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Abstract. We describe under a various conditions abelian subgroups of
the automorphism group Aut(Tn) of the regular n-ary tree Tn, which are
normalized by the n-ary adding machine τ = (e, ..., e, τ)στ where στ is the
n-cycle (0, 1, ..., n− 1). As an application, for n = p a prime number, and
for n = p2 when p = 2, we prove that every finitely generated soluble sub-
group of Aut(Tn), containing τ is an extension of a torsion-free metabelian
group by a finite group.
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1. Introduction

Adding machines have played an important role in dynamical systems, and
in the theory of groups acting on trees : see [1, 2, 5, 4, 10].

An element α in the automorphism groupAn = Aut(Tn) of the n-ary tree Tn,
is represented as α = α|φ = (α|0, ..., α|n−1)σα where φ is the empty sequence
from the free monoid M generated by Y = {0, 1, .., n− 1}, where α|i ∈ An
(i ∈ Y )-called 1st level states of α- and where σα (the activity of α) is a
permutation in the symmetric group Σn on Y extended ’rigidly’ to act on the
tree; if = e, we say α inactive. In applying the same representation to α|0 we
produce α|0i where i ∈ Y and in general we produce {α|u | u ∈M } the set of
states of α. Following this notation, the n-ary adding machine is represented
as τ = (e, ..., e.τ)στ where e is the identity automorphism an στ is the regular
permutation σ = (0, 1, ..., n− 1). In this sense the adding machine may be
viewed as an infinite variant of the regular permutation which often appears
in geometric and combinatorial contexts.

A characteristic feature of τ is that its n-th power τn is the diagonal au-
tomorphism of the tree (τ, ..., τ). This fact implies that the centralizer of the
cyclic group 〈τ〉 in An is equal to its topological closure < τ > in An seen as
a topological group with respect to the the natural topology induced by the
tree.

A large variety of subgroups of An which contain τ have been constructed,
including finitely generated groups which are torsion-free and just non-solvable,
yet without free subgroups of rank 2 [3, 6], and generalizations thereof [9], as
well as constructions of free groups of rank 2 [11]. Yet solvable groups which
contain τ are expected to have restricted structure [2]. For nilpotent groups
we show

Proposition. Let G be a nilpotent subgroup of An which contains the
n-adic adding machine τ . Then G is a subgroup of < τ > .

Let Zn be the ring of n-adic integers and U (Zn) its subgroup of units. The
normalizer of < τ > in An is isomorphic to the holomorph of Zn, the semi-
direct product Zn o U (Zn), and is therefore metabelian.

The most visible examples of finitely generated solvable groups containing
τ are conjugate to subgroups of those belonging to the sequence of groups

Γ0 = NAn< τ >,Γ1 = (×nΓ0) oG1, ...,Γi+1 = (×nΓi) oGi+1, ...

where ×nΓi is a direct product of n copies of Γi (seen as a subgroup of the 1st
level stabilizer of the tree) and where Gi is a solvable subgroup of Σn in its
canonical action on the tree, containing the cycle στ . We note that for all i,
the groups Γi are metabelian by ’finite solvable subgroups of Σn’. It was shown
by the second author that for n = 2, that finitely generated solvable groups
which contain the binary adding machine are conjugate to some subgroups of
Γi acting on the binary tree [7].
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The description for degrees n > 2 requires a classification of solvable sub-
groups of Σn which contain the cycle σ = (0, 1, ..., n− 1)[8]. This is an open
problem, even for metabelian groups. On the other hand, the answer for prim-
itive solvable subgroups of Σn is simple and classical. For then, n is a prime
number p or n = 4. In case n = p, the solvable subgroups Gi can all be taken
to be the normalizer F = NΣn (〈σ〉) of order p (p− 1) and in case n = 4, the
Gi’s can all be taken to be the symmetric group Σ4.

Given this background, the main theorem of this paper is
Theorem A. Let n = p, a prime number, or n = 4. Then any finitely

generated solvable subgroup of An,which contains the n-ary machine τ is con-
jugate to a subgroup of Γi for some i.

The result follows first from general analysis of the conditions [β, βτ
x
] = e

(for some β ∈ An and all x ∈ Z), their impact on the 1st level states of the
subgroup 〈β, τ〉 and then how these in turn translate successively to conditions
on states at lower levels. It is somewhat surprising that the process converges
to a clear global description for trees of degrees p and 4.

If σβ is either a power of στ or a transposition, we describe abelian subgroups
normalized by τ .

Theorem B. Let B be an abelian subgroup of An normalized by τ , let
β = (β|0, β|1, · · · , β|n−1)σβ ∈ B and define the subgroup H = 〈β|i (i ∈ Y ) , τ〉
generated by the states of β and τ .
(I) Suppose σβ = (στ )

s for some integer s and set m = n
gcd(n,s)

. Then, H is

metabelian-by-finite. Indeed,on defining the subgroup

K =
〈

[β|i, τ k], β|iβ|i+sβ|i+2s · · · β|i+(m−1)s | k ∈ Z, i ∈ Y
〉

(the bar notation means ’modulo m’) then K is a normal subgroup of H and
O = K 〈τ〉 is a metabelian normal subgroup of H where H

O
is a homomorphic

image of a subgroup of the wreath product Cm oCn of the cyclic groups Cm, Cn.
(II) Let n be an even number. Then H is a metabelian group if s = n

2
or σβ

is a transposition.
Let P be a subgroup of Σn. The layer closure of P in An is the group L (P )

formed by elements of An all of whose states lie in P . The following result is
yet another characterization of the adding machine.

Theorem C. Let n be an odd number, σ = (0, · · · , n − 1) ∈ Σn and let
L = L (〈σ〉), the layer closure of 〈σ〉 in An. Let s be an integer relatively
prime to n and let β = (β|0, β|1, · · · , β|n−1)σs ∈ L be such that [β, βτ

x
] = e

for all x ∈ Z. Then β is a conjugate of τ in L.

2. Preliminaries

We start by introducing definitions and notation. The n-ary tree Tn can be
identified with the free monoidM =< 0, 1, .., n−1 >∗ of finite sequences from
Y = {0, 1, ..., n− 1}, ordered by v ≤ u provided u is an initial subword of v.
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The identity element of M is the empty sequence φ. The level function for
Tn, denoted by |m| is the length of m ∈M; the root vertex φ has level 0.
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Figure 1. The Binary Tree

The action ρ : i → j of a permutation ρ ∈ Σn will be from the right and
written as (i) ρ = j or as iρ = j. If i, j are integers then the action of ρ on
i is to be identified with its action on its representatives i in Y , modulo n .
Permutations σ in Σn are extended ’rigidly’ to automorphisms of An by

(y.u)ρ = (y)ρ.u, ∀ y ∈ Y, ∀ u ∈M.

An automorphism α ∈ An induces a permutation σα on the set Y . Conse-
quently, α affords the representation α = α′σα where α′ fixes Y point-wise and
for each i ∈ Y , α′ induces α|i on the subtree whose vertices form the set i ·M.
If j is an integer the α|j will be understood as α|j where j is the representative
of j in Y modulo n.

Given i in Y , we use the canonical isomorphism i · u 7→ u between i · M
and the tree Tn, and thus identify α|i with an automorphism of Tn; therefore,
α′ ∈ F(Y,An), the set for functions from Y into An, or what is the same, the
1st level stabilizer Stab(1) of the tree. This provides us with the factorization
An = F(Y,An) · Σn.

Let α, β, γ ∈ An. Then following formulas hold

(1) σα−1 = (σα)−1 , σασβ = σαβ,

(2) (α−1)|u = α|
(u)α

−1 ,

(3) (αβ)|u = (α|u) (γ|u) where γ|u = β|(u)α

(4) γ = α−1βα⇔ σγ = σ−1
α σβσα,

(5) γ|(i)σα = α|−1
i β|iα|(i)σβ , ∀i ∈ Y .

(6) θ = [β, α] = β−1βα ⇒ σθ = [σβ, σα],

(7) θ|(i)σαβ =
(
β|(i)σα

)−1
(α|i)−1 (β|i)

(
α|(i)σβ

)
,∀i ∈ Y .
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(8) (αm) |i = (α|i)
(
α|(i)σα

) (
α|(i)σ2

α

)
· · ·
(
α|(i)σαm−1

)
(9) (βα) |u =

(
β|(u)α−1

)α|(u)α−1 ,where β ∈ Stab(k) and |u| ≤ k.

An automorphism α ∈ An corresponds to an input-output automaton with
alphabet Y and with set of states Q(α) = {α|u | u ∈ M}. The automaton α
transforms the letters as follows: if the automaton is in state α|u and reads
a letter i ∈ Y then it outputs the letter j = (i)α|u and its state changes to

α|ui; these operations can be best described by the labeled edge α|u
i|j−→ α|ui.

Following terminology of automata theory, every automorphism α|u is called
the state of α at u.

The tree Tn is a topological space which is the direct limit of its truncations
at the n-th levels. Thus the group An is the inverse limit of the permutation
groups it induces on the n-th level vertices. This transforms An into a topo-
logical group. An infinite product of elements An is a well-defined element of
An provided for any given level l, only finitely many of the elements in the
product have non-trivial action on vertices at level l. Thus, if α ∈ An and ξ
=
∑

i≥0 ain
i ∈ Zn then αξ = αa0 .αna1 ..αn

iai ... is a well define element of An.

The topological closure of a subgroup H in An will be indicated by H. We
note that if H is abelian then

H = {hξ|h ∈ H, ξ ∈ Zn }.
One of the characterizing aspects of the n-ary adding machine is that the
centralizer of τ is a pro-cyclic group; namely,

CAn(τ) = 〈τ〉 = {τ ξ | ξ ∈ Zn}.
Let v = yu where y ∈ Y, u ∈M. The image of v under the action of α is

(v)α = (yu)α = (y)σα.(u)α|y.
The action extends to infinite sequences (or boundary points of the tree) in
the same manner. A boundary point of the tree c = c0c1c2 . . .where ci ∈ Y for
all i, corresponds also to the n-adic integer ξ =

∑
{cini|i ≥ 0} ∈ Zn. Thus the

action of the tree automorphism α can thus be translated to an action on the
ring of n-adic integers. We will indicate c0 by ξ which is ξ modulo n. In the
case of the automorphism τ = (e, e, ..., e, τ)σ, the action of τ on c is

(c) τ =

{
(c0 + 1) c1c2 . . . if 0 ≤ c0 ≤ n− 2,
0(c1c2, . . .)

τ , if c0 = n− 1,

which translates to the n-ary addition

ξτ = 1 + ξ.
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Figure 2. The binary adding machine

3. The holomorph of the n-adic integers

The holomorph of Zn is the extension Zn by the its group of units U(Zn) in
its natural action on Zn. An element ξ is a unit in Zn if and only if ξ is a unit in
Z modulo n. The subgroup of U(Zn) consisting of elements ξ with ξ = 1 is de-
noted by by Z1

n. This subgroup has the transversal {j | 1 ≤ j ≤ n− 1, gcd (j, n) = 1}
in Zn and therefore has index [U(Zn) : Z1

n] = ϕ (n) where ϕ is the Euler func-

tion. The normalizer of 〈τ〉 in the group of automorphisms of the tree is the
holomorph of Zn.

Given α ∈ An we denote the diagonal automorphism (α, ..., α) by α(1) and

define inductively α(i+1) =
(
α(i)
)(1)

for all i ≥ 1.

3.1. Powers of τ . Let ξ =
∑

i≥0 ain
i ∈ Zn. Then a0 = ξ and

∑
i≥1 ain

i−1 =
ξ−ξ
n

.

Lemma 1. Let ξ ∈ Zn. Then

τ ξ = (τ
ξ−a0
n , · · · , τ

ξ−a0
n , τ

ξ−a0
n

+1, · · · , τ
ξ−a0
n

+1︸ ︷︷ ︸
a0 terms

)σa0
τ .

Proof. For j an integer with 1 ≤ j ≤ n− 1, we have

τ j =

e, ..., e, τ, · · · , τ︸ ︷︷ ︸
j terms

σjτ

and τn = (τ, ..., τ) = τ (1).
Given ξ =

∑
i≥0 ain

i, then
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τa0 = (e, · · · , e, τ, · · · , τ︸ ︷︷ ︸
a0 terms

)σa0
τ ,(10)

τajn
j

= τ (ajn
j−1)n =

(
τajn

j−1
)(1)

,(11)

τ ξ = (τ
ξ−a0
n , · · · , τ

ξ−a0
n , τ

ξ−a0
n

+1, · · · , τ
ξ−a0
n

+1︸ ︷︷ ︸
a0 terms

)σa0
τ(12)

= (τ
ξ−ξ
n , · · · , τ

ξ−ξ
n , τ

ξ−ξ
n

+1, · · · , τ
ξ−ξ
n

+1︸ ︷︷ ︸
ξ terms

)σξτ .(13)

�

As we have seen, the description of τ ξ involves the partition of the interval
[0, ..., n − 1] into two subintervals. Therefore we introduce the step function
δ : Z

nZ ×
Z
nZ → {0, 1} given by

δ(i, j) =
i+ j − i+ j

n
=

{
0, if 0 ≤ i ≤ n− j
1, otherwise

.

which we will call the Polarizer Function. With this,

τ ξ =
(
τ
ξ−ξ
n

+δ(i,ξ)
)

0≤i≤n−1
σξτ .

The function δ extends to Zn×Zn, simply by δ(η, κ) = δ(i, k) where i = η, k =
κ. Note that

n−1∑
i=0

δ(i, j) = j.
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Figure 3. Polarizer Function for n = 4.
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3.2. Centralizer of τ .

Lemma 2. CAn (τ) = 〈τ〉.

Proof. Let α ∈ An commute with τ . Then, [σα, στ ] = e and therefore σα =
(στ )

s0 for some integer 0 ≤ s0 ≤ n− 1. Therefore, β = ατ−s0 = (β|0, ..., β|n−1)
commutes with τ and σβ = e. Now,

βτ = ((β|n−1)τ , β|0, ..., β|n−1) = β

implies β|i = β|0 for all 0 ≤ s0 ≤ n− 1 and β|0 commutes with τ . Therefore

β = (β|0)(1) and β|0 replaces α in previous argument. Hence,

there exists an integer 0 ≤ s1 ≤ n − 1 such that γ = β|0τ−s1 = (γ|0)(1).
From which we conclude

α = βτ s0 = (β|0)(1) τ s0

=
(

(γ|0)(1) τ s1 , .., (γ|0)(1) τ s1
)
τ s0

= (γ|0)(2) τns1τ s0 = (γ|0)(2) τns1+s0 .

Inductively then, we obtain the desired form α = τ ξ where ξ = s0+ns1+.... �

A characterization of nilpotent groups which contain τ follows.

Proposition 1. Let G be a nilpotent subgroup of An which contains the n-adic
adding machine. Then G is a subgroup of < τ > .

Proof. Suppose G is a nilpotent group of class k > 1 which contains τ . Then,
the center Z (G) is contained in 〈τ〉. Let j be the maximum index such that

Zj (G) ≤ 〈τ〉; therefore j < k. Let α ∈ Zj+1 (G) \Zj (G); then [τ, α] = τ ξ and

ξ 6= 0. Now, [τ, α, α] =
[
τ ξ, α

]
= e. Yet

[
τ ξ, α

]
= [τ, α]ξ = τ ξ

2
= e and so,

ξ = 0 and [τ, α] = e; a contradiction. �

3.3. Normalizer of the topological closure 〈τ〉.

Lemma 3. The group Γ0 = NAn

(
〈τ〉
)

is metabelian. Indeed, the derived

subgroup Γ′0 is contained in 〈τ〉.

Proof. Let α, β ∈ Γ0, then τα = τ ξ and τβ = τ η for some η, ξ ∈ U(Zn).
Therefore,

τα = τ ξ, τ = (τ ξ)α
−1

= (τα
−1

)ξ,

τα
−1

= τ ξ
−1

.

Likewise, τβ
−1

= τ η
−1

. Thus, τ [α,β] = τ and Γ′0 ≤ CAn(τ) = 〈τ〉 follows. �

We present a property of the polarizer function δ which we will use in the
sequel.
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Lemma 4. For all i, j ∈ Z, ξ ∈ Zn we have

jξ − jξ
n

− j
(
ξ − ξ
n

)
+ δ(i, jξ) =

j−1∑
k=0

δ(i+ kξ, ξ).

Proof. Since

(τ ξ)j|i = (τ ξ)|i.(τ ξ)|i+ξ · · · (τ ξ)|i+(j−1)ξ,

(τ ξ)|i = τ
ξ−ξ
n

+δ(i,ξ)

the assertion follows from

τ
jξ−jξ
n

+δ(i,jξ) = τ
j
(
ξ−ξ
n

)
+
∑j−1
k=0 δ(i+kξ,ξ).

�

Proposition 2. Suppose α ∈ An satisfies τα = τ ξ for some ξ ∈ U(Zn). Then:

(i)

α|i = α|0τµi , (1 ≤ i ≤ n− 1)};
where

µi = i
(ξ − ξ)
n

+
i−1∑
k=0

δ((v(α) + k)ξ, ξ)

and 0 ≤ v(α) ≤ n− 1 is such that

(0)σα = v(α)ξ;

(ii) (recursion) τα|0 = τ ξ;
(iii)

(j)σα = (v(α) + j)ξ, (0 ≤ j ≤ n− 1)}.
If ξ ∈ Z1

n then v(α) = 0, (j)σα = jξ = j, µi = i ξ−1
n

.

Proof. Since σσατ = σξτ , we have

((0)σα, (1)σα, · · · , (n− 1)σα) = (0, ξ, 2ξ, · · · , (n− 1)ξ).

Therefore, there exists v(α) ∈ Y such that (0) σα = v(α)ξ and so,

(j)σα = (v(α) + j)ξ, ∀j ∈ Y .

Now, τα = τ ξ is equivalent to(
σσατ = σξτ and α|(i)σsτ = ((τ s)|i)−1 α|i(τ ξs)|(i)σα ,
∀i ∈ Y, ∀s ∈ Z, by...

)
.

The latter conditions are equivalent to(
α|0 = α|(0)σnτ = ((τn)|0)−1 α|0(τ ξn)|(0)σα

and α|i = α|(0)σiτ
= ((τ i)|0)

−1
α|0(τ ξi)|(0)σα ∀i ∈ Y − {0}

)
and these in turn are equivalent to
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α|i = α|0τ

ξi−ξi
n

+δ(v(α)ξ,ξi) = α|0τµi

where µi = i
(
ξ−ξ
n

)
+
∑i−1

k=0 δ((v(α) + k)ξ, ξ) ∀i ∈ Y − {0}

)
.

Substitute i = 0 in

jξ − jξ
n

+ δ(i, jξ) = j

(
ξ − ξ
n

)
+

j−1∑
k=0

δ(i+ kξ, ξ),∀i, ξ ∈ Z.

to get
∑i−1

k=0 δ(kξ, ξ) = 0. The rest of the assertion follows directly. �

Corollary 1. Let ξ ∈ U (Zn) and µi be as above. Then α = (α)(1) (e, τµ1 , ..., τµn−1)
conjugates τ to τ ξ. In particular, if ξ ∈ Z1

n, then

α = (α)(1) (e, τ
ξ−1
n , τ 2 ξ−1

n , · · · , τ (n−1) ξ−1
n )

denoted by λξ conjugates α to τ ξ.

Although we have computed above an automorphism which inverts τ , we
give another with a simpler description. Define the permutation

ε = (0, n− 1) (1, n− 2) ...

([
n− 2

2

]
,

[
n+ 1

2

])
.

Then ε inverts στ = (0, 1, ..., n− 1) and

ι = ι(1)ε

inverts τ .
Define

Λ = {λξ | ξ ∈ Z1
n},

Ψ = {λξτ t | ξ ∈ Z1
n, t ∈ Zn}

and call Λ the monic normalizer of 〈τ〉.

Proposition 3. (i) Λ is an abelian group isomorphic to Z1
n;

(ii) Ψ = Λ n 〈τ〉 ∼= Z1
n n Zn;

(iii) the derived subgroup Ψ′ = 〈τn〉.

Proof. (i) Let ξ, θ ∈ Z1
n. Then, as λξ, λθ and λξθ are inactive, its follows that

(λξλθλ
−1
ξθ )|i = (λξ)|i(λθ)|i ((λξθ)|i)−1

= λξτ
i ξ−1
n λθτ

i θ−1
n

(
λξθτ

i ξθ−1
n

)−1

= λξλθλ
−1
θ τ i

ξ−1
n λθτ

i θ−1
n τ−i

ξθ−1
n λ−1

ξθ

= λξλθ

(
τ iθ

ξ−1
n τ i

θ−1
n τ−i

ξθ−1
n

)
λ−1
ξθ = λξλθλ

−1
ξθ ,∀i ∈ {0, · · · , n− 1}.

Therefore, λξλθ = λξθ. In addition, λξ = e if and only if ξ = 1.
(ii) This factorization is clear.
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(iii) Let θ = 1 + nθ′, η ∈ Zn. Then

[τ η, λθ] = τ−ηλθ−1τ ηλθ =

τ−ητ ηθ = τ η(θ−1) = (τn)ηθ
′
.

�

We prove below the existence of conjugates τα of τ in NAn

(
〈τ〉
)

, which lie

outside 〈τ〉. This fact provides us with the first important type of metabelian

groups 〈τ〉 〈τα〉 containing τ .

Proposition 4. Suppose α = (α|0, α|1, · · · , α|n−1) ∈ An satisfies τα = λξτ
ρ

for some ξ ∈ Z1
n, and ρ = 1 + κn ∈ Z1

n. Then α|i+1 = (α|0)λξi+1τ
1
n

[
ρ ξ
i+1−1
ξ−1

−(i+1)

]
(0 ≤ i ≤ n− 2) ,

τα|0 = λξnτ
1
n

[
ρ ξ
n−1
ξ−1

]
.

.

The converse is true for n ≥ 3 and for n = 2 provided 4|ξ − 1.

Proof. From τα = λξτ
1+κn, we obtain using (4) and (5),{

λξτ
i ξ−1
n

+κ = α|−1
i αi+1, if i ∈ Y − {n− 1}

λξτ
(n−1) ξ−1

n
+κ+1 = α|−1

n−1τα|0.

Therefore,

α|i+1 = α|0λξτκλξτ
ξ−1
n

+κ · · ·λξτ i
ξ−1
n

+κ, for i = 0, 1, · · · , n− 2,

α|0 = τ−1α|n−1λξτ
(n−1) ξ−1

n
+κ+1.

The first equations can be expresses as

α|i+1 = α|0λξi+1τκ
∑i
j=0 ξ

j+ ξ−1
n
ξi
∑i
j=1 j(ξ

−1)j

= α|0λξi+1τ
1
n

[
(1+κn) ξ

i+1−1
ξ−1

−(i+1)

]

and the last as

α|0 = τ−1α|0λξnτ
ξ
n

[
(1+κn) ξ

n−1−1
ξ−1

−(n−1)

]
τ (n−1) ξ−1

n
+κ+1

= λξnτ
1
n

[
(1+κn) ξ

n−1
ξ−1

]
.

If n ≥ 3 then τα|0 = λξnτ
1
n

[
(1+κn) ξ

n−1
ξ−1

]
satisfies the same conditions as those

for α; namely, both ξn, ρ′ = 1
n

[
(1 + κn) ξ

n−1
ξ−1

]
are in Z1

n. If n = 2 then

ξ = 1 + 2ξ′, ρ′ = 1
2

[
(1 + 2κ) ξ

2−1
ξ−1

]
= (1 + 2κ) (1 + ξ′) and so, ρ′ ∈ Z1

2 implies

ξ = 1 + 4ξ′′. �
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4. Abelian groups B normalized by τ

Let B be an abelian subgroup of An normalized by τ . For a fixed β ∈ B,
we define the ’state closure’ of 〈β, τ〉 as the group

H = 〈β|i (i ∈ Y ) , τ〉 .
We will be dealing frequently with the following subgroups of H ,

N =
〈
[β|i, τ ki ] | ki ∈ Z, i ∈ Y

〉
M = N 〈τ〉 .

When σβ = (στ )
s for some integer s we will also be dealing with the subgroups

K =
〈
N, β|iβ|i+sβ|i+2s · · · β|i+(m−1)s | i ∈ Y

〉
,

O = K 〈τ〉
where s = n

gcd(n,s)
.

We show that when n is a power of a prime number pk, the activity range
of β narrows down to a Sylow p-subgroup of Σn. This is used to restrict the
location of an abelian group B normalized by τ , within An
Proposition 5. Let n = pk, σ = (0, 1, ..., n− 1) and P be a Sylow p-subgroup
P of Σn which contains σ. Then
(i) P is isomorphic to ((... (...Cp)wr)Cp)wrCp, a wreath product of the cyclic
group Cp of order p iterated k−1 times; the normalizer of P in Σn is NΣn(P ) =
P 〈c〉 where c is cyclic of order p− 1;
(ii) P is the unique Sylow p-subgroup P of Σn which contains σ;
(iii) if W is an abelian subgroup of Σn normalized by σ then W is contained
in P ;
(iv) the subgroup B is contained in the layer closure L = L

(
NΣp(P )

)
.

Proof. (i) The structure of P as an iterated wreath product is well-known.

The center of P is Z =
〈
z
(

= σp
k−1
)〉

and CΣn(z) = P . Therefore, NΣn(P ) =

NΣn(Z) = P 〈c〉 where c is cyclic of order p− 1.
(ii) If σ ∈ P g for some g ∈ Σn then zg ∈ CΣn(σ) = 〈σ〉 and therefore

〈zg〉 = 〈z〉 , P g = P . Thus, P is the unique Sylow p-subgroup of Σn to contain
σ.

(iii) Let W be an abelian subgroup of Σn normalized by σ. Let V = W <
σ > and V0 be the stabilizer of 0 in V. Then, since σ is a regular cycle, it
follows that V = V0 〈σ〉 , V0 ∩ 〈σ〉 = {e}. Suppose that there exists a prime q
different from p which divides the order of W and let Q be the unique Sylow
q-subgroup of W . Then Q is the unique Sylow q-subgroup of V and Q ≤ V0.
Therefore, Q = {e} and W a p-group. As σ ∈ W , we conclude W ≤ P ..

(iv) Since the normal closure of 〈σβ〉 under the action of 〈στ 〉 is an abelian
subgroup, it follows that σβ ∈ P . Furthermore, as

〈
[β|u, τ k] | k ∈ Z

〉
is an
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abelian group normalized by τ , it follows that [σβ|u , σ] ∈ P and therefore
σσβ|u ∈ P . Thus, we conclude σβ|u ∈ NΣn(P ) and β ∈ L. �

Lemma 5. Let γ ∈ An. Conditions (i), (ii) below are equivalent:

(i) [γ, γτ
k
] = e for all k ∈ Z;

(ii) [τ k, γ, γ] = e for all k ∈ Z.
Condition (i) implies
(iii)

〈
[γ, τ k] | k ∈ Z

〉
is a commutative group.

Condition (iii) implies〈
[γ|u, τ k] | k ∈ Z

〉
is a commutative group for all indices u.

Proof. First,

[γ, γτ
k
] = γ−1

(
τ−kγ−1τ k

)
γ
(
τ−kγτ k

)
= γ−1

(
τ−kγ−1τ kγ

)
γ
(
γ−1τ−kγτ k

)
= [τ k, γ]γ[γ, τ k]

and so,

[γ, γτ
k

] = e⇔ [γ, τ k]γ = [γ, τ k].

Furthermore, since

(14) [γ, τ k1 ]τ
k2 = [γ, τ k2 ]−1[γ, τ k1+k2 ]

for all integers k1, k2, condition (ii) implies

[γ, τ k1 ][γ,τ
k2 ] = [γ, τ k1 ]γ

−1τ−k2γτk2 = [γ, τ k1 ]τ
−k2γτk2

=
(
[γ, τ−k2 ]−1[γ, τ k1−k2 ]

)γτk2

=
(
[γ, τ−k2 ]−1[γ, τ k1−k2 ]

)τk2

= [γ, τ k1 ].

Finally, we note that by (6) and (7),

([γ, τnk])|(i)σγ = (γ−1)|
(i)σγ

(τ−nk)|i (γ|i) (τnk)|
(i)σγ

=
(
γ|−1
i

)
τ−k (γ|i) τ k

= [γ|i, τ k].

Since [γ, τ kn] is inactive for all k ∈ Z, we obtain {[γ|i, τ k] | k ∈ Z} is a
commutative set for all i. The rest of the assertion follows by induction on the
tree level. �

Obviously,
〈
[β, τ k] | k ∈ Z

〉
is normalized by τ and if condition (i) holds then

it is an abelian normal subgroup of 〈β, τ〉.

Proposition 6. Let l ≥ 1 and suppose α, γ ∈ Stab(l) satisfy [α, γτ
x
] = e for

all x ∈ Z. Then

[α|u, γ|vτ
x

] = e ∀u, v ∈M
having |u| = |v| ≤ l and ∀x ∈ Z.
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Proof. We start with the case l = 1. Write x = r + kn where r = x.
By (4) and (5), (

γτ
x) |(i)τx = (τx)|−1

i γ|i(τx)i,(
γτ

x) |i = τ−k−δ(i−r,r)γ|i−rτ k+δ(i−r,r).

As [α, γτ
x
] = e and α, γτ

x ∈ Stab(1),we have, for all i, j, r ∈ Y and all
k, x ∈ Z,

[α|i, (γτ
x

)|i] = e, [α|i, γ|τ
k+δ(i−r,r)

i−r ] = e,

[α|i, (γ|j)τ
x

] = e.

The general case l ≥ 1 follows by induction. �

We apply the above to β ∈ B.

Corollary 2. Let σβ = e. Then for all i, j ∈ Y and for all x ∈ Z
[β|i, β|τ

x

j ] = e.

Then we derive further relations in H = 〈β|i (i ∈ Y ) , τ〉.
Proposition 7. Let β ∈ B. Then the following relations hold in H for all
v ∈ Z and for all i ∈ Y :

(I) (
τ v|(i)σ−vτ

)−1 (
β|(i)σ−vτ

)(
τ v|(i)σ−vτ σβ

)(
β|(i)σ−vτ σβσvτ

)
= (β|i)

(
τ v|(i)σβσ−vτ

)−1 (
β|(i)σβσ−vτ

)(
τ v|(i)σβσ−vτ σβ

)
,

[σβ, σ
σvτ
β ] = e;

(II)

[β|i, τ v]β|(i)σβ = [β|(i)σβ , τ
v];

(III)
β|(i)σββ|(i)σ2

β
· · · β|(i)σsiβ commutes with [β|i, τ v]

where si is the size of the orbit of i under the action of 〈σβ〉.

Proof. (I) Clearly [β, βτ
v
] = e implies [σβ, σ

σvτ
β ] = e. It also implies(

β|(i)σ
βτ
v

)−1 (
βτ

v |i
)−1

β|i
(
βτ

v |(i)σβ
)

= e,

(βτ
v |i
(
β|(i)σ

βτ
v

)
= β|i

(
βτ

v |(i)σβ
)
,

(
τ v|(i)σ−1

τv

)−1 (
β|(i)σ−1

τv

)(
τ v|(i)σ−1

τv σβ

)(
β|(i)σ

βτ
v

)
= (β|i)

(
τ v|(i)σβσ−1

τv

)−1 (
β|(i)σβσ−1

τv

)(
(τ v)|(i)σβσ−1

τv σβ

)
.
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(II) On changing v to nv in (I), we obtain:

τ−v (β|i) τ v
(
β|(i)σβ

)
= (β|i) τ−v

(
β|(i)σβ

)
τ v,(

β|(i)σβ
)−1 (

β|−1
i τ−vβ|iτ v

) (
β|(i)σβ

)
= (

(
β|(i)σβ

)−1
β|−1
i )β|iτ−v

(
β|(i)σβ

)
τ v.

(III) From (II), we derive

[β|i, τ v]

(
β|(i)σββ|(i)σ2

β
···β|

(i)σ
si
β

)
= [β|(i)σβ , τ

v]

(
β|

(i)σ2
β
···β|

(i)σ
si
β

)
= ... = [β|i, τ v].

�

5. The case β ∈ B with σβ ∈ 〈στ 〉

This section is devoted to the proof of the second part (I) of Theorem B.
For this purpose, we introduce the following combination of step functions

∆s(i, t) = δ(i, t− i)− δ(i− s, t− i)
and call it the Inductor Function.

Lemma 6. Let β ∈ An such that [β, βτ
x
] = e for any x ∈ Z and let σβ = σsτ

for some s ∈ Y. Then,

τ∆s(i,t) (β|i−s) [β|i−s, τ z] (β|t)
= (β|t−s) (β|i) [β|i, τ z]τ∆s(i+s,t+s).

for all i, t ∈ {0, 1, · · · , n− 1}, z ∈ Z

Proof. Since σβ = σsτ , we have σβτx = σβ = σsτ .
From (4), (5), (6) and (7), we obtain

(15)
τ−

x−x
n
−δ(j−x,x)β|j−xτ

x−x
n

+δ(j−x+s,x)β|j+s
= β|jτ−

x−x
n
−δ(j+s−x,x)β|j+s−xτ

x−x
n

+δ(j+2s−x,x)

Setting k =
x− x
n

and r = x and using (15), we have

(16)
τ−k−δ(j−r,r)β|j−rτ k+δ(j+s−r,r)β|j+s
= β|jτ−k−δ(j+s−r,r)β|j+s−rτ k+δ(j+2s−r,r),

for all r, j ∈ Y and all k ∈ Z.
Also on setting t = j + s, i = j + s− r and z = k + δ(j + s − r, r) =

k + δ(i, t− i) and using (16), we obtain

τ−z+δ(i,t−i)−δ(i−s,t−i)β|i−sτ zβ|t
= β|t−sτ−zβ|iτ z−δ(i,t−i)+δ(i+s,t−i),

for all t, i ∈ {0, 1, · · · , n− 1} and all z ∈ Z.
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Thus, it follows that

τ δ(i,t−i)−δ(i−s,t−i)β|i−s[β|i−s, τ z]β|t
= β|t−sβ|i[β|i, τ z]τ−δ(i,t−i)+δ(i+s,t−i)

for all t, i ∈ {0, 1, · · · , n− 1} and all z ∈ Z. �

We develop below some properties of the ∆s function to be used in the
sequel.

Proposition 8. The inductor function satisfies

(i) ∆s(i, t) = δ(i,−s)− δ(t,−s) =

 0, if t, i ≥ s or t, i < s
1, if t < s ≤ i
−1, if i < s ≤ t

,

(ii) ∆s(i, t) = −∆s(t, i),
(iii) ∆s(i+ s, t+ s) = −∆−s(i, t),
(iv) ∆s(i, t) = ∆s(i, z) + ∆s(z, t),

(v)

n
(s,n)

−1∑
k=0

∆s(i+ ks, t+ ks) = 0,

(vi)
n−1∑
k=0

∆s(k, t) =

{
n− s, if t < s
−s if t ≥ s

for all i, t, z ∈ Z.

Proof.

(i) Using the definition δ(i, j) = i+j−i+j
n

we have

∆s(i, t) =
i+ t− i− t

n
− i− s+ t− i− t− s

n

=
i+−s− i− s

n
− t+−s− t− s

n

= δ(i,−s)− δ(t,−s)

=

 0, if t, i ≥ s or t, i < s
1, if t < s ≤ i
−1, if i < s ≤ t

.

(ii) Follows from (i).
(iii) Calculate

∆s(i+ s, t+ s) = δ(i+ s, t− i)− δ(i, t− i)
= − (δ(i, t− i)− δ(i+ s, t− i))
= −∆−s(i, t).

(iv) This part follows from (i).
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(v) From the definition of the Polarizer function
n

(n,s)
−1∑

k=0

δ(i+ ks, t− i) =

n
(n,s)

−1∑
k=0

δ(i+ (k − 1)s, t− i)

(vi) Finally, we have

n−1∑
k=0

∆s(k, t) =
∑s−1

k=0 ∆s(k, t) +
∑n−1

k=s ∆s(k, t)

(i)
=

{
n− s, if t < s
−s, if t ≥ s

.

�

With the use of the inductor function notation we obtain

Proposition 9. The following relations are verified in H = 〈β|i (i ∈ Y ) , τ〉,
for all x, z ∈ Z and all i, t ∈ Y :

(I) τ∆s(i,t)β|i−sβ|t = β|t−sβ|iτ∆s(i+s,t+s);

(II) [β|i−s, τ z]β|tτ
−∆s(i+s,t+s)

= [β|i, τ z];
(III) [[β|i, τ z], [β|t, τx]] = e.

Proof. Returning to Lemma 6, we have

τ∆s(i,t) (β|i−s) [β|i−s, τ z] (β|t)
= (β|t−s) (β|i) [β|i, τ z]τ∆s(i+s,t+s).

Consequently,

(17) τ∆s(i,t)β|i−sβ|t = β|t−sβ|iτ∆s(i+s,t+s)

and

(18) [β|i−s, τ z]β|tτ
−∆s(i+s,t+s)

= [β|i, τ z],
for all t, i ∈ Y and all z ∈ Z.

From (18) and (14), N =
〈
[β|i, τ ki ] | ki ∈ Z, i ∈ Y

〉
is a normal subgroup of

H. Moreover, by applying alternately the above equations, we obtain

[β|i, τ z][β|t,τ
k] = [β|i, τ z]β|

−1
t τ−kβ|tτk

= [β|i, τ z](τ
−∆s(i+s,t+s)τ∆s(i+s,t+s)β|−1

t τ−kβ|tτk)

(14)
=
(
[β|i, τ−∆s(i+s,t+s)]−1.[β|i, τ z−∆s(i+s,t+s)]

)(τ∆s(i+s,t+s)β|−1
t τ−kβ|tτ k

)
(18)
=
(
[β|i−s, τ−∆s(i+s,t+s)]−1.[β|i−s, τ z−∆s(i+s,t+s)]

)τ−kβ|tτ k
(14)
=

( (
[β|i−s, τ−k]−1.[β|i−s, τ−k−∆s(i+s,t+s)]

)−1(
[β|i−s, τ−k]−1.[β|i−s, τ−k+z−∆s(i+s,t+s)]

) )β|tτ k
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=
(
[β|i−s, τ−k−∆s(i+s,t+s)]−1.[β|i−s, τ−k+z−∆s(i+s,t+s)]

)β|tτ k
(18)
=
(
[β|i, τ−k−∆s(i+s,t+s)]−1.[β|i, τ−k+z−∆s(i+s,t+s)]

)τ k+∆s(i+s,t+s)

(14)
= [β|i, τ z].

�

Corollary 3. Let β ∈ An such that [β, βτ
x
] = e for every x ∈ Z with σβ = σsτ

for some s ∈ {0, 1, · · · , n− 1}. Then

M =
〈
[β|i, τ ki ], τ | ki ∈ Z, 0 ≤ i ≤ n− 1

〉
is a normal metabelian subgroup of H.

Proof. By Proposition 9 N =
〈
[β|i, τ ki ] | ki ∈ Z, 0 ≤ i ≤ n− 1

〉
is abelian and

normal in H. Since Nτ ∈ Z(H/N), it follows that M = N 〈τ〉 is a normal
subgroup of H and is clearly metabelian. �

We are ready to prove part (II) (i) of Theorem B.

Theorem 1. Let β ∈ An be such that [β, βτ
x
] = e, ∀x ∈ Z and σβ = σsτ for

some s ∈ Y and H = 〈β|0, · · · , β|n−1, τ〉. Then,

(i) the group O =
〈
[β|i, τx], β|jβ|j+s · · · β|j+(m−1)s, τ | i, j ∈ Y, x ∈ Zn

〉
is

an abelian normal subgroup of H;
(ii) the quotient group H/O is isomorphic to a subgroup of Cm o Cn.

In particular, H is metabelian-by-finite.

Proof. (i) Recall

N =
〈
[β|i, τ ki ] | ki ∈ Z, i ∈ Y

〉
,

K = N
〈
β|jβ|j+s · · · β|j+(m−1)s | j ∈ Y

〉
where m = n

gcd(n,s)
. Then, by Proposition 9, N is an abelian normal subgroup

of H.
By (18), we have

[β|i, τ z]β|jβ|j+s···β|j+(m−1)s

= [β|i+s, τ z]τ
∆t(i+2s,j+s)β|j+s···β|j+(m−1)s

= [β|i+2s, τ
z]τ

∆s(i+2s,j+s)+∆s(i+3s,j+2s)β|j+2s···β|j+(m−1)s

= [β|i, τ z]τ
∑m−1
k=0

∆s(i+(k+1)s,j+ks)

Prop.8(v)
= [β|i, τ z]

Thus,

(19) [[β|i, τ z], (βm)|j] = e, ∀i, j ∈ Y, ∀z ∈ Z
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Since σβ = σsτ , we have by Lemma 2

(20) [(βm)|i, (βm)|j] = e, ∀i, j ∈ Y .

Moreover,

(21) (βm)|τi = (βm)|i[(βm)|i, τ ].

Since [β, βτ
x
] = e, ∀x ∈ Z, it follows that [βm, βτ

x
] = e, ∀x ∈ Z.

Therefore, by (6) and (7),

e = (βm)|−1
(i)σ

βτ
x
(βτ

x

)|−1
i (βm)|i(βτ

x

)|(i)σβm ,∀x ∈ Z,∀i ∈ Y.

Now, as σβ = σsτ and σβm = e, we reach

(22) (βm)|i+s = (βm)|(β
τx )|i

i ,∀x ∈ Z,∀i ∈ Y .

By (4) and (5), the following

(βτ
x

)i = (τx)−1

(i)σ−1
τx
β|(i)σ−1

τx
(τx)|(i)σ−1

τx σβ
= (τx)|−1

i−xβ|i−x(τ
x)i−x+s

holds for all i ∈ Y and all x ∈ Z.
From which we derive

(23) (βτ
x

)|i = τ−
x−x
n
−δ(i−x,x)β|i−xτ

x−x
n

+δ(i−x+s,x),

for all i ∈ Y and all x ∈ Z.
Therefore, by (22) and (23),

(βm)|i+s = (βm)|τ
−x−xn −δ(i−x,x)β|i−xτ

x−x
n +δ(i−x+s,x)

i ,

for all i ∈ Y and all x ∈ Z..
On writing x = kn+ x = kn+ r, r ∈ Z in the above equation, we obtain

(βm)|i+s = (βm)|τ
−k−δ(i−r,r)β|i−rτ k+δ(i−r+s,r)

i

⇒ (βm)|τ
−k−δ(i−r+s,r)

i+s
= (βm)|β|i−rτ

−k−δ(i−r,r)[τ−k−δ(i−r,r), β|i−r]
i

⇒ (βm)|τ
−k−δ(i−r+s,r)[β|i−r, τ−k−δ(i−r,r)]τ k+δ(i−r,r)

i+s
= (βm)|β|i−ri

for all i, r ∈ Y and all k ∈ Z.
By (19), (21) and using the fact that N is abelian and normal in H, we find

(βm)|τ
δ(i−r,r)−δ(i−r+s,r)

i+s
= (βm)|β|i−ri

⇒ (βm)|τ
δ(i−r,i−r+s)

i+s
= (βm)|β|i−ri

for all i, r ∈ Y.
On setting j = i− r, we get

(24) (βm)|τ
δ(j,j+s)

i+s
= (βm)|β|ji
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for all i, j ∈ Y.
Further, by using equations (19),(20) (21), (24) and

(25) (βm)|i = β|iβ|i+s · · · β|i+(m−1)s,

we conclude that also K is an abelian normal subgroup of H.
Now, O = K 〈τ〉 is metabelian. Moreover it is normal in H, because

τβ|i = ττ−1τβ|i = τ [τ, β|i] ∈ O

for all i ∈ Y .
(ii) Consider the following Fibonacci type group

X =
〈
b0, · · · , bn−1 | bibj+s = bjbi+s, bibi+s · · · bi+(m−1)s = e,∀i, j ∈ Y

〉
.

Equations (17) and (18) show that
H

M
is a homomorphic image of X. We

will prove that X is isomorphic to a subgroup of
the wreath product Cm o Cn.
As a matter of fact the group Cm o Cn has the presentation〈

u, a | um = e, an = e, ua
i

ua
j

= ua
j

ua
i
〉

.

On defining b = asu−1, we have

um = e (a−sb)m = e

⇒ (a−sb · · · a−sb︸ ︷︷ ︸
m terms

)a
−s+i

= e

⇒ ba
i
ba
i+s · · · bai+(m−1)s

= e.

Also, the commutation relation

ua
i

ua
j

= ua
j

ua
i

implies

(b−1as)a
i
(b−1as)a

j
= (b−1as)a

j
(b−1as)a

i

⇒ (a−sb)a
j
(a−sb)a

i
= (a−sb)a

i
(a−sb)a

j

⇒ ba
j
a−sba

i
= ba

i
a−sba

j

⇒ ba
j
ba
i+s

= ba
i
ba
j+s

.

Thus, by using Tietze transformations we conclude that Cm o Cn has the
presentation

〈
a, b | an = e, ba

j

ba
i+s

= ba
i

ba
j+s

, ba
i

ba
i+s · · · bai+(m−1)s

= e, ∀i, j ∈ Y
〉

.

Then, on introducing bi = ba
i
, i = 0, · · · , n − 1, the above presentation is

expressed as
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〈
a, b0, · · · , bn−1 | an = e, bi = ba

i

0 , bjbi+s = bibj+s, bibi+s · · · bi+(m−1)s = e,

∀i, j ∈ Y 〉 .
�

The next results leads to a proof of Theorem C.

Lemma 7. Let σ = (0, 1, ..., n− 1) ∈ Σn and let L be the layer closure of 〈σ〉
in An. Suppose β = (β|0, β|1, · · · , β|n−1)σβ ∈ L satisfies [β, βτ

x
] = e for all

x ∈ Z. Write σβ = σs and σβ|i = σmi for all i ∈ Y . Then for all i, j ∈ Y , the
following congruence holds

(26) ∆s(i, t) +mi−s +mt ≡ mt−s +mi + ∆s(i+ s, t+ s) mod n,

Proof. Since σβ|i = σmi , we conclude by (17),

σ∆s(i,t)+mi−s+mt = σmt−s+mi+∆s(i+s,t+s)

and therefore, ∆s(i, t)+mi−s+mt ≡ mt−s+mi+∆s(i+s, t+s) mod n. �

Lemma 8. Maintain the notation of the previous lemma and let n be an odd
integer. Then,

σ(βn)|0 = σ(β|0β|1···β|n−1) = σ.

Proof. From

∆1(i, t) +mi−1 +mt ≡ mt−1 +mi + ∆1(i+ 1, t+ 1) mod n

we conclude
n−2∑
i=0

n−1∑
t=i+1

(
∆1(i, t) +mi−1 +mt

)
≡

n−2∑
i=0

n−1∑
t=i+1

(mt−1 +mi + ∆1(i+ 1, t+ 1)) mod n.

Now,

n−2∑
i=0

n−1∑
t=i+1

∆1(i, t)
Prop.8(i)

=
n−1∑
t=1

∆1(0, t)
Prop.8(ii)

=
n−1∑
t=0

∆1(0, t)

Prop.8(ii)
=

n−1∑
t=0

−∆1(t, 0)
Prop.8(vi)

= −(n− 1),

n−2∑
i=0

n−1∑
t=i+1

∆1(i+ 1, t+ 1)
Prop.8(i)

=
n−2∑
i=0

∆1(i+ 1, 0)
Prop.8(ii)

=
n−1∑
i=0

∆1(i, 0)

Prop.8(vi)
= (n− 1),
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n−2∑
i=0

n−1∑
t=i+1

(
mi−1 +mt

)
= 2(n− 1)mn−1 + (n− 2)

n−2∑
k=0

mk

and
n−2∑
i=0

n−1∑
t=i+1

(mt−1 +mi) = n

n−1∑
k=0

mk.

Since n is odd, we have
n−1∑
k=0

mk ≡ 1 mod n

and therefore, σβ|0···β|n−1 = σ(m0+...mn−1) = σ. �

We prove Theorem C below.

Theorem 2. Let n be an odd number, σ = (0, · · · , n − 1) ∈ Σn and let L
be the layer closure of 〈σ〉 in An. Let s an integer relatively prime to n and
β = (β|0, β|1, · · · , β|n−1)σs ∈ L be such that [β, βτ

x
] = e for all x ∈ Z. Then β

is a conjugate of τ in L.

Proof. We start with the case s = 1. The element

α(1) = (e, β|−1
0 , (β|0β|1)−1, · · · , (β|0 · · · β|n−2)−1) ∈ StabG(1)

conjugates β to

βα(1) = (e, · · · , e, β|0 · · · β|n−1)σ.

By Lemma8 we find σβ|0β|1···β|n−1 = σ. Moreover by Proposition 6,

[(βn)|0, (βn)|τx0 ] = [β|0β|1 · · · β|n−1, (β|0β|1 · · · β|n−1)τ
x

] = e,

for all integers x. Therefore β|0β|1 · · · β|n−1 satisfies the hypothesis of the
theorem. The process can be repeated until we obtain a sequence (α(k))k∈N
such that βα(1)α(2)···α(k)··· = τ, where α(k) ∈ StabG(k) satisfies α(k)|u = α(k)|v
for all u, v ∈M with |u| = |v| = k − 1.

Now, suppose more generally s is such gcd (s, n) = 1 and let k be a
minimum positive integer for which sk ≡ 1 mod(n). Then βk satisfies the
hypothesis of the first part and so, there exists α ∈ G such that (βk)α = τ .
Since k is invertible in Zn, there exists an automorphism γ of the tree such
that τ γ = τ k

−1
. Thus, βαγ

−1
= τ . �

6. Solvable groups for n = p, a prime number.

We will prove in this section the case n = p of Theorem A.
Let B be an abelian subgroup of Aut(Tp) normalized by τ and let β ∈ B.

By Lemma 5, σβ ∈ 〈στ 〉 and therefore in effect we have two cases, σβ = e, στ .

Proposition 10. Suppose σβ = στ . Then, σβ|i ∈ 〈στ 〉 for all i ∈ Y .
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Proof. By theorem 1, O is a normal subgroup of H and H
O

is isomorphic to a
subgroup of Cp o Cp.

By Lemma 5, O is a subgroup of 〈στ 〉 modulo Stabp(1).
Therefore, H is a p-group modulo Stabp(1) and by Lemma 5, we have σβ|i ∈

〈στ 〉. �

Theorem 3. Let p be a prime number and β ∈ Aut(Tp) such that σβ = σsτ for
some integer s relatively prime to p. Suppose [β, βτ

x
] = e for all x ∈ Z. Then

β is conjugate to τ in Aut(Tp).

Proof. Suppose s = 1. Recall that

α(1) = (e, β|−1
0 , (β|0β|1)−1, · · · , (β|0 · · · β|p−2)−1) ∈ StabG(1)

conjugates β to its normal form

βα(1) = (e, · · · , e, β|0 · · · β|p−1)σ.

By Lemma 8 we have σβ|0β|1···β|p−1 = στ . Moreover by Proposition 6,

[βp|0, (βp|0)τ
x

] = [β|0β|1 · · · β|p−1, (β|0β|1 · · · β|p−1)τ
x

] = e,

for all integers x. Therefore β|0β|1 · · · β|n−1 satisfies the condition of the the-
orem.. This process can be repeated to produce a sequence (α(k))k∈N such

that βα(1)α(2)···α(k)··· = τ, where α(k) ∈ Stab(k) satisfies α(k)|u = α(k)|v for all
u, v ∈M where |u| = |v| = k − 1.

Now, to the general case, s such gcd(p, s) = 1. Let k be the minimum
positive integer which is the inverse of s modulo p. Then, σ|βk = στ and βk

satisfies the hypotheses. Thus there exists α ∈ Ap such that
(
βk
)α

= τ . Let

k−1 be the inverse of k in U (Zn); then βα = τ k
−1

. There exists γ ∈ NAp< τ >

which conjugates τ to τ k
−1

and so, (βα)γ
−1

= τ . �

Lemma 9. Let p be a prime number and β ∈ Aut(Tp) such that [β, βτ
x
] = e

for all x ∈ Z. Then, there exists a tree level m and a conjugate µ of τ such
that β ∈ ×pm〈µ〉 and there exists an index u of length m such that β|u = µ.

Proof. Let m be the minimum tree level such that σβ|u 6= e for some |u| = m.
Therefore, σβ|u = σsτ for some integer s such that gcd (p, s) = 1 and so, µ = β|u
is conjugate to τ in Aut(Tp). Since β ∈ Stab(m), by Proposition 6 [µ, β|v] = e

for all indices v such that |v| = m. Therefore, β|v ∈ 〈µ〉 for all v such that
|v| = m. �

Theorem 4. Let p be a prime number, σ = (0, 1, · · · , p − 1) ∈ Σp, F =
NΣp (〈σ〉), Γ0 = NA(< τ > . Let G be a finitely generated solvable subgroup of
Aut (Tp) which contains the p-adic adding machine τ . Then, there exists an
integer t ≥ 1 such that G is conjugate to a subgroup of

×p (· · · (×p (×pΓ0 o F )o) · · · ) o F .
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Proof. We may suppose G has derived length d ≥ 2. Let B be the (d− 1)-th
term of the derived series of G. By Theorem 9, there exists a level t such that
B is a subgroup of V = ×pt〈µ〉 where µ = τα for some α ∈ Aut (Tn).

We will show that G is a subgroup of

J̇ = ×p (· · · (×p (×p (Γ0)α o Σp) o Σp) · · · ) o Σp,

where ×p appears t times.

Let γ ∈ G\J̇ . Then there exists an index w of length t such that γ|w 6∈ (Γ0)α.
Since τ is transitive on all levels of the tree , by Theorem 9, there exists β ∈ B
such that β|w = µη for some η ∈ U(Zp).

Write v = wγ. Then,

(βγ) |v
(9)
=
(
β|vγ−1

)γ|
vγ
−1 = (β|w)γ|w 6∈ 〈µ〉,

and this implies βγ 6∈ B ≤ 〈µ〉 and γ 6∈ G. Hence, G is a subgroup of J̇ .
Now, since G is a solvable group containing τ , there exist Gi (0 ≤ i ≤ t)

solvable subgroups of Σp containing σ = (0, 1, · · · , p − 1) such that G is a
subgroup of

Rt (α) = ×p (· · · (×p (×p (Γ0)α oG1) oG2) · · · ) oGt.

Since for all i, we have Gi ≤ F we may substitute the G′is by F . Finally,
Rt (α) is a conjugate of Rt (1) by the diagonal automorphism α(t). �

7. Two cases for n even

7.1. The case σβ = (στ )
n
2 .

Theorem 5. Let n be an even number, β ∈ An such that σβ = σ
n
2
τ and

[β, βτ
x

] = e for all x ∈ Z. Then H = 〈β|i (0 ≤ i ≤ n− 1) , τ〉 is a metabelian
subgroup of An.

Proof. Define the subgroup

R =
〈
[β|t, τ k], β|iβ|i+n

2
, β|2jτ−∆(j,j+n

2
) | k ∈ Z and i, j, t ∈ Y

〉
.

Denote ∆n
2
(i, j) by ∆(i, j).

We will prove that N is an abelian normal subgroup of H.

(I) R is normal in H :

–
〈
[β|i, τ k]

〉H ≤ R :

[β|i+n
2
, τ k]β|j

(18)
= [β|i, τ k]τ

∆(j,i)

;

–
〈
β|iβi+n

2

〉H ≤ R :

(β|iβ|i+n
2
)τ
k

=
(
β|iβ|i+n

2

)
.[β|iβ|i+n

2
, τ k]

=
(
β|iβ|i+n

2

)
[β|i, τ k]β|i+

n
2 [β|i+n

2
, τ k]
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(18)
=
(
β|iβ|i+n

2

)
[β|i+n

2
, τ k]τ

∆(i+n
2 ,i+

n
2 )

[β|i+n
2
, τ k]

Prop.8
=

β|iβ|i+n
2
[β|i+n

2
, τ k]2

(27) (β|iβ|i+n
2
)β|j =

(
β|−1
j β|iβ|i+n

2
β|j
)
τ∆(j+n

2
,i+n

2
)τ−∆(j+n

2
,i+n

2
)

(17)
=
(
β|−1
j β|i

)
τ∆(j,i)

(
β|j+n

2
β|i
)
τ−∆(j+n

2
,i+n

2
)

=
(
β|−1
j β|iβ|j+n

2

)
τ∆(j,i).[τ∆(j,i), β|j+n

2
].β|iτ−∆(j+n

2
,i+n

2
)

(17)
=
(
β|−1
j

)
τ∆(j+n

2
,i+n

2
)
(
β|jβ|i+n

2

)
.

[τ∆(j,i), β|j+n
2
].β|iτ−∆(j+n

2
,i+n

2
)

= τ∆(j+n
2
,i+n

2
).[τ∆(j+n

2
,i+n

2
), β|j].

β|i+n
2
[τ∆(j,i), β|j+n

2
]β|iτ−∆(j+n

2
,i+n

2
)

Prop.8
= τ−∆(j,i)[τ−∆(j,i), β|j].β|i+n

2
.

[τ∆(j,i), β|j+n
2
]β|iτ∆(j,i)

(18)
= τ−∆(j,i)β|i+n

2
.[τ−∆(j,i), β|j+n

2
]τ

∆(j,i)

.[τ∆(j,i), β|j+n
2
].β|iτ∆(j,i)

(14)
=
(
β|i+n

2
β|i
)τ∆(j,i)

.

–
〈
β|2jτ−∆(j,j+n

2
)
〉H ≤ R :

(β|2jτ−∆(j,j+n
2

))τ
k

= β|2jτ−∆(j,j+n
2

).[β|2jτ−∆(j,j+n
2

), τ k]

= β|2jτ−∆(j,j+n
2

).[β|2j , τ k]τ
−∆(j,j+n

2 )

= β|2jτ−∆(j,j+n
2

)
(
[β|j, τ k]β|j .[β|j, τ k]

)τ−∆(j,j+n
2 )

(18)
= β|2jτ−∆(j,j+n

2
)
(

[β|j+n
2
, τ k]τ

∆(j,j+n
2 )

.[β|j, τ k]
)τ−∆(j,j+n

2 )

= β|2jτ−∆(j,j+n
2

)[β|j+n
2
, τ k][β|j, τ k]τ

−∆(j,j+n
2 )

.

By Proposition 8 and 9, we can show

(28)
(
β|2jτ−∆(j,j+n

2
)
)β|i

=
(
β|2j+n

2
τ−∆(j+n

2
,j)[τ−∆(j+n

2
,j), β|j+n

2
]
)τ∆(i,j)

.

(II) The subgroup R is abelian:

(29) [β|i, τ k]β|jτ
t Prop.9

= [β|i, τ k]τ
tβ|j ;

(30) [β|i, τ k]β|jβ|j+
n
2

(18)
= [β|i+n

2
, τ k]

τ∆(j,i+n
2 )β|j+n

2
(29)
= [β|i+n

2
, τ k]

β|j+n
2
τ∆(j,i+n

2 )
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(18)
= [β|i, τ k]τ

∆(j+n
2 ,i)+∆(j,i+n

2 ) Prop.8
= [β|i, τ k]

(31)

[β|i, τ k]β|
2
jτ
−∆(j,j+n

2 ) (18)
= [β|i+n

2
, τ k]τ

∆(j,i+n
2 )β|jτ−∆(j,j+n

2 )

(29)
= [β|i+n

2
, τ k]β|jτ

∆(j,i+n
2 )−∆(j,j+n

2 ) (18)
= [β|i, τ k]τ

∆(j,i)+∆(j,i+n
2 )−∆(j,j+n

2 )

Prop.8
= [β|i, τ k](
β|iβ|i+n

2

)β|jβ|j+n
2

(27)
=
(
β|i+n

2
β|i
)τ∆(j,i)β|j+n

2

=
(
β|i+n

2
β|i
)(β|j+n

2
τ∆(j,i)[τ∆(j,i),β|j+n

2
]
)

(27)
=
(
β|iβ|i+n

2

)(τ∆(j+n
2 ,i+

n
2 )+∆(j,i).[τ∆(j,i),β|j+n

2
]
)

Prop.8
=

(
β|iβ|i+n

2

)[τ∆(j,i),β|j+n
2

]

(30)
= β|iβ|i+n

2

(β|iβ|i+n
2
)β|

2
jτ
−∆(j,j+n

2 ) (27)
= (β|i+n

2
β|i)τ

∆(j,i)β|jτ−∆(j,j+n
2 )

= (β|i+n
2
β|i)β|jτ

∆(j,i)[τ∆(j,i),β|j ]τ−∆(j,j+n
2 )

= (β|iβ|i+n
2
)τ

∆(j,i+n
2 )+∆(j,i)[τ∆(j,i),β|j ]τ−∆(j,j+n

2 )

Prop.8
= (β|iβ|i+n

2
)[τ∆(j,i),β|j ]τ

∆(j+n
2 ,j)

Prop.9
= β|iβ|i+n

2

Let

(32) α = β|2jτ−∆(j,j+n
2

)[τ−∆(j,j+n
2

), β|j].
Then, (

β|2jτ−∆(j,j+n
2

)
)β|2i τ−∆(i,i+n

2 )

(28)
=

(
β|2j+n

2
τ−∆(j+n

2
,j).[τ−∆(j+n

2
,j), β|j+n

2
]
)τ∆(i,j)β|iτ−∆(i,i+n

2 )

=
(
β|2j+n

2
τ−∆(j+n

2
,j).[τ−∆(j+n

2
,j), β|j+n

2
]
)(β|iτ∆(i,j).[τ∆(i,j),β|i].τ−∆(i,i+n

2 ))

=

((
β|2j+n

2
τ−∆(j+n

2
,j)
)β|i

.[τ−∆(j+n
2
,j), β|j+n

2
]β|i
)(τ∆(i,j).[τ∆(i,j),β|i].τ−∆(i,i+n

2 ))

(18)
=

((
β|2j+n

2
τ−∆(j+n

2
,j)
)β|i

.[τ−∆(j+n
2
,j), β|j]τ

∆(i,j)

)(τ∆(i,j).[τ∆(i,j),β|i].τ−∆(i,i+n
2 ))

(28)
=
(
ατ

∆(i,j+n
2 )

.[τ−∆(j+n
2
,j), β|j]τ

∆(i,j)
)(τ∆(i,j).[τ∆(i,j),β|i].τ−∆(i,i+n

2 ))

=
(
α.[τ−∆(j+n

2
,j), β|j]τ

∆(i,j)−∆(i,j+n
2 )
)(τ∆(i,j+n

2 )+∆(i,j).[τ∆(i,j),β|i].τ−∆(i,i+n
2 ))
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Prop.8
=

(
α.[τ−∆(j+n

2
,j), β|j]τ

∆(j+n
2 ,j)
)(τ∆(i,i+n

2 )[τ∆(i,j),β|i]τ−∆(i,i+n
2 ))

(32)
=
(
β|2jτ−∆(j,j+n

2
)[τ−∆(j,j+n

2
), β|j][τ∆(j+n

2
,j), β|j]−1

)[τ∆(i,j),β|i]τ
−∆(i,i+n

2 )

Prop.8
=

(
β|2jτ−∆(j,j+n

2
)
)[τ∆(i,j),β|i]τ

−∆(i,i+n
2 )

Prop.9 e (31)
= β|2jτ−∆(j,j+n

2
).

Moreover, since

R (β|i)R (β|j) = R (β|i) (β|j)
Prop.5

= Rτ∆(j,i+n
2

)β|j+n
2
β|i+n

2
τ∆(j,i+n

2
)

= Rβ|j+n
2
β|i+n

2
τ 2∆(j,i+n

2
) = Rβ|−1

j β|−1
i τ 2∆(j,i+n

2
)

= Rβ|−1
j β|2jτ−∆(j,j+n

2
)β|−1

i β|2i τ−∆(i,i+n
2

)τ 2∆(j,i+n
2

)

= Rβ|jβ|iτ−∆(j,j+n
2

)−∆(i,i+n
2

)+2∆(j,i+n
2

)

Prop.8
= Rβ|jβ|i = Rβ|jNβ|i

and
Rβ|i = Rβ|−1

i+n
2
, Rβ|2i = Rτ∆(i,i+n

2
),∀i, j ∈ Y,

we conclude
H

R
is a homomorphic image of

Z× C2 × · · · × C2︸ ︷︷ ︸
n
2

terms

.

�

7.2. The case σβ transposition. We prove in this section part (II ) (ii) of
Theorem B.

Theorem 6. Let n be an even number and B an abelian subgroup of An
normalized by τ . Suppose β = (β|0, β|1, · · · , β|n−1)σβ ∈ B where σβ is a
transposition. Then H = 〈β|i (0 ≤ i ≤ n− 1) , τ〉 is a metabelian group.

We prove progressively that

N =
〈
[β|i, τ k] | k ∈ Z, i ∈ Y

〉
,

U =
〈
N, β|j | j 6= 0,

n

2

〉
,

V =
〈
U, β|n

2
β|0, τ (β|0)2〉

are normal abelian subgroups of H, from which it follows that H
V

is cyclic and
therefore H metabelian.
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Lemma 10. The degree of the tree n is even and σβ is 〈στ 〉-conjugate to the
transposition

(
0, n

2

)
.

Proof. On conjugating by an appropriate power of στ , we may assume σβ =
(0, j). The conjugate of σβ by σiτ is the transposition (i, j + i). In particular,
(j, 2j) is a conjugate which is supposed to commute with (0, j). Therefore,
{0, j} = {j, 2j}, 2j = 0 modulo(n), n = 2n′ and j = n′. �

We go back to part (I) of the Proposition 7,(
τ v|(i)σ−vτ

)−1 (
β|(i)σ−vτ

)(
τ v|(i)σ−vτ σβ

)(
β|(i)σ−vτ σβσvτ

)
= (β|i)

(
τ v|(i)σβσ−vτ

)−1 (
β|(i)σβσ−vτ

)(
τ v|(i)σβσ−vτ σβ

)
and set in it j = (i)σ−vτ , v = kn+ r, r = v to obtain

(τ v)|−1
j β|j(τ v)|(j)σββ|(j)σβσvτ(33)

= β|(j)σvτ (τ
v)|−1

(j)σvτσβσ
−v
τ
β|(j)σvτσβσ−vτ (τ v)(j)σvτσβσ

−v
τ σβ

.(34)

Proposition 11. The following cases hold for different pairs (j, r).

• For j = 0 there are 3 subcases
– If r = 0, then

(35) [β|0, τ k]β|
n
2 = [β|n

2
, τ k], ∀k ∈ Z;

– If r = n
2
, then

(36) β|0τβ|0 = β|n
2
τ−1β|n

2
,

and

(37) [β|0, τ k]τβ|0 = [β|n
2
, τ k],∀k ∈ Z.

– If r 6= 0 and r 6= n
2
, then

(38) τ δ(
n
2
,r)β|0β|n

2
+r = β|rτ δ(

n
2
,r)β|0,∀r ∈ Y − {0,

n

2
}

and

(39) [β|0, τ k]β|r = [β|0, τ k],∀k ∈ Z.

• For j = n
2

there are 3 subcases
– If r = 0, then

(40) [β|n
2
, τ k]β|0 = [β|0, τ k], ∀k ∈ Z;

– If r = n
2
, then

(41) τ−1β|2n
2

= β|20τ,
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and

(42) [β|n
2
, τ k]

β|n
2
τ−1

= [β|0, τ k],∀k ∈ Z;

– If r 6= 0 and r 6= n
2
, then

(43) τ−δ(
n
2
,r)β|n

2
β|r = β|n

2
+rτ

−δ(n
2
,r)β|n

2
, ∀r ∈ Y − {0, n

2
}

and

(44) [β|n
2
, τ k]β|r = [β|n

2
, τ k],∀k ∈ Z, ∀r ∈ Y − {0, n

2
}.

• For j 6= 0 and j 6= n
2
, there are 5 subcases:

– If j 6= n− r and j 6= n
2
− r, then

(45) β|jβt = β|tβ|j,∀j, t ∈ Y − {0,
n

2
}

and

(46) [β|j, τ k]β|t = [β|j, τ k],∀j, t ∈ Y − {0,
n

2
}

– If j = n− r and 0 < r < n
2
, then

(47) τ−1β|j+n
2
τβ|0 = β|0β|j, ∀j ∈ {1, 2, · · · ,

n

2
− 1}

and

(48) [β|j+n
2
, τ k]τβ|0 = [β|j, τ k],∀j ∈ {1, 2, · · · ,

n

2
− 1}

– If j = n− r and n
2
< r ≤ n− 1, then

(49) β|jβ|0 = β|0β|n
2

+j,∀j ∈ {1, · · · ,
n

2
− 1}

and

(50) [β|j, τ k]β|0 = [β|n
2

+j, τ
k],∀k ∈ Z, ∀j ∈ {1, · · · , n

2
− 1}

– If j = n
2
− r and 0 < r < n

2
, then

(51) β|jβ|n
2

= β|n
2
τ−1β|j+n

2
τ, ∀j ∈ {1, · · · , n

2
− 1}

and

(52) [β|j, τ k]β|
n
2
τ−1

= [β|n
2

+j, τ
k],∀k ∈ Z,∀j ∈ {1, · · · , n

2
− 1}

– If j = n
2
− r and n

2
< r ≤ n− 1, then

(53) β|n
2
β|j = β|n

2
+jβ|n

2
,∀j ∈ {1, · · · , n

2
− 1}

and

(54) [β|j, τ k] = [β|n
2

+j, τ
k]
β|n

2 ,∀k ∈ Z,∀j ∈ {1, · · · , n
2
− 1}.
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Proof. We will prove just the last case. As j 6∈ {0, n
2
, n− r, n

2
− r}, we have

(j)σvτ = (j)σβσ
v
τ = j + r,

(j)σβ = (j)σvτσβσ
−v
τ = (j)σvτσβσ

−v
τ σβ = j.

Therefore,(
(τ v)|−1

j β|j(τ v)|jβ|j+r = β|j+r(τ v)|−1
j β|j(τ v)j,∀v ∈ Z

)
⇔

(
τ−k−δ(j,r)β|jτ k+δ(j,r)β|j+r = β|j+rτ−k−δ(j,r)β|jτ k+δ(j,r),∀k ∈ Z

)
⇔

(
β|j[β|j, τ k+δ(j,r)]β|j+r = β|j+rβ|j[β|j, τ k+δ(j,r)], ∀k ∈ Z

)
,

(55) β|jβt = β|tβ|j,∀j, t ∈ Y − {0,
n

2
}

and

(56) [β|j, τ k]β|t = [β|j, τ k], ∀j, t ∈ Y − {0,
n

2
}.

�

Lemma 11. The group N =
〈
[β|i, τ k] | k ∈ Z, i ∈ Y

〉
is an abelian normal

subgroup of H.

Proof. Define
Ni =

〈
[β|i, τ k] | k ∈ Z

〉
for each i ∈ Y . Then, N = 〈Ni | i ∈ Y 〉, each Ni is an abelian subgroup
normalized by τ and

(57) [β|i, τ k]β|
−1
j = [β|i, τ k],∀k ∈ Z,∀i, j ∈ Y, j 6= 0,

n

2

We have [Ni, Nj] = 1,∀i, j ∈ Y, j 6= 0, n
2
, because

[β|i, τ k][β|j ,τ
t] = [β|i, τ k]β|

−1
j τ−tβ|jτ t (57)

= [β|i, τ k]τ
−tβ|jτ t

(14)
=
(
[β|i, τ−t]−1[β|i, τ k−t]

)β|jτ t
(57)
=
(
[β|i, τ−t]−1[β|i, τ k−t]

)τ t
(14)
= [β|i, τ k]τ

−tτ t = [β|i, τ k],∀k, t ∈ Z,

∀i, j ∈ Y, j 6= 0, n
2
.

Furthermore, [N0, Nn
2
] = 1, because

[β|n
2
, τ k][β|0,τ

t] = [β|n
2
, τ k]β|

−1
0 τ−tβ|0τ t (37)

= [β|0, τ k]ττ
−tβ|0τ t

(14)
=
(
[β|0, τ−t]−1[β|0, τ k−t]

)τβ|0τ t
(37)
=
(
[β|n

2
, τ−t]−1[β|n

2
, τ k−t]

)τ t
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(14)
= [β|n

2
, τ k]τ

−tτ t = [β|n
2
, τ k],∀k, t ∈ Z.

Therefore N is abelian.
Now, equation (57) implies

(58) Ni = N
β|j
i = N

β|−1
j

i , ∀i, j ∈ Y, j 6= 0,
n

2
;

equations (14), (35) imply

(59)
{
Nn

2
= N

β|0
0 , N0 = N

β|−1
0

n
2

;

equation (40) implies

(60)
{
N0 = N

β|0
n
2
, Nn

2
= N

β|−1
0

0 ;

equations (14), (42) imply

(61)

{
N0 = N

β|n
2

n
2
, Nn

2
= N

β|−1
n
2

0 ;

equations (14), (48) imply

(62)
{
Nj = N

β|0
j+n

2
, Nj+n

2
= N

β|−1
0

j ,∀j ∈ {1, · · · , n
2
− 1};

equations (14) and (50) imply

(63)
{
Nj+n

2
= N

β|0
j , Nj = N

β|−1
0

j+n
2
,∀j ∈ {1, · · · , n

2
− 1};

equations (14) (52) imply

(64)

{
Nj+n

2
= N

β|n
2

j , Nj = N
β|−1
n
2

j+n
2
,∀j ∈ {1, · · · , n

2
− 1};

equations (14), (54) imply

(65)

{
Nj = N

β|n
2

j+n
2
, Nj+n

2
= N

β|−1
n
2

j ,∀j ∈ {1, · · · , n
2
− 1}.

Thus (57)-(65) prove

N = 〈Ni | i ∈ Y 〉
=

〈
[β|i, τ k] | ∀i, k ∈ Z

〉
is an abelian normal subgroup of H. �

Lemma 12. The group U =
〈
N, β|j | j 6= 0, n

2

〉
is a normal abelian subgroup

of H.
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Proof. Lemma 11 and equations (39), (44), (45) and (46) show that U is
abelian.

The fact that N is normal in H, together with the following assertions prove
that U is normal in H.

Let J =
〈
β0, βn

2
, τ
〉
. Then, for j ∈ Y − {0, n

2
}, we have

(I) 〈β|j〉J ≤ U :

β|τ tj = β|j[β|j, τ t];

β|β|0j

(49)
= β|j+n

2
;

β|β|
−1
0

j

(47)
= τ−1β|j+n

2
τ = β|j+n

2
[β|j+n

2
, τ ];

β|
β|n

2
j

(51)
= τ−1β|j+n

2
τ = β|j+n

2
[β|j+n

2
, τ ];

β|
β|−1
n
2

j

(53)
= β|j+n

2
;

(II)
〈
β|j+n

2

〉J ≤ U :

β|τ tj+n
2

= β|j+n
2
[β|j+n

2
, τ t];

β|β|0j+n
2

(47)
= β|−1

0 τβ|0β|jβ|−1
0 τ−1β|0

=
(
[β|0, τ ]−1

)τ−1

β|τ−1

j [β|0, τ ]τ
−1 ∈ U ;

β|β|
−1
0

j+n
2

(49)
= β|j ∈ U ;

β|
β|n

2

j+n
2

(53)
= β|j ∈ U ;

β|
β|−1
n
2

j+n
2

(51)
= β|n

2
τβ|−1

n
2
β|jβ|n

2
τ−1β|−1

n
2

= [β|n
2
, τ ]

β|−1
n
2
τ−1

β|τ−1

j

(
[β|n

2
, τ ]−1

)β|−1
n
2
τ−1

.

Hence, U is a normal abelian subgroup of H. �

Lemma 13. V =
〈
U, β|n

2
β|0, τβ|20

〉
is a normal abelian subgroup of H.

Proof. Lemma 12 together with the following assertions prove that V is a
normal abelian subgroup of H.

Given j ∈ Y − {0, n
2
}, k ∈ Z, and J =

〈
β|0, βn

2
, τ,
〉
, we prove

(I) β|n
2
β|0 ∈ CH(U) :

(β|j)β|
n
2
β|0 (51)

= (β|j+n
2
)τβ|0

(47)
= β|j;

(β|j+n
2
)
β|n

2
β|0 (53)

= (β|j)β|0
(49)
= β|j+n

2
;

[β|j, τ k]β|
n
2
β|0 = [β|j, τ k]β|

n
2
τ−1τβ|0 (52)

= [β|j+n
2
, τ k]τβ|0
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(48)
= [β|j, τ k];

[β|j+n
2
, τ k]

β|n
2
β|0 (54)

= [β|j, τ k]β|0
(50)
= [β|j+n

2
, τ k];

[β|0, τ k]β|
n
2
β|0 (35)

= [β|n
2
, τ k]β|0

(40)
= [β|0, τ k];

[β|n
2
, τ k]

β|n
2
β|0 = [β|n

2
, τ k]

β|n
2
τ−1τβ|0

(42)
= [β|0, τ k]τβ|0

(37)
= [β|n

2
, τ k];

(II) τβ|20 ∈ CH(U) :

β|τβ|
2
0

j = (β|j[β|j, τ ])β|
2
0 = (β|β|0j [β|j, τ ]β|0)β|0

(49),(50)
= (β|j+n

2
[β|j+n

2
, τ ])β|0 = β|τβ|0j+n

2

(47)
= β|j;

(β|j+n
2
)τβ|

2
0

(47)
= β|β|0j

(49)
= β|j+n

2
;

[β|0, τ k]τβ|
2
0

(37)
= [β|n

2
, τ k]β|0

(40)
= [β|0, τ k];

[β|n
2
, τ k]τβ|

2
0

(14)
= ([β|n

2
, τ ]−1[β|n

2
, τ k+1])β|

2
0

(40)
= ([β|0, τ ]−1[β|0, τ k+1])β|0

(14)
= [β|0, τ k]τβ|0

(37)
= [β|n

2
, τ k];

[β|j, τ k]τβ|
2
0

(14)
= ([β|j, τ ]−1[β|j, τ k+1])β|

2
0

(50)
= ([β|j+n

2
, τ ]−1[β|j+n

2
, τ k+1])β|0

(14)
= [β|j+n

2
, τ k]τβ|0

(48)
= [β|j, τ k];

[β|j+n
2
, τ k]τβ|

2
0

(48)
= [β|j, τ k]β|0

(50)
= [β|j+n

2
, τ k];

(III) τβ|20 ∈ CH(β|n
2
β|0) :

(β|n
2
β|0)τβ|

2
0 = β|−2

0 τ−1β|n
2
β|0τβ|20

(36)
= β|−2

0 τ−1β|n
2
β|n

2
τ−1β|n

2
β|0

= β|−2
0 τ−1β|2n

2
τ−1β|n

2
β|0 = (τβ|20)−1β|2n

2
τ−1β|n

2
β|0

(41)
= β|n

2
β|0;
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(IV)
〈
β|n

2
, β|0

〉J ≤ V :

(β|n
2
β|0)τ

k

= β|n
2
β|0[β|n

2
β|0, τ k] = β|n

2
β|0[β|n

2
, τ k]β|0 [β|0, τ k];

(β|n
2
β|0)β|0 = β|−1

0 β|n
2
β|20 = β|−1

0 β|n
2
τ−1τβ|20 = β|−1

0 β|−1
n
2
β|2n

2
τ−1τβ|20

= (β|n
2
β|0)−1(τβ|20)2;

β|n
2
β|0

(t)
= (τβ|20)2((β|n

2
β|0)−1)β|0 ;

(β|n
2
β|0)β|

−1
0

(u)
= ((τβ|20)2)β|

−1
0 (β|n

2
β|0)−1;

(β|n
2
β|0)

β|−1
n
2 = β|2n

2
β|0β|−1

n
2

= β|2n
2
τ−1τβ|0β|0β|−1

0 β|−1
n
2

(41)
= (τβ|20)2β|−1

0 β|−1
n
2

= (τβ|20)2(β|n
2
β|0)−1;

(β|n
2
β|0)

β|n
2

(x)
= (β|n

2
β|0)−1((τβ|20)2)

β|n
2

.
(V) 〈τβ|20〉

J ≤ V :

(τβ|20)τ
k

= τ(β|20)τ
k

= τβ|20[β|20, τ k] = τβ|20[β|0, τ k]β|0 [β|0, τ k];

(τβ|20)β|0 = β|−1
0 τβ|20β|0 = ττ−1β|−1

0 τβ|0β|20 = τ [τ, β|0]β|20

= τ [τ, β|0]τ−1τβ|20 = ([β|0, τ ]−1)τ
−1

τβ|20;

(τβ|20)β|
−1
0 = β|0τβ|0 = τβ|0[β|0, τ ]β|0 = τβ|20[β|0, τ ]β|0 ;

(τβ|20)
β|−1
n
2

(p)
=
(

(τβ|20)β|
−1
0 ([β|0, τ ]−1)β|0

)β|−1
n
2

= (τβ|20)
β|−1

0 β|−1
n
2 ([β|0, τ ]−1)

β|0β|−1
n
2

= (τβ|20)
(β|n

2
β|0)−1

([β|0, τ ]−1)
β|0β|−1

n
2

(g)
= τβ|20([β|0, τ ]−1)

β|0β|−1
n
2 ;

(τβ|20)
β|n

2
(q)
= τβ|20[β|0, τ ]β|0 .

�
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8. Solvable groups for n = 4.

Let B be an abelian subgroup of A4 = Aut(T4) normalized by τ and let
β ∈ B. Then, by Proposition 5 , σβ ∈ D = 〈(0, 1, 2, 3), (0, 2)〉, the unique
Sylow 2-subgroup of Σ4 which contains σ = στ = (0, 1, 2, 3).

The normalizer of 〈τ〉 here is Γ0 = NA4

(
〈τ〉
)

= 〈Λ, ι〉 where Λ is the monic

normalizer and where ι = ι(1) (0, 3) (1, 2) inverts τ .
Given a group W , the subgroup generated by the square of its elements is

denoted by W 2.

Lemma 14. Let L = L (D) be the layer closure of D above. If γ ∈ L2 then
γτ is conjugate to τ .

Proof. If α ∈ L then σα2 ∈ 〈σ2〉 and the product in any order of the states
(α2) |i (0 ≤ i ≤ 3) belongs to S = L2.

Let γ ∈ S. Then γτ is transitive on the 1st level of the tree and (γτ)4 is
inactive with conjugate 1st level states, where the first state is

(γ|0) (γ|1) (γ|2) (γ|3) τ if σγ = e,

and

(γ|0) (γ|3) (γ|2) (γ|1) τ if σγ = σ2;

in both cases the element is contained in S2τ . Therefore, γτ is transitive on
the 2nd level of the tree. Now use induction to prove that γτ is transitive on
all levels of the tree. �

8.1. Cases σβ ∈ {(0, 3)(1, 2), (0, 1)(2, 3)}. We will show that these cases can-
not occur. We note that στ conjugates (0, 1)(2, 3) to (0, 3)(1, 2). Since the
argument for β applies to βτ , it is sufficient to consider the first case.

Suppose σβ = (0, 1)(2, 3). Then,

βτ =
(
τ−1 (β|3) , β|0, β|1, β|2τ

)
(σβ)στ .

On substituting α = βτ in θ = [β, α] and in (7)

(66) θ|(i)σαβ =
(
β|(i)σα

)−1
(α|i)−1 (β|i)

(
α|(i)σβ

)
,∀i ∈ Y .

we get θ = e and

(67) e =
(
β|(i)σβτ

)−1
(βτ |i)−1 (β|i)

(
βτ |(i)σβ

)
,∀i ∈ Y

and so for the index i = 0, we obtain

e = (β|3)−1 (τ−1 (β|3)
)−1

(β|0) (β|0) ,

e = (β|3)−2 τ (β|0)2

which is impossible.
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8.2. Cases σβ ∈ {(0, 2), (1, 3)}.

Lemma 15. Let α, γ ∈ Aut(T4) be such that

σα, σγ ∈ 〈(0, 1, 2, 3), (0, 2)〉 ,
τ−1α2 = γ2τ,

[α, τ k]γ = [γ, τ k]

for all k ∈ Z. Then,

σα, σγ ∈ 〈σ〉 , σασγ = σ±1.

Proof. From the second and third equations above, we have σ−1σ2
α = σ2

γσ and

[σα, σ
k]σγ = [σγ, σ

k].
(i) Suppose σ2

γ = e. Then σ2
α = σ2 and therefore, σα = σ±1, [σα, σ

k]σγ =

[σγ, σ
k] = e for all k; thus, σγ ∈ 〈σ〉 and σγ ∈ 〈σ2〉, σασγ = σ±1 follows.

(ii) Suppose o(σγ) = 4. Then, σγ = σ±1 and σ2
α = e. Since [σα, σ

k]σγ = e for
all k, we obtain σα ∈ 〈σ〉, σ2

α = e and σα ∈ 〈σ2〉 .Therefore, σασγ = σ±1. �

(1) Suppose σβ = (0, 2). Then by the analysis in Section 7.2, we conclude

V =
〈
[β|i, τ k], β|1, β|3, β|2β|0, τβ|20 | i ∈ Y

〉
is an abelian normal subgroup of H.

By Lemma 14 , τβ|20 = µ is a conjugate of τ . As V is abelian, there exist
ξ, t1, t2 ∈ Z4 such that

µ = τβ|20, β|2β|0 = µξ, β|1 = µt1 , β|3 = µt2 .

Therefore,

β|2 = µξβ|−1
0 , τ = µβ|−2

0 .

On substituting γ = β0 and α = β2 in Lemma 15, we obtain σαγ = σβ|2β|0 =
σ±1. Thus, from β|2β|0 = µξ, we reach ξ ∈ U(Z4).

By (41), we have

β|22τ−1 = τβ|20.

It follows then that

µξβ|−1
0 µξβ|−1

0 β|20µ−1 = µ,(
µξ
)β|0

= µ2−ξ.

Therefore,

(68) µβ|0 = µ
2−ξ
ξ

where 2−ξ
ξ
∈ Z1

4.

By Equation (49) we have

β|β|01 = β|3.
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It follows that (
µt1
)β|0 = µt2 , µt1

2−ξ
ξ = µt2 , t2 = t1

2− ξ
ξ

.

We have reached the form of β,

β = (β|0, µt1 , µξβ|−1
0 , µt1

2−ξ
ξ )(0, 2)

where µ = τα for some α ∈ Aut(T4).
Now, since

β|0 =
(
λ 2−ξ

ξ
τm
)α

for some m ∈ Z4, we have

µt1 = (τ t1)α,

µξβ|−1
0 =

(
τ ξ
(
λ 2−ξ

ξ
τm
)−1
)α

=
(
λ ξ

2−ξ
τ (ξ−m) ξ

2−ξ

)α
.

Thus

β = (λ 2−ξ
ξ
τm, τ t1 , λ ξ

2−ξ
τ (ξ−m) ξ

2−ξ , τ t1
2−ξ
ξ )α

(1)

(0, 2)

and
τ = µβ|−2

0

=

(
τ
(
λ 2−ξ

ξ
τm
)−2
)α

=
(
λ( ξ

2−ξ )2τ
(1− 2m

ξ )( ξ
2−ξ)

2)α
We note that in case ξ = 1 and β has the form

β = (τm, τ t1 , τ 1−m, τ t1)α
(1)

(0, 2)

where τ = (τ 1−2m)
α
; therefore,

β = (τ
m

1−2m , τ
t1

1−2m , τ
1−m
1−2m , τ

t1
1−2m )(0, 2).

(2) Suppose σβ = (1, 3). Then, γ = βτ satisfies [γ, γτ
k
] = e. Therefore, the

previous case applies and

γ = (λ 2−ξ
ξ
τm, τ t1 , λ ξ

2−ξ
τ (ξ−m) ξ

2−ξ , τ t1
2−ξ
ξ )α

(1)

(0, 2),

where

τ =
(
λ( ξ

2−ξ )2τ
(1− 2m

ξ )( ξ
2−ξ)

2)α
= (e, e, e,

(
λ( ξ

2−ξ )2τ
(1− 2m

ξ )( ξ
2−ξ)

2)α
)στ .

Hence, β has the form

β = γτ
−1

= (τ t1 , λ 2−ξ
ξ
τ 1+m−ξ, τ t1

2−ξ
ξ , λ ξ

2−ξ
τ (1−m) ξ

2−ξ )α
(1)

(1, 3).
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8.3. The case σβ = (στ )
2 = (0, 2) (1, 3). We know that

V =
〈
N, β|iβ|i+2, β|2jτ−∆(j,j+2) | i, j, t ∈ Y and k ∈ Z

〉
is an abelian normal subgroup of H and

(69) τ∆(i,j)β|i+2β|jτ∆(i,j) = β|j+2β|i,
by analysis of the case 7.1.

From Lemmas 12 and 13, we have

τβ|20 = µ, β|2β|0 = µξ0 , β|3β|1 = µξ1 , τβ|21 = µξ2

where µ = τα and ξ0, ξ1, ξ2 ∈ U(Z4). Therefore,

(70) τ = µβ|−2
0

(71) β|2 = µξ0β|−1
0

(72) β|3 = µξ1β|−1
1

(73) τ = µξ2β|−2
1 .

Now, we let i, j take their values from Y in (69). Note that (i, j) and (j, i)
produce equivalent equations and the case where i = j is a tautology. Thus we
have to treat the cases (i, j) = (0, 1) , (0, 2) , (1, 3) , (2, 3) , (0, 3) , (1, 2). Indeed,
the last two cases turn out to be superfluous.

(i) Substitute i = 0, j = 2 in (69), to obtain

(74) β|22τ−1 = τβ|20
Use (70) and (71) in (74) to get

µξ0β|−1
0 µξ0β|−1

0 β|20µ−1 = µ

and so,

(µξ0)β|0 = µ2−ξ0 .

Therefore,

(75) µβ|0 = µ
2−ξ0
ξ0

Since 2−ξ0
ξ0
∈ Z1

4, we find

(76) β|0 =

(
λ 2−ξ0

ξ0

τm0

)α
.

From (71),

(77) β|2 = µξ0β|−1
0 =

(
τ ξ0τ−m0λ ξ0

2−ξ0

)α
=

(
λ ξ0

2−ξ0
τ

(ξ0−m0)
ξ0

2−ξ0

)α
.
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(ii) Substitute i = 1, j = 3 in (69) to get

(78) β|23τ−1 = τβ|21.

On using (72) and (73) in (78), we obtain

µξ1β|−1
1 µξ1β|−1

1 β|21µ−ξ2 = µξ2

and so,

(µξ1)β|1 = µ2ξ2−ξ1 .

Therefore,

(79) µβ|1 = µ
2ξ2−ξ1
ξ1 .

Since 2ξ2−ξ1
ξ1
∈ Z1

4, we have

(80) β|1 =

(
λ 2ξ2−ξ1

ξ1

τm1

)α
.

By (72), we find

(81) β|3 = µξ1β|−1
1 =

(
τ ξ1τ−m1λ ξ1

2ξ2−ξ1

)α
=

(
λ ξ1

2ξ2−ξ1
τ

(ξ1−m1)
ξ1

2ξ2−ξ1

)α
.

(iii) Substitute i = 0, j = 1 in (69) to get

(82) β|2β|1 = β|3β|0.

Use (76), (77), (80) and (81) in (82), to obtain

λ ξ0
2−ξ0

τ
(ξ0−m0)

ξ0
2−ξ0 λ 2ξ2−ξ1

ξ1

τm1 = λ ξ1
2ξ2−ξ1

τ
(ξ1−m1)

ξ1
2ξ2−ξ1 λ 2−ξ0

ξ0

τm0

and so,

λ ξ0
2−ξ0

2ξ2−ξ1
ξ1

τ
(ξ0−m0)

ξ0
2−ξ0

2ξ2−ξ1
ξ1

+m1 = λ ξ1
2ξ2−ξ1

2−ξ0
ξ0

τ
(ξ1−m1)

ξ1
2ξ2−ξ1

2−ξ0
ξ0

+m0 .

Therefore,

(83)

(
ξ1

2ξ2 − ξ1

)2

=

(
ξ0

2− ξ0

)2

and

(84) (ξ0 −m0)
ξ0

2− ξ0

2ξ2 − ξ1

ξ1

+m1 = (ξ1 −m1)
ξ1

2ξ2 − ξ1

2− ξ0

ξ0

+m0.

(iv) Substitute i = 2, j = 3 in (69) to get

(85) β|0β|3 = β|1β|2.
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Use (76), (77), (80) and (81) in (85), to obtain

λ 2−ξ0
ξ0

τm0λ ξ1
2ξ2−ξ1

τ
(ξ1−m1)

ξ1
2ξ2−ξ1 = λ 2ξ2−ξ1

ξ1

τm1λ ξ0
2−ξ0

τ
(ξ0−m0)

ξ0
2−ξ0

and so,

λ ξ0
2−ξ0

ξ1
2ξ2−ξ1

τ
m0

ξ1
2ξ2−ξ1

+(ξ1−m1)
ξ1

2ξ2−ξ1 = λ 2ξ2−ξ1
ξ1

ξ0
2−ξ0

τ
m1

ξ0
2−ξ0

+(ξ0−m0)
ξ0

2−ξ0 .

Therefore, (
ξ1

2ξ2 − ξ1

)2

=

(
ξ0

2− ξ0

)2

and

(86) m0
ξ1

2ξ2 − ξ1

+ (ξ1 −m1)
ξ1

2ξ2 − ξ1

= m1
ξ0

2− ξ0

+ (ξ0 −m0)
ξ0

2− ξ0

.

We have from (83)

(87)
ξ0

2− ξ0

= ± ξ1

2ξ2 − ξ1

.

(a) If
ξ0

2− ξ0

=
ξ1

2ξ2 − ξ1

,

then

2ξ2ξ0 − ξ1ξ0 = 2ξ1 − ξ1ξ0,

and so,

(88) ξ2 =
ξ1

ξ0

.

From (84), we get

(89) m1 =
ξ1 − ξ0

2
+m0.

(b) If
ξ0

2− ξ0

= − ξ1

2ξ2 − ξ1

then by (84) and (86),

m0 − ξ0 +m1 = m1 − ξ1 +m0

m0 + ξ1 −m1 = −m1 − ξ0 +m0,

which implies ξ1 = ξ0 = 0,which is impossible.
Now by (88) and (89), we have

(90) β|1 =

(
λ 2−ξ0

ξ0

τ
ξ1−ξ0

2
+m0

)α
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and

(91) β|3 =

(
λ ξ0

2−ξ0
τ( ξ1+ξ0

2
−m0) ξ0

2−ξ0

)α
.

Therefore,

β = (β|0, β|1, β|2, β|3)(0, 2)(1, 3)

where β|0, β|1, β|2 and β|3 are described in (76),(90), (77) and (91), respec-
tively, and

τ = µβ|−2
0

=

(
τ

(
λ 2−ξ0

ξ0

τm0

)−2
)α

=

(
λ

(
ξ0

2−ξ0
)2τ

(
1− 2m0

ξ0

)(
ξ0

2−ξ0

)2
)α

.

(v) The cases (i, j) = (1, 2) , (0, 3) in (69) do not add any more information
about β.

Summarizing, we have found

(92) β|0 =

(
λ 2−ξ0

ξ0

τm0

)α
, β|1 =

(
λ 2−ξ0

ξ0

τ
ξ1−ξ0

2
+m0

)α
,

(93) β|2 =

(
λ ξ0

2−ξ0
τ

(ξ0−m0)
ξ0

2−ξ0

)α
, β|3 =

(
λ ξ0

2−ξ0
τ( ξ1+ξ0

2
−m0) ξ0

2−ξ0

)α
,

(94) τ =

(
λ

(
ξ0

2−ξ0
)2τ

(
1− 2m0

ξ0

)(
ξ0

2−ξ0

)2
)α

.

In the particular case where ξ0 = 1, β has the form

β = (τ
m0

1−2m0 , τ

ξ1−1
2 +m0
1−2m0 , τ

1−m0
1−2m0 , τ

ξ1+1
2 −m0
1−2m0 )(0, 2)(1, 3)

where τ = (τ 1−2m0)
α
.

8.4. Cases σβ ∈ {e, στ , σ−1
τ }. (1) Suppose σβ = e and let β stabilize the kth

level of the tree. Then by Proposition 6, we have

[β|u, β|τ
ξ

v ] = e, for all u, v ∈M with |u| = |v| = k.

Therefore, Ṅ = 〈β|w | |w| = k, w ∈M〉 is abelian and so is its normal clo-

sure Ṁ under
〈
Ṅ , τ

〉
. Also, active elements in Ṁ are characterized in 8.1,

8.2, 8.3 and 8.4. In particular, there exists κ ∈ Ṁ such that σκ = (0, 2)(1, 3)
and β ∈ ×pkC(κ).
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(2) Suppose σβ = στ = (0, 1, 2, 3). Then, clearly the element

β2 = (β|0β|1, β|1β|2, β|2β|3, β|3β|0)(0, 2)(1, 3)

satisfies [β2, (β2)
τk

] = e for all k ∈ Z4. Therefore, by the previous analysis, we
have

(95) β|0β|1 =

(
λ 2−ξ0

ξ0

τm0

)α
,

(96) β|1β|2 =

(
λ 2−ξ0

ξ0

τ
ξ1−ξ0

2
+m0

)α
,

(97) β|2β|3 =

(
λ ξ0

2−ξ0
τ

(ξ0−m0)
ξ0

2−ξ0

)α
,

(98) β|3β|0 =

(
λ ξ0

2−ξ0
τ( ξ1+ξ0

2
−m0) ξ0

2−ξ0

)α
,

(99) τ =

(
λ

(
ξ0

2−ξ0
)2τ

(
1− 2m0

ξ0

)(
ξ0

2−ξ0

)2
)α

.

Therefore,

β|0β|1β|2β|3 =

(
λ 2−ξ0

ξ0

τm0λ ξ0
2−ξ0

τ
(ξ0−m0)

ξ0
2−ξ0

)α
=

(
τ

ξ20
2−ξ0

)α
,

β|1β|2β|3β|0 =

(
λ 2−ξ0

ξ0

τ
ξ1−ξ0

2
+m0λ ξ0

2−ξ0
τ( ξ1+ξ0

2
−m0) ξ0

2−ξ0

)α
=
(
τ
ξ1ξ0
2−ξ0

)α
.

It follows that (
τ

ξ20
2−ξ0

)αβ|0
=
(
τ
ξ1ξ0
2−ξ0

)α
and

(100) (τα)β|0 =
(
τ
ξ1
ξ0

)α
Substitute η = ξ1

ξ0
in (100) to get

(101) β|0 = (ψητ
m1)α ,
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where

(102) ψη =

{
λη, if η ∈ Z1

4

θλ−η, if − η ∈ Z1
4
,

θ = θ(1)(e, τ−1, τ−1, τ−1)(1, 3)

(an invertor of τ). Note that

ψηλξ = ψηψξ = ψηξ = ψξη = ψξψη = λξψη

for all ξ ∈ Z1
4.

By (95) and (101),

(103) β|1 =

(
τ−m1ψη−1λ 2−ξ0

ξ0

τm0

)α
=

(
ψ 2−ξ0

ηξ0

τ
−m1

(
2−ξ0
ηξ0

)
+m0

)α
.

Also, by (96) and (101),

(104)
β|2 =

(
τ
m1

(
2−ξ0
ηξ0

)
−m0ψ ηξ0

2−ξ0
λ 2−ξ0

ξ0

τ
ηξ0−ξ0

2
+m0

)α
=

(
ψητ

[
m1

(
2−ξ0
ηξ0

)
−m0

]
η+

ηξ0−ξ0
2

+m0

)α
.

Furthermore, by (98) and (101),

(105)
β|3 =

(
λ ξ0

2−ξ0
τ( ηξ0+ξ0

2
−m0) ξ0

2−ξ0 τ−m1ψη−1

)α
=

(
ψ ξ0
η(2−ξ0)

τ

[
( ηξ0+ξ0

2
−m0) ξ0

2−ξ0
−m1

]
η−1

)α
.

Setting i = 1 and t = 2 in (17), we obtain

(106) β|0β|2 = β|21.

Use (101), (103), (104) and (105) in (106), to get

(107)
ψητ

m1ψητ

[
m1

(
2−ξ0
ηξ0

)
−m0

]
η+

ηξ0−ξ0
2

+m0

= ψ 2−ξ0
ηξ0

τ
−m1

(
2−ξ0
ηξ0

)
+m0ψ 2−ξ0

ηξ0

τ
−m1

(
2−ξ0
ηξ0

)
+m0

which is the same as

(108)
ψη2τ

m1η+
[
m1

(
2−ξ0
ηξ0

)
−m0

]
η+

ηξ0−ξ0
2

+m0

= ψ( 2−ξ0
ηξ0

)2τ

[
−m1

(
2−ξ0
ηξ0

)
+m0

](
2−ξ0
ηξ0

)
−m1

(
2−ξ0
ηξ0

)
+m0 .

Therefore,
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(109) η2 =

(
2− ξ0

ηξ0

)2

and

m1η +

[
m1

(
2− ξ0

ηξ0

)
−m0

]
η +

ηξ0 − ξ0

2
+m0

=

[
−m1

(
2− ξ0

ηξ0

)
+m0

](
2− ξ0

ηξ0

)
−m1

(
2− ξ0

ηξ0

)
+m0

(a) Suppose

(110) η = −2− ξ0

ηξ0

(or what is the same

(111)
(
η2 − 1

)
ξ0 = −2).

Then on substituting this in the above equation, we get

(η − 1) ξ0 = 0

contradicting the previous equation.
(b) Suppose

(112) η =
2− ξ0

ηξ0

.

Then,

(113) ξ0 =
2

η2 + 1

and this leads to

(114) m0 = 2m1 +
η − 1

2η(η2 + 1)
.

On substituting (113) and (114) in(103), (104), (105) and (99), we find

(115) β|1 =
(
ψητ

m1(2−η)+ η−1

2η(η2+1)

)α
(116) β|2 =

(
ψητ

m1(η2−2η+2)+ η2−1

2η(η2+1)

)α
,

(117) β|3 =

(
ψη−3τ

2η2+η+1

2η4(η2+1)
−m1

(
η2+2

η3

))α

,
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(118) τ =

(
ψη−4τ

η+1

2η5 −2m1

(
η2+1

η4

))α

.

Substitute i = 0, t = 1 in (17), to get

(119) β|3β|1 = τβ|20.

Using (101), (115), (116), (117) and (118) in (119), we obtain

ψη−3τ
2η2+η+1

2η4(η2+1)
−m1

(
η2+2

η3

)
ψητ

m1(2−η)+ η−1

2η(η2+1)

= ψη−4τ
η+1

2η5 −2m1

(
η2+1

η4

)
ψητ

m1ψητ
m1 .

Thus,

ψη−2τ
2η2+η+1

2η3(η2+1)
−m1

(
η2+2

η2

)
+m1(2−η)+ η−1

2η(η2+1)

= ψη−2τ
η+1

2η3 −2m1

(
η2+1

η2

)
+m1η+m1

,

which implies

(120) (η − 1)m1 = 0

and thus,

m1 = 0 or η = 1.

• If m1 = 0 we get

(121) β = (ψη, ψητ
η−1

2η(η2+1) , ψητ
η2−1

2η(η2+1) , ψη−3τ
2η2+η+1

2η4(η2+1) )α
(1)
στ

= τ γ,

where

(122) γ =
(
λ 2
η2(η2+1)

)(1)

(e, ψη, ψη2τ
η−1

2η(η2+1) , ψη3τ
2η2−n−1

2η(η2+1) )α(1)

and

(123) τ =
(
ψη−4τ

η+1

2η5

)α
.

• If η = 1 we get

(124) β = (τm1 , τm1 , τm1 , τ 1−3m1)α
(1)

(0, 1, 2, 3)

and
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(125) τ =
(
τ 1−4m1

)α
,

which produce

(126)

β = (τ
m1

1−4m1 , τ
m1

1−4m1 , τ
m1

1−4m1 , τ
1−3m1
1−4m1 )(0, 1, 2, 3)

= (τ
m1

1−4m1 , τ
m1

1−4m1 , τ
m1

1−4m1 , τ
m1

1−4m1 )τ

= τ
4m1

1−4m1 τ = τ
1

1−4m1 = τ
λ 1

1−4m1

.

(3) Suppose σβ = σ−1
τ = (0, 3, 2, 1). Then, β−1 satisfies the previous case.

Therefore, as θ inverts τ , we have

(127) β =
(
β−1
)−1

= (τ γ)−1 = (τ)θγ

or

(128) β = τ
θλ 1

1−4m1 ,

where m1 ∈ Z4,

(129) γ =
(
λ 2
η2(η2+1)

)(1)

(e, ψη, ψη2τ
η−1

2η(η2+1) , ψη3τ
2η2−n−1

2η(η2+1) )α(1),

η ∈ U(Z4) and

(130) τ =
(
ψη−4τ

η+1

2η5

)α
.

8.5. Final Step. We finish the proof of the second part of Theorem A. In
order to treat the remaining case where the activity of β is a 4-cycle, we
use the fact that β2 ∈ B, which we have already described. Next, from the
description of the centralizer of β2, we are able to pin down the form of β.

Proposition 12. Let β = (β|0, β|1, β|2, β|3)(0, 2)(1, 3) be such that (β|0) (β|2) =
τ θ1 and (β|1) (β|3) = τ θ2 , for some θ1, θ2 ∈ Aut(T4). Then, β is conjugate to
τ 2.

Proof. Let α = (e, e, β|−1
0 , β|−1

3 ). Then,

(131) βα = (e, e, β|0β|2 , β|1β|3)(0, 2)(1, 3).

Therefore, substituting β|0β|2 = τ θ1 and β|1β|3 = τ θ2 in the above equation,
we have

βα = (e, e, τ θ1 , τ θ2)(0, 2)(1, 3).

Conjugating βα by γ = (θ−1
1 , θ−1

2 , θ−1
1 , θ−1

2 ) we produce

βαγ = τ 2.

�

We show below that active elements of B produce within B elements con-
jugate to τ 2.
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Proposition 13. Let β ∈ B with nontrivial σβ. Then

(i) If σβ = σ2
τ , then β is a conjugate of τ 2.

(ii) If σβ ∈ {(0, 2), (1, 3)}, then ββτ is a conjugate τ 2.
(iii) If σβ ∈ {στ , σ−1

τ }, then β2 is a conjugate of τ 2.

Proof. It is enough to prove (i), since (ii), (iii) are just special cases.
If σβ = σ2

τ , then

(132) β|0 =

(
λ 2−ξ0

ξ0

τm0

)α
, β|1 =

(
λ 2−ξ0

ξ0

τ
ξ1−ξ0

2
+m0

)α
,

(133) β|2 =

(
λ ξ0

2−ξ0
τ

(ξ0−m0)
ξ0

2−ξ0

)α
, β|3 =

(
λ ξ0

2−ξ0
τ( ξ1+ξ0

2
−m0) ξ0

2−ξ0

)α
,

(134) τ =

(
λ

(
ξ0

2−ξ0
)2τ

(
1− 2m0

ξ0

)(
ξ0

2−ξ0

)2
)α

,

where ξ0, ξ1 ∈ U(Z4), m0 ∈ Z4.
Therefore,

β|0β|2 =

(
λ 2−ξ0

ξ0

τm0λ ξ0
2−ξ0

τ
(ξ0−m0)

ξ0
2−ξ0

)α
=

(
τ

ξ20
2−ξ0

)α
= (τ)

ψ
ξ20

2−ξ0

α

β|1β|3 =

(
λ 2−ξ0

ξ0

τ
ξ1−ξ0

2
+m0λ ξ0

2−ξ0
τ( ξ1+ξ0

2
−m0) ξ0

2−ξ0

)α
=
(
τ
ξ1ξ0
2−ξ0

)α
= τ

ψ ξ1ξ0
2−ξ0

α

It follows from Proposition 12, that β is a conjugate of τ 2. �

Corollary 4. Suppose β ∈ B is an active element. Then, B is conjugate to a
subgroup of the centralizer C(τ 2).

Proposition 14. Let γ ∈ C(τ 2). Then,

(135) γ = (τm0 , τm1 , τm0+δ((0)σγ , 2), τm1+δ((1)σγ , 2))σγ,

where m0,m1 ∈ Z4, σγ ∈ CΣ4(σ2).

Proof. Write γ = (γ|0, γ|1, γ|2, γ|3)σγ. Then τ 2γ = γτ 2 translates to

(e, e, τ, τ)(0, 2)(1, 3)(γ|0, γ|1, γ|2, γ|3)σγ
= (γ|0, γ|1, γ|2, γ|3)σγ(e, e, τ, τ)(0, 2)(1, 3),

and this in turn translates to

(γ|2, γ|3, τγ|0, τγ|1)(0, 2)(1, 3)σγ

=
(γ|0, γ|1, γ|2, γ|3).
σγ(τ

δ(0,2), τ δ(1,2), τ δ(2,2), τ δ(3,2))(0, 2)(1, 3)

=
(γ|0, γ|1, γ|2, γ|3)
(τ δ((0)σγ ,2), τ δ((1)σγ ,2), τ δ((2)σγ ,2), τ δ((3)σγ ,2))σγ(0, 2)(1, 3)

= (γ|0τ δ((0)σγ ,2), γ|1τ δ((1)σγ ,2), γ|2τ δ((2)σγ ,2), γ|3τ δ((3)σγ ,2))σγ(0, 2)(1, 3)
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Thus, we have 
γ|2 = γ|0τ δ((0)σγ ,2),
γ|3 = γ|1τ δ((1)σγ ,2),
τγ|0 = γ|2τ δ((2)σγ ,2),
τγ|1 = γ|3τ δ((3)σγ ,2).

Hence,{
γ|2 = γ|0τ δ((0)σγ ,2), γ|3 = γ|1τ δ((1)σγ ,2),
τ γ|0 = τ δ((0)σγ ,2)+δ((2)σγ ,2) = τ , τ γ|1 = τ δ((1)σγ ,2)+δ((3)σγ ,2) = τ

.

Therefore, there exist m0,m1 ∈ Z4 such that{
γ|0 = τm0 , γ|1 = τm1 ,
γ|2 = τm0+δ((0)σγ ,2), γ|3 = τm1+δ((1)σγ ,2) .

Hence, γ has the form

(136) γ = (τm0 , τm1 , τm0+δ((0)σγ ,2), τm1+δ((1)σγ ,2))σγ,

where σγ ∈ CΣ4(σ2). �

Corollary 5. The centralizer of τ 2 in A4 is

C(τ 2) = 〈(e, e, τ, e)(0, 2), τ, (τm0 , τm1 , τm0 , τm1) | m0,m1 ∈ Z4〉 .

Corollary 6. Let γ ∈ C(τ 2) be such that σγ ∈ 〈(0, 2)(1, 3)〉. Then

γ ∈
〈
(τm0 , τm1 , τm0 , τm1), τ 2 | m0,m1 ∈ Z4

〉
.

Proposition 15. Let Ḣ = 〈(τm0 , τm1 , τm0 , τm1), τ 2 | m0,m1 ∈ Z4〉. Then the
normalizer NA4(Ḣ) is the group〈

C(τ 2), (ψ2m0+1, ψ2m1+1, ψ2m0+1τ
m0 , ψ2m1+1τ

m1) | m0,m1 ∈ Z4

〉
,

where, for each η ∈ U(Z4), ψη is defined by (102) and

τψη = τ η.

Proof. Note that Ḣ is an abelian group. Let α ∈ NA4(Ḣ). Then,

(τ 2)α = (τm0 , τm1 , τm0+1, τm1+1)(0, 2)(1, 3),

where m0,m1 ∈ Z4.
Suppose α is inactive. Then,

(τm0 , τm1 , τm0+1, τm1+1)(0, 2)(1, 3)
= (α|−1

0 , α|−1
1 , α|−1

2 , α|−1
3 )(e, e, τ, τ)(0, 2)(1, 3)(α|0, α|1, α|2, α|3)

= (α|−1
0 , α|−1

1 , α|−1
2 , α|−1

3 )(e, e, τ, τ)(α|2, α|3, α|0, α|1)(0, 2)(1, 3)
= (α|−1

0 α|2, α|−1
1 α|3, α|−1

2 τα|0, α|−1
3 τα|1)(0, 2)(1, 3)

which produces {
α|−1

0 α|2 = τm0 , α|−1
1 α|3 = τm1 ,

α|−1
2 τα|0 = τm0+1, α|−1

3 τα|1 = τm1+1 .
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Therefore, {
α|2 = α|0τm0 , α|3 = α|1τm1 ,
α|−1

0 τα|0 = τ 2m0+1, α|−1
1 τα|1 = τ 2m1+1.

Thus,

α = (α|0, α|1, α|2, α|3) = (ψ2m0+1, ψ2m1+1, ψ2m0+1τ
m0 , ψ2m1+1τ

m1)

satisfies
(τ 2)α = (τm0 , τm1 , τm0+1, τm1+1)(0, 2)(1, 3).

�

Theorem 7. Let G be a finitely generated solvable subgroup of Aut(T4) which
contains τ . Then, G is a subgroup of

(137) ×4 (· · · (×4 (×4NA4(H)α o S4) o S4) · · · ) o S4

for some α ∈ A4.

Proof. As in the case n = p, we assume G has derived length d ≥ 2 and let
B be the (d − 1)th term of the derived series of G. Then, B is an abelian
group normalized by τ . On analyzing the case 8.4 and the final step, there
exists a level t such that B is a subgroup of V̇ = ×4kC(µ2),where µ = τα for
some α ∈ A4 and where σµ2 = (0, 2)(1, 3). There also exists β ∈ B such that
β|u = µ2 for some index u ∈M.

Moreover, if T is the normalizer of C(τ 2), then clearly, Tα is the normalizer
of C(µ2).

We will show now that G is a subgroup of

J̇ = ×4 (· · · (×4 (×4NA4(H)α o S4) o S4) · · · ) o S4

where the cartesian product ×4appears t times..
Let γ 6∈ J̇ . Since γ 6∈ J̇ , there exists w ∈ M having |w| = t and γ|w 6∈ Tα.

Since τ is transitive on all levels of the tree, by Corollary 6 we can conjugate
β by an appropriate power of τ to get θ ∈ B such that

θ|w = µ2 or θ|w =
(
µ2
)τ

=
(
(τm0 , τm1 , τm0+1, τm1+1)(0, 2)(1, 3)

)α
,

where m0,m1 ∈ Z4. Thus, for v = wγ we have

(θγ) |v
(9)
= θ|

γ
vγ
−1

vγ−1 = θ|γ|ww 6∈ C(µ2)

which implies θγ 6∈ B ≤ V̇ and γ 6∈ G. Hence, G is a subgroup of J̇ . �
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