dimer taken as

a J-aggregate with θ = 0 and an H-aggregate (θ = π/2).
Here we use parameters: ~ωk = k2/2m∗+ ∆, m∗ = 0.01,
ΩR = 0.5|J |, and ∆ = 0 for purposes of this discussion.
For the J aggregate, the lower Davydov state carries a
net coupling to the photon mode and the lower polariton
branch is formed solely by coupling to this state. The
upper Davydov state does not contribute the formation
of polaritons. The situation is exactly reversed for the
H-aggregates in that only the upper Davydov state is
coupled to the photon field.

This basic idea can be expanded to describe the full
2D slab in two ways. First, we can write the transition
moment for the unit cell by taking the vector sum and
differences ~µ± = (~µ1 ± ~µ2)/

√
2 of the molecular transi-

tion moments within the cell. This results in transition
moments µ± which are orthogonal and directed along the
a and b crystallographic axes. Thus, taking the dipole-
dipole coupling to be short ranged so that only neigh-
boring cells are coupled, the exciton dispersion can be
written as

Ex(k) = εo + 2Ja cos(kxx) + 2Jb cos(kyy)

where Ja and Jb are computed using Ja = µ2
−/a

3η and
Jb = µ2

+/b
3η where a and b are the lattice constants. For

anthracene: a = 8.5262Å and b = 6.038Å are the lattice
constants for the planar array shown in Fig. 1. Since
the wavevector k refers to the wavevector in the lattice
plane, this dispersion is flat compared to the dispersion
for the cavity photons and one can immediately extend
Eq. 14 for the 2D lattice.

A more realistic approach is to include orientational
and energetic disorder directly into the model and obtain
polariton states by numerical diagonalisation. In the cal-
culations presented next, each molecular site is described
by a transition moment µi = 1.1901a.u. corresponding to
an oscillator strength of fosc = 0.1555 as determined by
ab initio (CIS/6-31G*) calculations on an isolated an-
thracene molecule using Gaussian ’03.32 Rather than us-
ing the ab initio vertical excitation energy for anthracene,
we set the site excitation energy as εi = 2.0eV. In the
end, this value simply establishes a reference point and
all excitations and energies can be re-scaled relative to
the vertical exciton energy for purposed of comparison
with experiments. Each dipole is located at the crys-
tallographic site and oriented alternately ±20◦ from the
crystallographic b direction. This coupling gives rise to
exciton couplings of −96.2meV between the two acenes
within the unit cell. We also assume a static dielectric
constant of η = 3, a value typical for organic solids. Fi-
nally, we model the cavity by taking a photon energy
cut-off of ∆ = 1.6eV which is detuned from the exciton
resonance energy. Using this approach, we can easily in-
clude the effects of energetic and orientational disorder on
the exciton dispersion. Thus, armed with the molecular
crystal geometry, the excitation energies, and the elec-
tronic transition moments, one can determine the polari-
ton energies varying with photon wave-vector for a given
microcavity, by diagonalizing the above Hamiltonian for
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a given photon wave-vector.
In Fig. 3a we show the single-particle eigenvalues of

the coupled exciton/photon system for photon k-vectors
between ±25µm as determined by diagonalizing

Ĥ = Ĥex + Ĥph + Ĥex/ph

at specific values of k. Close to k = 0, the lower polariton
branch is nearly parabolic and one see clear evidence of
anti-crossings. The lower thick-line highlights the “lower
polariton” (LP) branch in this system. Looking closely,
one can identify multiple upper polariton bands that pass
through the density of states. Also it is important to note
that not every exciton state couples to the photon field.
These dark states result from the fact that their net tran-
sition dipole is either very small or nearly perpendicular
to the polarization vector of the driving laser field.

Within an organic molecular crystal, orientational dis-
order of the individual molecules inhibits the formation
of delocalized excitonic states within the lattice. Conse-
quently, this may limit the ability of the system to form
collective coherent excitations such as polaritons. We
can easily examine the effect of orientational disorder by
randomly orienting the dipoles about some mean angle
θ̄ = 20◦ with variance σ2

θ . In Fig.3b we show the po-
lariton curves for a slab with σθ = 15◦ of orientational
disorder. The primary effect of the orientational disor-
der appears to be that polaritons formed by coupling

to the lowest Davydov states splits into multiple polari-
ton states as evidenced by the increased number of anti-
crossings that can be spotted within the density of states.
Moreover, the first anti-crossing occurs at slightly lower
values of k. In Fig. 3(c,d) we show the relative mixing
between the cavity photon and the anthracene slab for
both the ordered slab (c) and the orientationally disor-
dered slab (d). In both cases the mixing is quite strong
even as one moves from the anti-crossing region in spite
of the fact that the cavity cut-off is ≈ 0.2eV off resonance
from the exciton band.

III. FIELD THEORY TREATMENT

While a fully “molecular” treatment is possible in prin-
ciple using a site-wise representation, the ∼ 1µm length-
scales suggested by the dispersion curves in Fig. 3 would
require two dimensional slabs with upwards of 106 an-
thracene sites. On the other hand, the bare exciton dis-
persions are essentially flat over the range of wave vec-
tors that are important for polariton formation within
the cavity. Bearing this in mind, let us define field op-

erators ψ̂x and ψ̂c for the exciton and cavity modes and
write the Hamiltonian density within the Hartree-Bose
approximation:

H =

∫
dx

{(
ψ̂†x(x)

ψ̂†c(x)

)T
·
(
ω̂x − iγx/2 + gψ̂†x(x)ψ̂x(x)/2 Ω̂/2

Ω̂/2 ω̂c − iγc/2

)
·
(
ψ̂x(x)

ψ̂c(x)

)}

+

∫
dx
(
E(x, t)ψ†c(x) + E∗(x, t)ψc(x)

)
(15)

where ω̂c and ω̂x generate the dispersion curves for the cavity and exciton modes and γc and γx describe the cavity
and exciton decay rates and Ω̂ is the Rabi operator which couples the cavity field (at a given photon k-vector) to the
exciton field as given by Eq. 7.

Steady state solutions for the fields can determined by first writing E(x, t) = Ep(x) exp(−iωpt) and ψ̂µ(t) =
φµ,s exp(−iωpt) and writing(

ω̂x − iγx/2 + g|φx,v|2/2− ωp Ω̂/2

Ω̂/2 ω̂c − iγc/2− ωp

)
·
(
φx,s(x)
φc,s(x)

)
+

(
0

Ep(x)

)
= 0. (16)

This leads to a set of equations for the steady-state,(
φx,s
φc,s

)
= −

(
ω̂x − iγx/2 + g|φx,v|2/2− ωp Ω̂/2

Ω̂/2 ω̂c − iγc/2− ωp

)−1
·
(

0
Ep(x)

)
. (17)

These can be solved iteratively for a given driving field, Ep(x). Furthermore, if one assume that the system is
homogeneous and the laser field consists of a single mode at kp, the steady state equations simplify to(

φx,s
φc,s

)
= −

(
ωx(kp)− iγx/2 + g|φx,v|2/2− ωp Ω(kp)/2

Ω(kp)/2 ωc(kp)− iγc/2− ωp

)−1
·
(

0
Ep

)
. (18)

where the ωx and ωc are the exciton and cavity dispersions evaluated at kp of the driving field.

A. Lower Polariton Branch

Since we are primarily interested in what happens close
to k = 0, we consider only the lower branch polariton and

neglect any interband interactions. We thus introduce
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field operators Ψ̂L(x) and Ψ̂†L(x) and write the Hamilto-
nian (with ~ = 1) in the mixed representation as as

ĤLP =

∫
dxΨ̂†L(x)(ω̂LP − iγ/2)ψ̂L(x)

+
g

2

∫
dx(Ψ̂†L(x))2(Ψ̂L(x))2

+

∫
dx(E(x, t)Ψ̂†L(x) + h.c.) (19)

where the term ω̂LP (−i∇) describes the lower polariton
curve obtained from slab calculations described above. In
doing so, we can incorporate site-wise disorder directly
into the continuum/field theory equations.

The field operators obey commutation relations:

[Ψ̂i(x), Ψ̂†j(x
′)] = δ(x−x′)δij . The physical system itself

is in a driven non-equilbrium state and we need to in-
clude a decay rate γ that encompasses both cavity leak-
age and non-radiative effects, and an external driving
field (i.e. the laser pulse) E(x, t) as measured within the
cavity. Lastly, g describes the polariton-polariton scat-
tering. In the calculations that follow, we take these to
be phenomenological parameters since both γ and E(x, t)
depend upon the particular experimental situation and
microcavity cell. The non-linearity parameter can be
approximated by g = 4π~a/m∗ where a is the S-wave
scattering length. It is difficult to obtain a good esti-
mate for this parameter so we set g = 0.1 meV which
would correspond to a polariton/polariton collision fre-
quency of g/~ = 0.152ps−1 which seems to a reason-
able estimate at low exciton densities. We are currently
working on a more robust estimate of g based upon exci-
ton/exciton scattering in molecular crystals.33 Likewise,
we take γ = 0.1 meV since this produces a decay time
which is short compared to the exciton radiative lifetime
but longer than the Rabi period of (∼ 10 fs) that can be
estimated from the exciton oscillator strength.

Within the mean-field approximation, the time evolu-

tion of the fields (ψ(x) = 〈ψ̂L(x)〉) is given by34,35

i
∂ψ(x)

∂t
=

〈
δHmf
δψ†L(x)

〉
(20)

This results in the following non-linear, inhomogeneous
Schrödinger equation:

i
∂ψ(x)

∂t
= (ω̂LP − iγ/2 + g|ψ(x)|2)ψ(x)

+ Epulse(x; t) (21)

For the case of atomic condensates (and no dissipation
or driving fields) this is the Gross-Pitaevskii equation.

We again assume the material to homogeneous and
that the laser field can be described as a plane wave
within the cavity.20,21,23 In this case, the steady state
equations take the form of a Ginzberg-Landau equation
of state for the driven system.

(ωLP (kp)− ωp − iγ/2 + g|ψs|2)ψs + Ep = 0 (22)
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FIG. 4: Mean field energy vs. field strength for kp =
0.55µm−1.

In general, the stationary solution ψs is complex-valued.
In Fig. 6a we plot the mean-field interaction energy g|ψs|2
vs. external field strength Ep for kp = 0.55µm−1 which is
close to the inflection point on the LP dispersion curve.
Here we see that below a critical value, Ep,crit, of the field
intensity, g|ψs|2 increases steadily as the field strength
increases, jumps sharply before increasing linearly.

One can consider the pumping intensity to be propor-
tional to the number of polaritons in e Bose gas created
by the laser field. Consequently, the sudden change in
the mean field energy indicates the transition from a or-
dinary Bose gas to the superfluid or condensate state.
As we discuss in the Section III B this transition is an in-
dication that the steady state solution is parametrically
unstable over a continuous range of k values either side
of kp.

B. Excitation spectra

Having determined the steady-state solutions of the
homogeneous gas (Eq. 22), we need to determine whether
or not such solutions are stable with regards to impos-
ing a inhomogeneous perturbation. For this, we derive
the normal modes of the field to fluctuations about the
stationary solution by writing the field in terms of sta-

tionary term and a fluctuation ψ̂ = ψs + δψ̂.34,35 Substi-
tuting this into the energy functional above and writing
H = H0 +H1 +H2 + · · · .
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H0 =

∫
dxψ∗s (x)(ω̂LP − ωp − iγ/2)ψs(x)

+
g

2

∫
dx|ψs(x)|4 +

∫
dx(E(x)ψ∗s (x) + h.c.) (23)

H1 =

∫
dxδψ̂†(x)

[(
ω̂LP − ωp − iγ/2 + g|ψs(x)|2

)
ψs(x) + E(x)

]
δψ̂(x)

+ h.c. (24)

H2 =

∫
dxδψ̂†(x)(ω̂LP − ωp − iγ/2 + 2g|ψs(x)|2)δψ̂(x)

+
g

2

∫
dx
(

(ψ∗s (x))2(δψ̂(x))2 + (ψ(x))2(δψ̂†(x))2
)

(25)

Of these, H1 = 0 for the steady-state solution and
H0 gives the energy of the stationary state. Since H2

is quadratic in the fluctuation operators, stability of
the stationary state can be determined by analyzing
the normal-mode modes given the eigenvalues of the
Boglioubov-de Gennes equation.34

(L̂ − ωp)
[
ui(x)
vi(x)

]
= ε

[
ui(x)
vi(x)

]
, (26)

where the operator L̂ is given by

L̂ =

[
ω̂LP + g|ψs|2 − iγ/2 gψ2

se
+2ikpx

−g(ψ∗s )2e−2ikp·x −ω̂LP − g|ψs|2 − iγ/2

]
. (27)

Since we have assumed the system to be translationally invariant, wave-vector k remains a ”good” quantum number
and we can Fourier transform the eigenvalue problem and write

(Lk − ωp) ·
[
u±k
v±k

]
= ω±(k)

[
u±k
v±k

]
(28)

where

Lk =

[
ωLP (k) + g|ψs|2 − iγ/2 gψ2

s

−g(ψ∗s )2 −ωLP (2kp − k)− g|ψs|2 − iγ/2

]
. (29)

At each value of k, we find two eigenvalues, ω(k)±,
which in general are complex valued. Those with posi-
tive imaginary components are unstable modes meaning
that non-equilibrium population within these modes will
grow exponentially to form condensate states while those
with negative imaginary components are stable modes
and population will decay.34 The “idler branch”, ω−(k),
related by symmetry to the “signal branch” (ω+(k)) via
ω−(k) = 2ωp − ω+(2kp − k). The excitations are are
due to the coupling between a generic mode at k and an
idler mode at 2kp − k induced by the driving field. This
corresponds to the process where by two photons from
the driving field are converted into a signal-idler pair:
{kp,kp} → {k, 2kp−k}. This coupling between modes of

different k is characteristic of Bogoliubov quasi-particle
excitations (bogolons) and parametric amplification.

In Fig. 5 we show the eigenvalues of Lk for the condi-
tions giving rise to Fig. 4. Here we see that the idler and
signal branches intersect and become degenerate about
the points of intersection. This is known as “branch
sticking”. Increasing Ep causes the branch sticking to
spread over the entire intersection region. We also see
that =(ω+(k)) > 0 indicating that these modes have be-
come parametrically unstable. Increasing Ep > Ep,crit
causes all modes within the intersection region to be-
come unstable. In Fig. 6, 7 we show the range of k that
gives rise to unstable modes. For weak field intensity, all
modes are stable for all k. As Ep increases, first one re-
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FIG. 5: Real and imaginary eigenvalues of Lk for below (a,b)
and above threshold (c,d) Ep,crit. (parameters: Ep = 0.02eV
(a,b), Ep = 0.05eV (c,d), ωp = 1.5968eV , g = 0.1meV , kp =
0.55µm−1 along the x-direction,and γ = 0.1meV )

gion then a second region becomes unstable. These even-
tually merge such that above the critical threshold, all
ω+(k) within the intersection region have positive imag-
inary eigenvalues. It is also important to notice that the
energy dispersion is linear (or nearly so) over the entire
branch-sticking range. This signals the on-set of a super-
fluid state according to Landau’s criterion. As a conse-
quence, non-equilibrium population within these modes
will grow exponentially to form condensate states.

C. Effects of orientational disorder

We now consider the effects of orientational disorder
in the film on the critical behavior of the field strength
Ep,crit and, consequently, on the stability of the system.
The shape and position of the lower polariton curve, and
thus Ep,crit, depends on the orientation of the molecu-
lar units inside the sample. Even at criogenic temper-
atures, one expects some degree of disorder in the ori-
entation of the molecular sites within the lattice. We
can introduce disorder by sampling the orientation of the
anthracene molecular unit about its crystallographic ori-
entation (see38 for details). Since both the exciton dis-
persion and coupling to the photon field are sensitive to
dipoles’ orientation, each sampling will generate a unique
LP dispersion. We therefore use this to compute Ep,crit

for different realizations of the lattice for a given angular
variance σθ.

On Fig. 9 we show the distribution of Ep,crit for 3 dif-
ferent values of σθ (see39). For a perfect crystalline lattice
σθ = 0 and Ep,crit ≈ 0.04eV . As one expects, for small
σθ Ep,crit is distributed about the Ēp,crit and increasing
σθ results in broader distribution of Ep,crit. Fig. 10 shows
values of Ēp,crit for various choices of σθ, averaged over
500 configurations. Systematic variation of the Ep,crit
with σθ is small for low disorder; however, for larger σθ
the behavior of the curve changes and the slope increases.
For a system held under cryogenic condition one expects
σθ to be very small and consequently we expect that the
transition from a normal Bose gas to condensate should
be sharp even with some degree of molecular disorder.
However, increasing the lattice temperature, the transi-
tion will be difficult to observe.

D. Response to inhomogeneous perturbation

In the physical system, point defects within the thin
film or defects in the reflecting surface introduce potential
scattering sites for the polarion field. In order to examine
the effect of such sites we introduce a perturbing field,
f and consider its effect on the stationary states found
above. Taking ψ(t) = ψs + δψ(t) as the time-dependent
field in the presence of the scattering sites, this evolves

-1.5-1.0-0.5 0.0 0.5 1.0 1.5
0.00

0.02

0.04

0.06

0.08

kHΜm-1L

E
pHe

V
L

Ep,crit

kp

stable

unstable

FIG. 6: Mode stability versus applied field strength. Shaded
region indicates modes with positive imaginary frequency
components. Above Ep,crit all modes within the branch stick-
ing region are unstable.
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in time according to

i
∂

∂t
δψ = L · δψ + f (30)

As above, we seek stationary solutions to this equation.
Since the steady-state part satisfies the homogeneous
part of this equation, we can consider the (stationary)
response to the perturbation by solving the inhomoge-
neous part

δψ(x) = −L−1 · f(x) (31)

Thus, taking f(x) = V (x)(ψs,−ψ∗s ), we have(
δψ(k)

δψ∗(2kp − k)

)
= −L−1k ·

(
Ṽkψs

−Ṽk−2kp
ψ∗s

)
(32)

where Ṽk is the Fourier transform of the perturbing field.
In essence, the polaritons are elastically scattered over
all k-vectors about the constant energy shell given by
ωLP (kp). The resulting signal is then given by |δψ(k)|2.

In practice, we create a two-dimensional array (100 ×
100) of coordinate grid-points, select randomly 300 sites
and at those sites set V (x) = 0.1meV . At all other sites

V (x) = 0. The inhomogeneous terms Ṽ (k) and Ṽ (k −
2kp) are then found by fast-Fourier transform (FFT).
In the latter case, we use the shift theorem followed by
FFT. In this way, we can rapidly average over multiple
realizations of random scattering events and compute an
averaged signal intensity.

We consider the response for a cavity that is off-
resonance with the Davydov exciton as depicted in the
polariton dispersions in Figs.3. Here the cavity cutoff
is about 0.1eV below the lowest Davydov exciton en-
ergy. In Fig. 8 we show the response signal (plotted as
log(|δψ(k)|2)) for the conditions given in Fig. 5(c,d), i.e.
close to the LP inflection point. The orange/yellow ring
indicates that scattering occurs to all k-vectors on the en-
ergy shell given by ωLP (ks). A polariton droplet created

FIG. 7: Dependence of positive values of Im(ω+(k)) on the
applied filed strength and the range of in-plane wave vectors k
where system looses its stability. Flat region represents modes
with negative imaginary components where steady state is
stable (fluctuations’ population decays). However there is a
laser regime in which Im(ω+) becomes positive and popula-
tion with this mode grows. Here ωp=1.5968 eV, kp=0.55 µm,
and Ep,crit=0.039 eV.

FIG. 8: Scattered intensity distribution for kp = 0.55µm−1

(plotted as log(|δψ(k)|2)) in the Rayleigh scattering regime
for Ep below the critical intensityEp,crit.

under these conditions would evolve on the “on-shell”
ring as observed in Ref.1.

We next consider what happens when the driving field
is close to the bottom of the LP dispersion curve and
nearly resonant with the LP polariton. In Fig. 11, the
driving field is detuned 1meV to the blue from the ωLP .
Here, the idler and signal dispersion touch at kp creating
a single point of degeneracy that becomes unstable as Ep
increases.

In Fig. 12a and b we show the signal resulting from
the polaritonic defects. Below threshold, all eigenvalues
of Lk have negative imaginary components and we see
a tight ring indicating that scattering occurs to all k-
vectors on the ωLP (kp) constant energy shell (Rayleigh
scattering). Above threshold intensity, this ring collapses
to a single peak at k = {kp, 0} indicating the formation of
a single component “condensate” or polariton superfluid
state. This does not occur at k = 0, rather exactly at
kp. This is consistent with what one would expect for
momentum distribution for an interacting Bose gas36

n(k) = zoδ(kp) + ñ(k)

where zo = No/N is the condensate fraction and ñ(k)
is the non-condensate occupation, which is more or less
constant with a weak divergence ∼ k−1 as k → kp.

37

This state is special since it is the only one that grows as
the number of Bosons in the system N increases. Note
that the peak is shifted since the system is driven by the
pumping field that has a wave-vector kp. Since we have
assumed the pumping field to be of the form Epe

ikp·x, it
equivalent to imposing a moving reference frame on the
system. Furthermore, our theory does not include inelas-
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tic scattering events that would scattering the signal off
the energy-shell.

IV. DISCUSSION

In this paper, we discuss the conditions under which
polartiton BEC could be achieved in an organic micro-
cavity with J-aggregate molecules such as anthracene.
We have identified conditions under which spontaneous
coherence and parametric amplification may be achieved
in a polariton gas giving rise to a quantum phase transi-
tion to a superfluid phase in an organic thin-film system.
This opens the door to experimental probes of polari-
ton condensate dynamics and construction of a quantum
phase diagram for organic micro-cavity systems. To date,
evidence for BEC in organic microcavities has not been
presented in the literature although efforts to achieve this
are underway.

It is important to discuss factors not included in our
model which may inhibit or perhaps preclude the for-
mation of stable condensate states in these systems. Of
primary concern is the ability to fabricate well-ordered
molecular arrays within the microcavity. It is absolutely
critical that the exciton transition moment be parallel to
the reflecting walls of the cavity in order to maximize the
coupling to the photon field. It is also likely that local
orientational disorder will inhibit the formation of long-
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FIG. 10: Average of Ep,crit over 500 runs versus δθ. ωp=1.597eV ,
kp =0.55 µeV .
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FIG. 11: Real and imaginary eigenvalues of Lk. (parameters:
Ep = 0.02eV (a,b), ωp = ωLP (kp) + 1.0meV , g = 0.1meV ,
kp = 0.15µm−1,and γ = 0.1meV )

ranged coherences within the cavity. As seen in Fig. 3
orientational disorder gives rise to an increase in anti-
crossings and an increase in the number of intermediate
polariton bands. These may serve to deplete the LP pop-
ulation. Likewise, strong coupling between the electronic
and intramolecular vibrational modes leads to a detun-
ing of the spontaneous emission band (fluorescence) from
the vertical absorption absorption band. However, since
the strongest electron photon coupling in these systems
is local to a given molecular site, this will decrease as
the Davydov state contributing to the LP is delocalized
over multiple molecular sites. Our current approach does
not include internal relaxation due to inelastic scattering
events. From detailed balance considerations, inelastic
scattering will shift the scattering signal towards lower
wave vectors and hence the condensate peak to shift to-
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(a) (b)

FIG. 12: Signal intensity in the super-fluid regime (close to
k = 0) for Ep below (a) and above (b) the critical threshold.

wards k = 0. Thermalization must be rapid compared
to the polariton lifetime in order to achieve a true BEC
state at k = 0.
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