
THE ANOMALOUS MAGNETIC MOMENT

Miroslav Pardy
Department of Theoretical Physics and Astrophysics

Masaryk University
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Abstract

The anomalous magnetic moment of electron is calculated in the framework of
the Schwinger source method from the assumption the electron and is immersed
in the magnetic field. The magnetic field causes the modification of the Green
function of the charged particle and therefore the modification of the vacuum-
to-vacuum amplitude. The derived value of the anomalous magnetic moment of
electron is in excelent agreement with experiment. The muon magnetic moment
is discussed at the experimental and methodological basis. This article is written
in the form of the pedagogical simplicity.

1 Introduction

When motion of electron in applied electromagnetic field is considered, deviations
from the primitive electromagnetic interaction can appear. This effect is caused by
the existence of the subsequent interaction which is not present in case of the primitive
electromagnetic interactions. In such a way such interpretation imply modifications of the
effective electromagnetic coupling. This will be made explicit in later considerations. We
can draw an experimental consequence of this fact by a simple modification of algorithm
for calculation of the charged particle propagation function. We use here the Schwinger
source method of quantum field theory. The standard calculation of the magnetic moment
of electron can be seen, for instance, in the classical textbooks (Itzykson et al., 1980)

We have seen in (Schwinger, 1973; 1989) that the vacuum amplitude for noninteracting
particles that represents the exchange of one photon and one electron is as follows:

〈0+|0−〉Jη = 1 + ...+ i
∫

(dξ)(dξ′)Jµ1 (ξ)D+(ξ − ξ′)J2µ(ξ′) ×
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i
∫

(dx)(dx′)η1(x)γ0G+(x− x′)η2(x′) + ... (1)

We arrange eq. (1) in such a way that it will involve only the term with the two-particle
exchange. Then, for the vacuum amplitude we have:

〈0+|0−〉 =
∫

(dξ)(dξ′)(dx)(dx′) ×

Jµ1 (ξ)η1(x)γ0D+(ξ − ξ′)G+(x− x′)iJ2µ(ξ′)η2(x
′). (2)

It should be inserted into this amplitude the following effective sources - eq. 3-11.66 -
(Schwinger, 1970; 2018) with g = 2

iJµ(ξ)η(x)|eff = eq [δ(ξ − x)γµψ(x)− ifµ(ξ − x)η(x)] . (3)

However, we simplyfy them by the following way

iJµ(ξ)η(x)|eff = eqδ(ξ − x)γµψ(x), (4)

because in our situation it is possible to pick out the contributions that does not involve
photons emitted or absorbed by the sources.

With regard to eq. (4) we write for the emission source

iJµ2 (ξ)η2(x)|eff emiss = eqδ(ξ − x)γµη2(x) (5)

and for the absorption one

iJµ1 (ξ)η1(x)γ0|eff abs = ψ1(x)γ0γµδ(x− ξ). (6)

Eqs. (5) and (6) reads in the momentum representation as

iJµ2 (k)η2(p)|eff emiss = eqγµψ2(P ); P = k + p, (7)

iJµ1 (−k)η1(−p)γ0|eff abs = ψ1(−P )γ0γµ; P = k + p. (8)

After insertion of eqs. (7) and (8) into the momentum representation of the vacuum
amplitude (2) we get

〈0+|0−〉 = −e2
∫
dωpdωkψ1(−P )γ0γµ(m− γp)γµψ2(P ) =

−e2
∫
dM2dωPψ1(−P )γ0γµF (P )γµψ2(P ) (9)

with

F (P ) = (2π)3
∫
dωpdωkδ(P − p− k)(m− γp) =
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1

(4π)2

(
1− m2

M2

)1/2 (
m− M2 +m2

2M2
γP

)
. (10)

In case of the nonexistence of the electromagnetic field the vacuum amplitude for the
two-particle exchange in the x-representation follows from eqs. (2), (5) and (6) in the
following form:

〈0+|0−〉 = e2
∫

(dx)(dx′)ψ1(x)γ0γµD+(x− x′)G+(x− x′)γµψ2(x
′). (11)

2 The anomalous magnetic moment of electron

Now, the question arises, how this amplitude must be modified in order to involve the
presence of a weak and homogenous electromagnetic field. We will suppose that the
change of such physical beckground is hidden in the Green function of electron, or, the
modification of the amplitude is based on the transformation

G+(x, x′)→ GA
+(x, x′). (12)

Then,

〈0+|0−〉 → e2
∫

(dx)(dx′)ψ1(x)γ0γµD+(x− x′)GA
+(x− x′)γµψ2(x

′). (13)

In case of a free particle we have:

x0 > x′0 : D+(x− x′)G+(x− x′) = −
∫
dM2dωP e

iP (x−x′)F (P ) (14)

and after space-time extrapolation

D+(x− x′)G+(x− x′) =

i

(4π)2

∫ ∞
m2

(
1− m2

M2

)1/2 (
m− M2 +m2

2M2
γ(

1

i
)∂

)
∆+(x− x′,M2) + C.T., (15)

where C.T. are so called contact terms (Schwinger, 1973; 2018).
For electromagnetic field situation we have obviously

D+(x− x′)G+(x− x′)→ D+(x− x′)GA
+(x− x′) (16)

and the determination of GA
+ wil be the program of the next text.

The Green function of the charged particle with spin 1/2 and mass m (electron) is
determined by the symbolic equation:

(γΠ +m)GA
+ = 1 (17)
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with

Π = p− eqA. (18)

Let us put

GA
+ = (m− γΠ) ∆A

+. (19)

Then,

(m+ γΠ)GA
+ =

(
m2 − (γΠ)2

)
∆A

+ = 1. (20)

However,

−(γΠ)2 = −1

2
{γµ, γν}ΠµΠν −

1

2
{γµ, γν} 1

2
[Πµ,Πν ] =

gµνΠµΠν + iσµν
1

2
ieqFµν , (21)

where we have used relations

−1

2
{γµ, γν} = gµν (22)

[Πµ,Πν ] = ieqFµν (23)

σ
d
=

1

2
{γµ, γν} . (24)

If we further intruduce symbolic expression

σF
d
=

1

2
σµνFµν , (25)

then instead of eq. (20) we write[
Π2 − eqσF +m2

]
∆A

+ = 1. (26)

If F is a homogenous electromagnetic field, the additional term in (26) (−eqσF ) is a
constant matrix that can be grouped with m2. In such a way we use the ansatz

∆A
+(x, x′) = eieqϕ(x,x

′)∆+(x− x′,m2 − eqσF ), (27)

where

ϕ(x, x′) =
∫ x

x′
dξµAµ(ξ) (28)

denoting a straight line path integral. Obviously
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(−i∂µ − eqAµ(x)) eieϕ(x,x
′) =

eieϕ(x,x
′)
(
−i∂µ + eq

1

2
Fµν(x− x′)ν

)
, (29)

which expresses the gauge transformation that produces the vector potential

A′µ(x) = −1

2
Fµν(x− x′)ν . (30)

Another relation similar to eq. (29) is obtained by interchanging x and x′ while
reversing the sign of Fµν .

eieϕ(x,x
′)
(
−i∂′Tµ − eqAµ(x′)

)
=

(
−i∂′Tµ − eq

1

2
Fµν(x

′ − x)ν
)
eieϕ(x,x

′), (31)

where we have wrote ∂T as an indication of differentiation to the left with an associated
minus sign. Obviously

GA
+ =

1

2

[
(m− γΠ)∆A

+ + ∆A
+(m− γΠ)

]
, (32)

or,

GA
+ = eieϕ(x,x

′)
∫ (dp)

(2π)4
eip(x−x

′)(m− γp) 1

p2 +m2 − eqσF − iε
. (33)

The structure of eq. (33) shows that the Green function GA
+ is produced by the phase

factor

Φ = eieqϕ(x,x
′) (34)

and replacing m2 by m2 − eqσF and thereby M2 by M2 − eqσF , while positioning γµ at
the extremities of all products in a symmetrical way. For combination D+G

A
+ we have:

D+(x− x′)GA
+(x− x′) = Φ

i

(4π)2

∫ ∞
m2

dM2 M2 −m2

M2 − eqσF
×

[
m−

(
1− 1

2

M2 −m2

M2 − eqσF

)
γ(

1

i
)∂

]
∆+(x− x′,M2 − eqσF ) + C.T.. (35)

Since we consider only the situation with weak fields, we can replace (35) by the
equivalent version

D+(x− x′)GA
+(x− x′) = Φ

i

(4π)2

∫ ∞
m2

dM2

(
1− m2

M2

)
×
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(
m− M2 +m2

2M2
γ(

1

i
)∂

)
∆+(x− x′,M2 − eqσF ) +

Φ
i

(4π)2

∫ ∞
m2

dM2

M2

(
1− m2

M2

)
eqσF

(
m− m2

M2

)
γ(

1

i
)∂∆+(x− x′,M2). (36)

Now, we involve into eq. (36) the γµ-factors appearing in eq. (13). We have:

γµσλνγµ = 0. (37)

This also implies

γµ∆+(x− x′,M2 − eqσF )γµ = −4∆+(x− x′,M2) (38)

in case of the linear limit. The other combinations are

γµγ∂σFγµ = −2γ∂σF (39)

and

γµ∂σ∆+(x− x′,M2 − eqσF )γµ = −2γ∂∆+(x− x′,M2 − eqσF ) +

4γ∂∆+(x− x′,M2). (40)

We shall also restore the M2 − eqσF combination, in accordance with

∆+(x− x′,M2) =

∆+(x− x′,M2 − eqσF ) + eqσF
d

dM2
∆+(x− x′,M2), (41)

which can be followed by partial integration on the variable M2. There are no contribu-
tions at the integration boundaries, m2 and ∞. With regard to the equation (39), (40)
and (41) we have:

γµD+(x− x′)GA
+(x− x′)γν =

− i

(4π)2

∫ ∞
m2

dM2

(
1− m2

M2

)(
4m+

M2 +m2

M2
γΠ

)
∆+(x− x′,M2) +

i

(4π)2

∫ ∞
m2

dM22m2

M4

(
2m+

M2 +m2

M2
γΠ

)
eqσF∆+(x− x′,M2) + C.T.. (42)

The formal matrix transcription

∆A
+(M2) =

1

−(γΠ)2 +M2 − iε
(43)
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enables to write eq. (42) in the following form:

γµD+(x− x′)GA
+(x− x′)γµ =

i

(4π)2

∫ ∞
m2

dM

M

(
1− m2

M2

)[
(M −m)2 − 2mM

γΠ +M − iε
+

(M +m)2 + 2mM

γΠ−M + iε

]
−

i

(4π)2

∫ ∞
m2

dM

M

2m2

M2
eqσF

[
(1−m/M)2

γΠ +M − iε
+

(1 +m/M)2

γΠ−M + iε

]
+ C.T. (44)

with performed symmetrized matrix multiplication.
Now, let us approach the determination of the contact term. The physical requirements

that determine this term apply in the absence of the electromagnetic field. The practice
is that the derived matrix element M(γp) must have no singularity in γΠ = −m. It leads
to (Schwinger, 1973; 1989; Dittrich, 1978)

1

γΠ +M − iε
→ (γΠ +m)2

(M −m)2
1

γΠ +M − iε
(45)

1

γΠ−M + iε
→ (γΠ +m)2

(M +m)2
1

γΠ−M + iε
. (46)

Then, using (45) and (46), we have instead of first term of eq. (44)

i

(4π)2
(γΠ +m)2

∫ ∞
m2

dM

M

(
1− m2

M2

) 1− 2mM
(M−m)2

γΠ +M − iε
+

1 + 2mM
(M+m)2

γΠ−M + iε

 . (47)

The additional action term is now

−1

2

∫
(dx)(dx′)ψ(x)γ0M(x, x′, F )ψ(x′), (48)

where

M(F ) = −(γΠ +m)2
α

(4π)

∫ ∞
m

dM

M

(
1− m2

M2

)
×

 1− 2mM
(M−m)2

γΠ +M − iε
+

1 + 2mM
(M+m)2

γΠ−M + iε

 +

α

2π

∫ ∞
m

dM

M

m2

M2
eqσF

[
(1−m/M)2

γΠ +M − iε
+

(1 +m/M)2

γΠ−M + iε

]
. (49)

This supplements the initial action expression

W = −1

2

∫
(dx)ψ(x)γ0(γΠ +m)ψ(x). (50)

In the situation of the weak field limit and far from its sources, where
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(γΠ +m)ψ = 0 (51)

we have

M(F )→ − α

2π

1

2m
eqσF

∫ ∞
m

dM

M

m2

M2

(
2m

M

)2

= − α

2π

1

2m
eqσF. (52)

The resulting action under these circumstances is after combining of eqs. (48), (50)
and (51)

W → −1

2

∫
(dx)ψ(x)γ0

(
γΠ +m− α

2π

eq

2m
σF

)
ψ(x) (53)

and it involves the additional magneytic moment of α/2π magnetons. In terms of the
g-factor defined for instance by Schwinger ( 1973; 2018), we have

g = 2
(

1 +
α

2π

)
. (54)

With the fine structure constant

α =
1

137, 036
(55)

we have

α

2π
= 0, 00226141..., (56)

which is in remarkable accord with those measured for electron

1

2
g = 1, 0011596... (el., exp) (57)

and the muon

1

2
g = 1, 001166... (muon, exp.) (58)

Further discussion on the magnetic moment calculation is for instance in the Schwinger
book (Schwinger, 1989; 2018).

Equation (54) is the famous Schwinger correction (Schwinger, 1949). Historically,
Schwinger derived this result for the electron, rather than the muon, to explain the
measurement of the hyperfine splittings in gallium atoms by Foley and Kusch (Kusch et
al., 1947). However, we see in eq. (54), the one-loop QED contribution to the anomalous
magnetic moment does not depend on the mass of the fermion and is, therefore, the same
for muons and electrons.
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3 Discussion

We have considered magnetic moment of electron in the framework Schwinger source
theory methods. The magnetic moment of the Lee model was calculated by author at
the different article with the interesting results. (Pardy, 1979). We have seen that the
anomalous magnetic moment of electron was not the consequence of the internal structure
of electron but it was the result of the interaction of electron with electromagnetic field.

The magnetic moment investigation can be extended to further physical objects
defined as Nobelian problems. Namely, the amomalous magnetic moment of proton
and antiproton, neutron and antineutron, neutrino and antineutrino, omega-meson and
omega-antimeson and so on. And, the anomalou mgnetic moments of all chemical
elements, and, 30.000.000 organic compounds. So, the goals of the particlle physics of
anomalous magnetic moment are great.

The magnetic moment of the muon was not calculated by Schwinger, so it is interesting
to disusse the intellectual situation concerning the magnetic moment of muon. The mag-
netic moment of muon (Jegerlehner, 2008; 2017) was investigated by many experiments.
The muon g − 2 experiments at Fermilab in the US and at J-PARC in Japan have been
reached a four times better precision of 16 ×10−11 (from 0.54 ppm (parts per million) to
0.14 ppm). This has triggered a lot of new research activities. The main motivation is
the minimal deviation between standard theory and experiment.

Standard Model match perfectly all experimental information. The very high precision
experiments are competing with searches for new physics at the high energy frontier set
by the Large Hadron Collider at CERN.

There has been remarkable progress in the calculation of the higher order corrections
of g− 2 . Aoyama, Hayakawa, Kinoshita and Nio managed to evaluate the five-loop QED
correction, which includes about 13 000 diagrams thereby reducing the uncertainty of the
QED part which has been dominated by the missing α5 correction.

The corresponding contributions to the electron g − 2 together with the extremely
precise determination of g − 2 by Gabrielse et al. allows one to determine a more precise
value of the fine structure constant α, which in turn affect the numbers predicted for g−2.

Also more precise lepton mass ratios recommended by the CODATA group are slightly
affecting the predictions. To the weak interaction contribution the uncertainty could be
reduced mainly by the fact that after the discovery of the Higgs particle by ATLAS and
CMS at the Large Hadron Collider at CERN, the last relevant missing Standard Model
parameter could be determined with remarkable precision.

The largest uncertainties in the SM prediction come from the leading hadronic contribu-
tions, or, the hadronic vacuum polarization and the hadronic light-by-light scattering in-
sertions. The hadronic vacuum polarization at α5, evaluated in terms of electron-positron
annihilation data via a dispersion relation has been improved substantially mainly with
new data from initial state radiation approach that the U factory DAFNE at Frascati
with the KLOE detector and at the B factory at SLAC with the BaBar detector. Lately
also new results from BEPC-II at Beijing with the BES-III detector and from VEPP-
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2000 at Novosibirsk with the CMD-3 and SND detectors contributed to further reduce
the uncertainties.

On the theory side the τ -decay spectra versus electron-positron annihilation data which
should essentially agree after an isospin rotation has been resolved by including missing
γ − %0 mixing effects. Besides the NLO vacuum polarization new the NNLO amounting
to 12× 10−11 has been calculated by Kurz et al. recently.

The most challenging problem remains the hadronic light-by-light contribution of α3.
Unlike the hadronic vacuum polarization which is a one scale problem, the hadronic light-
by-light scattering involves three different scales and there are many different hadronic
channels contributing. Quite recently, a new approach has been worked out by Colangelo,
Hoferichter, Procura and Stoffer, and Pauk and Vanderhaeghen with hadronic light-by-
light scattering data in conjunction with dispersion relations (Jegerlehner, 2017).

In spite of the fact that data for a complete evaluation are largely missing there
is definitely progress possible with exploiting existing data for γγ → π−π+, π0π0 in
particular, where new data from Belle are of good quality, which allows one to get more
solid evaluations than existing ones. For the singly tagged pion transition form factor
there have been new useful data from BaBar and Belle which cover a much larger energy
range now (Jegerlehner, 2017).

So, we have seen that the magnetic moment of the mu-meson represented in future by
the source theory methods will be evidently the gigantic goal for the Schwinger theorists.
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