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Spectral Action from Anomalies Fedele Lizzi

1. Introduction

The aim of this note is to show how, starting from a theory offfiens coupled to a gauge and
gravitational background, it is possible to have the fudamic action emerged. We do this using
the spectral properties of the (generalized) Dirac opgratal in this respect this work can be seen
in the framework of Connes and collaborators approach tstdredard mode[]1] 2] ] 4], as well
as of Sakharov induced gravitf] [5] (for a modern review §@ig [6ur starting point is a theory
of fermions moving in a fixed background of gauge and scaldusfiand a curved (Euclidean)
spacetime. We focus on the scale invariance of the theoryeatlassical level. To quantize it
we employ the spectral regularization, based on the cutalffeoeigenvalues of the Dirac operator.
The regularization however is not preserved at the quanéuel,land a scale anomaly is developed.
There are two alternative ways to deal with quantum anomatidocal transformationg][7]. On
one hand the scale invariance can be restored by changingaasure in the path integral. This
is tantamount to the addition to the fermionic action of &eotcontribution, which renders the
bosonic background interacting to the dilaton field. Anralitive realization of the dilaton may
involve a collective scalar mode of all fermions accumuddtea scale-noninvariant dilaton action.
Accordingly the spectral action arises as a part of the femnaffective action divided into the
scale non-invariant and scale invariant parts. It turngfvattin both cases the resulting action is a
modification of Chamseddine-Connes spectral action biit @pposite signs. The latter is a purely
spectral function of the gauged Dirac operator (and of affjutdhich describes a gauge theory
coupled with gravity, and in the presence of the Higgs meishan

The invariance by (local) scale transformation introduicethe theory another field whereas
the collective dilaton mode of fermions appears after tpaitial bosonization as a consequence
of scale non-invariance. The dilaton effective potentias bheen calculated by us and in the last
section we discuss how it relates to the transition from &ukation phase with zero v.e.v. of Higgs
fields and massless patrticles to the electroweak brokerepliagondensation of Higgs fields. It
is proven that only the second way to interpret the specti@ @ with collective field of dilaton
can provide the above mentioned phase transition with EWhsstny breaking during Universe
evolution.

The first six Sections of these proceedings will mostly felleference[[8], although with a
somewhat different point of view. The material in Sec.7 hatsbheen previously published.

2. Fermionsin a Fixed Background

Our starting point is a theory in which we have some matteddietepresented by fermions
transforming under some (reducible) representation aeaugup, such as the standard model
groupSU(3) x SU(2) x U(1). We need not specify the group for the moment. The fermiotis wi
be spinors belonging to some Hilbert spagéwhich we assume to be “chiral”, i.e. split into a left
and a right:

I =T D AR (2.2)

A generic matter field will therefore be a spinor

W= (%) (2.2)
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and in this representation the chirality operator, whichoak y is a two by two diagonal matrix
with plus and minus one eigenvalues. The two componentsparers themselves and we are not
indicating the gauge indices, nor the flavor indices. We assume that the fermions come in a
number of identical (apart from the mass) generations.

The fermions are given a dynamics coupling them to a backgtdield. This coupling is
performed by a classical action which we schematicallyeiaid

S = (W|D|W) (2.3)

where
D=Dg+A (2.4)

is an operator o’ which will call always the Dirac operator, although the faliem we are
building is more general and there may be “Dirac operatoisicivdo not resemble at all the one
introduced for the Dirac equation.

The Dirac operator, acting of spinors is again a matrix andchaxe split into a “free and
gravitational” part and a “gauge coupling” part. We will sSe@ moment the reason for this (rather
inaccurate) terminology.

We start from

MT yHo,
WhereM contains all masses (and mixings) of the fermions ang tive those relative to a possibly

curved spacetime. In this case the fermions are couplece tgrtvitational fixed background given
by the metric

Do = (V“d“ M ) (2.5)

0 =301} (26)

The matrixA represents instead a fixed gauge background, and the imarat the spinors
with it. We emphasize that at this stage we are just desgrithia classical dynamics of fermions
in a fixed background. We are deliberately vague as to thél @étdne model at this stage, not
discussing important elements of the theory, like chiyadit charge conjugation. The scheme pre-
sented here is largely independent on the details of the imodearticular it applies to the standard
model, especially in the approach based on noncommutagismetry introduced by Connes and
briefly discussed below.

3. Fields, Hilbert Spaces, Dirac Operators and the (Non)commutative Geometry of
Spacetime

We have introduced a (Euclidean) spacetime. And therefopdigitly the algebraes of com-
plex valued continuous functions of this space time. Theiia fact a one-to one correspondence
between (topological Hausdorff) spaces and commut&ivalgebras, i.e. associative normed al-
gebras with an involution and a norm satisfying certain props. This is the content of the
Gelfand-Naimark theoren{][, J10], which describes the togplof space in terms of the alge-
bras. In physicists terms we may say the properties of a spaoencoded in the continuous fields
defined on them. This concept, and its generalization to arontutative algebras is one of the
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starting points of Connes noncommutative geometry progrerfi]. The programme aims at the
transcription of the usual concepts of differential geasnét algebraic terms and a key role of
this programme is played byspectral triple which is composed by an algebra acting as operators
on a Hilbert space and a (generalized) Dirac operator. Ircase we have these ingredients, but
we have to consider instead of the algebra of continuous nvalued function, matrix valued
functions. The underlying space in this case is still theérang spacetime, technically the algebra
is “Morita equivalent” to the commutative algebra, but tienfialism is built in a general way so
to be easily generalizable to the truly noncommutative caben the underlying space may not be
an ordinary geometry.

The spectral triple contains the information on the geoynefrspacetime. The algebra as
we said is dual to the topology, and the Dirac operator esathle translation of the metric and
differential structure of spaces in an algebraic form. €hisrno room in these proceedings to
describe this programme, and we refer to the literature deaits [1.,[Z]L[Z0[ 32].

Within this general programme a key role is played by Conmggroach to the standard
model. This is the attempt to understand which kind of (homtwtative) geometry gives rise
to the standard model of elementary particles coupled wility. The roots of this approach is
to have the Higgs appear naturally as the “vector” boson @fitternal noncommutative degrees
of freedom [IB[14[]2]. The most complete formulation of thigproach is given by thepectral
action, which in its most recent form is presented ih [4].

The fermionic part of this action i (2.3), while the bosopart is basically the regularized
sum of the eigenvalues of the Dirac operator. We will see Huw dction can fe inferred (with
some little modifications) from the fermionic acti& and the need to preserve scale invariance.

4. Scaleinvariance of the Fermionic Action

So far we are in the presence of a classical theory of matteisfraoving in a fixed back-
ground. The objects involved in the writing of the action éghysical dimensions. Introduce a
scale necessary for measurements, for example an unitgthlénthen it is possible to measure
volumes ag—*, massesand the Dirac operator in general&s and so on.

The classical action is invariant under a change of thisesadter all is amounts to just a
change of units of measurement. Recall that we have not yetincedh. In principle this change
of scale could also be local, and this would be H. Weyl oribfgauge” theory. We therefore have
a scale transformation symmetry:

xH — ePxH
3
Y — e 2%y
D — e 2%De 2? 4.1)
where @ is a real parameter which for the moment we take to be consfdate that since the

rescaling involves also the matrix part Of we must also rescale the masses of the fermions. In
the absence of a dimensional scale, is an exact symmetrg ofdbsical theory.

1\We take the speed of light= 1.
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We now proceed to quantize the theory. It can be profgn [1&]ifrthe classical theory is
invariant, the measure in the quantum path integral is nat. h&le an anomaly: a classical the-
ory is invariant against a symmetry transformation, butdqbantum theory, due to unavoidable
regularization, does not possess this symmetry anymosdsdfthe quantum theory is required to
be symmetric then the symmetry can be restored by the addifi@xtra terms in the action. A
textbook introduction to anomalies can be found[if [15]. Tibéon of scale anomaly is attached
to the dilatation of both coordinates, fields and mass-léeameters according to their dimension-
alities, Eq. [4]1). Evidently, in the absence of UV diverges) there is no scale anomaly which
therefore can be correlated to rescaling of a cutoff in te®th In the case when the dilatation
is not constantgp becomes a quantum field called ttiéaton. The dilaton of this kind has been
investigated in the context of the spectral actior{in [16].

We remark that there is also an alternative realization efiitaton as a collective scalar mode
of all fermions accumulated in a scale-noninvariant ditaé@tion. The corresponding spectral
action has an opposite sign and will be discussed later on.

In both approaches we start from the partition function

Z(D) = / dy][d@e S — det(%) 4.2)

where a normalization scaleis introduced and the last equality is formal because theesspn

is divergent and needs regularizing. The writing of the ferit action in this form (as a Pfaffian)
is instrumental in the solution of the fermion doubling desh in Connes approach to the standard
model [T} [IB[]. In fact we need in principle two regulators

e 1 which may be treated as an infrared cutoff when having aeliegpectrum;

e an ultraviolet cutoffA in order to tame the short distance infinities.

We will regularize the theory in the ultraviolet using a pedare introduced by one of us,
Bonora and Gamboa-Saravi {n[19] 20] 21] but leaving a roanafoormalization scalgi. The
energy cutoff is enforced by considering only the fiistigenvalues oD. Consider the projector

N
PN = z |An) (An]; N = maxn such that\, <A (4.3)
n=1

whereA, are the eigenvalues &f in increasing order (repeated according to possible nligitip
ties), |An) a corresponding orthonormal basis, and the intégés a function of the cutoff. This
means that we are effectively using tN&' eigenvalue as cutoff. Therefore this number and the
corresponding spectral density depends on coefficientiimof the Dirac operatoN = N(D).

In the framework of noncommutative geometry this is the nmadtiral cutoff procedure, al-
though it was introduced before the introduction of the dsd model in noncommutative geom-
etry. It makes no reference in principle to the underlyinmicture of spacetime, and it is based
purely on spectral data, thus is perfectly adequate to Gommegramme. This form of regular-
ization could be also used for field theory which cannot berdesd on an ordinary spacetime, as
long as there is a Dirac operator, or generically a wave epenaith a discrete spectrum.
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We define the regularized partition functfon

An

N D
Z,(D) = Dlﬂ :det<1—PN+PNHPN>

det(l— P+ PN%PN> det(l— P+ %PN> = Z/\(D)det<1— P+ %PN> . (4.49)

In this way we can define the fermionic action in an intrinsieyw
The regularized partition functiod, has a well defined meaning. Expressip@nd( as

Y= nZlan |An); Y= nzlbn |An) (4.5)

with a, andb, anticommuting (Grassman) quantities. Tt&nbecomes (performing the integra-
tion over Grassman variables for the last step)

N
Z\(D) = / M @eiwzlb""”a" — det(Dy) (4.6)
n=1

where we defined b
DN:1—PN+PNKPN. 4.7)

In the basis in whiclD /A is diagonal it corresponds to setAaall eigenvalues larger thak. Note
thatDy is dimensionless and dependsiboth explicitly and intrinsically via the dependence of
N andPRy.

It is possible to give an explicit functional expressionte projector in terms of the cutoff:

D2 i 1 o 1—D—§
Py :@<1_ﬁ> :_é da me ( A ) (4.8)

where © is the Heaviside step function. This integral is well defifeda compactified space
volume and therefore in the presence of the infrared cutbitivcan be identified witju. Actually

d
N depends also on the infrared cutoff, and the number of dimessit goes as- (ﬁ) .

5. Cancellation of the Anomaly and the Bosonic Action

Let's perform the first scenario and restore scale invaganthe actionS: is invariant un-
der (4.1) but the partition function is not, the reason fds tis the fact that the regularization
procedure is not scale invariant. The cancellation of thenaaly then proceeds via a change of
measure, which is equivalent to the addition of another trthe action. This term compen-
sates the change in the measure due to the regularizatibbelng in an exponential form, can
also be seen as another addition to the action, so that tHeéirtition function is invariant. This
calculation has been performed jn][22] in the QCD contexd, @plied to gravity in[[23].

2Although Py commutes wittD we prefer to use a more symmetric notation.
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Let us see in a very heuristic way, with constant, why the effective actid®s is nothing
but the spectral action with the functignbeing a sharp cutoff. In this cadéis just a number of
eigenvalues smaller thét, and thereby

D? D?
Trx (ﬁ) = Tr@(l—ﬁ> = TrRy=N(A, D). (5.1)
It can be written in the latter form provided that we take iatzount the functional dependence
N = N(A, D). Itis worth recalling again that the integirdepends on the cutoff, on the Dirac

operatorD and also on the functiog which we have chosen to be a sharp cutoff.
Then the compensating term — the effective action, will bindd by

Zinyy(D) = Z,(D) / dgpeSerom (5.2)
where the effective action will be depending Mnand hence the cutoff, and ong. Define
Zinu(D) = / dgZ, (e 3%De %) = / dgZu(Dy); Dy=e %De?,  (5.3)
then
Sanom= 109Z;,(D)Z,, (D) (5.4)
Let us assign
Z = Z,(Drp) (5.5)
thereforezo = Z,,(D) and
V4
Zinvu(D)Z;1(D) = / dqoi (5.6)
and hence
L L4z
Swon=— | dtalogzi =~ [ a 22 (5.7)
0 o 4

We have the following relation that can easily proven
D 2
*Z = atdet<ﬂ> = ¢Z (—1+/\2 Iog/\—zd,\z> tr Py, (5.8)
H /N H
and therefore
1 N2 D2
2 te
Snom = /0 dt(p(l—/\ Iogmd,\z> Tro ( _ ﬁ>
1 /\2
_ / dto (1— A2log Fa,@) N(A, Dyp). (5.9)
0

6. The Spectral Action

For ¢ = 0 this is basically the Chamseddine-Connes Spectral Aattooduced in [[B] together
with the fermionic action[(2]3). More precisely the bosapéot of the spectral action is

Tryx (?\—2) (6.1)
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wherey is a generic cutoff function, which in our case is a sharpftatioenergyA,

0 x<0
XX)=< 1 xe[0,1] (6.2)
0 x>1

consequence of the sharp cutoff on the eigenvalues us¢ddin (Bhe bosonic spectral action so
introduced is always finite by its nature, it is purely spaicénd it depends on the cutdff In the
original work of Chamseddine and Connes the bosonic andderparts of the action were treated
differently. The fermionic action on the contrary is diveng, and will require renormalization. It
is formulated as an usual integral. In the philosophy of mommutative geometry usual integrals
can be interpreted as a regularized trace, the Dixmier:trace

/dxf — Tr,|D| 6.3)

where the Dixmier trace of an operat@mwith eigenvalue®,, (ordered in decreasing order, repeated
in case of degeneracy) is:

1 X

The integral/Dixmier trace has however to be regularized.HAve seen as the cancellation of the
anomaly brings the two actions on the same footing, albeft &imodification of the bosonic part.
It must be mentioned that already [n][24] the two actions argfied” in the bosonic action with
the addition of the projection on the fermionic field to theadant Dirac operator. This reproduces
the full spectral action with some additional non lineamntsifor the fermions, which could have to
do with fermionic masses.

To obtain the standard model take as algebra the produce@gebra of functions on space-
time times a finite dimensional matrix algebra

o =C(RY ® o (6.5)

Likewise the Hilbert space is the product of fermions timdmie dimensional space which con-
tains all matter degrees of freedom, and also the Dirac tpecantains a continuous part and a
discrete one

H = SpR*) ® (6.6)

and the Dirac operator
Do =y, ®I+y®Dg (6.7)

In its most recent form due to Chamseddine, Connes and Migdloh crucial role is played by
the mathematical requirements that the honcommutativebedgsatisfies the requirements to be a
manifold. Then the internal algebra, is almost uniquelyveerto be

o = CoH®Mg(C) (6.8)

Then the bosonic spectral action can be evaluated at oneukiog standard heath kernel tech-
niques [2p] and the final result gives the full action of trenstard model coupled with gravity. We
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restrain from writing it since it takes more than one pagehaariginal paper[[4]. In the process
however one does not need to input the mass of the Higgs, whbittes out as a prediction. Its
value comes out to be 170GeV. A small value experimentally disfavoured. It musshid how-
ever that the present form of the model needs unificationefhihee coupling constant at a single
energy point (given by\). The model also contains nonstandard gravitational téguadratic in
the curvature), which are currently being investigatedteir cosmological consequencés| [P8, 27].

Technically the canonical bosonic spectral action is a stiresidues, and can be expanded in
a power series in terms ot as

S =3 faan(D?/A?)

n

where thef, are the momenta of
fo = / dxxx (X)
0
f = / dx x (x)
0

fonea = (—1)"30X(0|  n=0

x=0

thea, are the Seeley-de Witt coefficients which vanishri@dd. ForD? of the form
D? = g"V9,0,1+ atd, + B

defining
1
Wy = Eg“v (a" +g‘fprgp1)
Quv = duwy — 0y oy + [wWy, wy]
E = B—-g" (duw +wuwy —Thyay)
then

/\4
%= 1gp | VAU
N2 | R
1 1 7
=~ [ d¥/gtr(—1200,R+5R2 — 2R,,,R*Y
4= 1o 360/ Vol uRE H

+2RygpR*VP — BORE -+ 180E2 + 600+ 0, E + 30Q,,, Q")

tr is the trace over the inner indices of the finite algettaand inQ andE are contained the gauge
degrees of freedom including the gauge stress energy teardrthe Higgs, which is given by the
inner fluctuations oD.

In our case forp constant, after performing the integration we find

_ A~ (4—njt/ 2 N2
Sanom—/O dt Ze 1-A |OQP§A2 anfn

2

1 40 2100 ) 1 L 20 o A
zé(e —1)ag | 1-2A IogF +§( —Dax(1-A IogF +@ag. (6.9)
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There are just some numerical corrections to the first twde$eake Witt coefficients due to the
integration int¢g and a choice of normalization scale

We notice that the alternative way of treatment of the scalgrek of freedom as a collective
field leads to precisely the opposite sign of the dilatonoacB;om — Soil = —Sinom INdeed the
bosonization in scale variable can be represented as,

Z,(D) = Ziny (D) /dcpe‘s“”; Zinuu(D) = / dpz;1(Dy) (6.10)

then
Sol = IOgZﬁl(D)Zu(Dtp) = —Sinom (6.11)

(cf. to (52)) .

7. The Dilaton and the effective potential

The full analysis of the model coupled with a dynamical ditais under way and will be
published elsewhere. Nevertheless it is already possitdayt something on the interplay between
the dilaton and the Higgs, and in particular the effectivieptial. This can be used to characterize
cosmic evolution right after inflation starts. In partiaul# may open the ways to describe the
transition from the radiation phase with massless pasgtitdethe EW symmetry breaking phase
with spontaneous mass generation due to condensation g§ fajds.

7.1 Mass generation from Higgs-dilaton potential during cosmic evolution

We will consider in the following only the potential termdative to the complex Higgs dou-
bletH and the dilatorp. The quadratic term of the Higgs potential comes frometherm of (6.9),
while the quartic one comes from tlag one. In this way we can derive the form effective Higgs-
dilaton potential. To focus on this goal we reduce the jofféative Higgs-dilaton (HD) potential
including only the real scalar componéhtof the Higgs doubletH;,H,) — (0,H) subject to con-
densation. After performing renormalization the geneoaht of the HD potential is expected to
be,

V =Vo+ A" + BH?e? —CHY @+ @) + EH?, (7.1)

where depending on the normalization sqalef fermion effective action compared with the cutoff
A one can get any sign of the coefficied®6\, i), B(A, 1) = 0. Evidently the constang, can be
eliminated by shifting the field — @ — @ and rescaling the constarAsB. Thus in general both
signs and modules of these constahB don't have any a priori values. As to the consi@nif the
dilaton serves for restoration of conformal symmetry asralependent field then the conformal
anomaly coefficienC < 0 (see [[B]). On the other hand, a composite dilaton made aofifers
[BZ] has an anomalous part of the potential of the opposie with C > 0. Therefore the sign
of C characterizes the nature of the dilaton field: elementagoorposite one. In this Section we
are interested in evolution of fieldg H and correspondingly neglect the additional cosmological
constandy. Thus for our purpose the potential has four arbitrary patansA,B,C,E andg = 0.
We would like to apply the HD potential for description of aus evolution and select out
of the acceptable signs and modules of the coefficients wéachprovide the evolution from a

10



Spectral Action from Anomalies Fedele Lizzi

symmetric phase to the EW symmetry breaking phase with apentis mass generation due to
condensation of Higgs fields. Thus one has to inquire aboethven the HD potential has local

minimums and what are the restrictions on the arbitraryfamefits which provide the existence of
such minimums.

Accordingly we are going to investigate all possible catipoints of this potential depending
on the values of its coefficients. Without loss of generalitye can impos€ > 0. For the opposite
sign ofC the set of critical points can be found by reflectdn— —V. One can see, th&t has no
any critical points aH = 0. Let us perform the coordinate transformation to the weig,

H? = ne* (7.2)

Such a transformation is non-degeneratéHag 0 and preserves all the information about
extremal properties of our potential.
In the new variables the potential takes the form,

V =¢€* (A+Bn—Cen?) +E&“n. (7.3)

Critical point coordinates obey the following equations,

oA+ Brl—%nz ~0 (7.4)
Xn\ B _ 2
< S >qo E= e (7.5)

with the additional requirememt > O .
From the equation (7.4) we immediately find,

A
M2= g BT aac

Itis known (for a quick introduction see e.§:]28]), that wguation of a typex+b = p™+d a,c #
0, can be exactly solved in terms of the Lami/(tz) function [29]. By definition, it is a solution
of the equation,

(7.6)

z=W(z)e"® (7.7)

The functionwé” is not injective andV is multivalued (except for 0). If we look for real-valued
W then the relation[(7]7) is defined only fee> 1/e, and is double-valued of+-1/¢,0).

Let us introduce the notatioig(x) for the upper branch. It is defined atl/e < x < o« and
it is monotonously increasing from -1 tpeo. The lower branch is usually denotéd 1(x). It is
defined only on-1/e < x < 0 and it is monotonously decreasing from -1-te.

In these terms the general solution pf|(7.5) is given by,

B
1 Ee nc B
qo_EW( nc >+2r;C (7.8)

3Herein the notion of critical point implies a stationary one

11
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Since we have two values gfand the realV is double-valued, then the maximal number of critical
points is four. Howeven must be positive and real, aggdmust be real. From these requirements
one obtains the restrictions on the coefficients, which idean existence of each critical point.

We shall denote our critical points &s,n). Here the first indexm marks the signt- and
corresponds to the type of a chosgfrom (7.6). Indexn ranges over-1,0 and corresponds to the
chosen branch a function. We specify a type of each critical point with théphef the Hessian
matrix eigenvalues and find the following results for theegatable composition of coefficient
signs.

We seek for combinations of signs of the coefficieftB, C, E which provide aminimumitrig-
gering the spontaneous EW symmetry breaking at a final stagesmic evolution. There are 11
combinations of signs which are forbidden as they don't pl@the existence of a local minimum.

sign (A) | sign(B) | sign(C) | sign(E)

+ + + +
- - + -
- + - +
+ + - +

Only five combinations of signs can support the required mminmn.

sign (A) | sign(B) | sign(C) | sign(E)

+ + + -
+ - + -
- + + -
+ - - +
+ - - _

7.2 Transition from symmetric phaseto Electroweak symmetry breaking phase and choice
of signs

Now let's examine the possibility of scenario when at the tage of the Universe evolution
one deals with a massless world with the vanishing v.e.vhe@Higgs field(H;,) = 0 (symmetric
phase). Thus we adopt that every initial paig,,Hi, = 0) for starting evolution is acceptable if
the functionV|4—q,(H) has a local minimum &t = 0 and if we can roll down from the initial
point to the final one which is a local minimum correspondinghe Higgs phase. We have listed
five combinations of signs of the parameté&;sB, C, E which provide the existence of the local
minimum . Nevertheless not all of these combinations supperabove transition scenario. Indeed
one can prove that this scenario can be realized only fortipedh, B,C and negativeE. For
this case the solution for minimum belongs to the clgss—1) and the minimum (final-stage)
coordinates are given by,

4A
— >O7 7.9
N = —g 1 VBt 4AC 79
B
1 Ee 7fin® B
(Pfin = —W,l (710)

+ .
N£inC 2n¢inC

12
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Figure 1: View of the effective Higgs-dilaton potential in the vidipiof its two symmetric local minima:
H =Hn=2.29 andp = @, = —0.72. Colored lines represent the sections of the plot of therg@l by the
surfaces of constamt and constant. Parameters are taken as followls=1,B=2.1,C=0.2,E = —-2.

The requirement fop to be real leads to,

Emin<E <0, Emin=-Cnfin eXp{—1+ } (7.11)
N+inC
The additional bounds exist on the coefficients,
B4 +E >0, (7.12)

to guarantee that the initial point is in the symmetric phaSeidently the phase transition point
during evolution appears fagr = (1/2)In(—E/B) < @,. It can be shown thadsi, < @it <O
and thereford8+ E > 0. We remark that the latter inequality entgdi,n| > |E| . We summarize
our finding in Fig[IL.

8. Conclusions

The main conclusions of this paper are:
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e The bosonic spectral action can be provided by restorafisnade invariance in the fermion
world or

e the bosonic spectral action can emerge from scale noniémge of fermion world in terms
of composite dilation; the two effective potentials differsign;

e the requirement to trigger EW breaking phase transitiomdwvolution to the Higgs poten-
tial minimum gives a favor to the composite nature of dilaton
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