THE *n*-ARY ADDING MACHINE AND SOLVABLE GROUPS

JOSIMAR DA SILVA ROCHA AND SAID NAJATI SIDKI

ABSTRACT. We describe under a various conditions abelian subgroups of the automorphism group $\operatorname{Aut}(T_n)$ of the regular *n*-ary tree T_n , which are normalized by the *n*-ary adding machine $\tau = (e, ..., e, \tau)\sigma_{\tau}$ where σ_{τ} is the *n*-cycle (0, 1, ..., n - 1). As an application, for n = p a prime number, and for $n = p^2$ when p = 2, we prove that every finitely generated soluble subgroup of $\operatorname{Aut}(T_n)$, containing τ is an extension of a torsion-free metabelian group by a finite group.

Contents

1. Introduction	2
2. Preliminaries	3
3. The holomorph of the <i>n</i> -adic integers	6
3.1. Powers of τ .	6
3.2. Centralizer of τ .	7
3.3. Normalizer of the topological closure $\overline{\langle \tau \rangle}$	8
4. Abelian groups B normalized by τ	11
5. The case $\beta \in B$ with $\sigma_{\beta} \in \langle \sigma_{\tau} \rangle$	14
6. Solvable groups for $n = p$, a prime number.	22
7. Two cases for n even	24
7.1. The case $\sigma_{\beta} = (\sigma_{\tau})^{\frac{n}{2}}$	24
7.2. The case σ_{β} transposition	27
8. Solvable groups for $n = 4$.	34
8.1. Cases $\sigma_{\beta} \in \{(0,3)(1,2), (0,1)(2,3)\}$	35
8.2. Cases $\sigma_{\beta} \in \{(0,2), (1,3)\}$	35
8.3. The case $\sigma_{\beta} = (\sigma_{\tau})^2 = (0, 2) (1, 3)$	37
8.4. Cases $\sigma_{\beta} \in \{e, \sigma_{\tau}, \sigma_{\tau}^{-1}\}$	41
8.5. Final Step	46
References	49

Date: August 2011.

 $Key\ words\ and\ phrases.$ Adding machine, Tree automorphisms, Automata, Solvable Groups.

1. INTRODUCTION

Adding machines have played an important role in dynamical systems, and in the theory of groups acting on trees : see [1, 2, 5, 4, 10].

An element α in the automorphism group $\mathcal{A}_n = \operatorname{Aut}(T_n)$ of the *n*-ary tree T_n , is represented as $\alpha = \alpha|_{\phi} = (\alpha|_0, ..., \alpha|_{n-1}) \sigma_{\alpha}$ where ϕ is the empty sequence from the free monoid \mathcal{M} generated by $Y = \{0, 1, ..., n-1\}$, where $\alpha|_i \in \mathcal{A}_n$ $(i \in Y)$ -called 1st level states of α - and where σ_{α} (the activity of α) is a permutation in the symmetric group Σ_n on Y extended 'rigidly' to act on the tree; if = e, we say α inactive. In applying the same representation to $\alpha|_0$ we produce $\alpha|_{0i}$ where $i \in Y$ and in general we produce $\{\alpha|_u \mid u \in \mathcal{M}\}$ the set of states of α . Following this notation, the *n*-ary adding machine is represented as $\tau = (e, ..., e.\tau)\sigma_{\tau}$ where e is the identity automorphism an σ_{τ} is the regular permutation $\sigma = (0, 1, ..., n - 1)$. In this sense the adding machine may be viewed as an infinite variant of the regular permutation which often appears in geometric and combinatorial contexts.

A characteristic feature of τ is that its *n*-th power τ^n is the diagonal automorphism of the tree $(\tau, ..., \tau)$. This fact implies that the centralizer of the cyclic group $\langle \tau \rangle$ in \mathcal{A}_n is equal to its topological closure $\overline{\langle \tau \rangle}$ in \mathcal{A}_n seen as a topological group with respect to the the natural topology induced by the tree.

A large variety of subgroups of \mathcal{A}_n which contain τ have been constructed, including finitely generated groups which are torsion-free and just non-solvable, yet without free subgroups of rank 2 [3, 6], and generalizations thereof [9], as well as constructions of free groups of rank 2 [11]. Yet solvable groups which contain τ are expected to have restricted structure [2]. For nilpotent groups we show

Proposition. Let G be a nilpotent subgroup of \mathcal{A}_n which contains the n-adic adding machine τ . Then G is a subgroup of $\overline{\langle \tau \rangle}$.

Let \mathbb{Z}_n be the ring of *n*-adic integers and $U(\mathbb{Z}_n)$ its subgroup of units. The normalizer of $\overline{\langle \tau \rangle}$ in \mathcal{A}_n is isomorphic to the holomorph of \mathbb{Z}_n , the semidirect product $\mathbb{Z}_n \rtimes U(\mathbb{Z}_n)$, and is therefore metabelian.

The most visible examples of finitely generated solvable groups containing τ are conjugate to subgroups of those belonging to the sequence of groups

$$\Gamma_0 = N_{\mathcal{A}_n} \overline{\langle \tau \rangle}, \Gamma_1 = (\times_n \Gamma_0) \rtimes G_1, \dots, \Gamma_{i+1} = (\times_n \Gamma_i) \rtimes G_{i+1}, \dots$$

where $\times_n \Gamma_i$ is a direct product of n copies of Γ_i (seen as a subgroup of the 1st level stabilizer of the tree) and where G_i is a solvable subgroup of Σ_n in its canonical action on the tree, containing the cycle σ_{τ} . We note that for all i, the groups Γ_i are metabelian by 'finite solvable subgroups of Σ_n '. It was shown by the second author that for n = 2, that finitely generated solvable groups which contain the binary adding machine are conjugate to some subgroups of Γ_i acting on the binary tree [7]. The description for degrees n > 2 requires a classification of solvable subgroups of Σ_n which contain the cycle $\sigma = (0, 1, ..., n-1)[8]$. This is an open problem, even for metabelian groups. On the other hand, the answer for primitive solvable subgroups of Σ_n is simple and classical. For then, n is a prime number p or n = 4. In case n = p, the solvable subgroups G_i can all be taken to be the normalizer $F = N_{\Sigma_n}(\langle \sigma \rangle)$ of order p(p-1) and in case n = 4, the G_i 's can all be taken to be the symmetric group Σ_4 .

Given this background, the main theorem of this paper is

Theorem A. Let n = p, a prime number, or n = 4. Then any finitely generated solvable subgroup of \mathcal{A}_n , which contains the n-ary machine τ is conjugate to a subgroup of Γ_i for some *i*.

The result follows first from general analysis of the conditions $[\beta, \beta^{\tau^x}] = e$ (for some $\beta \in \mathcal{A}_n$ and all $x \in \mathbb{Z}$), their impact on the 1st level states of the subgroup $\langle \beta, \tau \rangle$ and then how these in turn translate successively to conditions on states at lower levels. It is somewhat surprising that the process converges to a clear global description for trees of degrees p and 4.

If σ_{β} is either a power of σ_{τ} or a transposition, we describe abelian subgroups normalized by τ .

Theorem B. Let B be an abelian subgroup of \mathcal{A}_n normalized by τ , let $\beta = (\beta|_0, \beta|_1, \cdots, \beta|_{n-1})\sigma_\beta \in B$ and define the subgroup $H = \langle \beta|_i \ (i \in Y), \tau \rangle$ generated by the states of β and τ .

(I) Suppose $\sigma_{\beta} = (\sigma_{\tau})^s$ for some integer s and set $m = \frac{n}{\gcd(n,s)}$. Then, H is metabelian-by-finite. Indeed, on defining the subgroup

$$K = \left\langle [\beta|_i, \tau^k], \ \beta|_i \beta|_{\overline{i+s}} \beta|_{\overline{i+2s}} \cdots \beta|_{\overline{i+(m-1)s}} \mid k \in \mathbb{Z}, \ i \in Y \right\rangle$$

(the bar notation means 'modulo m') then K is a normal subgroup of H and $O = K \langle \tau \rangle$ is a metabelian normal subgroup of H where $\frac{H}{O}$ is a homomorphic image of a subgroup of the wreath product $C_m \wr C_n$ of the cyclic groups C_m, C_n . (II) Let n be an even number. Then H is a metabelian group if $s = \frac{n}{2}$ or σ_β is a transposition.

Let P be a subgroup of Σ_n . The *layer closure* of P in \mathcal{A}_n is the group L(P) formed by elements of \mathcal{A}_n all of whose states lie in P. The following result is yet another characterization of the adding machine.

Theorem C. Let n be an odd number, $\sigma = (0, \dots, n-1) \in \Sigma_n$ and let $L = L(\langle \sigma \rangle)$, the layer closure of $\langle \sigma \rangle$ in A_n . Let s be an integer relatively prime to n and let $\beta = (\beta|_0, \beta|_1, \dots, \beta|_{n-1})\sigma^s \in L$ be such that $[\beta, \beta^{\tau^x}] = e$ for all $x \in Z$. Then β is a conjugate of τ in L.

2. Preliminaries

We start by introducing definitions and notation. The *n*-ary tree T_n can be identified with the free monoid $\mathcal{M} = < 0, 1, ..., n-1 >^*$ of finite sequences from $Y = \{0, 1, ..., n-1\}$, ordered by $v \leq u$ provided u is an initial subword of v. The identity element of \mathcal{M} is the empty sequence ϕ . The level function for T_n , denoted by |m| is the length of $m \in \mathcal{M}$; the root vertex ϕ has level 0.

FIGURE 1. The Binary Tree

The action $\rho : i \to j$ of a permutation $\rho \in \Sigma_n$ will be from the right and written as $(i) \rho = j$ or as $i^{\rho} = j$. If i, j are integers then the action of ρ on i is to be identified with its action on its representatives \overline{i} in Y, modulo n. Permutations σ in Σ_n are extended 'rigidly' to automorphisms of \mathcal{A}_n by

$$(y.u)\rho = (y)\rho.u, \ \forall \ y \in Y, \ \forall \ u \in \mathcal{M}.$$

An automorphism $\alpha \in \mathcal{A}_n$ induces a permutation σ_α on the set Y. Consequently, α affords the representation $\alpha = \alpha' \sigma_\alpha$ where α' fixes Y point-wise and for each $i \in Y$, α' induces $\alpha|_i$ on the subtree whose vertices form the set $i \cdot \mathcal{M}$. If j is an integer the $\alpha|_j$ will be understood as $\alpha|_{\overline{j}}$ where \overline{j} is the representative of j in Y modulo n.

Given i in Y, we use the canonical isomorphism $i \cdot u \mapsto u$ between $i \cdot \mathcal{M}$ and the tree T_n , and thus identify $\alpha|_i$ with an automorphism of T_n ; therefore, $\alpha' \in \mathcal{F}(Y, \mathcal{A}_n)$, the set for functions from Y into \mathcal{A}_n , or what is the same, the 1st level stabilizer Stab(1) of the tree. This provides us with the factorization $\mathcal{A}_n = \mathcal{F}(Y, \mathcal{A}_n) \cdot \Sigma_n$.

Let $\alpha, \beta, \gamma \in \mathcal{A}_n$. Then following formulas hold

(1)
$$\sigma_{\alpha^{-1}} = (\sigma_{\alpha})^{-1}, \ \sigma_{\alpha}\sigma_{\beta} = \sigma_{\alpha\beta}$$

(2)
$$(\alpha^{-1})|_u = \alpha|_{(u)^{\alpha^{-1}}},$$

(3)
$$(\alpha\beta)|_{u} = (\alpha|_{u})(\gamma|_{u}) \text{ where } \gamma|_{u} = \beta|_{(u)^{\alpha}}$$

(4)
$$\gamma = \alpha^{-1} \beta \alpha \Leftrightarrow \sigma_{\gamma} = \sigma_{\alpha}^{-1} \sigma_{\beta} \sigma_{\alpha},$$

(5)
$$\gamma|_{(i)\sigma_{\alpha}} = \alpha|_{i}^{-1}\beta|_{i}\alpha|_{(i)\sigma_{\beta}}, \forall i \in Y.$$

(6)
$$\theta = [\beta, \alpha] = \beta^{-1} \beta^{\alpha} \Rightarrow \sigma_{\theta} = [\sigma_{\beta}, \sigma_{\alpha}],$$

(7)
$$\theta|_{(i)\sigma_{\alpha\beta}} = \left(\beta|_{(i)\sigma_{\alpha}}\right)^{-1} \left(\alpha|_{i}\right)^{-1} \left(\beta|_{i}\right) \left(\alpha|_{(i)\sigma_{\beta}}\right), \forall i \in Y.$$

(8)
$$(\alpha^m)|_i = (\alpha|_i) \left(\alpha|_{(i)\sigma_\alpha}\right) \left(\alpha|_{(i)\sigma_\alpha^2}\right) \cdots \left(\alpha|_{(i)\sigma_{\alpha^{m-1}}}\right)$$

(9)
$$(\beta^{\alpha})|_{u} = (\beta|_{(u)\alpha^{-1}})^{\alpha|_{(u)\alpha^{-1}}}$$
, where $\beta \in Stab(k)$ and $|u| \le k$.

An automorphism $\alpha \in \mathcal{A}_n$ corresponds to an input-output automaton with alphabet Y and with set of states $Q(\alpha) = \{\alpha|_u \mid u \in \mathcal{M}\}$. The automaton α transforms the letters as follows: if the automaton is in state $\alpha|_u$ and reads a letter $i \in Y$ then it outputs the letter $j = (i) \alpha|_u$ and its state changes to $\alpha|_{ui}$; these operations can be best described by the labeled edge $\alpha|_u \xrightarrow{i|j} \alpha|_{ui}$. Following terminology of automata theory, every automorphism $\alpha|_u$ is called the *state* of α at u.

The tree T_n is a topological space which is the direct limit of its truncations at the *n*-th levels. Thus the group \mathcal{A}_n is the inverse limit of the permutation groups it induces on the *n*-th level vertices. This transforms \mathcal{A}_n into a topological group. An infinite product of elements \mathcal{A}_n is a well-defined element of \mathcal{A}_n provided for any given level l, only finitely many of the elements in the product have non-trivial action on vertices at level l. Thus, if $\alpha \in \mathcal{A}_n$ and ξ $= \sum_{i\geq 0} a_i n^i \in \mathbb{Z}_n$ then $\alpha^{\xi} = \alpha^{a_0} . \alpha^{na_1} .. \alpha^{n^i a_i} ...$ is a well define element of \mathcal{A}_n . The topological closure of a subgroup H in \mathcal{A}_n will be indicated by \overline{H} . We note that if H is abelian then

$$H = \{h^{\xi} | h \in H, \xi \in \mathbb{Z}_n \}.$$

One of the characterizing aspects of the *n*-ary adding machine is that the centralizer of τ is a pro-cyclic group; namely,

$$C_{\mathcal{A}_n}(\tau) = \overline{\langle \tau \rangle} = \{ \tau^{\xi} \mid \xi \in \mathbb{Z}_n \}.$$

Let v = yu where $y \in Y, u \in \mathcal{M}$. The image of v under the action of α is

$$(v)\alpha = (yu)\alpha = (y)\,\sigma_{\alpha}.(u)\alpha|_{y}.$$

The action extends to infinite sequences (or boundary points of the tree) in the same manner. A boundary point of the tree $c = c_0 c_1 c_2 \dots$ where $c_i \in Y$ for all *i*, corresponds also to the *n*-adic integer $\xi = \sum \{c_i n^i | i \ge 0\} \in \mathbb{Z}_n$. Thus the action of the tree automorphism α can thus be translated to an action on the ring of *n*-adic integers. We will indicate c_0 by $\overline{\xi}$ which is ξ modulo *n*. In the case of the automorphism $\tau = (e, e, \dots, e, \tau)\sigma$, the action of τ on *c* is

$$(c) \tau = \begin{cases} (c_0 + 1) c_1 c_2 \dots & \text{if } 0 \le c_0 \le n - 2, \\ 0 (c_1 c_2, \dots)^{\tau}, & \text{if } c_0 = n - 1, \end{cases}$$

which translates to the n-ary addition

$$\xi^{\tau} = 1 + \xi$$

FIGURE 2. The binary adding machine

3. The holomorph of the n-adic integers

The holomorph of \mathbb{Z}_n is the extension \mathbb{Z}_n by the its group of units $U(\mathbb{Z}_n)$ in its natural action on \mathbb{Z}_n . An element ξ is a unit in \mathbb{Z}_n if and only if $\overline{\xi}$ is a unit in \mathbb{Z} modulo n. The subgroup of $U(\mathbb{Z}_n)$ consisting of elements ξ with $\overline{\xi} = 1$ is denoted by by \mathbb{Z}_n^1 . This subgroup has the transversal $\{j \mid 1 \leq j \leq n-1, \gcd(j,n)=1\}$ in \mathbb{Z}_n and therefore has index $[U(\mathbb{Z}_n) : \mathbb{Z}_n^1] = \varphi(n)$ where φ is the Euler function. The normalizer of $\overline{\langle \tau \rangle}$ in the group of automorphisms of the tree is the holomorph of \mathbb{Z}_n .

Given $\alpha \in \mathcal{A}_n$ we denote the diagonal automorphism $(\alpha, ..., \alpha)$ by $\alpha^{(1)}$ and define inductively $\alpha^{(i+1)} = (\alpha^{(i)})^{(1)}$ for all $i \ge 1$.

3.1. Powers of τ . Let $\xi = \sum_{i \ge 0} a_i n^i \in \mathbb{Z}_n$. Then $a_0 = \overline{\xi}$ and $\sum_{i \ge 1} a_i n^{i-1} = \frac{\xi - \overline{\xi}}{n}$.

Lemma 1. Let $\xi \in \mathbb{Z}_n$. Then

$$\tau^{\xi} = \left(\tau^{\frac{\xi-a_0}{n}}, \cdots, \tau^{\frac{\xi-a_0}{n}}, \underbrace{\tau^{\frac{\xi-a_0}{n}+1}, \cdots, \tau^{\frac{\xi-a_0}{n}+1}}_{a_0 \text{ terms}}\right) \sigma_{\tau}^{a_0}.$$

Proof. For j an integer with $1 \le j \le n-1$, we have

$$\tau^{j} = \left(e, \dots, e, \underbrace{\tau, \cdots, \tau}_{j \text{ terms}}\right) \sigma_{\tau}^{j}$$

and $\tau^n = (\tau, ..., \tau) = \tau^{(1)}$. Given $\xi = \sum_{i \ge 0} a_i n^i$, then

(10)
$$\tau^{a_0} = (e, \cdots, e, \underbrace{\tau, \cdots, \tau}_{a_0 \text{ terms}}) \sigma^{a_0}_{\tau},$$

(12)
$$\tau^{\xi} = (\tau^{\frac{\xi-a_0}{n}}, \cdots, \tau^{\frac{\xi-a_0}{n}}, \underbrace{\tau^{\frac{\xi-a_0}{n}+1}, \cdots, \tau^{\frac{\xi-a_0}{n}+1}}_{a_0 \text{ terms}})\sigma_{\tau}^{a_0}$$

(13)
$$= (\tau^{\frac{\xi-\overline{\xi}}{n}}, \cdots, \tau^{\frac{\xi-\overline{\xi}}{n}}, \underbrace{\tau^{\frac{\xi-\overline{\xi}}{n}+1}, \cdots, \tau^{\frac{\xi-\overline{\xi}}{n}+1}}_{\overline{\xi} \text{ terms}})\sigma_{\tau}^{\overline{\xi}}.$$

As we have seen, the description of τ^{ξ} involves the partition of the interval [0, ..., n-1] into two subintervals. Therefore we introduce the step function $\delta: \frac{\mathbb{Z}}{n\mathbb{Z}} \times \frac{\mathbb{Z}}{n\mathbb{Z}} \to \{0, 1\}$ given by

$$\delta(i,j) = \frac{i+j-\overline{i+j}}{n} = \begin{cases} 0, & \text{if } 0 \le i \le n-j \\ 1, & \text{otherwise} \end{cases}$$

which we will call the Polarizer Function. With this,

$$\tau^{\xi} = \left(\tau^{\frac{\xi - \overline{\xi}}{n} + \delta(i,\xi)}\right)_{0 \le i \le n-1} \sigma_{\tau}^{\overline{\xi}}.$$

The function δ extends to $\mathbb{Z}_n \times \mathbb{Z}_n$, simply by $\delta(\eta, \kappa) = \delta(i, k)$ where $i = \overline{\eta}, k = \overline{\kappa}$. Note that

$$\sum_{i=0}^{n-1} \delta(i,j) = j.$$

FIGURE 3. Polarizer Function for n = 4.

•

3.2. Centralizer of τ .

Lemma 2. $C_{\mathcal{A}_n}(\tau) = \overline{\langle \tau \rangle}.$

Proof. Let $\alpha \in \mathcal{A}_n$ commute with τ . Then, $[\sigma_{\alpha}, \sigma_{\tau}] = e$ and therefore $\sigma_{\alpha} = (\sigma_{\tau})^{s_0}$ for some integer $0 \leq s_0 \leq n-1$. Therefore, $\beta = \alpha \tau^{-s_0} = (\beta|_0, ..., \beta|_{n-1})$ commutes with τ and $\sigma_{\beta} = e$. Now,

$$\beta^{\tau} = ((\beta|_{n-1})^{\tau}, \beta|_0, ..., \beta|_{n-1}) = \beta$$

implies $\beta|_i = \beta|_0$ for all $0 \le s_0 \le n-1$ and $\beta|_0$ commutes with τ . Therefore $\beta = (\beta|_0)^{(1)}$ and $\beta|_0$ replaces α in previous argument. Hence,

there exists an integer $0 \leq s_1 \leq n-1$ such that $\gamma = \beta|_0 \tau^{-s_1} = (\gamma|_0)^{(1)}$. From which we conclude

$$\begin{aligned} \alpha &= \beta \tau^{s_0} = (\beta|_0)^{(1)} \tau^{s_0} \\ &= \left((\gamma|_0)^{(1)} \tau^{s_1}, ..., (\gamma|_0)^{(1)} \tau^{s_1} \right) \tau^{s_0} \\ &= (\gamma|_0)^{(2)} \tau^{ns_1} \tau^{s_0} = (\gamma|_0)^{(2)} \tau^{ns_1+s_0}. \end{aligned}$$

Inductively then, we obtain the desired form $\alpha = \tau^{\xi}$ where $\xi = s_0 + ns_1 + \dots$

A characterization of nilpotent groups which contain τ follows.

Proposition 1. Let G be a nilpotent subgroup of \mathcal{A}_n which contains the n-adic adding machine. Then G is a subgroup of $\overline{\langle \tau \rangle}$.

Proof. Suppose G is a nilpotent group of class k > 1 which contains τ . Then, the center Z(G) is contained in $\langle \tau \rangle$. Let j be the maximum index such that $Z_j(G) \leq \langle \tau \rangle$; therefore j < k. Let $\alpha \in Z_{j+1}(G) \setminus Z_j(G)$; then $[\tau, \alpha] = \tau^{\xi}$ and $\xi \neq 0$. Now, $[\tau, \alpha, \alpha] = [\tau^{\xi}, \alpha] = e$. Yet $[\tau^{\xi}, \alpha] = [\tau, \alpha]^{\xi} = \tau^{\xi^2} = e$ and so, $\xi = 0$ and $[\tau, \alpha] = e$; a contradiction.

3.3. Normalizer of the topological closure $\langle \tau \rangle$.

Lemma 3. The group $\Gamma_0 = N_{\mathcal{A}_n}\left(\overline{\langle \tau \rangle}\right)$ is metabelian. Indeed, the derived subgroup Γ'_0 is contained in $\overline{\langle \tau \rangle}$.

Proof. Let $\alpha, \beta \in \Gamma_0$, then $\tau^{\alpha} = \tau^{\xi}$ and $\tau^{\beta} = \tau^{\eta}$ for some $\eta, \xi \in U(\mathbb{Z}_n)$. Therefore,

$$\tau^{\alpha} = \tau^{\xi}, \tau = (\tau^{\xi})^{\alpha^{-1}} = (\tau^{\alpha^{-1}})^{\xi},$$
$$\tau^{\alpha^{-1}} = \tau^{\xi^{-1}}.$$

Likewise, $\tau^{\beta^{-1}} = \tau^{\eta^{-1}}$. Thus, $\tau^{[\alpha,\beta]} = \tau$ and $\Gamma'_0 \leq C_{\mathcal{A}_n}(\tau) = \overline{\langle \tau \rangle}$ follows. \Box

We present a property of the polarizer function δ which we will use in the sequel.

Lemma 4. For all $i, j \in \mathbb{Z}, \xi \in \mathbb{Z}_n$ we have

$$\frac{j\xi - \overline{j\xi}}{n} - j\left(\frac{\xi - \overline{\xi}}{n}\right) + \delta(i, j\xi) = \sum_{k=0}^{j-1} \delta(i + k\xi, \xi).$$

Proof. Since

$$\begin{aligned} (\tau^{\xi})^{j}|_{i} &= (\tau^{\xi})|_{i} \cdot (\tau^{\xi})|_{\overline{i+\xi}} \cdots (\tau^{\xi})|_{\overline{i+(j-1)\xi}} \\ (\tau^{\xi})|_{i} &= \tau^{\frac{\xi-\overline{\xi}}{n}+\delta(i,\xi)} \end{aligned}$$

the assertion follows from

$$\tau^{\frac{j\xi-\overline{j\xi}}{n}+\delta(i,j\xi)} = \tau^{j\left(\frac{\xi-\overline{\xi}}{n}\right)+\sum_{k=0}^{j-1}\delta(i+k\xi,\xi)}.$$

Proposition 2. Suppose $\alpha \in \mathcal{A}_n$ satisfies $\tau^{\alpha} = \tau^{\xi}$ for some $\xi \in U(\mathbb{Z}_n)$. Then:

(i)

$$\alpha|_i = \alpha|_0 \tau^{\mu_i}, (1 \le i \le n-1)\};$$

where

$$\mu_i = i \frac{(\xi - \overline{\xi})}{n} + \sum_{k=0}^{i-1} \delta((v(\alpha) + k)\xi, \xi)$$

and $0 \le v(\alpha) \le n-1$ is such that

$$(0) \sigma_{\alpha} = \overline{v(\alpha)\xi};$$

(ii) (recursion) $\tau^{\alpha|_0} = \tau^{\xi}$; (iii)

$$(j)\sigma_{\alpha} = (v(\alpha) + j)\xi, (0 \le j \le n-1)\}$$

If $\xi \in \mathbb{Z}_n^1$ then $v(\alpha) = 0, (j)\sigma_{\alpha} = \overline{j\xi} = j, \mu_i = i\frac{\xi-1}{n}.$

Proof. Since $\sigma_{\tau}^{\sigma_{\alpha}} = \sigma_{\tau}^{\xi}$, we have

$$((0) \sigma_{\alpha}, (1) \sigma_{\alpha}, \cdots, (n-1)\sigma_{\alpha}) = (0, \overline{\xi}, \overline{2\xi}, \cdots, \overline{(n-1)\xi}).$$

Therefore, there exists $v(\alpha) \in Y$ such that $(0) \sigma_{\alpha} = \overline{v(\alpha)\xi}$ and so,

$$(j)\sigma_{\alpha} = \overline{(v(\alpha) + j)\xi}, \ \forall j \in Y.$$

Now, $\tau^{\alpha} = \tau^{\xi}$ is equivalent to $\begin{pmatrix} \sigma_{\tau}^{\sigma_{\alpha}} = \sigma_{\tau}^{\xi} & \text{and} & \alpha|_{(i)\sigma_{\tau}^{s}} = ((\tau^{s})|_{i})^{-1} \alpha|_{i}(\tau^{\xi s})|_{(i)\sigma_{\alpha}}, \\ \forall i \in Y, \forall s \in \mathbb{Z}, \text{ by...} \end{pmatrix}$. The latter conditions are equivalent to $\begin{pmatrix} \alpha|_{0} = \alpha|_{(0)\sigma_{\tau}^{n}} = ((\tau^{n})|_{0})^{-1} \alpha|_{0}(\tau^{\xi n})|_{(0)\sigma_{\alpha}} \\ \text{and} & \alpha|_{i} = \alpha|_{(0)\sigma_{\tau}^{i}} = ((\tau^{i})|_{0})^{-1} \alpha|_{0}(\tau^{\xi i})|_{(0)\sigma_{\alpha}} \forall i \in Y - \{0\} \end{pmatrix}$ and these in turn are equivalent to

$$\begin{pmatrix} \alpha|_i = \alpha|_0 \tau^{\frac{\xi i - \overline{\xi}i}{n} + \delta(v(\alpha)\xi,\xi i)} = \alpha|_0 \tau^{\mu_i} \\ \text{where } \mu_i = i\left(\frac{\xi - \overline{\xi}}{n}\right) + \sum_{k=0}^{i-1} \delta((v(\alpha) + k)\xi,\xi) \; \forall i \in Y - \{0\} \end{pmatrix}.$$
Substitute $i = 0$ in

$$\frac{j\xi - \overline{j\xi}}{n} + \delta(i, j\xi) = j\left(\frac{\xi - \overline{\xi}}{n}\right) + \sum_{k=0}^{j-1} \delta(i + k\xi, \xi), \forall i, \xi \in \mathbb{Z}.$$

to get $\sum_{k=0}^{i-1} \delta(k\xi,\xi) = 0$. The rest of the assertion follows directly.

Corollary 1. Let $\xi \in U(\mathbb{Z}_n)$ and μ_i be as above. Then $\alpha = (\alpha)^{(1)} (e, \tau^{\mu_1}, ..., \tau^{\mu_{n-1}})$ conjugates τ to τ^{ξ} . In particular, if $\xi \in \mathbb{Z}_n^1$, then

$$\alpha = (\alpha)^{(1)} \left(e, \tau^{\frac{\xi-1}{n}}, \tau^{2\frac{\xi-1}{n}}, \cdots, \tau^{(n-1)\frac{\xi-1}{n}} \right)$$

denoted by λ_{ξ} conjugates α to τ^{ξ} .

Although we have computed above an automorphism which inverts τ , we give another with a simpler description. Define the permutation

$$\varepsilon = (0, n-1) (1, n-2) \dots \left(\left\lfloor \frac{n-2}{2} \right\rfloor, \left\lfloor \frac{n+1}{2} \right\rfloor \right).$$

Then ε inverts $\sigma_{\tau} = (0, 1, ..., n - 1)$ and

$$\iota = \iota^{(1)}\varepsilon$$

inverts τ .

Define

$$\Lambda = \{\lambda_{\xi} \mid \xi \in \mathbb{Z}_n^1\}, \Psi = \{\lambda_{\xi}\tau^t \mid \xi \in \mathbb{Z}_n^1, t \in \mathbb{Z}_n\}$$

and call Λ the monic normalizer of $\overline{\langle \tau \rangle}$.

Proposition 3. (i) Λ is an abelian group isomorphic to \mathbb{Z}_n^1 ; (ii) $\Psi = \Lambda \ltimes \overline{\langle \tau \rangle} \cong \mathbb{Z}_n^1 \ltimes \mathbb{Z}_n$; (iii) the derived subgroup $\Psi' = \overline{\langle \tau^n \rangle}$.

Proof. (i) Let $\xi, \theta \in \mathbb{Z}_n^1$. Then, as $\lambda_{\xi}, \lambda_{\theta}$ and $\lambda_{\xi\theta}$ are inactive, its follows that

$$(\lambda_{\xi}\lambda_{\theta}\lambda_{\xi\theta}^{-1})|_{i} = (\lambda_{\xi})|_{i}(\lambda_{\theta})|_{i}((\lambda_{\xi\theta})|_{i})^{-1}$$
$$= \lambda_{\xi}\tau^{i\frac{\xi-1}{n}}\lambda_{\theta}\tau^{i\frac{\theta-1}{n}}\left(\lambda_{\xi\theta}\tau^{i\frac{\xi\theta-1}{n}}\right)^{-1} = \lambda_{\xi}\lambda_{\theta}\lambda_{\theta}^{-1}\tau^{i\frac{\xi-1}{n}}\lambda_{\theta}\tau^{i\frac{\theta-1}{n}}\tau^{-i\frac{\xi\theta-1}{n}}\lambda_{\xi\theta}^{-1}$$
$$= \lambda_{\xi}\lambda_{\theta}\left(\tau^{i\theta\frac{\xi-1}{n}}\tau^{i\frac{\theta-1}{n}}\tau^{-i\frac{\xi\theta-1}{n}}\right)\lambda_{\xi\theta}^{-1} = \lambda_{\xi}\lambda_{\theta}\lambda_{\xi\theta}^{-1}, \forall i \in \{0, \cdots, n-1\}.$$

Therefore, $\lambda_{\xi}\lambda_{\theta} = \lambda_{\xi\theta}$. In addition, $\lambda_{\xi} = e$ if and only if $\xi = 1$. (ii) This factorization is clear.

(iii) Let
$$\theta = 1 + n\theta', \eta \in \mathbb{Z}_n$$
. Then

$$\begin{bmatrix} \tau^{\eta}, \lambda_{\theta} \end{bmatrix} = \tau^{-\eta} \lambda_{\theta^{-1}} \tau^{\eta} \lambda_{\theta} = \tau^{-\eta} \tau^{\eta\theta} = \tau^{\eta(\theta-1)} = (\tau^n)^{\eta\theta'}.$$

We prove below the existence of conjugates τ^{α} of τ in $N_{\mathcal{A}_n}\left(\overline{\langle \tau \rangle}\right)$, which lie outside $\overline{\langle \tau \rangle}$. This fact provides us with the first important type of metabelian groups $\overline{\langle \tau \rangle} \langle \tau^{\alpha} \rangle$ containing τ .

Proposition 4. Suppose $\alpha = (\alpha|_0, \alpha|_1, \cdots, \alpha|_{n-1}) \in \mathcal{A}_n$ satisfies $\tau^{\alpha} = \lambda_{\xi} \tau^{\rho}$ for some $\xi \in \mathbb{Z}_n^1$, and $\rho = 1 + \kappa n \in \mathbb{Z}_n^1$. Then

$$\begin{cases} \alpha|_{i+1} = (\alpha|_0) \lambda_{\xi^{i+1}} \tau^{\frac{1}{n} \left[\rho \frac{\xi^{i+1}-1}{\xi-1} - (i+1) \right]} \\ \tau^{\alpha|_0} = \lambda_{\xi^n} \tau^{\frac{1}{n} \left[\rho \frac{\xi^n-1}{\xi-1} \right]}. \end{cases} (0 \le i \le n-2),$$

The converse is true for $n \ge 3$ and for n = 2 provided $4|\xi - 1$.

Proof. From $\tau^{\alpha} = \lambda_{\xi} \tau^{1+\kappa n}$, we obtain using (4) and (5),

$$\begin{cases} \lambda_{\xi} \tau^{i\frac{\xi-1}{n}+\kappa} = \alpha|_{i}^{-1} \alpha_{i+1}, & \text{if } i \in Y - \{n-1\} \\ \lambda_{\xi} \tau^{(n-1)\frac{\xi-1}{n}+\kappa+1} = \alpha|_{n-1}^{-1} \tau \alpha|_{0}. \end{cases}$$

Therefore,

$$\alpha|_{i+1} = \alpha|_0 \lambda_{\xi} \tau^{\kappa} \lambda_{\xi} \tau^{\frac{\xi-1}{n}+\kappa} \cdots \lambda_{\xi} \tau^{i\frac{\xi-1}{n}+\kappa}, \text{ for } i = 0, 1, \cdots, n-2,$$

$$\alpha|_0 = \tau^{-1} \alpha|_{n-1} \lambda_{\xi} \tau^{(n-1)\frac{\xi-1}{n}+\kappa+1}.$$

The first equations can be expresses as

$$\alpha|_{i+1} = \alpha|_{0}\lambda_{\xi^{i+1}}\tau^{\kappa\sum_{j=0}^{i}\xi^{j}+\frac{\xi-1}{n}\xi^{i}\sum_{j=1}^{i}j(\xi^{-1})^{j}}$$

= $\alpha|_{0}\lambda_{\xi^{i+1}}\tau^{\frac{1}{n}\left[(1+\kappa n)\frac{\xi^{i+1}-1}{\xi-1}-(i+1)\right]}$

and the last as

$$\begin{aligned} \alpha|_{0} &= \tau^{-1} \alpha|_{0} \lambda_{\xi^{n}} \tau^{\frac{\xi}{n} \left[(1+\kappa n) \frac{\xi^{n-1}-1}{\xi-1} - (n-1) \right]} \tau^{(n-1)\frac{\xi-1}{n} + \kappa + 1} \\ &= \lambda_{\xi^{n}} \tau^{\frac{1}{n} \left[(1+\kappa n) \frac{\xi^{n}-1}{\xi-1} \right]}. \end{aligned}$$

If $n \geq 3$ then $\tau^{\alpha|_0} = \lambda_{\xi^n} \tau^{\frac{1}{n} \left[(1+\kappa n) \frac{\xi^n - 1}{\xi - 1} \right]}$ satisfies the same conditions as those for α ; namely, both $\xi^n, \rho' = \frac{1}{n} \left[(1+\kappa n) \frac{\xi^n - 1}{\xi - 1} \right]$ are in \mathbb{Z}_n^1 . If n = 2 then $\xi = 1 + 2\xi', \ \rho' = \frac{1}{2} \left[(1+2\kappa) \frac{\xi^2 - 1}{\xi - 1} \right] = (1+2\kappa) (1+\xi')$ and so, $\rho' \in \mathbb{Z}_2^1$ implies $\xi = 1 + 4\xi''$.

4. Abelian groups B normalized by τ

Let B be an abelian subgroup of \mathcal{A}_n normalized by τ . For a fixed $\beta \in B$, we define the 'state closure' of $\langle \beta, \tau \rangle$ as the group

$$H = \langle \beta |_i \ (i \in Y), \tau \rangle.$$

We will be dealing frequently with the following subgroups of H,

$$N = \langle [\beta]_i, \tau^{k_i}] \mid k_i \in \mathbb{Z}, i \in Y \rangle$$

$$M = N \langle \tau \rangle.$$

When $\sigma_{\beta} = (\sigma_{\tau})^s$ for some integer s we will also be dealing with the subgroups

$$K = \left\langle N, \ \beta|_i \beta|_{i+s} \beta|_{i+2s} \cdots \beta|_{i+(m-1)s} \mid i \in Y \right\rangle,$$

$$O = K \left\langle \tau \right\rangle$$

where $s = \frac{n}{\gcd(n,s)}$.

We show that when n is a power of a prime number p^k , the activity range of β narrows down to a Sylow p-subgroup of Σ_n . This is used to restrict the location of an abelian group B normalized by τ , within \mathcal{A}_n

Proposition 5. Let $n = p^k$, $\sigma = (0, 1, ..., n - 1)$ and P be a Sylow p-subgroup P of Σ_n which contains σ . Then

(i) P is isomorphic to $((...(...C_p)wr)C_p)wrC_p$, a wreath product of the cyclic group C_p of order p iterated k-1 times; the normalizer of P in Σ_n is $N_{\Sigma_n}(P) = P \langle c \rangle$ where c is cyclic of order p-1;

(ii) P is the unique Sylow p-subgroup P of Σ_n which contains σ ;

(iii) if W is an abelian subgroup of Σ_n normalized by σ then W is contained in P;

(iv) the subgroup B is contained in the layer closure $L = L(N_{\Sigma_p}(P))$.

Proof. (i) The structure of P as an iterated wreath product is well-known. The center of P is $Z = \left\langle z \left(=\sigma^{p^{k-1}}\right) \right\rangle$ and $C_{\Sigma_n}(z) = P$. Therefore, $N_{\Sigma_n}(P) = N_{\Sigma_n}(Z) = P \left\langle c \right\rangle$ where c is cyclic of order p-1.

(ii) If $\sigma \in P^g$ for some $g \in \Sigma_n$ then $z^g \in C_{\Sigma_n}(\sigma) = \langle \sigma \rangle$ and therefore $\langle z^g \rangle = \langle z \rangle$, $P^g = P$. Thus, P is the unique Sylow p-subgroup of Σ_n to contain σ .

(iii) Let W be an abelian subgroup of Σ_n normalized by σ . Let $V = W < \sigma >$ and V_0 be the stabilizer of 0 in V. Then, since σ is a regular cycle, it follows that $V = V_0 \langle \sigma \rangle$, $V_0 \cap \langle \sigma \rangle = \{e\}$. Suppose that there exists a prime q different from p which divides the order of W and let Q be the unique Sylow q-subgroup of W. Then Q is the unique Sylow q-subgroup of V and $Q \leq V_0$. Therefore, $Q = \{e\}$ and W a p-group. As $\sigma \in W$, we conclude $W \leq P$..

(iv) Since the normal closure of $\langle \sigma_{\beta} \rangle$ under the action of $\langle \sigma_{\tau} \rangle$ is an abelian subgroup, it follows that $\sigma_{\beta} \in P$. Furthermore, as $\langle [\beta]_{u}, \tau^{k}] | k \in \mathbb{Z} \rangle$ is an

abelian group normalized by τ , it follows that $[\sigma_{\beta|_u}, \sigma] \in P$ and therefore $\sigma^{\sigma_{\beta|_u}} \in P$. Thus, we conclude $\sigma_{\beta|_u} \in N_{\Sigma_n}(P)$ and $\beta \in L$. \Box

Lemma 5. Let $\gamma \in \mathcal{A}_n$. Conditions (i), (ii) below are equivalent: (i) $[\gamma, \gamma^{\tau^k}] = e$ for all $k \in \mathbb{Z}$; (ii) $[\tau^k, \gamma, \gamma] = e$ for all $k \in \mathbb{Z}$. Condition (i) implies (iii) $\langle [\gamma, \tau^k] | k \in \mathbb{Z} \rangle$ is a commutative group. Condition (iii) implies $\langle [\gamma|_u, \tau^k] | k \in \mathbb{Z} \rangle$ is a commutative group for all indices u.

Proof. First,

$$\begin{aligned} [\gamma, \gamma^{\tau^{k}}] &= \gamma^{-1} \left(\tau^{-k} \gamma^{-1} \tau^{k} \right) \gamma \left(\tau^{-k} \gamma \tau^{k} \right) \\ &= \gamma^{-1} \left(\tau^{-k} \gamma^{-1} \tau^{k} \gamma \right) \gamma \left(\gamma^{-1} \tau^{-k} \gamma \tau^{k} \right) \\ &= [\tau^{k}, \gamma]^{\gamma} [\gamma, \tau^{k}] \end{aligned}$$

and so,

$$[\gamma, \gamma^{\tau^k}] = e \Leftrightarrow [\gamma, \tau^k]^{\gamma} = [\gamma, \tau^k]$$

Furthermore, since

(14)
$$[\gamma, \tau^{k_1}]^{\tau^{k_2}} = [\gamma, \tau^{k_2}]^{-1} [\gamma, \tau^{k_1 + k_2}]$$

for all integers k_1, k_2 , condition (ii) implies

$$\begin{split} [\gamma, \tau^{k_1}]^{[\gamma, \tau^{k_2}]} &= [\gamma, \tau^{k_1}]^{\gamma^{-1}\tau^{-k_2}\gamma\tau^{k_2}} = [\gamma, \tau^{k_1}]^{\tau^{-k_2}\gamma\tau^{k_2}} \\ &= \left([\gamma, \tau^{-k_2}]^{-1} [\gamma, \tau^{k_1 - k_2}] \right)^{\gamma\tau^{k_2}} = \left([\gamma, \tau^{-k_2}]^{-1} [\gamma, \tau^{k_1 - k_2}] \right)^{\tau^{k_2}} \\ &= [\gamma, \tau^{k_1}]. \end{split}$$

Finally, we note that by (6) and (7),

$$\begin{aligned} ([\gamma, \tau^{nk}])|_{(i)\sigma_{\gamma}} &= (\gamma^{-1})|_{(i)\sigma_{\gamma}} (\tau^{-nk})|_{i} (\gamma|_{i}) (\tau^{nk})|_{(i)\sigma_{\gamma}} \\ &= (\gamma|_{i}^{-1}) \tau^{-k} (\gamma|_{i}) \tau^{k} \\ &= [\gamma|_{i}, \tau^{k}]. \end{aligned}$$

Since $[\gamma, \tau^{kn}]$ is inactive for all $k \in \mathbb{Z}$, we obtain $\{[\gamma|_i, \tau^k] \mid k \in \mathbb{Z}\}$ is a commutative set for all *i*. The rest of the assertion follows by induction on the tree level.

Obviously, $\langle [\beta, \tau^k] | k \in \mathbb{Z} \rangle$ is normalized by τ and if condition (i) holds then it is an abelian normal subgroup of $\langle \beta, \tau \rangle$.

Proposition 6. Let $l \ge 1$ and suppose $\alpha, \gamma \in \text{Stab}(l)$ satisfy $[\alpha, \gamma^{\tau^x}] = e$ for all $x \in \mathbb{Z}$. Then

$$\begin{aligned} & [\alpha|_u, \gamma|_v^{\tau^x}] &= e \ \forall u, v \in \mathcal{M} \\ & having \ |u| &= |v| \le l \ and \ \forall x \in \mathbb{Z}. \end{aligned}$$

Proof. We start with the case l = 1. Write x = r + kn where $r = \overline{x}$. By (4) and (5),

$$\begin{pmatrix} \gamma^{\tau^x} \end{pmatrix} |_{(i)\tau^x} = (\tau^x)|_i^{-1} \gamma|_i (\tau^x)_i, \begin{pmatrix} \gamma^{\tau^x} \end{pmatrix} |_i = \tau^{-k-\delta(i-r,r)} \gamma|_{\overline{i-r}} \tau^{k+\delta(i-r,r)}.$$

As $[\alpha, \gamma^{\tau^x}] = e$ and $\alpha, \gamma^{\tau^x} \in \text{Stab}(1)$, we have, for all $i, j, r \in Y$ and all $k, x \in \mathbb{Z}$,

$$\begin{aligned} & [\alpha|_i, (\gamma^{\tau^x})|_i] = e, \ [\alpha|_i, \gamma|_{i-r}^{\frac{\tau^k + \delta^{(i-r,r)}}{i-r}}] = e, \\ & [\alpha|_i, (\gamma|_j)^{\tau^x}] = e. \end{aligned}$$

The general case $l \ge 1$ follows by induction.

We apply the above to $\beta \in B$.

Corollary 2. Let
$$\sigma_{\beta} = e$$
. Then for all $i, j \in Y$ and for all $x \in \mathbb{Z}$

$$[\beta|_i, \beta|_j^{\tau^x}] = e.$$

Then we derive further relations in $H = \langle \beta |_i \ (i \in Y), \tau \rangle$.

Proposition 7. Let $\beta \in B$. Then the following relations hold in H for all $v \in \mathbb{Z}$ and for all $i \in Y$:

$$\left(\tau^{v}|_{(i)\sigma_{\tau}^{-v}}\right)^{-1} \left(\beta|_{(i)\sigma_{\tau}^{-v}}\right) \left(\tau^{v}|_{(i)\sigma_{\tau}^{-v}\sigma_{\beta}}\right) \left(\beta|_{(i)\sigma_{\tau}^{-v}\sigma_{\beta}\sigma_{\tau}^{v}}\right)$$

$$= \left(\beta|_{i}\right) \left(\tau^{v}|_{(i)\sigma_{\beta}\sigma_{\tau}^{-v}}\right)^{-1} \left(\beta|_{(i)\sigma_{\beta}\sigma_{\tau}^{-v}}\right) \left(\tau^{v}|_{(i)\sigma_{\beta}\sigma_{\tau}^{-v}\sigma_{\beta}}\right),$$

$$[\sigma_{\beta}, \sigma_{\beta}^{\sigma_{\tau}^{v}}] = e;$$

(II)

$$[\beta|_i, \tau^v]^{\beta|_{(i)\sigma_\beta}} = [\beta|_{(i)\sigma_\beta}, \tau^v];$$

(III)

 $\beta|_{(i)\sigma_{\beta}}\beta|_{(i)\sigma_{\beta}^{2}}\cdots\beta|_{(i)\sigma_{\beta}^{s_{i}}} \text{ commutes with } [\beta|_{i},\tau^{v}]$

where s_i is the size of the orbit of *i* under the action of $\langle \sigma_\beta \rangle$.

Proof. (I) Clearly $[\beta, \beta^{\tau^v}] = e$ implies $[\sigma_\beta, \sigma_\beta^{\sigma_\tau^v}] = e$. It also implies

$$\begin{pmatrix} \beta|_{(i)\sigma_{\beta}\tau^{v}} \end{pmatrix}^{-1} \left(\beta^{\tau^{v}}|_{i}\right)^{-1} \beta|_{i} \left(\beta^{\tau^{v}}|_{(i)\sigma_{\beta}}\right) = e, \\ \left(\beta^{\tau^{v}}|_{i} \left(\beta|_{(i)\sigma_{\beta}\tau^{v}}\right) = \beta|_{i} \left(\beta^{\tau^{v}}|_{(i)\sigma_{\beta}}\right), \\ \left(\tau^{v}|_{(i)\sigma_{\tau^{v}}^{-1}}\right)^{-1} \left(\beta|_{(i)\sigma_{\tau^{v}}^{-1}}\right) \left(\tau^{v}|_{(i)\sigma_{\tau^{v}}^{-1}\sigma_{\beta}}\right) \left(\beta|_{(i)\sigma_{\beta}\tau^{v}}\right) \\ = \left(\beta|_{i}\right) \left(\tau^{v}|_{(i)\sigma_{\beta}\sigma_{\tau^{v}}^{-1}}\right)^{-1} \left(\beta|_{(i)\sigma_{\beta}\sigma_{\tau^{v}}^{-1}}\right) \left((\tau^{v})|_{(i)\sigma_{\beta}\sigma_{\tau^{v}}^{-1}\sigma_{\beta}}\right).$$

(II) On changing v to nv in (I), we obtain:

$$\tau^{-v} (\beta|_i) \tau^v (\beta|_{(i)\sigma_\beta}) = (\beta|_i) \tau^{-v} (\beta|_{(i)\sigma_\beta}) \tau^v,$$
$$(\beta|_{(i)\sigma_\beta})^{-1} (\beta|_i^{-1}\tau^{-v}\beta|_i\tau^v) (\beta|_{(i)\sigma_\beta})$$
$$= ((\beta|_{(i)\sigma_\beta})^{-1} \beta|_i^{-1})\beta|_i\tau^{-v} (\beta|_{(i)\sigma_\beta}) \tau^v.$$

(III) From (II), we derive

$$[\beta|_{i},\tau^{v}]^{\left(\beta|_{(i)\sigma_{\beta}}\beta|_{(i)\sigma_{\beta}}\cdots\beta|_{(i)\sigma_{\beta}^{s_{i}}}\right)} = [\beta|_{(i)\sigma_{\beta}},\tau^{v}]^{\left(\beta|_{(i)\sigma_{\beta}^{2}}\cdots\beta|_{(i)\sigma_{\beta}^{s_{i}}}\right)} = \dots = [\beta|_{i},\tau^{v}].$$

5. The case $\beta \in B$ with $\sigma_{\beta} \in \langle \sigma_{\tau} \rangle$

This section is devoted to the proof of the second part (I) of Theorem B. For this purpose, we introduce the following combination of step functions

$$\Delta_s(i,t) = \delta(i,t-i) - \delta(i-s,t-i)$$

and call it the Inductor Function.

Lemma 6. Let $\beta \in \mathcal{A}_n$ such that $[\beta, \beta^{\tau^x}] = e$ for any $x \in \mathbb{Z}$ and let $\sigma_\beta = \sigma_\tau^s$ for some $s \in Y$. Then,

$$\tau^{\Delta_s(i,t)} \left(\beta|_{i-s}\right) \left[\beta|_{i-s}, \tau^z\right] \left(\beta|_t\right) = \left(\beta|_{t-s}\right) \left(\beta|_i\right) \left[\beta|_i, \tau^z\right] \tau^{\Delta_s(i+s,t+s)}.$$

for all $i, t \in \{0, 1, \cdots, n-1\}, z \in \mathbb{Z}$

Proof. Since $\sigma_{\beta} = \sigma_{\tau}^{s}$, we have $\sigma_{\beta^{\tau^{x}}} = \sigma_{\beta} = \sigma_{\tau}^{s}$. From (4), (5), (6) and (7), we obtain

(15)
$$\begin{aligned} \tau^{-\frac{x-\overline{x}}{n}-\delta(j-x,x)}\beta|_{j-x}\tau^{\frac{x-\overline{x}}{n}+\delta(j-x+s,x)}\beta|_{j+s} \\ &= \beta|_{j}\tau^{-\frac{x-\overline{x}}{n}-\delta(j+s-x,x)}\beta|_{j+s-x}\tau^{\frac{x-\overline{x}}{n}+\delta(j+2s-x,x)} \end{aligned}$$

Setting $k = \frac{x - \overline{x}}{n}$ and $r = \overline{x}$ and using (15), we have

(16)
$$\begin{aligned} \tau^{-k-\delta(j-r,r)}\beta|_{j-r}\tau^{k+\delta(j+s-r,r)}\beta|_{j+s}\\ &=\beta|_{j}\tau^{-k-\delta(j+s-r,r)}\beta|_{j+s-r}\tau^{k+\delta(j+2s-r,r)},\end{aligned}$$

for all $r, j \in Y$ and all $k \in \mathbb{Z}$. Also on setting $t = \overline{j+s}, i = \overline{j+s-r}$ and $z = k + \delta(j+s-r,r) = 0$ $k + \delta(i, t - i)$ and using (16), we obtain

$$= \beta|_{t-s}\tau^{-z+\delta(i,t-i)-\delta(i-s,t-i)}\beta|_{i-s}\tau^{z}\beta|_{t},$$

for all $t, i \in \{0, 1, \dots, n-1\}$ and all $z \in \mathbb{Z}$.

Thus, it follows that

$$\tau^{\delta(i,t-i)-\delta(i-s,t-i)}\beta|_{i-s}[\beta|_{i-s},\tau^{z}]\beta|_{t}$$

$$= \beta|_{t-s}\beta|_{i}[\beta|_{i},\tau^{z}]\tau^{-\delta(i,t-i)+\delta(i+s,t-i)}$$

$$= 1 \text{ and all } z \in \mathbb{Z}$$

for all $t, i \in \{0, 1, \cdots, n-1\}$ and all $z \in \mathbb{Z}$.

We develop below some properties of the Δ_s function to be used in the sequel.

Proposition 8. The inductor function satisfies

$$\begin{array}{l} \text{(i)} \ \Delta_s(i,t) = \delta(i,-s) - \delta(t,-s) = \begin{cases} 0, & \text{if } \overline{t}, \overline{i} \geq \overline{s} \text{ or } \overline{t}, \overline{i} < \overline{s} \\ 1, & \text{if } \overline{t} < \overline{s} \leq \overline{i} \\ -1, & \text{if } \overline{i} < \overline{s} \leq \overline{t} \end{cases} \\ \end{array} \\ \begin{array}{l} \text{(ii)} \ \Delta_s(i,t) = -\Delta_s(t,i), \\ \text{(iii)} \ \Delta_s(i+s,t+s) = -\Delta_{-s}(i,t), \\ \text{(iv)} \ \Delta_s(i,t) = \Delta_s(i,z) + \Delta_s(z,t), \\ \overline{t}, \overline{t}, \overline{t}, \overline{t}, \overline{t} \rangle = \Delta_s(i,z) + \Delta_s(z,t), \\ \end{array} \\ \begin{array}{l} \text{(v)} \ \sum_{k=0}^{n-1} \Delta_s(i+ks,t+ks) = 0, \\ \text{(vi)} \ \sum_{k=0}^{n-1} \Delta_s(k,t) = \begin{cases} n-\overline{s}, & \text{if } \overline{t} < \overline{s} \\ -\overline{s} & \text{if } \overline{t} \geq \overline{s} \end{cases} \\ \text{for all } i, t, z \in \mathbb{Z}. \end{cases} \end{array}$$

Proof.

(i) Using the definition $\delta(i,j) = \frac{\overline{i}+\overline{j}-\overline{i+j}}{n}$ we have

$$\Delta_{s}(i,t) = \frac{\overline{i} + \overline{t-i} - \overline{t}}{n} - \frac{\overline{i-s} + \overline{t-i} - \overline{t-s}}{n}$$
$$= \frac{\overline{i} + \overline{-s} - \overline{i-s}}{n} - \frac{\overline{t} + \overline{-s} - \overline{t-s}}{n}$$
$$= \delta(i, -s) - \delta(t, -s)$$
$$= \begin{cases} 0, & \text{if } \overline{t}, \overline{i} \ge \overline{s} \text{ or } \overline{t}, \overline{i} < \overline{s} \\ 1, & \text{if } \overline{t} < \overline{s} \le \overline{i} \\ -1, & \text{if } \overline{i} < \overline{s} \le \overline{t} \end{cases}$$

(ii) Follows from (i).

(iii) Calculate

$$\Delta_s(i+s,t+s) = \delta(i+s,t-i) - \delta(i,t-i)$$

= - (\delta(i,t-i) - \delta(i+s,t-i))
= -\Delta_{-s}(i,t).

(iv) This part follows from (i).

16

I 1		

,

(v) From the definition of the Polarizer function

$$\sum_{k=0}^{\frac{n}{(n,s)}-1} \delta(i+ks,t-i) = \sum_{k=0}^{\frac{n}{(n,s)}-1} \delta(i+(k-1)s,t-i)$$

(vi) Finally, we have

$$\sum_{k=0}^{n-1} \Delta_s(k,t) = \sum_{k=0}^{\overline{s}-1} \Delta_s(k,t) + \sum_{k=\overline{s}}^{n-1} \Delta_s(k,t)$$
$$\stackrel{(i)}{=} \begin{cases} n-\overline{s}, & \text{if } \overline{t} < \overline{s} \\ -\overline{s}, & \text{if } \overline{t} \ge \overline{s} \end{cases}.$$

With the use of the inductor function notation we obtain

Proposition 9. The following relations are verified in $H = \langle \beta |_i \ (i \in Y), \tau \rangle$, for all $x, z \in \mathbb{Z}$ and all $i, t \in Y$:

(I) $\tau^{\Delta_s(i,t)}\beta|_{\overline{i-s}}\beta|_t = \beta|_{\overline{t-s}}\beta|_i\tau^{\Delta_s(i+s,t+s)};$ (II) $[\beta|_{\overline{i-s}},\tau^z]^{\beta|_t\tau^{-\Delta_s(i+s,t+s)}} = [\beta|_i,\tau^z];$ (III) $[[\beta|_i,\tau^z],[\beta|_t,\tau^x]] = e.$

Proof. Returning to Lemma 6, we have

$$\tau^{\Delta_s(i,t)} \left(\beta|_{i-s}\right) \left[\beta|_{i-s}, \tau^z\right] \left(\beta|_t\right) = \left(\beta|_{t-s}\right) \left(\beta|_i\right) \left[\beta|_i, \tau^z\right] \tau^{\Delta_s(i+s,t+s)}$$

Consequently,

(17)
$$\tau^{\Delta_s(i,t)}\beta|_{\overline{i-s}}\beta|_t = \beta|_{\overline{t-s}}\beta|_i\tau^{\Delta_s(i+s,t+s)}$$

and

(18)
$$[\beta|_{\overline{i-s}}, \tau^z]^{\beta|_t \tau^{-\Delta_s(i+s,t+s)}} = [\beta|_i, \tau^z],$$

for all $t, i \in Y$ and all $z \in \mathbb{Z}$.

From (18) and (14), $N = \langle [\beta|_i, \tau^{k_i}] | k_i \in \mathbb{Z}, i \in Y \rangle$ is a normal subgroup of H. Moreover, by applying alternately the above equations, we obtain

$$\begin{split} [\beta|_{i},\tau^{z}]^{[\beta|_{t},\tau^{k}]} &= [\beta|_{i},\tau^{z}]^{\beta|_{t}^{-1}\tau^{-k}\beta|_{t}\tau^{k}} \\ &= [\beta|_{i},\tau^{z}]^{\left(\tau^{-\Delta_{s}(i+s,t+s)}\tau^{\Delta_{s}(i+s,t+s)}\beta|_{t}^{-1}\tau^{-k}\beta|_{t}\tau^{k}\right)} \\ \stackrel{(14)}{=} \left([\beta|_{i},\tau^{-\Delta_{s}(i+s,t+s)}]^{-1}.[\beta|_{i},\tau^{z-\Delta_{s}(i+s,t+s)}] \right)^{\left(\tau^{\Delta_{s}(i+s,t+s)}\beta|_{t}^{-1}\tau^{-k}\beta|_{t}\tau^{k}\right)} \\ \stackrel{(18)}{=} \left([\beta|_{\overline{i-s}},\tau^{-\Delta_{s}(i+s,t+s)}]^{-1}.[\beta|_{\overline{i-s}},\tau^{z-\Delta_{s}(i+s,t+s)}] \right)^{\tau^{-k}\beta|_{t}\tau^{k}} \\ \stackrel{(14)}{=} \left(\begin{array}{c} \left([\beta|_{\overline{i-s}},\tau^{-k}]^{-1}.[\beta|_{i-s},\tau^{-k-\Delta_{s}(i+s,t+s)}] \right)^{-1} \\ \left([\beta|_{\overline{i-s}},\tau^{-k}]^{-1}.[\beta|_{\overline{i-s}},\tau^{-k+z-\Delta_{s}(i+s,t+s)}] \right) \end{array} \right)^{\beta|_{t}\tau^{k}} \end{split}$$

$$= \left([\beta|_{\overline{i-s}}, \tau^{-k-\Delta_s(i+s,t+s)}]^{-1} \cdot [\beta|_{\overline{i-s}}, \tau^{-k+z-\Delta_s(i+s,t+s)}] \right)^{\beta|_t \tau^k}$$

$$\stackrel{(18)}{=} \left([\beta|_i, \tau^{-k-\Delta_s(i+s,t+s)}]^{-1} \cdot [\beta|_i, \tau^{-k+z-\Delta_s(i+s,t+s)}] \right)^{\tau^{k+\Delta_s(i+s,t+s)}}$$

$$\stackrel{(14)}{=} [\beta|_i, \tau^z].$$

Corollary 3. Let $\beta \in A_n$ such that $[\beta, \beta^{\tau^x}] = e$ for every $x \in \mathbb{Z}$ with $\sigma_\beta = \sigma_\tau^s$ for some $s \in \{0, 1, \dots, n-1\}$. Then

$$M = \left\langle [\beta|_i, \tau^{k_i}], \tau \mid k_i \in \mathbb{Z}, 0 \le i \le n - 1 \right\rangle$$

is a normal metabelian subgroup of H.

Proof. By Proposition 9 $N = \langle [\beta|_i, \tau^{k_i}] | k_i \in \mathbb{Z}, 0 \leq i \leq n-1 \rangle$ is abelian and normal in H. Since $N\tau \in Z(H/N)$, it follows that $M = N \langle \tau \rangle$ is a normal subgroup of H and is clearly metabelian.

We are ready to prove part (II) (i) of Theorem B.

Theorem 1. Let $\beta \in \mathcal{A}_n$ be such that $[\beta, \beta^{\tau^x}] = e, \forall x \in \mathbb{Z}$ and $\sigma_\beta = \sigma_\tau^s$ for some $s \in Y$ and $H = \langle \beta |_0, \cdots, \beta |_{n-1}, \tau \rangle$. Then,

- (i) the group $O = \langle [\beta|_i, \tau^x], \beta|_j \beta|_{j+s} \cdots \beta|_{j+(m-1)s}, \tau \mid i, j \in Y, x \in \mathbb{Z}_n \rangle$ is an abelian normal subgroup of H;
- (ii) the quotient group H/O is isomorphic to a subgroup of $C_m \wr C_n$. In particular, H is metabelian-by-finite.

Proof. (i) Recall

$$N = \langle [\beta|_i, \tau^{k_i}] \mid k_i \in \mathbb{Z}, i \in Y \rangle,$$

$$K = N \langle \beta|_i \beta|_{i+s} \cdots \beta|_{i+(m-1)s} \mid j \in Y \rangle$$

where $m = \frac{n}{\gcd(n,s)}$. Then, by Proposition 9, N is an abelian normal subgroup of H.

By (18), we have

$$\begin{split} & [\beta|_{i}, \tau^{z}]^{\beta|_{j}\beta|_{\overline{j+s}}\cdots\beta|_{\overline{j+(m-1)s}}} \\ &= [\beta|_{i+s}, \tau^{z}]^{\tau^{\Delta_{t}(i+2s,j+s)}\beta|_{\overline{j+s}}\cdots\beta|_{\overline{j+(m-1)s}}} \\ &= [\beta|_{i+2s}, \tau^{z}]^{\tau^{\Delta_{s}(i+2s,j+s)+\Delta_{s}(i+3s,j+2s)}\beta|_{\overline{j+2s}}\cdots\beta|_{\overline{j+(m-1)s}}} \\ &= [\beta|_{i}, \tau^{z}]^{\tau^{\sum_{k=0}^{m-1}\Delta_{s}(i+(k+1)s,j+ks)}} \\ \\ & \operatorname{Prop.8(v)}_{=} [\beta|_{i}, \tau^{z}] \end{split}$$

Thus,

(19)
$$[[\beta|_i, \tau^z], (\beta^m)|_j] = e, \forall i, j \in Y, \forall z \in \mathbb{Z}$$

Since $\sigma_{\beta} = \sigma_{\tau}^s$, we have by Lemma 2

(20)
$$[(\beta^m)|_i, (\beta^m)|_j] = e, \forall i, j \in Y.$$

Moreover,

(21)
$$(\beta^m)|_i^{\tau} = (\beta^m)|_i[(\beta^m)|_i, \tau].$$

Since $[\beta, \beta^{\tau^x}] = e, \forall x \in \mathbb{Z}$, it follows that $[\beta^m, \beta^{\tau^x}] = e, \forall x \in \mathbb{Z}$. Therefore, by (6) and (7),

$$e = (\beta^m)|_{(i)\sigma_{\beta^{\tau^x}}}^{-1}(\beta^{\tau^x})|_i^{-1}(\beta^m)|_i(\beta^{\tau^x})|_{(i)\sigma_{\beta^m}}, \forall x \in \mathbb{Z}, \forall i \in Y.$$

Now, as $\sigma_{\beta} = \sigma_{\tau}^s$ and $\sigma_{\beta^m} = e$, we reach

(22)
$$(\beta^m)|_{\overline{i+s}} = (\beta^m)|_i^{(\beta^{\tau^x})|_i}, \forall x \in \mathbb{Z}, \forall i \in Y.$$

By (4) and (5), the following

$$(\beta^{\tau^x})_i = (\tau^x)_{(i)\sigma_{\tau^x}^{-1}}^{-1}\beta|_{(i)\sigma_{\tau^x}^{-1}}(\tau^x)|_{(i)\sigma_{\tau^x}^{-1}\sigma_\beta} = (\tau^x)|_{\overline{i-x}}^{-1}\beta|_{\overline{i-x}}(\tau^x)_{\overline{i-x+s}}$$

holds for all $i \in Y$ and all $x \in \mathbb{Z}$.

From which we derive

(23)
$$(\beta^{\tau^x})|_i = \tau^{-\frac{x-\overline{x}}{n} - \delta(i-x,x)}\beta|_{\overline{i-x}}\tau^{\frac{x-\overline{x}}{n} + \delta(i-x+s,x)},$$

for all $i \in Y$ and all $x \in \mathbb{Z}$.

Therefore, by (22) and (23),

$$(\beta^m)|_{\overline{i+s}} = (\beta^m)|_i^{\tau^{-\frac{x-\overline{x}}{n}-\delta(i-x,x)}\beta|_{\overline{i-x}}\tau^{\frac{x-\overline{x}}{n}+\delta(i-x+s,x)}},$$

for all $i \in Y$ and all $x \in \mathbb{Z}$..

On writing $x = kn + \overline{x} = kn + r, r \in \mathbb{Z}$ in the above equation, we obtain

$$\begin{aligned} (\beta^m)|_{\overline{i+s}} &= (\beta^m)|_i^{\tau^{-k-\delta(i-r,r)}}\beta|_{\overline{i-r}}\tau^{k+\delta(i-r+s,r)} \\ \Rightarrow (\beta^m)|_{\overline{i+s}}^{\tau^{-k-\delta(i-r+s,r)}} &= (\beta^m)|_i^{\beta}|_{\overline{i-r}}\tau^{-k-\delta(i-r,r)}[\tau^{-k-\delta(i-r,r)},\beta|_{\overline{i-r}}] \\ \Rightarrow (\beta^m)|_{\overline{i+s}}^{\tau^{-k-\delta(i-r+s,r)}}[\beta|_{\overline{i-r}},\tau^{-k-\delta(i-r,r)}]\tau^{k+\delta(i-r,r)} &= (\beta^m)|_i^{\beta|_{\overline{i-r}}} \end{aligned}$$

for all $i, r \in Y$ and all $k \in \mathbb{Z}$.

By (19), (21) and using the fact that N is abelian and normal in H, we find

$$\begin{aligned} (\beta^m)|_{\overline{i+s}}^{\underline{\tau}\delta(i-r,r)-\delta(i-r+s,r)} &= (\beta^m)|_i^{\beta|_{\overline{i-r}}} \\ \Rightarrow (\beta^m)|_{\overline{i+s}}^{\underline{\tau}\delta(i-r,i-r+s)} &= (\beta^m)|_i^{\beta|_{\overline{i-r}}} \end{aligned}$$

for all $i, r \in Y$. On setting $j = \overline{i - r}$, we get

(24)
$$(\beta^m)|_{\overline{i+s}}^{\overline{\tau}^{\delta(j,j+s)}} = (\beta^m)|_i^{\beta|_j}$$

for all $i, j \in Y$.

Further, by using equations (19),(20),(21),(24) and

(25)
$$(\beta^m)|_i = \beta|_i\beta|_{\overline{i+s}} \cdots \beta|_{\overline{i+(m-1)s}}$$

we conclude that also K is an abelian normal subgroup of H.

Now, $O = K \langle \tau \rangle$ is metabelian. Moreover it is normal in H, because

$$\tau^{\beta|_i} = \tau \tau^{-1} \tau^{\beta|_i} = \tau[\tau, \beta|_i] \in O$$

for all $i \in Y$.

(ii) Consider the following Fibonacci type group

$$X = \left\langle b_0, \cdots, b_{n-1} \mid b_i b_{\overline{j+s}} = b_j b_{\overline{i+s}}, b_i b_{\overline{i+s}} \cdots b_{\overline{i+(m-1)s}} = e, \forall i, j \in Y \right\rangle.$$

Equations (17) and (18) show that $\frac{H}{M}$ is a homomorphic image of X. We will prove that X is isomorphic to a subgroup of

the wreath product $C_m \wr C_n$.

As a matter of fact the group $C_m \wr C_n$ has the presentation

$$\left\langle u, a \mid u^m = e, a^n = e, u^{a^i} u^{a^j} = u^{a^j} u^{a^i} \right\rangle$$

On defining $b = a^s u^{-1}$, we have

$$u^{m} = e \quad (a^{-s}b)^{m} = e$$

$$\Rightarrow (\underbrace{a^{-s}b\cdots a^{-s}b}_{m \text{ terms}})^{a^{-s+i}} = e$$

$$\Rightarrow b^{a^{i}}b^{a^{i+s}}\cdots b^{a^{i+(m-1)s}} = e$$

Also, the commutation relation

$$u^{a^i}u^{a^j} = u^{a^j}u^{a^i}$$

implies

$$\begin{array}{l} (b^{-1}a^{s})^{a^{i}}(b^{-1}a^{s})^{a^{j}} = (b^{-1}a^{s})^{a^{j}}(b^{-1}a^{s})^{a^{i}} \\ \Rightarrow \quad (a^{-s}b)^{a^{j}}(a^{-s}b)^{a^{i}} = (a^{-s}b)^{a^{i}}(a^{-s}b)^{a^{j}} \\ \Rightarrow \quad b^{a^{j}}a^{-s}b^{a^{i}} = b^{a^{i}}a^{-s}b^{a^{j}} \\ \Rightarrow \quad b^{a^{j}}b^{a^{i+s}} = b^{a^{i}}b^{a^{j+s}}. \end{array}$$

Thus, by using Tietze transformations we conclude that $C_m \wr C_n$ has the presentation

$$\left\langle a, b \mid a^n = e, b^{a^j} b^{a^{i+s}} = b^{a^i} b^{a^{j+s}}, b^{a^i} b^{a^{i+s}} \cdots b^{a^{i+(m-1)s}} = e, \forall i, j \in Y \right\rangle$$

Then, on introducing $b_i = b^{a^i}, i = 0, \dots, n-1$, the above presentation is expressed as

$$\left\langle a, b_0, \cdots, b_{n-1} \mid a^n = e, b_i = b_0^{a^i}, \ b_j b_{\overline{i+s}} = b_i b_{\overline{j+s}}, \ b_i b_{\overline{i+s}} \cdots b_{\overline{i+(m-1)s}} = e, \\ \forall i, j \in Y \right\rangle.$$

The next results leads to a proof of Theorem C.

Lemma 7. Let $\sigma = (0, 1, ..., n - 1) \in \Sigma_n$ and let L be the layer closure of $\langle \sigma \rangle$ in \mathcal{A}_n . Suppose $\beta = (\beta|_0, \beta|_1, \cdots, \beta|_{n-1})\sigma_\beta \in L$ satisfies $[\beta, \beta^{\tau^x}] = e$ for all $x \in \mathbb{Z}$. Write $\sigma_\beta = \sigma^s$ and $\sigma_{\beta|_i} = \sigma^{m_i}$ for all $i \in Y$. Then for all $i, j \in Y$, the following congruence holds

(26)
$$\Delta_s(i,t) + m_{\overline{i-s}} + m_t \equiv m_{\overline{t-s}} + m_i + \Delta_s(i+s,t+s) \mod n,$$

Proof. Since $\sigma_{\beta|_i} = \sigma^{m_i}$, we conclude by (17),

$$\sigma^{\Delta_s(i,t)+m_{\overline{i-s}}+m_t} = \sigma^{m_{\overline{t-s}}+m_i+\Delta_s(i+s,t+s)}$$

 $\sigma^{\Delta_s(i,t)+m_{\overline{i-s}}+m_t} = \sigma^{m_{\overline{t-s}}+m_i+\Delta_s(i+s,t+s)}$ and therefore, $\Delta_s(i,t)+m_{\overline{i-s}}+m_t \equiv m_{\overline{t-s}}+m_i+\Delta_s(i+s,t+s) \mod n.$

Lemma 8. Maintain the notation of the previous lemma and let n be an odd integer. Then,

$$\sigma_{(\beta^n)|_0} = \sigma_{(\beta|_0\beta|_1\cdots\beta|_{n-1})} = \sigma.$$

Proof. From

$$\Delta_1(i,t) + m_{\overline{i-1}} + m_t \equiv m_{\overline{t-1}} + m_i + \Delta_1(i+1,t+1) \bmod n$$

we conclude

$$\sum_{i=0}^{n-2} \sum_{t=i+1}^{n-1} \left(\Delta_1(i,t) + m_{\overline{i-1}} + m_t \right)$$

$$\equiv \sum_{i=0}^{n-2} \sum_{t=i+1}^{n-1} \left(m_{\overline{t-1}} + m_i + \Delta_1(i+1,t+1) \right) \mod n_i$$

Now,

$$\sum_{i=0}^{n-2} \sum_{t=i+1}^{n-1} \Delta_1(i,t) \stackrel{\text{Prop.8(i)}}{=} \sum_{t=1}^{n-1} \Delta_1(0,t) \stackrel{\text{Prop.8(ii)}}{=} \sum_{t=0}^{n-1} \Delta_1(0,t)$$

$$\stackrel{\text{Prop.8(ii)}}{=} \sum_{t=0}^{n-1} -\Delta_1(t,0) \stackrel{\text{Prop.8(vi)}}{=} -(n-1),$$

$$\sum_{i=0}^{n-2} \sum_{t=i+1}^{n-1} \Delta_1(i+1,t+1) \stackrel{\text{Prop.8(i)}}{=} \sum_{i=0}^{n-2} \Delta_1(i+1,0) \stackrel{\text{Prop.8(ii)}}{=} \sum_{i=0}^{n-1} \Delta_1(i,0)$$

$$\stackrel{\text{Prop.8(vi)}}{=} (n-1),$$

$$\sum_{i=0}^{n-2} \sum_{t=i+1}^{n-1} \left(m_{\overline{i-1}} + m_t \right) = 2(n-1)m_{n-1} + (n-2)\sum_{k=0}^{n-2} m_k$$

and

$$\sum_{i=0}^{n-2} \sum_{t=i+1}^{n-1} \left(m_{\overline{t-1}} + m_i \right) = n \sum_{k=0}^{n-1} m_k.$$

Since n is odd, we have

$$\sum_{k=0}^{n-1} m_k \equiv 1 \mod n$$
 and therefore, $\sigma_{\beta|_0\cdots\beta|_{n-1}} = \sigma^{(m_0+\dots m_{n-1})} = \sigma.$

· .

We prove Theorem C below.

Theorem 2. Let *n* be an odd number, $\sigma = (0, \dots, n-1) \in \Sigma_n$ and let *L* be the layer closure of $\langle \sigma \rangle$ in A_n . Let *s* an integer relatively prime to *n* and $\beta = (\beta|_0, \beta|_1, \dots, \beta|_{n-1})\sigma^s \in L$ be such that $[\beta, \beta^{\tau^x}] = e$ for all $x \in Z$. Then β is a conjugate of τ in *L*.

Proof. We start with the case s = 1. The element

$$\alpha(1) = (e, \beta|_0^{-1}, (\beta|_0\beta|_1)^{-1}, \cdots, (\beta|_0\cdots\beta|_{n-2})^{-1}) \in \operatorname{Stab}_G(1)$$

conjugates β to

$$\beta^{\alpha(1)} = (e, \cdots, e, \beta|_0 \cdots \beta|_{n-1})\sigma.$$

By Lemma8 we find $\sigma_{\beta|_0\beta|_1\cdots\beta|_{n-1}} = \sigma$. Moreover by Proposition 6,

$$[(\beta^{n})|_{0}, (\beta^{n})|_{0}^{\tau^{x}}] = [\beta|_{0}\beta|_{1}\cdots\beta|_{n-1}, (\beta|_{0}\beta|_{1}\cdots\beta|_{n-1})^{\tau^{x}}] = e,$$

for all integers x. Therefore $\beta|_0\beta|_1\cdots\beta|_{n-1}$ satisfies the hypothesis of the theorem. The process can be repeated until we obtain a sequence $(\alpha(k))_{k\in\mathbb{N}}$ such that $\beta^{\alpha(1)\alpha(2)\cdots\alpha(k)\cdots} = \tau$, where $\alpha(k) \in \operatorname{Stab}_G(k)$ satisfies $\alpha(k)|_u = \alpha(k)|_v$ for all $u, v \in \mathcal{M}$ with |u| = |v| = k - 1.

Now, suppose more generally s is such gcd(s,n) = 1 and let k be a minimum positive integer for which $sk \equiv 1 \mod(n)$. Then β^k satisfies the hypothesis of the first part and so, there exists $\alpha \in G$ such that $(\beta^k)^{\alpha} = \tau$. Since k is invertible in \mathbb{Z}_n , there exists an automorphism γ of the tree such that $\tau^{\gamma} = \tau^{k^{-1}}$. Thus, $\beta^{\alpha\gamma^{-1}} = \tau$.

6. Solvable groups for n = p, a prime number.

We will prove in this section the case n = p of Theorem A.

Let B be an abelian subgroup of $Aut(T_p)$ normalized by τ and let $\beta \in B$. By Lemma 5, $\sigma_{\beta} \in \langle \sigma_{\tau} \rangle$ and therefore in effect we have two cases, $\sigma_{\beta} = e, \sigma_{\tau}$.

Proposition 10. Suppose $\sigma_{\beta} = \sigma_{\tau}$. Then, $\sigma_{\beta|_i} \in \langle \sigma_{\tau} \rangle$ for all $i \in Y$.

Proof. By theorem 1, O is a normal subgroup of H and $\frac{H}{O}$ is isomorphic to a subgroup of $C_p \wr C_p$.

By Lemma 5, O is a subgroup of $\langle \sigma_{\tau} \rangle$ modulo $Stab_p(1)$.

Therefore, *H* is a *p*-group modulo $Stab_p(1)$ and by Lemma 5, we have $\sigma_{\beta|_i} \in \langle \sigma_{\tau} \rangle$.

Theorem 3. Let p be a prime number and $\beta \in \operatorname{Aut}(T_p)$ such that $\sigma_\beta = \sigma_\tau^s$ for some integer s relatively prime to p. Suppose $[\beta, \beta^{\tau^x}] = e$ for all $x \in \mathbb{Z}$. Then β is conjugate to τ in $\operatorname{Aut}(T_p)$.

Proof. Suppose s = 1. Recall that

$$\alpha(1) = (e, \beta|_0^{-1}, (\beta|_0\beta|_1)^{-1}, \cdots, (\beta|_0\cdots\beta|_{p-2})^{-1}) \in \operatorname{Stab}_G(1)$$

conjugates β to its normal form

$$\beta^{\alpha(1)} = (e, \cdots, e, \beta|_0 \cdots \beta|_{p-1})\sigma_p$$

By Lemma 8 we have $\sigma_{\beta|_0\beta|_1\cdots\beta|_{p-1}} = \sigma_{\tau}$. Moreover by Proposition 6,

$$[\beta^{p}|_{0}, (\beta^{p}|_{0})^{\tau^{x}}] = [\beta|_{0}\beta|_{1}\cdots\beta|_{p-1}, (\beta|_{0}\beta|_{1}\cdots\beta|_{p-1})^{\tau^{x}}] = e,$$

for all integers x. Therefore $\beta|_0\beta|_1\cdots\beta|_{n-1}$ satisfies the condition of the theorem. This process can be repeated to produce a sequence $(\alpha(k))_{k\in\mathbb{N}}$ such that $\beta^{\alpha(1)\alpha(2)\cdots\alpha(k)\cdots} = \tau$, where $\alpha(k) \in \operatorname{Stab}(k)$ satisfies $\alpha(k)|_u = \alpha(k)|_v$ for all $u, v \in \mathcal{M}$ where |u| = |v| = k - 1.

Now, to the general case, s such gcd(p,s) = 1. Let k be the minimum positive integer which is the inverse of s modulo p. Then, $\sigma|_{\beta^k} = \sigma_{\tau}$ and β^k satisfies the hypotheses. Thus there exists $\alpha \in \mathcal{A}_p$ such that $(\beta^k)^{\alpha} = \tau$. Let k^{-1} be the inverse of k in $U(\mathbb{Z}_n)$; then $\beta^{\alpha} = \tau^{k^{-1}}$. There exists $\gamma \in N_{\mathcal{A}_p} < \tau >$ which conjugates τ to $\tau^{k^{-1}}$ and so, $(\beta^{\alpha})^{\gamma^{-1}} = \tau$.

Lemma 9. Let p be a prime number and $\beta \in \operatorname{Aut}(T_p)$ such that $[\beta, \beta^{\tau^x}] = e$ for all $x \in \mathbb{Z}$. Then, there exists a tree level m and a conjugate μ of τ such that $\beta \in \times_{p^m} \overline{\langle \mu \rangle}$ and there exists an index u of length m such that $\beta|_u = \mu$.

Proof. Let m be the minimum tree level such that $\sigma_{\beta|_u} \neq e$ for some |u| = m. Therefore, $\sigma_{\beta|_u} = \sigma_{\tau}^s$ for some integer s such that $\gcd(p, s) = 1$ and so, $\mu = \beta|_u$ is conjugate to τ in $\operatorname{Aut}(T_p)$. Since $\beta \in \operatorname{Stab}(m)$, by Proposition 6 $[\mu, \beta|_v] = e$ for all indices v such that |v| = m. Therefore, $\beta|_v \in \overline{\langle \mu \rangle}$ for all v such that |v| = m.

Theorem 4. Let p be a prime number, $\sigma = (0, 1, \dots, p-1) \in \Sigma_p$, $F = N_{\Sigma_p}(\langle \sigma \rangle)$, $\Gamma_0 = N_{\mathcal{A}}(\langle \tau \rangle)$. Let G be a finitely generated solvable subgroup of Aut (T_p) which contains the p-adic adding machine τ . Then, there exists an integer $t \geq 1$ such that G is conjugate to a subgroup of

$$\times_p (\cdots (\times_p (\times_p \Gamma_0 \rtimes F) \rtimes) \cdots) \rtimes F.$$

Proof. We may suppose G has derived length $d \ge 2$. Let B be the (d-1)-th term of the derived series of G. By Theorem 9, there exists a level t such that B is a subgroup of $V = \times_{p^t} \overline{\langle \mu \rangle}$ where $\mu = \tau^{\alpha}$ for some $\alpha \in Aut(T_n)$.

We will show that G is a subgroup of

$$\dot{J} = \times_p \left(\cdots \left(\times_p \left(\times_p \left(\Gamma_0 \right)^{\alpha} \rtimes \Sigma_p \right) \rtimes \Sigma_p \right) \cdots \right) \rtimes \Sigma_p,$$

where \times_p appears t times.

Let $\gamma \in G \setminus J$. Then there exists an index w of length t such that $\gamma|_w \notin (\Gamma_0)^{\alpha}$. Since τ is transitive on all levels of the tree, by Theorem 9, there exists $\beta \in B$ such that $\beta|_w = \mu^{\eta}$ for some $\eta \in U(\mathbb{Z}_p)$.

Write $v = w^{\gamma}$. Then,

$$(\beta^{\gamma})|_{v} \stackrel{(9)}{=} (\beta|_{v^{\gamma^{-1}}})^{\gamma|_{v^{\gamma^{-1}}}} = (\beta|_{w})^{\gamma|_{w}} \notin \overline{\langle \mu \rangle},$$

and this implies $\beta^{\gamma} \notin B \leq \overline{\langle \mu \rangle}$ and $\gamma \notin G$. Hence, G is a subgroup of \dot{J} .

Now, since G is a solvable group containing τ , there exist G_i $(0 \le i \le t)$ solvable subgroups of Σ_p containing $\sigma = (0, 1, \dots, p-1)$ such that G is a subgroup of

$$R_t(\alpha) = \times_p \left(\cdots \left(\times_p \left(\times_p \left(\Gamma_0 \right)^{\alpha} \rtimes G_1 \right) \rtimes G_2 \right) \cdots \right) \rtimes G_t.$$

Since for all *i*, we have $G_i \leq F$ we may substitute the $G'_i s$ by *F*. Finally, $R_t(\alpha)$ is a conjugate of $R_t(1)$ by the diagonal automorphism $\alpha^{(t)}$.

7. Two cases for n even

7.1. The case $\sigma_{\beta} = (\sigma_{\tau})^{\frac{n}{2}}$.

Theorem 5. Let n be an even number, $\beta \in \mathcal{A}_n$ such that $\sigma_\beta = \sigma_\tau^{\frac{n}{2}}$ and $[\beta, \beta^{\tau^x}] = e$ for all $x \in \mathbb{Z}$. Then $H = \langle \beta |_i \ (0 \le i \le n-1), \tau \rangle$ is a metabelian subgroup of \mathcal{A}_n .

Proof. Define the subgroup

$$R = \left\langle [\beta|_t, \tau^k], \ \beta|_i \beta|_{i+\frac{n}{2}}, \ \beta|_j^2 \tau^{-\Delta(j,j+\frac{n}{2})} \mid k \in \mathbb{Z} \text{ and } i, j, t \in Y \right\rangle.$$

Denote $\Delta_{\frac{n}{2}}(i,j)$ by $\Delta(i,j)$.

We will prove that N is an abelian normal subgroup of H.

(I)
$$R$$
 is normal in H :

$$- \left\langle [\beta]_{i}, \tau^{k} \right] \right\rangle^{H} \leq R$$
:

$$[\beta]_{i+\frac{n}{2}}, \tau^{k}]^{\beta|_{j}} \stackrel{(18)}{=} [\beta]_{i}, \tau^{k}]^{\tau^{\Delta(j,i)}};$$

$$- \left\langle \beta|_{i}\beta_{i+\frac{n}{2}} \right\rangle^{H} \leq R$$
:

$$(\beta|_{i}\beta|_{i+\frac{n}{2}})^{\tau^{k}} = (\beta|_{i}\beta|_{i+\frac{n}{2}}) \cdot [\beta|_{i}\beta|_{i+\frac{n}{2}}, \tau^{k}]$$

$$= (\beta|_{i}\beta|_{i+\frac{n}{2}}) [\beta|_{i}, \tau^{k}]^{\beta|_{i+\frac{n}{2}}} [\beta|_{i+\frac{n}{2}}, \tau^{k}]$$

$$\stackrel{(18)}{=} \left(\beta_{i|i}\beta_{i+\frac{n}{2}}\right) \left[\beta_{i+\frac{n}{2}}, \tau^{k}\right]^{\tau^{\Delta(i+\frac{n}{2},i+\frac{n}{2})}} \left[\beta_{i+\frac{n}{2}}, \tau^{k}\right] \stackrel{\text{Prop.8}}{=} \\ \beta_{i|i}\beta_{i+\frac{n}{2}} \left[\beta_{i+\frac{n}{2}}, \tau^{k}\right]^{2}$$

$$= \beta |_{j}^{2} \tau^{-\Delta(j,j+\frac{n}{2})} . [\beta|_{j}^{2}, \tau^{k}]^{\tau^{-\Delta(j,j+\frac{n}{2})}} e^{-\beta(j,j+\frac{n}{2})} \\ = \beta |_{j}^{2} \tau^{-\Delta(j,j+\frac{n}{2})} \left([\beta|_{j}, \tau^{k}]^{\beta|_{j}} . [\beta|_{j}, \tau^{k}] \right)^{\tau^{-\Delta(j,j+\frac{n}{2})}} \\ \stackrel{(18)}{=} \beta |_{j}^{2} \tau^{-\Delta(j,j+\frac{n}{2})} \left([\beta|_{j+\frac{n}{2}}, \tau^{k}]^{\tau^{\Delta(j,j+\frac{n}{2})}} . [\beta|_{j}, \tau^{k}] \right)^{\tau^{-\Delta(j,j+\frac{n}{2})}} \\ = \beta |_{j}^{2} \tau^{-\Delta(j,j+\frac{n}{2})} [\beta|_{j+\frac{n}{2}}, \tau^{k}] [\beta|_{j}, \tau^{k}]^{\tau^{-\Delta(j,j+\frac{n}{2})}} .$$

By Proposition 8 and 9, we can show

(28)
$$\left(\beta|_{j}^{2}\tau^{-\Delta(j,j+\frac{n}{2})}\right)^{\beta|_{i}} = \left(\beta|_{j+\frac{n}{2}}^{2}\tau^{-\Delta(j+\frac{n}{2},j)}[\tau^{-\Delta(j+\frac{n}{2},j)},\beta|_{j+\frac{n}{2}}]\right)^{\tau^{\Delta(i,j)}}.$$

(II) The subgroup ${\cal R}$ is abelian:

(29)
$$[\beta|_i, \tau^k]^{\beta|_j \tau^t} \stackrel{Prop.9}{=} [\beta|_i, \tau^k]^{\tau^t \beta|_j};$$

(30)
$$[\beta|_{i}, \tau^{k}]^{\beta|_{j}\beta|_{j+\frac{n}{2}}} \stackrel{(18)}{=} [\beta|_{i+\frac{n}{2}}, \tau^{k}]^{\tau^{\Delta(j,i+\frac{n}{2})}\beta|_{j+\frac{n}{2}}} \stackrel{(29)}{=} [\beta|_{i+\frac{n}{2}}, \tau^{k}]^{\beta|_{j+\frac{n}{2}}\tau^{\Delta(j,i+\frac{n}{2})}}$$

 $\stackrel{(18)}{=} [\beta|_i, \tau^k]^{\tau^{\Delta(j+\frac{n}{2},i)+\Delta(j,i+\frac{n}{2})}} \stackrel{\text{Prop.8}}{=} [\beta|_i, \tau^k]$

$$(31) \qquad \begin{array}{c} [\beta|_{i},\tau^{k}]^{\beta|_{j}^{2}\tau^{-\Delta(j,j+\frac{n}{2})}} \stackrel{(18)}{=} [\beta|_{i+\frac{n}{2}},\tau^{k}]^{\tau^{\Delta(j,i+\frac{n}{2})}\beta|_{j}\tau^{-\Delta(j,j+\frac{n}{2})}} \\ \stackrel{(29)}{=} [\beta|_{i+\frac{n}{2}},\tau^{k}]^{\beta|_{j}\tau^{\Delta(j,i+\frac{n}{2})-\Delta(j,j+\frac{n}{2})}} \stackrel{(18)}{=} [\beta|_{i},\tau^{k}]^{\tau^{\Delta(j,i)+\Delta(j,i+\frac{n}{2})-\Delta(j,j+\frac{n}{2})}} \\ \stackrel{\text{Prop.8}}{=} [\beta|_{i},\tau^{k}] \end{array}$$

$$\begin{pmatrix} \beta |_{i}\beta |_{i+\frac{n}{2}} \end{pmatrix}^{\beta |_{j}\beta |_{j+\frac{n}{2}}} \stackrel{(27)}{=} \left(\beta |_{i+\frac{n}{2}}\beta |_{i} \right)^{\tau^{\Delta(j,i)}\beta |_{j+\frac{n}{2}}} \\ = \left(\beta |_{i+\frac{n}{2}}\beta |_{i} \right)^{\left(\beta |_{j+\frac{n}{2}}\tau^{\Delta(j,i)}[\tau^{\Delta(j,i)},\beta |_{j+\frac{n}{2}}] \right)} \\ \stackrel{(27)}{=} \left(\beta |_{i}\beta |_{i+\frac{n}{2}} \right)^{\left(\tau^{\Delta(j+\frac{n}{2},i+\frac{n}{2})+\Delta(j,i)} \cdot [\tau^{\Delta(j,i)},\beta |_{j+\frac{n}{2}}] \right)} \\ \stackrel{\text{Prop.8}}{=} \left(\beta |_{i}\beta |_{i+\frac{n}{2}} \right)^{\left[\tau^{\Delta(j,i)},\beta |_{j+\frac{n}{2}} \right]} \\ \stackrel{(30)}{=} \beta |_{i}\beta |_{i+\frac{n}{2}}$$

$$\begin{aligned} (\beta|_{i}\beta|_{i+\frac{n}{2}})^{\beta|_{j}^{2}\tau^{-\Delta(j,j+\frac{n}{2})}} &\stackrel{(27)}{=} (\beta|_{i+\frac{n}{2}}\beta|_{i})^{\tau^{\Delta(j,i)}\beta|_{j}\tau^{-\Delta(j,j+\frac{n}{2})}} \\ &= (\beta|_{i+\frac{n}{2}}\beta|_{i})^{\beta|_{j}\tau^{\Delta(j,i)}[\tau^{\Delta(j,i)},\beta|_{j}]\tau^{-\Delta(j,j+\frac{n}{2})}} \\ &= (\beta|_{i}\beta|_{i+\frac{n}{2}})^{\tau^{\Delta(j,i+\frac{n}{2})+\Delta(j,i)}[\tau^{\Delta(j,i)},\beta|_{j}]\tau^{-\Delta(j,j+\frac{n}{2})}} \\ &\stackrel{\text{Prop.8}}{=} (\beta|_{i}\beta|_{i+\frac{n}{2}})^{[\tau^{\Delta(j,i)},\beta|_{j}]\tau^{-\Delta(j+\frac{n}{2},j)}} \\ \stackrel{\text{Prop.9}}{=} \beta|_{i}\beta|_{i+\frac{n}{2}} \end{aligned}$$

Let

$$\alpha = \beta|_j^2 \tau^{-\Delta(j,j+\frac{n}{2})} [\tau^{-\Delta(j,j+\frac{n}{2})}, \beta|_j].$$

Then,

(32)

$$\begin{split} & \left(\beta|_{j}^{2}\tau^{-\Delta(j,j+\frac{n}{2})}\right)^{\beta|_{i}^{2}\tau^{-\Delta(i,i+\frac{n}{2})}} \\ \stackrel{(28)}{=} & \left(\beta|_{j+\frac{n}{2}}^{2}\tau^{-\Delta(j+\frac{n}{2},j)}.[\tau^{-\Delta(j+\frac{n}{2},j)},\beta|_{j+\frac{n}{2}}]\right)^{\tau^{\Delta(i,j)}\beta|_{i}\tau^{-\Delta(i,i+\frac{n}{2})}} \\ &= \left(\beta|_{j+\frac{n}{2}}^{2}\tau^{-\Delta(j+\frac{n}{2},j)}.[\tau^{-\Delta(j+\frac{n}{2},j)},\beta|_{j+\frac{n}{2}}]\right)^{\left(\beta|_{i}\tau^{\Delta(i,j)}.[\tau^{\Delta(i,j)},\beta|_{i}].\tau^{-\Delta(i,i+\frac{n}{2})}\right)} \\ &= \left(\left(\beta|_{j+\frac{n}{2}}^{2}\tau^{-\Delta(j+\frac{n}{2},j)}\right)^{\beta|_{i}}.[\tau^{-\Delta(j+\frac{n}{2},j)},\beta|_{j+\frac{n}{2}}]^{\beta|_{i}}\right)^{\left(\tau^{\Delta(i,j)}.[\tau^{\Delta(i,j)},\beta|_{i}].\tau^{-\Delta(i,i+\frac{n}{2})}\right)} \\ \stackrel{(18)}{=} \left(\left(\beta|_{j+\frac{n}{2}}^{2}\tau^{-\Delta(j+\frac{n}{2},j)}\right)^{\beta|_{i}}.[\tau^{-\Delta(j+\frac{n}{2},j)},\beta|_{j}]^{\tau^{\Delta(i,j)}}\right)^{\left(\tau^{\Delta(i,j)}.[\tau^{\Delta(i,j)},\beta|_{i}].\tau^{-\Delta(i,i+\frac{n}{2})}\right)} \\ \stackrel{(28)}{=} \left(\alpha^{\tau^{\Delta(i,j+\frac{n}{2})}}.[\tau^{-\Delta(j+\frac{n}{2},j)},\beta|_{j}]^{\tau^{\Delta(i,j)}}\right)^{\left(\tau^{\Delta(i,j)}.[\tau^{\Delta(i,j)},\beta|_{i}].\tau^{-\Delta(i,i+\frac{n}{2})}\right)} \\ &= \left(\alpha.[\tau^{-\Delta(j+\frac{n}{2},j)},\beta|_{j}]^{\tau^{\Delta(i,j)-\Delta(i,j+\frac{n}{2})}}\right)^{\left(\tau^{\Delta(i,j+\frac{n}{2})+\Delta(i,j)}.[\tau^{\Delta(i,j)},\beta|_{i}].\tau^{-\Delta(i,i+\frac{n}{2})}\right)} \end{split}$$

THE *n*-ARY ADDING MACHINE AND SOLVABLE GROUPS

$$\stackrel{\text{Prop.8}}{=} \left(\alpha . [\tau^{-\Delta(j+\frac{n}{2},j)},\beta|_{j}]^{\tau^{\Delta(j+\frac{n}{2},j)}} \right)^{\left(\tau^{\Delta(i,i+\frac{n}{2})}[\tau^{\Delta(i,j)},\beta|_{i}]\tau^{-\Delta(i,i+\frac{n}{2})}\right)}$$

$$\stackrel{(32)}{=} \left(\beta|_{j}^{2}\tau^{-\Delta(j,j+\frac{n}{2})}[\tau^{-\Delta(j,j+\frac{n}{2})},\beta|_{j}][\tau^{\Delta(j+\frac{n}{2},j)},\beta|_{j}]^{-1} \right)^{\left[\tau^{\Delta(i,j)},\beta|_{i}\right]\tau^{-\Delta(i,i+\frac{n}{2})}}$$

$$\stackrel{\text{Prop.8}}{=} \left(\beta|_{j}^{2}\tau^{-\Delta(j,j+\frac{n}{2})} \right)^{\left[\tau^{\Delta(i,j)},\beta|_{i}\right]\tau^{-\Delta(i,i+\frac{n}{2})}}$$

$$\stackrel{\text{Prop.9 e (31)}}{=} \beta|_{j}^{2}\tau^{-\Delta(j,j+\frac{n}{2})}.$$

Moreover, since

$$\begin{split} R\left(\beta|_{i}\right) R\left(\beta|_{j}\right) &= R\left(\beta|_{i}\right) \left(\beta|_{j}\right) \stackrel{\text{Prop.5}}{=} R\tau^{\Delta\left(j,i+\frac{n}{2}\right)} \beta|_{j+\frac{n}{2}} \beta|_{i+\frac{n}{2}} \tau^{\Delta\left(j,i+\frac{n}{2}\right)} \\ &= R\beta|_{j+\frac{n}{2}} \beta|_{i+\frac{n}{2}} \tau^{2\Delta\left(j,i+\frac{n}{2}\right)} = R\beta|_{j}^{-1} \beta|_{i}^{-1} \tau^{2\Delta\left(j,i+\frac{n}{2}\right)} \\ &= R\beta|_{j}^{-1} \beta|_{j}^{2} \tau^{-\Delta\left(j,j+\frac{n}{2}\right)} \beta|_{i}^{-1} \beta|_{i}^{2} \tau^{-\Delta\left(i,i+\frac{n}{2}\right)} \tau^{2\Delta\left(j,i+\frac{n}{2}\right)} \\ &= R\beta|_{j} \beta|_{i} \tau^{-\Delta\left(j,j+\frac{n}{2}\right) - \Delta\left(i,i+\frac{n}{2}\right) + 2\Delta\left(j,i+\frac{n}{2}\right)} \\ &\stackrel{\text{Prop.8}}{=} R\beta|_{j} \beta|_{i} = R\beta|_{j} N\beta|_{i} \end{split}$$

and

$$R\beta|_{i} = R\beta|_{i+\frac{n}{2}}^{-1}, \ R\beta|_{i}^{2} = R\tau^{\Delta(i,i+\frac{n}{2})}, \forall i, j \in Y,$$

we conclude $\frac{H}{R}$ is a homomorphic image of

 \mathbb{Z}

$$\times \underbrace{C_2 \times \cdots \times C_2}_{\frac{n}{2} \text{ terms}}.$$

7.2. The case σ_{β} transposition. We prove in this section part (II) (ii) of Theorem B.

Theorem 6. Let n be an even number and B an abelian subgroup of \mathcal{A}_n normalized by τ . Suppose $\beta = (\beta|_0, \beta|_1, \dots, \beta|_{n-1})\sigma_\beta \in B$ where σ_β is a transposition. Then $H = \langle \beta|_i \ (0 \leq i \leq n-1), \tau \rangle$ is a metabelian group.

We prove progressively that

$$N = \left\langle [\beta|_{i}, \tau^{k}] \mid k \in \mathbb{Z}, i \in Y \right\rangle,$$

$$U = \left\langle N, \beta|_{j} \mid j \neq 0, \frac{n}{2} \right\rangle,$$

$$V = \left\langle U, \beta|_{\frac{n}{2}}\beta|_{0}, \tau \left(\beta|_{0}\right)^{2} \right\rangle$$

are normal abelian subgroups of H, from which it follows that $\frac{H}{V}$ is cyclic and therefore H metabelian.

Lemma 10. The degree of the tree n is even and σ_{β} is $\langle \sigma_{\tau} \rangle$ -conjugate to the transposition $\left(0, \frac{n}{2}\right)$.

Proof. On conjugating by an appropriate power of σ_{τ} , we may assume $\sigma_{\beta} =$ (0, j). The conjugate of σ_{β} by σ_{τ}^{i} is the transposition (i, j + i). In particular, (j, 2j) is a conjugate which is supposed to commute with (0, j). Therefore, $\{0, j\} = \{j, 2j\}, 2j = 0 \mod(n), n = 2n' \text{ and } j = n'.$

We go back to part (I) of the Proposition 7,

$$\left(\tau^{v}|_{(i)\sigma_{\tau}^{-v}}\right)^{-1} \left(\beta|_{(i)\sigma_{\tau}^{-v}}\right) \left(\tau^{v}|_{(i)\sigma_{\tau}^{-v}\sigma_{\beta}}\right) \left(\beta|_{(i)\sigma_{\tau}^{-v}\sigma_{\beta}\sigma_{\tau}^{v}}\right)$$
$$= \left(\beta|_{i}\right) \left(\tau^{v}|_{(i)\sigma_{\beta}\sigma_{\tau}^{-v}}\right)^{-1} \left(\beta|_{(i)\sigma_{\beta}\sigma_{\tau}^{-v}}\right) \left(\tau^{v}|_{(i)\sigma_{\beta}\sigma_{\tau}^{-v}\sigma_{\beta}}\right)$$

and set in it $j = (i) \sigma_{\tau}^{-v}$, v = kn + r, $r = \overline{v}$ to obtain

(33)
$$(\tau^{v})|_{j}^{-1}\beta|_{j}(\tau^{v})|_{(j)\sigma_{\beta}}\beta|_{(j)\sigma_{\beta}\sigma_{\tau}^{v}}$$

(34)
$$= \beta|_{(j)\sigma_{\tau}^{v}}(\tau^{v})|_{(j)\sigma_{\tau}^{v}\sigma_{\beta}\sigma_{\tau}^{-v}}\beta|_{(j)\sigma_{\tau}^{v}\sigma_{\beta}\sigma_{\tau}^{-v}}(\tau^{v})_{(j)\sigma_{\tau}^{v}\sigma_{\beta}\sigma_{\tau}^{-v}\sigma_{\beta}}.$$

Proposition 11. The following cases hold for different pairs (j, r).

• For
$$j = 0$$
 there are 3 subcases
- If $r = 0$, then

(35)
$$[\beta|_0, \tau^k]^{\beta|_{\frac{n}{2}}} = [\beta|_{\frac{n}{2}}, \tau^k], \ \forall k \in \mathbb{Z};$$

- If
$$r = \frac{n}{2}$$
, then

(36)
$$\beta|_0\tau\beta|_0 = \beta|_{\frac{n}{2}}\tau^{-1}\beta|_{\frac{n}{2}},$$

and

(37)
$$[\beta|_0, \tau^k]^{\tau\beta|_0} = [\beta|_{\frac{n}{2}}, \tau^k], \forall k \in \mathbb{Z}.$$
$$- If \ r \neq 0 \ and \ r \neq \frac{n}{2}, \ then$$

(38)
$$\tau^{\delta(\frac{n}{2},r)}\beta|_{0}\beta|_{\frac{n}{2}+r} = \beta|_{r}\tau^{\delta(\frac{n}{2},r)}\beta|_{0}, \forall r \in Y - \{0,\frac{n}{2}\}$$
and

(39)
$$[\beta|_0, \tau^k]^{\beta|_r} = [\beta|_0, \tau^k], \forall k \in \mathbb{Z}.$$

• For
$$j = \frac{n}{2}$$
 there are 3 subcases
- If $r = 0$, then

(40)
$$[\beta|_{\frac{n}{2}}, \tau^k]^{\beta|_0} = [\beta|_0, \tau^k], \ \forall k \in \mathbb{Z};$$
$$- If r = \frac{n}{2}, \ then$$

(41)
$$\tau^{-1}\beta|_{\frac{n}{2}}^2 = \beta|_0^2\tau,$$

(42)

$$\begin{split}
and \\
[\beta]_{\frac{n}{2}}, \tau^{k}]^{\beta|\frac{n}{2}\tau^{-1}} &= [\beta|_{0}, \tau^{k}], \forall k \in \mathbb{Z}; \\
- If \ r \neq 0 \ and \ r \neq \frac{n}{2}, \ then \\
(43) \qquad \tau^{-\delta(\frac{n}{2},r)}\beta|_{\frac{n}{2}}\beta|_{r} &= \beta|_{\frac{n}{2}+r}\tau^{-\delta(\frac{n}{2},r)}\beta|_{\frac{n}{2}}, \forall r \in Y - \{0, \frac{n}{2}\} \\
and
\end{split}$$

(44)
$$[\beta|_{\frac{n}{2}}, \tau^k]^{\beta|_r} = [\beta|_{\frac{n}{2}}, \tau^k], \forall k \in \mathbb{Z}, \forall r \in Y - \{0, \frac{n}{2}\}.$$

• For
$$j \neq 0$$
 and $j \neq \frac{n}{2}$, there are 5 subcases:
- If $j \neq n - r$ and $j \neq \frac{n}{2} - r$, then

(45)
$$\beta|_{j}\beta_{t} = \beta|_{t}\beta|_{j}, \forall j, t \in Y - \{0, \frac{n}{2}\}$$

and

(46)
$$[\beta|_{j}, \tau^{k}]^{\beta|_{t}} = [\beta|_{j}, \tau^{k}], \forall j, t \in Y - \{0, \frac{n}{2}\}$$
$$- If \ j = n - r \ and \ 0 < r < \frac{n}{2}, \ then$$

(47)
$$\tau^{-1}\beta|_{j+\frac{n}{2}}\tau\beta|_{0} = \beta|_{0}\beta|_{j}, \forall j \in \{1, 2, \cdots, \frac{n}{2} - 1\}$$

(48)
$$[\beta|_{j+\frac{n}{2}}, \tau^k]^{\tau\beta|_0} = [\beta|_j, \tau^k], \forall j \in \{1, 2, \cdots, \frac{n}{2} - 1\}$$
$$- If \ j = n - r \ and \ \frac{n}{2} < r \le n - 1, \ then$$

(49)
$$\beta|_{j}\beta|_{0} = \beta|_{0}\beta|_{\frac{n}{2}+j}, \forall j \in \{1, \cdots, \frac{n}{2}-1\}$$

and

(50)
$$[\beta|_j, \tau^k]^{\beta|_0} = [\beta|_{\frac{n}{2}+j}, \tau^k], \forall k \in \mathbb{Z}, \forall j \in \{1, \cdots, \frac{n}{2}-1\}$$
$$- If \ j = \frac{n}{2} - r \ and \ 0 < r < \frac{n}{2}, \ then$$

(51)
$$\beta|_{j}\beta|_{\frac{n}{2}} = \beta|_{\frac{n}{2}}\tau^{-1}\beta|_{j+\frac{n}{2}}\tau, \forall j \in \{1, \cdots, \frac{n}{2}-1\}$$

(52)
$$[\beta|_{j}, \tau^{k}]^{\beta|_{\frac{n}{2}}\tau^{-1}} = [\beta|_{\frac{n}{2}+j}, \tau^{k}], \forall k \in \mathbb{Z}, \forall j \in \{1, \cdots, \frac{n}{2}-1\}$$
$$- If \ j = \frac{n}{2} - r \ and \ \frac{n}{2} < r \le n-1, \ then$$

(53)
$$\beta|_{\frac{n}{2}}\beta|_{j} = \beta|_{\frac{n}{2}+j}\beta|_{\frac{n}{2}}, \forall j \in \{1, \cdots, \frac{n}{2}-1\}$$

and

(54)
$$[\beta|_j, \tau^k] = [\beta|_{\frac{n}{2}+j}, \tau^k]^{\beta|_{\frac{n}{2}}}, \forall k \in \mathbb{Z}, \forall j \in \{1, \cdots, \frac{n}{2}-1\}.$$

 $1\}$

Proof. We will prove just the last case. As $j \notin \{0, \frac{n}{2}, n-r, \frac{n}{2}-r\}$, we have

$$(j) \sigma_{\tau}^{v} = (j) \sigma_{\beta} \sigma_{\tau}^{v} = j + r, (j) \sigma_{\beta} = (j) \sigma_{\tau}^{v} \sigma_{\beta} \sigma_{\tau}^{-v} = (j) \sigma_{\tau}^{v} \sigma_{\beta} \sigma_{\tau}^{-v} \sigma_{\beta} = j.$$

Therefore,

$$((\tau^{v})|_{j}^{-1}\beta|_{j}(\tau^{v})|_{j}\beta|_{j+r} = \beta|_{j+r}(\tau^{v})|_{j}^{-1}\beta|_{j}(\tau^{v})_{j}, \forall v \in \mathbb{Z})$$

$$\Leftrightarrow (\tau^{-k-\delta(j,r)}\beta|_{j}\tau^{k+\delta(j,r)}\beta|_{j+r} = \beta|_{j+r}\tau^{-k-\delta(j,r)}\beta|_{j}\tau^{k+\delta(j,r)}, \forall k \in \mathbb{Z})$$

$$\Leftrightarrow (\beta|_{j}[\beta|_{j},\tau^{k+\delta(j,r)}]\beta|_{j+r} = \beta|_{j+r}\beta|_{j}[\beta|_{j},\tau^{k+\delta(j,r)}], \forall k \in \mathbb{Z}),$$

(55)
$$\beta|_{j}\beta_{t} = \beta|_{t}\beta|_{j}, \forall j, t \in Y - \{0, \frac{n}{2}\}$$

and

(56)
$$[\beta|_j, \tau^k]^{\beta|_t} = [\beta|_j, \tau^k], \forall j, t \in Y - \{0, \frac{n}{2}\}.$$

Lemma 11. The group $N = \langle [\beta]_i, \tau^k] \mid k \in \mathbb{Z}, i \in Y \rangle$ is an abelian normal subgroup of H.

Proof. Define

$$N_i = \left\langle [\beta|_i, \tau^k] \mid k \in \mathbb{Z} \right\rangle$$

for each $i \in Y$. Then, $N = \langle N_i | i \in Y \rangle$, each N_i is an abelian subgroup normalized by τ and

(57)
$$[\beta|_i, \tau^k]^{\beta|_j^{-1}} = [\beta|_i, \tau^k], \forall k \in \mathbb{Z}, \forall i, j \in Y, j \neq 0, \frac{n}{2}$$

We have $[N_i, N_j] = 1, \forall i, j \in Y, j \neq 0, \frac{n}{2}$, because

$$[\beta|_{i}, \tau^{k}]^{[\beta|_{j}, \tau^{t}]} = [\beta|_{i}, \tau^{k}]^{\beta|_{j}^{-1}\tau^{-t}\beta|_{j}\tau^{t}} \stackrel{(57)}{=} [\beta|_{i}, \tau^{k}]^{\tau^{-t}\beta|_{j}\tau^{t}}$$

$$\stackrel{(14)}{=} ([\beta|_{i}, \tau^{-t}]^{-1}[\beta|_{i}, \tau^{k-t}])^{\beta|_{j}\tau^{t}}$$

$$\stackrel{(57)}{=} ([\beta|_{i}, \tau^{-t}]^{-1}[\beta|_{i}, \tau^{k-t}])^{\tau^{t}}$$

$$\stackrel{(14)}{=} [\beta|_{i}, \tau^{k}]^{\tau^{-t}\tau^{t}} = [\beta|_{i}, \tau^{k}], \forall k, t \in \mathbb{Z},$$

 $\begin{aligned} \forall i,j \in Y, j \neq 0, \frac{n}{2}. \\ \text{Furthermore, } [N_0, N_{\frac{n}{2}}] = 1, \text{ because} \end{aligned}$

$$\begin{split} [\beta|_{\frac{n}{2}}, \tau^{k}]^{[\beta|_{0}, \tau^{t}]} &= [\beta|_{\frac{n}{2}}, \tau^{k}]^{\beta|_{0}^{-1}\tau^{-t}\beta|_{0}\tau^{t}} \stackrel{(37)}{=} [\beta|_{0}, \tau^{k}]^{\tau\tau^{-t}\beta|_{0}\tau^{t}} \\ & \stackrel{(14)}{=} \left([\beta|_{0}, \tau^{-t}]^{-1} [\beta|_{0}, \tau^{k-t}] \right)^{\tau\beta|_{0}\tau^{t}} \\ \stackrel{(37)}{=} \left([\beta|_{\frac{n}{2}}, \tau^{-t}]^{-1} [\beta|_{\frac{n}{2}}, \tau^{k-t}] \right)^{\tau^{t}} \end{split}$$

$$\stackrel{(14)}{=} [\beta|_{\frac{n}{2}}, \tau^k]^{\tau^{-t}\tau^t} = [\beta|_{\frac{n}{2}}, \tau^k], \forall k, t \in \mathbb{Z}.$$

Therefore N is abelian.

Now, equation (57) implies

(58)
$$N_i = N_i^{\beta|_j} = N_i^{\beta|_j^{-1}}, \forall i, j \in Y, j \neq 0, \frac{n}{2};$$

equations (14), (35) imply

(59)
$$\left\{ N_{\frac{n}{2}} = N_0^{\beta|_0}, \ N_0 = N_{\frac{n}{2}}^{\beta|_0^{-1}}; \right.$$

equation (40) implies

(60)
$$\left\{ N_0 = N_{\frac{n}{2}}^{\beta|_0}, \ N_{\frac{n}{2}} = N_0^{\beta|_0^{-1}} ; \right\}$$

equations (14), (42) imply

(61)
$$\left\{ N_0 = N_{\frac{n}{2}}^{\beta|\frac{n}{2}}, \ N_{\frac{n}{2}} = N_0^{\beta|\frac{n}{2}^{-1}}; \right.$$

equations (14), (48) imply

(62)
$$\left\{ N_j = N_{j+\frac{n}{2}}^{\beta|_0}, N_{j+\frac{n}{2}} = N_j^{\beta|_0^{-1}}, \forall j \in \{1, \cdots, \frac{n}{2} - 1\}; \right\}$$

equations (14) and (50) imply

(63)
$$\left\{ N_{j+\frac{n}{2}} = N_j^{\beta|_0}, \ N_j = N_{j+\frac{n}{2}}^{\beta|_0^{-1}}, \forall j \in \{1, \cdots, \frac{n}{2} - 1\}; \right\}$$

equations (14) (52) imply

(64)
$$\left\{ N_{j+\frac{n}{2}} = N_j^{\beta|\frac{n}{2}}, \ N_j = N_{j+\frac{n}{2}}^{\beta|\frac{n}{2}}, \forall j \in \{1, \cdots, \frac{n}{2} - 1\}; \right.$$

equations (14), (54) imply

(65)
$$\left\{ N_j = N_{j+\frac{n}{2}}^{\beta|\frac{n}{2}}, \ N_{j+\frac{n}{2}} = N_j^{\beta|\frac{n}{2}}, \forall j \in \{1, \cdots, \frac{n}{2} - 1\}. \right.$$

Thus (57)-(65) prove

$$N = \langle N_i \mid i \in Y \rangle$$
$$= \langle [\beta]_i, \tau^k] \mid \forall i, k \in \mathbb{Z} \rangle$$

is an abelian normal subgroup of H.

Lemma 12. The group $U = \langle N, \beta |_j | j \neq 0, \frac{n}{2} \rangle$ is a normal abelian subgroup of H.

Proof. Lemma 11 and equations (39), (44), (45) and (46) show that U is abelian.

The fact that N is normal in H, together with the following assertions prove that U is normal in H.

Let
$$J = \langle \beta_0, \beta_{\frac{n}{2}}, \tau \rangle$$
. Then, for $j \in Y - \{0, \frac{n}{2}\}$, we have
(I) $\langle \beta |_j \rangle^J \leq U$:
 $\beta |_j^{\tau^t} = \beta |_j [\beta |_j, \tau^t];$
 $\beta |_j^{\beta |_0^{-1}} \stackrel{(47)}{=} \tau^{-1} \beta |_{j+\frac{n}{2}} \tau = \beta |_{j+\frac{n}{2}} [\beta |_{j+\frac{n}{2}}, \tau];$
 $\beta |_j^{\beta |\frac{n}{2}} \stackrel{(51)}{=} \tau^{-1} \beta |_{j+\frac{n}{2}} \tau = \beta |_{j+\frac{n}{2}} [\beta |_{j+\frac{n}{2}}, \tau];$
 $\beta |_j^{\beta |\frac{n}{2}} \stackrel{(53)}{=} \beta |_{j+\frac{n}{2}} [\beta |_{j+\frac{n}{2}}, \tau];$
(II) $\langle \beta |_{j+\frac{n}{2}} \rangle^J \leq U$:
 $\beta |_{j+\frac{n}{2}}^{\tau^t} = \beta |_{j+\frac{n}{2}} [\beta |_{j+\frac{n}{2}}, \tau^t];$
 $\beta |_{j+\frac{n}{2}}^{\beta |_0} \stackrel{(47)}{=} \beta |_0^{-1} \tau \beta |_0 \beta |_j \beta |_0^{-1} \tau^{-1} \beta |_0$
 $= ([\beta |_0, \tau]^{-1})^{\tau^{-1}} \beta |_j^{\tau^{-1}} [\beta |_0, \tau]^{\tau^{-1}} \in U;$
 $\beta |_{j+\frac{n}{2}}^{\beta |\frac{n}{2}} \stackrel{(53)}{=} \beta |_j \in U;$
 $\beta |_{j+\frac{n}{2}}^{\beta |\frac{n}{2}} \stackrel{(53)}{=} \beta |_j \in U;$
 $\beta |_{j+\frac{n}{2}}^{\beta |\frac{n}{2}} \stackrel{(53)}{=} \beta |_j \beta |_{\frac{n}{2}} \tau^{-1} \beta |_{\frac{n}{2}}^{-1}$
 $= [\beta |\frac{n}{2}, \tau]^{\beta |\frac{n}{2}^{-1} \tau^{-1}} \beta |_j^{\tau^{-1}} ([\beta |\frac{n}{2}, \tau]^{-1})^{\beta |\frac{n}{2}^{-1} \tau^{-1}}.$

Hence, U is a normal abelian subgroup of H.

Lemma 13. $V = \langle U, \beta | \frac{n}{2} \beta |_0, \tau \beta |_0^2 \rangle$ is a normal abelian subgroup of H.

Proof. Lemma 12 together with the following assertions prove that V is a normal abelian subgroup of H.

Given $j \in Y - \{0, \frac{n}{2}\}, k \in \mathbb{Z}$, and $J = \langle \beta |_0, \beta_{\frac{n}{2}}, \tau, \rangle$, we prove (I) $\beta |_{\frac{n}{2}} \beta |_0 \in C_H(U)$:

$$(\beta|_{j})^{\beta|\frac{n}{2}\beta|_{0}} \stackrel{(51)}{=} (\beta|_{j+\frac{n}{2}})^{\tau\beta|_{0}} \stackrel{(47)}{=} \beta|_{j};$$

$$(\beta|_{j+\frac{n}{2}})^{\beta|\frac{n}{2}\beta|_{0}} \stackrel{(53)}{=} (\beta|_{j})^{\beta|_{0}} \stackrel{(49)}{=} \beta|_{j+\frac{n}{2}};$$

$$[\beta|_{j}, \tau^{k}]^{\beta|\frac{n}{2}\beta|_{0}} = [\beta|_{j}, \tau^{k}]^{\beta|\frac{n}{2}\tau^{-1}\tau\beta|_{0}} \stackrel{(52)}{=} [\beta|_{j+\frac{n}{2}}, \tau^{k}]^{\tau\beta|_{0}}$$

32

$$\begin{split} \stackrel{(48)}{=} & [\beta|_{j}, \tau^{k}]; \\ & [\beta|_{j+\frac{n}{2}}, \tau^{k}]^{\beta|\frac{n}{2}\beta|_{0}} \stackrel{(54)}{=} & [\beta|_{j}, \tau^{k}]^{\beta|_{0}} \stackrel{(50)}{=} & [\beta|_{j+\frac{n}{2}}, \tau^{k}]; \\ & [\beta|_{0}, \tau^{k}]^{\beta|\frac{n}{2}\beta|_{0}} \stackrel{(35)}{=} & [\beta|_{\frac{n}{2}}, \tau^{k}]^{\beta|_{0}} \stackrel{(40)}{=} & [\beta|_{0}, \tau^{k}]; \\ & [\beta|_{\frac{n}{2}}, \tau^{k}]^{\beta|\frac{n}{2}\beta|_{0}} &= & [\beta|_{\frac{n}{2}}, \tau^{k}]^{\beta|\frac{n}{2}\tau^{-1}\tau\beta|_{0}} \\ & \stackrel{(42)}{=} & [\beta|_{0}, \tau^{k}]^{\tau\beta|_{0}} \stackrel{(37)}{=} & [\beta|_{\frac{n}{2}}, \tau^{k}]; \end{split}$$

(II) $\tau \beta |_0^2 \in C_H(U)$:

$$\begin{split} \beta|_{j}^{\tau\beta|_{0}^{2}} &= (\beta|_{j}[\beta|_{j},\tau])^{\beta|_{0}^{2}} = (\beta|_{j}^{\beta|_{0}}[\beta|_{j},\tau]^{\beta|_{0}})^{\beta|_{0}} \\ (^{(49)}_{=}(50)} (\beta|_{j+\frac{n}{2}}[\beta|_{j+\frac{n}{2}},\tau])^{\beta|_{0}} &= \beta|_{j+\frac{n}{2}}^{\tau\beta|_{0}} (\frac{47}{2}) \beta|_{j}; \\ (\beta|_{j+\frac{n}{2}})^{\tau\beta|_{0}^{2}} (\frac{47}{2}) \beta|_{j}^{\beta|_{0}} (\frac{49}{2}) \beta|_{j+\frac{n}{2}}; \\ [\beta|_{0},\tau^{k}]^{\tau\beta|_{0}^{2}} (\frac{37}{2}) [\beta|_{\frac{n}{2}},\tau^{k}]^{\beta|_{0}} (\frac{40}{2}) [\beta|_{0},\tau^{k}]; \\ [\beta|_{n},\tau^{k}]^{\tau\beta|_{0}^{2}} (\frac{14}{2}) ([\beta|_{\frac{n}{2}},\tau]^{-1}[\beta|_{\frac{n}{2}},\tau^{k+1}])^{\beta|_{0}^{2}} \\ (\frac{40}{2}) ([\beta|_{0},\tau]^{-1}[\beta|_{0},\tau^{k+1}])^{\beta|_{0}} \\ (\frac{14}{2}) [\beta|_{0},\tau^{k}]^{\tau\beta|_{0}} (\frac{37}{2}) [\beta|_{\frac{n}{2}},\tau^{k}]; \\ [\beta|_{j},\tau^{k}]^{\tau\beta|_{0}^{2}} (\frac{14}{2}) ([\beta|_{j},\tau]^{-1}[\beta|_{j},\tau^{k+1}])^{\beta|_{0}} \\ (\frac{50}{2}) ([\beta|_{j+\frac{n}{2}},\tau]^{-1}[\beta|_{j+\frac{n}{2}},\tau^{k+1}])^{\beta|_{0}} \\ (\frac{14}{2}) [\beta|_{j+\frac{n}{2}},\tau^{k}]^{\tau\beta|_{0}} (\frac{48}{2}) [\beta|_{j},\tau^{k}]; \\ [\beta|_{j+\frac{n}{2}},\tau^{k}]^{\tau\beta|_{0}^{2}} (\frac{48}{2}) [\beta|_{j},\tau^{k}]^{\beta|_{0}} (\frac{50}{2}) [\beta|_{j+\frac{n}{2}},\tau^{k}]; \\ [\beta|_{j+\frac{n}{2}},\tau^{k}]^{\tau\beta|_{0}^{2}} (\frac{48}{2}) [\beta|_{j},\tau^{k}]^{\beta|_{0}} (\frac{50}{2}) [\beta|_{j+\frac{n}{2}},\tau^{k}]; \\ (III) \tau\beta|_{0}^{2} \in C_{H}(\beta|_{\frac{n}{2}}\beta|_{0}): \end{split}$$

$$(\beta|_{\frac{n}{2}}\beta|_{0})^{\tau\beta|_{0}^{2}} = \beta|_{0}^{-2}\tau^{-1}\beta|_{\frac{n}{2}}\beta|_{0}\tau\beta|_{0}^{2}$$

$$\stackrel{(36)}{=}\beta|_{0}^{-2}\tau^{-1}\beta|_{\frac{n}{2}}\beta|_{\frac{n}{2}}\tau^{-1}\beta|_{\frac{n}{2}}\beta|_{0}$$

$$= \beta|_{0}^{-2}\tau^{-1}\beta|_{\frac{n}{2}}^{2}\tau^{-1}\beta|_{\frac{n}{2}}\beta|_{0} = (\tau\beta|_{0}^{2})^{-1}\beta|_{\frac{n}{2}}^{2}\tau^{-1}\beta|_{\frac{n}{2}}\beta|_{0}$$

$$\stackrel{(41)}{=}\beta|_{\frac{n}{2}}\beta|_{0};$$

$$\begin{aligned} \text{(IV)} \ \left\langle \beta \right|_{\frac{n}{2}}^{n}, \beta \right|_{0} \right\rangle^{J} &\leq V : \\ \left(\beta \right|_{\frac{n}{2}}^{n} \beta \right|_{0} \right)^{\tau^{k}} &= \beta \left|_{\frac{n}{2}}^{n} \beta \right|_{0} \left[\beta \right|_{\frac{n}{2}}^{n} \beta \right|_{0}, \tau^{k} \right] &= \beta \left|_{\frac{n}{2}}^{n} \beta \right|_{0} \left[\beta \right|_{\frac{n}{2}}^{n}, \tau^{k} \right]^{\beta \left|_{0}} \left[\beta \right|_{0}, \tau^{k} \right]; \\ \left(\beta \right|_{\frac{n}{2}}^{n} \beta \right|_{0} \right)^{\beta \left|_{0}} &= \beta \left|_{0}^{-1} \beta \right|_{\frac{n}{2}}^{n} \beta \right|_{0}^{2} &= \beta \left|_{0}^{-1} \beta \right|_{\frac{n}{2}}^{n} \tau^{-1} \tau \beta \right|_{0}^{2} \\ &= \left(\beta \left|_{\frac{n}{2}}^{n} \beta \right|_{0} \right)^{-1} \left(\tau \beta \right|_{0}^{2} \right)^{2}; \\ \beta \left|_{\frac{n}{2}}^{n} \beta \right|_{0} \left(\frac{t}{2} \right) \left(\tau \beta \right)_{0}^{2} \right)^{2} \left(\left(\beta \left|_{\frac{n}{2}}^{n} \beta \right|_{0} \right)^{-1} \right)^{\beta \left|_{0}}; \\ \left(\beta \left|_{\frac{n}{2}}^{n} \beta \right|_{0} \right)^{\beta \left|_{\frac{n}{2}}^{-1}} &= \beta \left|_{\frac{n}{2}}^{2} \beta \right|_{0} \beta \left|_{0}^{-1} \left(\beta \right|_{\frac{n}{2}}^{n} \beta \right|_{0} \right)^{-1}; \\ \left(\beta \left|_{\frac{n}{2}}^{n} \beta \right|_{0} \right)^{\beta \left|_{\frac{n}{2}}^{-1}} &= \beta \left|_{\frac{n}{2}}^{2} \beta \right|_{0} \beta \left|_{\frac{n}{2}}^{-1} \tau \beta \right|_{0} \beta \left|_{0} \beta \right|_{0}^{-1} \beta \left|_{\frac{n}{2}}^{-1} \\ &= \left(\tau \beta \right|_{0}^{2} \right)^{2} \beta \left|_{0}^{-1} \beta \right|_{\frac{n}{2}}^{-1} &= \left(\tau \beta \right|_{0}^{2} \right)^{2} \left(\beta \left|_{\frac{n}{2}}^{n} \beta \right|_{0} \right)^{-1}; \\ \left(\beta \left|_{\frac{n}{2}}^{n} \beta \right|_{0} \right)^{\beta \left|_{\frac{n}{2}}^{-1}} \left(\frac{\pi}{2} \right)^{2} \left(\beta \left|_{\frac{n}{2}}^{n} \beta \right|_{0} \right)^{-1}; \\ \left(\beta \left|_{\frac{n}{2}}^{n} \beta \right|_{0} \right)^{\beta \left|_{\frac{n}{2}}^{-1}} \left(\frac{\pi}{2} \right)^{2} \left(\beta \left|_{\frac{n}{2}}^{n} \beta \right|_{0} \right)^{-1} \right)^{\beta \left|_{\frac{n}{2}}^{-1}} \\ \end{array}$$

(V) $\langle \tau \beta |_0^2 \rangle^J \leq V$:

$$\begin{aligned} (\tau\beta|_{0}^{2})^{\tau^{k}} &= \tau(\beta|_{0}^{2})^{\tau^{k}} = \tau\beta|_{0}^{2}[\beta|_{0}^{2},\tau^{k}] = \tau\beta|_{0}^{2}[\beta|_{0},\tau^{k}]^{\beta|_{0}}[\beta|_{0},\tau^{k}];\\ (\tau\beta|_{0}^{2})^{\beta|_{0}} &= \beta|_{0}^{-1}\tau\beta|_{0}^{2}\beta|_{0} = \tau\tau^{-1}\beta|_{0}^{-1}\tau\beta|_{0}\beta|_{0}^{2} = \tau[\tau,\beta|_{0}]\beta|_{0}^{2}\\ &= \tau[\tau,\beta|_{0}]\tau^{-1}\tau\beta|_{0}^{2} = ([\beta|_{0},\tau]^{-1})^{\tau^{-1}}\tau\beta|_{0}^{2};\\ (\tau\beta|_{0}^{2})^{\beta|_{0}^{-1}} &= \beta|_{0}\tau\beta|_{0} = \tau\beta|_{0}[\beta|_{0},\tau]\beta|_{0} = \tau\beta|_{0}^{2}[\beta|_{0},\tau]^{\beta|_{0}};\\ (\tau\beta|_{0}^{2})^{\beta|_{2}^{-1}} \stackrel{(p)}{=} \left((\tau\beta|_{0}^{2})^{\beta|_{0}^{-1}}([\beta|_{0},\tau]^{-1})^{\beta|_{0}}\right)^{\beta|_{2}^{-1}}\\ &= (\tau\beta|_{0}^{2})^{\beta|_{0}^{-1}\beta|_{2}^{-1}}([\beta|_{0},\tau]^{-1})^{\beta|_{0}\beta|_{2}^{-1}}\\ &= (\tau\beta|_{0}^{2})^{\beta|_{0}^{-1}\beta|_{2}^{-1}}([\beta|_{0},\tau]^{-1})^{\beta|_{0}\beta|_{2}^{-1}};\\ (\tau\beta|_{0}^{2})^{\beta|_{2}^{-1}} \stackrel{(q)}{=} \tau\beta|_{0}^{2}[\beta|_{0},\tau]^{\beta|_{0}}.\end{aligned}$$

8. Solvable groups for n = 4.

Let *B* be an abelian subgroup of $\mathcal{A}_4 = Aut(T_4)$ normalized by τ and let $\beta \in B$. Then, by Proposition 5, $\sigma_\beta \in D = \langle (0, 1, 2, 3), (0, 2) \rangle$, the unique Sylow 2-subgroup of Σ_4 which contains $\sigma = \sigma_\tau = (0, 1, 2, 3)$.

The normalizer of $\overline{\langle \tau \rangle}$ here is $\Gamma_0 = N_{\mathcal{A}_4} \left(\overline{\langle \tau \rangle} \right) = \langle \Lambda, \iota \rangle$ where Λ is the monic normalizer and where $\iota = \iota^{(1)}(0,3)(1,2)$ inverts τ .

Given a group W, the subgroup generated by the square of its elements is denoted by W^2 .

Lemma 14. Let L = L(D) be the layer closure of D above. If $\gamma \in L^2$ then $\gamma \tau$ is conjugate to τ .

Proof. If $\alpha \in L$ then $\sigma_{\alpha^2} \in \langle \sigma^2 \rangle$ and the product in any order of the states $(\alpha^2)|_i \ (0 \le i \le 3)$ belongs to $S = L^2$.

Let $\gamma \in S$. Then $\gamma \tau$ is transitive on the 1st level of the tree and $(\gamma \tau)^4$ is inactive with conjugate 1st level states, where the first state is

$$(\gamma|_0) (\gamma|_1) (\gamma|_2) (\gamma|_3) \tau$$
 if $\sigma_{\gamma} = e$,

and

$$(\gamma|_0) (\gamma|_3) (\gamma|_2) (\gamma|_1) \tau$$
 if $\sigma_{\gamma} = \sigma^2$;

in both cases the element is contained in $S^2\tau$. Therefore, $\gamma\tau$ is transitive on the 2nd level of the tree. Now use induction to prove that $\gamma\tau$ is transitive on all levels of the tree.

8.1. Cases $\sigma_{\beta} \in \{(0,3)(1,2), (0,1)(2,3)\}$. We will show that these cases cannot occur. We note that σ_{τ} conjugates (0,1)(2,3) to (0,3)(1,2). Since the argument for β applies to β^{τ} , it is sufficient to consider the first case.

Suppose $\sigma_{\beta} = (0, 1)(2, 3)$. Then,

$$\beta^{\tau} = \left(\tau^{-1}\left(\beta|_{3}\right), \beta|_{0}, \beta|_{1}, \beta|_{2}\tau\right) \left(\sigma_{\beta}\right)^{\sigma_{\tau}}.$$

On substituting $\alpha = \beta^{\tau}$ in $\theta = [\beta, \alpha]$ and in (7)

(66)
$$\theta|_{(i)\sigma_{\alpha\beta}} = \left(\beta|_{(i)\sigma_{\alpha}}\right)^{-1} \left(\alpha|_{i}\right)^{-1} \left(\beta|_{i}\right) \left(\alpha|_{(i)\sigma_{\beta}}\right), \forall i \in Y.$$

we get $\theta = e$ and

(67)
$$e = \left(\beta|_{(i)\sigma_{\beta^{\tau}}}\right)^{-1} \left(\beta^{\tau}|_{i}\right)^{-1} \left(\beta|_{i}\right) \left(\beta^{\tau}|_{(i)\sigma_{\beta}}\right), \forall i \in Y$$

and so for the index i = 0, we obtain

$$e = (\beta|_3)^{-1} (\tau^{-1} (\beta|_3))^{-1} (\beta|_0) (\beta|_0),$$

$$e = (\beta|_3)^{-2} \tau (\beta|_0)^2$$

which is impossible.

8.2. Cases $\sigma_{\beta} \in \{(0,2), (1,3)\}.$

Lemma 15. Let $\alpha, \gamma \in Aut(T_4)$ be such that

$$\sigma_{\alpha}, \sigma_{\gamma} \in \langle (0, 1, 2, 3), (0, 2) \rangle,$$

$$\tau^{-1} \alpha^{2} = \gamma^{2} \tau,$$

$$\alpha, \tau^{k} \gamma^{\gamma} = [\gamma, \tau^{k}]$$

for all $k \in \mathbb{Z}$. Then,

$$\sigma_{\alpha}, \sigma_{\gamma} \in \langle \sigma \rangle, \quad \sigma_{\alpha} \sigma_{\gamma} = \sigma^{\pm 1}.$$

Proof. From the second and third equations above, we have $\sigma^{-1}\sigma_{\alpha}^2 = \sigma_{\gamma}^2 \sigma$ and $[\sigma_{\alpha}, \sigma^k]^{\sigma_{\gamma}} = [\sigma_{\gamma}, \sigma^k].$

(i) Suppose $\sigma_{\gamma}^2 = e$. Then $\sigma_{\alpha}^2 = \sigma^2$ and therefore, $\sigma_{\alpha} = \sigma^{\pm 1}$, $[\sigma_{\alpha}, \sigma^k]^{\sigma_{\gamma}} =$

 $[\sigma_{\gamma}, \sigma^{k}] = e \text{ for all } k; \text{ thus, } \sigma_{\gamma} \in \langle \sigma \rangle \text{ and } \sigma_{\gamma} \in \langle \sigma^{2} \rangle, \sigma_{\alpha} \sigma_{\gamma} = \sigma^{\pm 1} \text{ follows.}$ (ii) Suppose $o(\sigma_{\gamma}) = 4$. Then, $\sigma_{\gamma} = \sigma^{\pm 1}$ and $\sigma^{2}_{\alpha} = e$. Since $[\sigma_{\alpha}, \sigma^{k}]^{\sigma_{\gamma}} = e$ for all k, we obtain $\sigma_{\alpha} \in \langle \sigma \rangle, \sigma^{2}_{\alpha} = e$ and $\sigma_{\alpha} \in \langle \sigma^{2} \rangle$. Therefore, $\sigma_{\alpha} \sigma_{\gamma} = \sigma^{\pm 1}$. \Box

(1) Suppose $\sigma_{\beta} = (0, 2)$. Then by the analysis in Section 7.2, we conclude

$$V = \left\langle [\beta]_i, \tau^k], \beta]_1, \beta]_3, \beta]_2 \beta]_0, \tau \beta]_0^2 \mid i \in Y \right\rangle$$

is an abelian normal subgroup of H.

By Lemma 14, $\tau \beta|_0^2 = \mu$ is a conjugate of τ . As V is abelian, there exist $\xi, t_1, t_2 \in \mathbb{Z}_4$ such that

$$\mu = \tau \beta|_0^2, \beta|_2 \beta|_0 = \mu^{\xi}, \beta|_1 = \mu^{t_1}, \beta|_3 = \mu^{t_2}.$$

Therefore,

$$\beta|_2 = \mu^{\xi} \beta|_0^{-1}, \tau = \mu \beta|_0^{-2}.$$

On substituting $\gamma = \beta_0$ and $\alpha = \beta_2$ in Lemma 15, we obtain $\sigma_{\alpha\gamma} = \sigma_{\beta|_2\beta|_0} =$ $\sigma^{\pm 1}$. Thus, from $\beta|_2\beta|_0 = \mu^{\xi}$, we reach $\xi \in U(Z_4)$.

By (41), we have

$$\beta|_{2}^{2}\tau^{-1} = \tau\beta|_{0}^{2}.$$

It follows then that

$$\begin{split} \mu^{\xi}\beta|_{0}^{-1}\mu^{\xi}\beta|_{0}^{-1}\beta|_{0}^{2}\mu^{-1} &= \mu, \\ \left(\mu^{\xi}\right)^{\beta|_{0}} &= \mu^{2-\xi} \end{split}$$

Therefore,

(68)

$$\mu^{\beta|_0} = \mu^{\frac{2-\xi}{\xi}}$$

where $\frac{2-\xi}{\xi} \in \mathbb{Z}_4^1$.

By Equation (49) we have

$$\beta|_1^{\beta|_0} = \beta|_3$$

It follows that

$$(\mu^{t_1})^{\beta|_0} = \mu^{t_2}, \ \mu^{t_1 \frac{2-\xi}{\xi}} = \mu^{t_2}, \ t_2 = t_1 \frac{2-\xi}{\xi}.$$

We have reached the form of β ,

$$\beta = (\beta|_0, \mu^{t_1}, \mu^{\xi}\beta|_0^{-1}, \mu^{t_1\frac{2-\xi}{\xi}})(0, 2)$$

where $\mu = \tau^{\alpha}$ for some $\alpha \in Aut(T_4)$.

Now, since

$$\beta|_0 = \left(\lambda_{\frac{2-\xi}{\xi}}\tau^m\right)^{\alpha}$$

for some $m \in \mathbb{Z}_4$, we have

$$\mu^{t_1} = (\tau^{t_1})^{\alpha},$$

$$\mu^{\xi}\beta|_0^{-1} = \left(\tau^{\xi} \left(\lambda_{\frac{2-\xi}{\xi}}\tau^m\right)^{-1}\right)^{\alpha}$$

$$= \left(\lambda_{\frac{\xi}{2-\xi}}\tau^{(\xi-m)\frac{\xi}{2-\xi}}\right)^{\alpha}.$$

Thus

$$\beta = \left(\lambda_{\frac{2-\xi}{\xi}}\tau^m, \tau^{t_1}, \lambda_{\frac{\xi}{2-\xi}}\tau^{(\xi-m)\frac{\xi}{2-\xi}}, \tau^{t_1\frac{2-\xi}{\xi}}\right)^{\alpha^{(1)}}(0,2)$$

and

$$\tau = \mu \beta |_{0}^{-2}$$
$$= \left(\tau \left(\lambda_{\frac{2-\xi}{\xi}} \tau^{m} \right)^{-2} \right)^{\alpha}$$
$$= \left(\lambda_{(\frac{\xi}{2-\xi})^{2}} \tau^{\left(1-\frac{2m}{\xi}\right) \left(\frac{\xi}{2-\xi}\right)^{2}} \right)^{\alpha}$$

We note that in case $\xi = 1$ and β has the form

$$\beta = (\tau^m, \tau^{t_1}, \tau^{1-m}, \tau^{t_1})^{\alpha^{(1)}}(0, 2)$$

where $\tau = (\tau^{1-2m})^{\alpha}$; therefore,

$$\beta = (\tau^{\frac{m}{1-2m}}, \tau^{\frac{t_1}{1-2m}}, \tau^{\frac{1-m}{1-2m}}, \tau^{\frac{t_1}{1-2m}})(0, 2).$$

(2) Suppose $\sigma_{\beta} = (1,3)$. Then, $\gamma = \beta^{\tau}$ satisfies $[\gamma, \gamma^{\tau^k}] = e$. Therefore, the previous case applies and

$$\gamma = (\lambda_{\frac{2-\varepsilon}{\xi}}\tau^m, \tau^{t_1}, \lambda_{\frac{\varepsilon}{2-\varepsilon}}\tau^{(\xi-m)\frac{\varepsilon}{2-\varepsilon}}, \tau^{t_1\frac{2-\varepsilon}{\xi}})^{\alpha^{(1)}}(0,2),$$

where

$$\tau = \left(\lambda_{\left(\frac{\xi}{2-\xi}\right)^2} \tau^{\left(1-\frac{2m}{\xi}\right)\left(\frac{\xi}{2-\xi}\right)^2}\right)^{\alpha} = (e, e, e, \left(\lambda_{\left(\frac{\xi}{2-\xi}\right)^2} \tau^{\left(1-\frac{2m}{\xi}\right)\left(\frac{\xi}{2-\xi}\right)^2}\right)^{\alpha}\right) \sigma_{\tau}.$$

Hence, β has the form

$$\beta = \gamma^{\tau^{-1}} = (\tau^{t_1}, \lambda_{\frac{2-\xi}{\xi}} \tau^{1+m-\xi}, \tau^{t_1\frac{2-\xi}{\xi}}, \lambda_{\frac{\xi}{2-\xi}} \tau^{(1-m)\frac{\xi}{2-\xi}})^{\alpha^{(1)}}(1,3).$$

8.3. The case $\sigma_{\beta} = (\sigma_{\tau})^2 = (0, 2) (1, 3)$. We know that

$$V = \left\langle N, \beta |_i \beta |_{i+2}, \beta |_j^2 \tau^{-\Delta(j,j+2)} \mid i, j, t \in Y \text{ and } k \in \mathbb{Z} \right\rangle$$

is an abelian normal subgroup of H and

(69)
$$\tau^{\Delta(i,j)}\beta|_{i+2}\beta|_j\tau^{\Delta(i,j)}=\beta|_{j+2}\beta|_i$$

by analysis of the case 7.1.

From Lemmas 12 and 13, we have

$$\tau\beta|_0^2 = \mu, \,\beta|_2\beta|_0 = \mu^{\xi_0}, \,\beta|_3\beta|_1 = \mu^{\xi_1}, \,\tau\beta|_1^2 = \mu^{\xi_2}$$

where $\mu = \tau^{\alpha}$ and $\xi_0, \xi_1, \xi_2 \in U(\mathbb{Z}_4)$. Therefore,

(70)
$$\tau = \mu \beta |_0^{-2}$$

(71)
$$\beta|_2 = \mu^{\xi_0} \beta|_0^{-1}$$

(72)
$$\beta|_3 = \mu^{\xi_1} \beta|_1^{-1}$$

(73)
$$\tau = \mu^{\xi_2} \beta|_1^{-2}$$

Now, we let i, j take their values from Y in (69). Note that (i, j) and (j, i) produce equivalent equations and the case where i = j is a tautology. Thus we have to treat the cases (i, j) = (0, 1), (0, 2), (1, 3), (2, 3), (0, 3), (1, 2). Indeed, the last two cases turn out to be superfluous.

(i) Substitute i = 0, j = 2 in (69), to obtain

(74)
$$\beta|_2^2 \tau^{-1} = \tau \beta|_0^2$$

Use (70) and (71) in (74) to get

$$\mu^{\xi_0}\beta|_0^{-1}\mu^{\xi_0}\beta|_0^{-1}\beta|_0^2\mu^{-1} = \mu$$

and so,

$$(\mu^{\xi_0})^{\beta|_0} = \mu^{2-\xi_0}.$$

Therefore,

(75)
$$\mu^{\beta|_0} = \mu^{\frac{2-\xi_0}{\xi_0}}$$

Since $\frac{2-\xi_0}{\xi_0} \in \mathbb{Z}_4^1$, we find

(76)
$$\beta|_0 = \left(\lambda_{\frac{2-\xi_0}{\xi_0}}\tau^{m_0}\right)^{\alpha}$$

From (71),

(77)
$$\beta|_2 = \mu^{\xi_0} \beta|_0^{-1} = \left(\tau^{\xi_0} \tau^{-m_0} \lambda_{\frac{\xi_0}{2-\xi_0}}\right)^{\alpha} = \left(\lambda_{\frac{\xi_0}{2-\xi_0}} \tau^{(\xi_0-m_0)\frac{\xi_0}{2-\xi_0}}\right)^{\alpha}.$$

(ii) Substitute i = 1, j = 3 in (69) to get

(78)
$$\beta|_3^2 \tau^{-1} = \tau \beta|_1^2.$$

On using (72) and (73) in (78), we obtain

$$\mu^{\xi_1}\beta|_1^{-1}\mu^{\xi_1}\beta|_1^{-1}\beta|_1^2\mu^{-\xi_2} = \mu^{\xi_2}$$

and so,

$$(\mu^{\xi_1})^{\beta|_1} = \mu^{2\xi_2 - \xi_1}.$$

Therefore,

(79)
$$\mu^{\beta|_1} = \mu^{\frac{2\xi_2 - \xi_1}{\xi_1}} \,.$$

Since $\frac{2\xi_2-\xi_1}{\xi_1} \in \mathbb{Z}_4^1$, we have

(80)
$$\beta|_1 = \left(\lambda_{\frac{2\xi_2 - \xi_1}{\xi_1}} \tau^{m_1}\right)^{\alpha}.$$

By (72), we find

(81)
$$\beta|_{3} = \mu^{\xi_{1}}\beta|_{1}^{-1} = \left(\tau^{\xi_{1}}\tau^{-m_{1}}\lambda_{\frac{\xi_{1}}{2\xi_{2}-\xi_{1}}}\right)^{\alpha} = \left(\lambda_{\frac{\xi_{1}}{2\xi_{2}-\xi_{1}}}\tau^{(\xi_{1}-m_{1})\frac{\xi_{1}}{2\xi_{2}-\xi_{1}}}\right)^{\alpha}.$$

(iii) Substitute i = 0, j = 1 in (69) to get

(82)
$$\beta|_2\beta|_1 = \beta|_3\beta|_0.$$

Use (76), (77), (80) and (81) in (82), to obtain

$$\lambda_{\frac{\xi_0}{2-\xi_0}}\tau^{(\xi_0-m_0)\frac{\xi_0}{2-\xi_0}}\lambda_{\frac{2\xi_2-\xi_1}{\xi_1}}\tau^{m_1} = \lambda_{\frac{\xi_1}{2\xi_2-\xi_1}}\tau^{(\xi_1-m_1)\frac{\xi_1}{2\xi_2-\xi_1}}\lambda_{\frac{2-\xi_0}{\xi_0}}\tau^{m_0}$$

and so,

$$\lambda_{\frac{\xi_0}{2-\xi_0}\frac{2\xi_2-\xi_1}{\xi_1}}\tau^{(\xi_0-m_0)\frac{\xi_0}{2-\xi_0}\frac{2\xi_2-\xi_1}{\xi_1}+m_1} = \lambda_{\frac{\xi_1}{2\xi_2-\xi_1}\frac{2-\xi_0}{\xi_0}}\tau^{(\xi_1-m_1)\frac{\xi_1}{2\xi_2-\xi_1}\frac{2-\xi_0}{\xi_0}+m_0}.$$

Therefore,

(83)
$$\left(\frac{\xi_1}{2\xi_2 - \xi_1}\right)^2 = \left(\frac{\xi_0}{2 - \xi_0}\right)^2$$

and

(84)
$$(\xi_0 - m_0) \frac{\xi_0}{2 - \xi_0} \frac{2\xi_2 - \xi_1}{\xi_1} + m_1 = (\xi_1 - m_1) \frac{\xi_1}{2\xi_2 - \xi_1} \frac{2 - \xi_0}{\xi_0} + m_0.$$

(iv) Substitute i = 2, j = 3 in (69) to get

(85)
$$\beta|_0\beta|_3 = \beta|_1\beta|_2.$$

Use (76), (77), (80) and (81) in (85), to obtain

$$\lambda_{\frac{2-\xi_0}{\xi_0}}\tau^{m_0}\lambda_{\frac{\xi_1}{2\xi_2-\xi_1}}\tau^{(\xi_1-m_1)\frac{\xi_1}{2\xi_2-\xi_1}} = \lambda_{\frac{2\xi_2-\xi_1}{\xi_1}}\tau^{m_1}\lambda_{\frac{\xi_0}{2-\xi_0}}\tau^{(\xi_0-m_0)\frac{\xi_0}{2-\xi_0}}$$

and so,

$$\lambda_{\frac{\xi_0}{2-\xi_0}\frac{\xi_1}{2\xi_2-\xi_1}}\tau^{m_0\frac{\xi_1}{2\xi_2-\xi_1}+(\xi_1-m_1)\frac{\xi_1}{2\xi_2-\xi_1}} = \lambda_{\frac{2\xi_2-\xi_1}{\xi_1}\frac{\xi_0}{2-\xi_0}}\tau^{m_1\frac{\xi_0}{2-\xi_0}+(\xi_0-m_0)\frac{\xi_0}{2-\xi_0}}.$$

Therefore,

$$\left(\frac{\xi_1}{2\xi_2 - \xi_1}\right)^2 = \left(\frac{\xi_0}{2 - \xi_0}\right)^2$$

and

(86)
$$m_0 \frac{\xi_1}{2\xi_2 - \xi_1} + (\xi_1 - m_1) \frac{\xi_1}{2\xi_2 - \xi_1} = m_1 \frac{\xi_0}{2 - \xi_0} + (\xi_0 - m_0) \frac{\xi_0}{2 - \xi_0}$$

We have from (83)

(87)
$$\frac{\xi_0}{2-\xi_0} = \pm \frac{\xi_1}{2\xi_2 - \xi_1}.$$

$$\frac{\xi_0}{2-\xi_0} = \frac{\xi_1}{2\xi_2 - \xi_1},$$

then

$$2\xi_2\xi_0 - \xi_1\xi_0 = 2\xi_1 - \xi_1\xi_0,$$

and so,

(88)
$$\xi_2 = \frac{\xi_1}{\xi_0}.$$

From (84), we get

(89)
$$m_1 = \frac{\xi_1 - \xi_0}{2} + m_0.$$

(b) If

$$\frac{\xi_0}{2-\xi_0} = -\frac{\xi_1}{2\xi_2 - \xi_1}$$

then by (84) and (86),

$$m_0 - \xi_0 + m_1 = m_1 - \xi_1 + m_0$$
$$m_0 + \xi_1 - m_1 = -m_1 - \xi_0 + m_0,$$

which implies $\xi_1 = \xi_0 = 0$, which is impossible.

Now by (88) and (89), we have

(90)
$$\beta|_1 = \left(\lambda_{\frac{2-\xi_0}{\xi_0}} \tau^{\frac{\xi_1-\xi_0}{2}+m_0}\right)^{\alpha}$$

and

(91)
$$\beta|_{3} = \left(\lambda_{\frac{\xi_{0}}{2-\xi_{0}}}\tau^{\left(\frac{\xi_{1}+\xi_{0}}{2}-m_{0}\right)\frac{\xi_{0}}{2-\xi_{0}}}\right)^{\alpha}.$$

Therefore,

$$\beta = (\beta|_0, \beta|_1, \beta|_2, \beta|_3)(0, 2)(1, 3)$$

where $\beta|_0, \beta|_1, \beta|_2$ and $\beta|_3$ are described in (76),(90), (77) and (91), respectively, and

$$\begin{aligned} \tau &= \mu \beta |_{0}^{-2} \\ &= \left(\tau \left(\lambda_{\frac{2-\xi_{0}}{\xi_{0}}} \tau^{m_{0}} \right)^{-2} \right)^{\alpha} \\ &= \left(\lambda_{(\frac{\xi_{0}}{2-\xi_{0}})^{2}} \tau^{\left(1-\frac{2m_{0}}{\xi_{0}}\right) \left(\frac{\xi_{0}}{2-\xi_{0}}\right)^{2}} \right)^{\alpha}. \end{aligned}$$

(v) The cases (i, j) = (1, 2), (0, 3) in (69) do not add any more information about β .

Summarizing, we have found

(92)
$$\beta|_0 = \left(\lambda_{\frac{2-\xi_0}{\xi_0}}\tau^{m_0}\right)^{\alpha}, \, \beta|_1 = \left(\lambda_{\frac{2-\xi_0}{\xi_0}}\tau^{\frac{\xi_1-\xi_0}{2}+m_0}\right)^{\alpha},$$

(93)
$$\beta|_{2} = \left(\lambda_{\frac{\xi_{0}}{2-\xi_{0}}}\tau^{(\xi_{0}-m_{0})\frac{\xi_{0}}{2-\xi_{0}}}\right)^{\alpha}, \beta|_{3} = \left(\lambda_{\frac{\xi_{0}}{2-\xi_{0}}}\tau^{\left(\frac{\xi_{1}+\xi_{0}}{2}-m_{0}\right)\frac{\xi_{0}}{2-\xi_{0}}}\right)^{\alpha},$$

(94)
$$\tau = \left(\lambda_{\left(\frac{\xi_0}{2-\xi_0}\right)^2} \tau^{\left(1-\frac{2m_0}{\xi_0}\right)\left(\frac{\xi_0}{2-\xi_0}\right)^2}\right)^{\alpha}$$

In the particular case where $\xi_0 = 1, \beta$ has the form

$$\beta = (\tau^{\frac{m_0}{1-2m_0}}, \tau^{\frac{\xi_1-1}{2-2m_0}}, \tau^{\frac{1-m_0}{1-2m_0}}, \tau^{\frac{\xi_1+1}{2-2m_0}})(0,2)(1,3)$$

where $\tau = (\tau^{1-2m_0})^{\alpha}$.

8.4. Cases $\sigma_{\beta} \in \{e, \sigma_{\tau}, \sigma_{\tau}^{-1}\}$. (1) Suppose $\sigma_{\beta} = e$ and let β stabilize the *k*th level of the tree. Then by Proposition 6, we have

$$[\beta|_u, \beta|_v^{\tau^{\xi}}] = e$$
, for all $u, v \in \mathcal{M}$ with $|u| = |v| = k$.

Therefore, $\dot{N} = \langle \beta |_w | |w| = k, w \in \mathcal{M} \rangle$ is abelian and so is its normal closure \dot{M} under $\langle \dot{N}, \tau \rangle$. Also, active elements in \dot{M} are characterized in 8.1, 8.2, 8.3 and 8.4. In particular, there exists $\kappa \in \dot{M}$ such that $\sigma_{\kappa} = (0, 2)(1, 3)$ and $\beta \in \times_{p^k} C(\kappa)$.

(2) Suppose
$$\sigma_{\beta} = \sigma_{\tau} = (0, 1, 2, 3)$$
. Then, clearly the element
 $\beta^2 = (\beta|_0\beta|_1, \ \beta|_1\beta|_2, \ \beta|_2\beta|_3, \ \beta|_3\beta|_0)(0, 2)(1, 3)$

satisfies $[\beta^2, (\beta^2)^{\tau^k}] = e$ for all $k \in \mathbb{Z}_4$. Therefore, by the previous analysis, we have

(95)
$$\beta|_0\beta|_1 = \left(\lambda_{\frac{2-\xi_0}{\xi_0}}\tau^{m_0}\right)^{\alpha},$$

(96)
$$\beta|_1\beta|_2 = \left(\lambda_{\frac{2-\xi_0}{\xi_0}}\tau^{\frac{\xi_1-\xi_0}{2}+m_0}\right)^{\alpha},$$

(97)
$$\beta|_{2}\beta|_{3} = \left(\lambda_{\frac{\xi_{0}}{2-\xi_{0}}}\tau^{(\xi_{0}-m_{0})\frac{\xi_{0}}{2-\xi_{0}}}\right)^{\alpha},$$

(98)
$$\beta|_{3}\beta|_{0} = \left(\lambda_{\frac{\xi_{0}}{2-\xi_{0}}}\tau^{\left(\frac{\xi_{1}+\xi_{0}}{2}-m_{0}\right)\frac{\xi_{0}}{2-\xi_{0}}}\right)^{\alpha},$$

(99)
$$\tau = \left(\lambda_{\left(\frac{\xi_0}{2-\xi_0}\right)^2} \tau^{\left(1-\frac{2m_0}{\xi_0}\right)\left(\frac{\xi_0}{2-\xi_0}\right)^2}\right)^{\alpha}.$$

Therefore,

$$\beta|_{0}\beta|_{1}\beta|_{2}\beta|_{3} = \left(\lambda_{\frac{2-\xi_{0}}{\xi_{0}}}\tau^{m_{0}}\lambda_{\frac{\xi_{0}}{2-\xi_{0}}}\tau^{(\xi_{0}-m_{0})\frac{\xi_{0}}{2-\xi_{0}}}\right)^{\alpha} = \left(\tau^{\frac{\xi_{0}^{2}}{2-\xi_{0}}}\right)^{\alpha},$$
$$\beta|_{1}\beta|_{2}\beta|_{3}\beta|_{0} = \left(\lambda_{\frac{2-\xi_{0}}{\xi_{0}}}\tau^{\frac{\xi_{1}-\xi_{0}}{2}+m_{0}}\lambda_{\frac{\xi_{0}}{2-\xi_{0}}}\tau^{\left(\frac{\xi_{1}+\xi_{0}}{2}-m_{0}\right)\frac{\xi_{0}}{2-\xi_{0}}}\right)^{\alpha} = \left(\tau^{\frac{\xi_{1}\xi_{0}}{2-\xi_{0}}}\right)^{\alpha}.$$

It follows that

$$\left(\tau^{\frac{\xi_0^2}{2-\xi_0}}\right)^{\alpha\beta|_0} = \left(\tau^{\frac{\xi_1\xi_0}{2-\xi_0}}\right)^{\alpha}$$

and

(100)
$$(\tau^{\alpha})^{\beta|_0} = \left(\tau^{\frac{\xi_1}{\xi_0}}\right)^{\alpha}$$

Substitute $\eta = \frac{\xi_1}{\xi_0}$ in (100) to get

(101)
$$\beta|_0 = \left(\psi_\eta \tau^{m_1}\right)^{\alpha},$$

where

(102)
$$\psi_{\eta} = \begin{cases} \lambda_{\eta}, & \text{if } \eta \in \mathbb{Z}_{4}^{1} \\ \theta \lambda_{-\eta}, & \text{if } -\eta \in \mathbb{Z}_{4}^{1} \end{cases},$$

$$\theta = \theta^{(1)}(e, \tau^{-1}, \tau^{-1}, \tau^{-1})(1, 3)$$

(an invertor of τ). Note that

$$\psi_{\eta}\lambda_{\xi} = \psi_{\eta}\psi_{\xi} = \psi_{\eta\xi} = \psi_{\xi\eta} = \psi_{\xi}\psi_{\eta} = \lambda_{\xi}\psi_{\eta}$$

for all $\xi \in \mathbb{Z}_4^1$. By (95) and (101),

(103)
$$\beta|_{1} = \left(\tau^{-m_{1}}\psi_{\eta^{-1}}\lambda_{\frac{2-\xi_{0}}{\xi_{0}}}\tau^{m_{0}}\right)^{\alpha} = \left(\psi_{\frac{2-\xi_{0}}{\eta\xi_{0}}}\tau^{-m_{1}\left(\frac{2-\xi_{0}}{\eta\xi_{0}}\right)+m_{0}}\right)^{\alpha}.$$

Also, by (96) and (101),

(104)
$$\beta|_{2} = \left(\tau^{m_{1}\left(\frac{2-\xi_{0}}{\eta\xi_{0}}\right)-m_{0}}\psi_{\frac{\eta\xi_{0}}{2-\xi_{0}}}\lambda_{\frac{2-\xi_{0}}{\xi_{0}}}\tau^{\frac{\eta\xi_{0}-\xi_{0}}{2}+m_{0}}\right)^{\alpha} = \left(\psi_{\eta}\tau^{\left[m_{1}\left(\frac{2-\xi_{0}}{\eta\xi_{0}}\right)-m_{0}\right]\eta+\frac{\eta\xi_{0}-\xi_{0}}{2}+m_{0}}\right)^{\alpha}.$$

Furthermore, by (98) and (101),

(105)
$$\beta|_{3} = \left(\lambda_{\frac{\xi_{0}}{2-\xi_{0}}}\tau^{\left(\frac{\eta\xi_{0}+\xi_{0}}{2}-m_{0}\right)\frac{\xi_{0}}{2-\xi_{0}}}\tau^{-m_{1}}\psi_{\eta^{-1}}\right)^{\alpha} = \left(\psi_{\frac{\xi_{0}}{\eta(2-\xi_{0})}}\tau^{\left[\left(\frac{\eta\xi_{0}+\xi_{0}}{2}-m_{0}\right)\frac{\xi_{0}}{2-\xi_{0}}-m_{1}\right]\eta^{-1}}\right)^{\alpha}.$$

Setting i = 1 and t = 2 in (17), we obtain

(106)
$$\beta|_0\beta|_2 = \beta|_1^2.$$

Use (101), (103), (104) and (105) in (106), to get

(107)
$$\psi_{\eta} \tau^{m_{1}} \psi_{\eta} \tau^{\left[m_{1}\left(\frac{2-\xi_{0}}{\eta\xi_{0}}\right)-m_{0}\right]\eta+\frac{\eta\xi_{0}-\xi_{0}}{2}+m_{0}} \\ = \psi_{\frac{2-\xi_{0}}{\eta\xi_{0}}} \tau^{-m_{1}\left(\frac{2-\xi_{0}}{\eta\xi_{0}}\right)+m_{0}} \psi_{\frac{2-\xi_{0}}{\eta\xi_{0}}} \tau^{-m_{1}\left(\frac{2-\xi_{0}}{\eta\xi_{0}}\right)+m_{0}}$$

which is the same as

(108)
$$\psi_{\eta^{2}\tau}^{m_{1}\eta+\left[m_{1}\left(\frac{2-\xi_{0}}{\eta\xi_{0}}\right)-m_{0}\right]\eta+\frac{\eta\xi_{0}-\xi_{0}}{2}+m_{0}} \\ = \psi_{\left(\frac{2-\xi_{0}}{\eta\xi_{0}}\right)^{2}\tau}^{\left[-m_{1}\left(\frac{2-\xi_{0}}{\eta\xi_{0}}\right)+m_{0}\right]\left(\frac{2-\xi_{0}}{\eta\xi_{0}}\right)-m_{1}\left(\frac{2-\xi_{0}}{\eta\xi_{0}}\right)+m_{0}}.$$

Therefore,

(109)
$$\eta^2 = \left(\frac{2-\xi_0}{\eta\xi_0}\right)^2$$

and

$$m_{1}\eta + \left[m_{1}\left(\frac{2-\xi_{0}}{\eta\xi_{0}}\right) - m_{0}\right]\eta + \frac{\eta\xi_{0}-\xi_{0}}{2} + m_{0}$$
$$= \left[-m_{1}\left(\frac{2-\xi_{0}}{\eta\xi_{0}}\right) + m_{0}\right]\left(\frac{2-\xi_{0}}{\eta\xi_{0}}\right) - m_{1}\left(\frac{2-\xi_{0}}{\eta\xi_{0}}\right) + m_{0}$$
Suppose

(a) Suppose

(110)
$$\eta = -\frac{2-\xi_0}{\eta\xi_0}$$

(or what is the same

(111)
$$(\eta^2 - 1)\xi_0 = -2).$$

Then on substituting this in the above equation, we get

$$(\eta - 1)\xi_0 = 0$$

contradicting the previous equation.

(b) Suppose

(112)
$$\eta = \frac{2-\xi_0}{\eta\xi_0}.$$

Then,

(113)
$$\xi_0 = \frac{2}{\eta^2 + 1}$$

and this leads to

(114)
$$m_0 = 2m_1 + \frac{\eta - 1}{2\eta(\eta^2 + 1)}.$$

On substituting (113) and (114) in(103), (104), (105) and (99), we find

(115)
$$\beta|_{1} = \left(\psi_{\eta}\tau^{m_{1}(2-\eta)+\frac{\eta-1}{2\eta(\eta^{2}+1)}}\right)^{\alpha}$$

(116)
$$\beta|_{2} = \left(\psi_{\eta}\tau^{m_{1}(\eta^{2}-2\eta+2)+\frac{\eta^{2}-1}{2\eta(\eta^{2}+1)}}\right)^{\alpha},$$

(117)
$$\beta|_{3} = \left(\psi_{\eta^{-3}}\tau^{\frac{2\eta^{2}+\eta+1}{2\eta^{4}(\eta^{2}+1)}-m_{1}\left(\frac{\eta^{2}+2}{\eta^{3}}\right)}\right)^{\alpha},$$

(118)
$$\tau = \left(\psi_{\eta^{-4}}\tau^{\frac{\eta+1}{2\eta^5} - 2m_1\left(\frac{\eta^2+1}{\eta^4}\right)}\right)^{\alpha}.$$

Substitute i = 0, t = 1 in (17), to get

(119)
$$\beta|_3\beta|_1 = \tau\beta|_0^2.$$

Using (101), (115), (116), (117) and (118) in (119), we obtain

$$\psi_{\eta^{-3}} \tau^{\frac{2\eta^2 + \eta + 1}{2\eta^4(\eta^2 + 1)} - m_1\left(\frac{\eta^2 + 2}{\eta^3}\right)} \psi_{\eta} \tau^{m_1(2-\eta) + \frac{\eta - 1}{2\eta(\eta^2 + 1)}}$$

= $\psi_{\eta^{-4}} \tau^{\frac{\eta + 1}{2\eta^5} - 2m_1\left(\frac{\eta^2 + 1}{\eta^4}\right)} \psi_{\eta} \tau^{m_1} \psi_{\eta} \tau^{m_1}.$

Thus,

$$\begin{split} \psi_{\eta^{-2}} \tau^{\frac{2\eta^2 + \eta + 1}{2\eta^3(\eta^2 + 1)} - m_1\left(\frac{\eta^2 + 2}{\eta^2}\right) + m_1(2 - \eta) + \frac{\eta - 1}{2\eta(\eta^2 + 1)}} \\ &= \psi_{\eta^{-2}} \tau^{\frac{\eta + 1}{2\eta^3} - 2m_1\left(\frac{\eta^2 + 1}{\eta^2}\right) + m_1\eta + m_1}, \end{split}$$

which implies

(120)
$$(\eta - 1)m_1 = 0$$

and thus,

$$m_1 = 0 \text{ or } \eta = 1.$$

• If $m_1 = 0$ we get

(121)
$$\beta = (\psi_{\eta}, \psi_{\eta} \tau^{\frac{\eta - 1}{2\eta(\eta^2 + 1)}}, \psi_{\eta} \tau^{\frac{\eta^2 - 1}{2\eta(\eta^2 + 1)}}, \psi_{\eta^{-3}} \tau^{\frac{2\eta^2 + \eta + 1}{2\eta^4(\eta^2 + 1)}})^{\alpha^{(1)}} \sigma_{\tau}$$
$$= \tau^{\gamma},$$

where

(122)
$$\gamma = \left(\lambda_{\frac{2}{\eta^2(\eta^2+1)}}\right)^{(1)} (e, \psi_{\eta}, \psi_{\eta^2} \tau^{\frac{\eta-1}{2\eta(\eta^2+1)}}, \psi_{\eta^3} \tau^{\frac{2\eta^2-n-1}{2\eta(\eta^2+1)}}) \alpha^{(1)}$$

and

(123)
$$\tau = \left(\psi_{\eta^{-4}}\tau^{\frac{\eta+1}{2\eta^5}}\right)^{\alpha}.$$

• If
$$\eta = 1$$
 we get
(124) $\beta = (\tau^{m_1}, \tau^{m_1}, \tau^{m_1}, \tau^{1-3m_1})^{\alpha^{(1)}}(0, 1, 2, 3)$
and

(125)
$$\tau = \left(\tau^{1-4m_1}\right)^{\alpha}$$

which produce

(126)
$$\beta = (\tau^{\frac{m_1}{1-4m_1}}, \tau^{\frac{m_1}{1-4m_1}}, \tau^{\frac{m_1}{1-4m_1}}, \tau^{\frac{1-3m_1}{1-4m_1}})(0, 1, 2, 3)$$
$$= (\tau^{\frac{m_1}{1-4m_1}}, \tau^{\frac{m_1}{1-4m_1}}, \tau^{\frac{m_1}{1-4m_1}}, \tau^{\frac{m_1}{1-4m_1}})\tau$$
$$= \tau^{\frac{4m_1}{1-4m_1}}\tau = \tau^{\frac{1}{1-4m_1}} = \tau^{\lambda_{\frac{1}{1-4m_1}}}$$

(3) Suppose $\sigma_{\beta} = \sigma_{\tau}^{-1} = (0, 3, 2, 1)$. Then, β^{-1} satisfies the previous case. Therefore, as θ inverts τ , we have

(127)
$$\beta = (\beta^{-1})^{-1} = (\tau^{\gamma})^{-1} = (\tau)^{\theta \gamma}$$

or

(128)
$$\beta = \tau^{\theta \lambda} \frac{1}{1 - 4m_1},$$

where $m_1 \in \mathbb{Z}_4$,

(129)
$$\gamma = \left(\lambda_{\frac{2}{\eta^2(\eta^2+1)}}\right)^{(1)} (e, \psi_{\eta}, \psi_{\eta^2} \tau^{\frac{\eta-1}{2\eta(\eta^2+1)}}, \psi_{\eta^3} \tau^{\frac{2\eta^2-n-1}{2\eta(\eta^2+1)}}) \alpha^{(1)},$$

 $\eta \in U(\mathbb{Z}_4)$ and

(130)
$$\tau = \left(\psi_{\eta^{-4}}\tau^{\frac{\eta+1}{2\eta^5}}\right)^{\alpha}.$$

8.5. Final Step. We finish the proof of the second part of Theorem A. In order to treat the remaining case where the activity of β is a 4-cycle, we use the fact that $\beta^2 \in B$, which we have already described. Next, from the description of the centralizer of β^2 , we are able to pin down the form of β .

Proposition 12. Let $\beta = (\beta|_0, \beta|_1, \beta|_2, \beta|_3)(0, 2)(1, 3)$ be such that $(\beta|_0)(\beta|_2) = \tau^{\theta_1}$ and $(\beta|_1)(\beta|_3) = \tau^{\theta_2}$, for some $\theta_1, \theta_2 \in Aut(T_4)$. Then, β is conjugate to τ^2 .

Proof. Let $\alpha = (e, e, \beta|_0^{-1}, \beta|_3^{-1})$. Then,

(131)
$$\beta^{\alpha} = (e, e, \beta|_{0}\beta|_{2}, \beta|_{1}\beta|_{3})(0, 2)(1, 3).$$

Therefore, substituting $\beta|_0\beta|_2 = \tau^{\theta_1}$ and $\beta|_1\beta|_3 = \tau^{\theta_2}$ in the above equation, we have

$$\beta^{\alpha} = (e, e, \tau^{\theta_1}, \tau^{\theta_2})(0, 2)(1, 3).$$

Conjugating β^{α} by $\gamma = (\theta_1^{-1}, \theta_2^{-1}, \theta_1^{-1}, \theta_2^{-1})$ we produce
 $\beta^{\alpha\gamma} = \tau^2.$

We show below that active elements of B produce within B elements conjugate to τ^2 .

Proposition 13. Let $\beta \in B$ with nontrivial σ_{β} . Then

- (i) If $\sigma_{\beta} = \sigma_{\tau}^2$, then β is a conjugate of τ^2 .
- (ii) If $\sigma_{\beta} \in \{(0,2), (1,3)\}$, then $\beta\beta^{\tau}$ is a conjugate τ^2 . (iii) If $\sigma_{\beta} \in \{\sigma_{\tau}, \sigma_{\tau}^{-1}\}$, then β^2 is a conjugate of τ^2 .

Proof. It is enough to prove (i), since (ii), (iii) are just special cases. If $\sigma_{\beta} = \sigma_{\tau}^2$, then

(132)
$$\beta|_0 = \left(\lambda_{\frac{2-\xi_0}{\xi_0}}\tau^{m_0}\right)^{\alpha}, \, \beta|_1 = \left(\lambda_{\frac{2-\xi_0}{\xi_0}}\tau^{\frac{\xi_1-\xi_0}{2}+m_0}\right)^{\alpha},$$

(133)
$$\beta|_{2} = \left(\lambda_{\frac{\xi_{0}}{2-\xi_{0}}}\tau^{(\xi_{0}-m_{0})\frac{\xi_{0}}{2-\xi_{0}}}\right)^{\alpha}, \beta|_{3} = \left(\lambda_{\frac{\xi_{0}}{2-\xi_{0}}}\tau^{\left(\frac{\xi_{1}+\xi_{0}}{2}-m_{0}\right)\frac{\xi_{0}}{2-\xi_{0}}}\right)^{\alpha},$$

(134)
$$\tau = \left(\lambda_{\left(\frac{\xi_0}{2-\xi_0}\right)^2} \tau^{\left(1-\frac{2m_0}{\xi_0}\right)\left(\frac{\xi_0}{2-\xi_0}\right)^2}\right)^{\alpha},$$

where $\xi_0, \xi_1 \in U(\mathbb{Z}_4), m_0 \in \mathbb{Z}_4$. Therefore,

$$\beta|_{0}\beta|_{2} = \left(\lambda_{\frac{2-\xi_{0}}{\xi_{0}}}\tau^{m_{0}}\lambda_{\frac{\xi_{0}}{2-\xi_{0}}}\tau^{(\xi_{0}-m_{0})\frac{\xi_{0}}{2-\xi_{0}}}\right)^{\alpha} = \left(\tau^{\frac{\xi_{0}^{2}}{2-\xi_{0}}}\right)^{\alpha} = \left(\tau^{\frac{\xi_{0}^{2}}{2-\xi_{0}}}\right)^{\alpha}$$

$$\beta|_1\beta|_3 = \left(\lambda_{\frac{2-\xi_0}{\xi_0}}\tau^{\frac{\xi_1-\xi_0}{2}+m_0}\lambda_{\frac{\xi_0}{2-\xi_0}}\tau^{\left(\frac{\xi_1+\xi_0}{2}-m_0\right)\frac{\xi_0}{2-\xi_0}}\right)^{\alpha} = \left(\tau^{\frac{\xi_1\xi_0}{2-\xi_0}}\right)^{\alpha} = \tau^{\frac{\psi_{\xi_1\xi_0}}{2-\xi_0}\alpha}$$

It follows from Proposition 12, that β is a conjugate of τ^2 .

Corollary 4. Suppose $\beta \in B$ is an active element. Then, B is conjugate to a subgroup of the centralizer $C(\tau^2)$.

Proposition 14. Let $\gamma \in C(\tau^2)$. Then,

(135)
$$\gamma = (\tau^{m_0}, \tau^{m_1}, \tau^{m_0 + \delta((0)\sigma_{\gamma}, 2)}, \tau^{m_1 + \delta((1)\sigma_{\gamma}, 2)})\sigma_{\gamma},$$

where $m_0, m_1 \in \mathbb{Z}_4, \sigma_{\gamma} \in C_{\Sigma_4}(\sigma^2)$.

Proof. Write $\gamma = (\gamma|_0, \gamma|_1, \gamma|_2, \gamma|_3)\sigma_{\gamma}$. Then $\tau^2 \gamma = \gamma \tau^2$ translates to

$$(e, e, \tau, \tau)(0, 2)(1, 3)(\gamma|_0, \gamma|_1, \gamma|_2, \gamma|_3)\sigma_{\gamma} = (\gamma|_0, \gamma|_1, \gamma|_2, \gamma|_3)\sigma_{\gamma}(e, e, \tau, \tau)(0, 2)(1, 3),$$

and this in turn translates to

$$= \begin{array}{l} (\gamma|_{2},\gamma|_{3},\tau\gamma|_{0},\tau\gamma|_{1})(0,2)(1,3)\sigma_{\gamma} \\ = \begin{array}{l} (\gamma|_{0},\gamma|_{1},\gamma|_{2},\gamma|_{3}). \\ \sigma_{\gamma}(\tau^{\delta(0,2)},\tau^{\delta(1,2)},\tau^{\delta(2,2)},\tau^{\delta(3,2)})(0,2)(1,3) \\ = \begin{array}{l} (\gamma|_{0},\gamma|_{1},\gamma|_{2},\gamma|_{3}) \\ (\tau^{\delta((0)\sigma_{\gamma},2)},\tau^{\delta((1)\sigma_{\gamma},2)},\tau^{\delta((2)\sigma_{\gamma},2)},\tau^{\delta((3)\sigma_{\gamma},2)})\sigma_{\gamma}(0,2)(1,3) \\ = \end{array}$$
$$= (\gamma|_{0}\tau^{\delta((0)\sigma_{\gamma},2)},\gamma|_{1}\tau^{\delta((1)\sigma_{\gamma},2)},\gamma|_{2}\tau^{\delta((2)\sigma_{\gamma},2)},\gamma|_{3}\tau^{\delta((3)\sigma_{\gamma},2)})\sigma_{\gamma}(0,2)(1,3) \end{array}$$

Thus, we have

$$\begin{cases} \gamma|_2 = \gamma|_0 \tau^{\delta((0)\sigma_{\gamma},2)}, \\ \gamma|_3 = \gamma|_1 \tau^{\delta((1)\sigma_{\gamma},2)}, \\ \tau\gamma|_0 = \gamma|_2 \tau^{\delta((2)\sigma_{\gamma},2)}, \\ \tau\gamma|_1 = \gamma|_3 \tau^{\delta((3)\sigma_{\gamma},2)}. \end{cases}$$

Hence,

$$\begin{cases} \gamma|_{2} = \gamma|_{0}\tau^{\delta((0)\sigma_{\gamma},2)}, \ \gamma|_{3} = \gamma|_{1}\tau^{\delta((1)\sigma_{\gamma},2)}, \\ \tau^{\gamma|_{0}} = \tau^{\delta((0)\sigma_{\gamma},2)+\delta((2)\sigma_{\gamma},2)} = \tau, \ \tau^{\gamma|_{1}} = \tau^{\delta((1)\sigma_{\gamma},2)+\delta((3)\sigma_{\gamma},2)} = \tau \end{cases}$$

Therefore, there exist $m_0, m_1 \in \mathbb{Z}_4$ such that

$$\begin{cases} \gamma|_{0} = \tau^{m_{0}}, \ \gamma|_{1} = \tau^{m_{1}}, \\ \gamma|_{2} = \tau^{m_{0} + \delta((0)\sigma_{\gamma}, 2)}, \ \gamma|_{3} = \tau^{m_{1} + \delta((1)\sigma_{\gamma}, 2)} \end{cases}$$

Hence, γ has the form

(136)
$$\gamma = (\tau^{m_0}, \tau^{m_1}, \tau^{m_0 + \delta((0)\sigma_{\gamma}, 2)}, \tau^{m_1 + \delta((1)\sigma_{\gamma}, 2)})\sigma_{\gamma},$$

where $\sigma_{\gamma} \in C_{\Sigma_4}(\sigma^2)$.

Corollary 5. The centralizer of τ^2 in \mathcal{A}_4 is

$$C(\tau^2) = \langle (e, e, \tau, e)(0, 2), \tau, (\tau^{m_0}, \tau^{m_1}, \tau^{m_0}, \tau^{m_1}) | m_0, m_1 \in \mathbb{Z}_4 \rangle.$$

Corollary 6. Let $\gamma \in C(\tau^2)$ be such that $\sigma_{\gamma} \in \langle (0,2)(1,3) \rangle$. Then $\gamma \in \langle (\tau^{m_0}, \tau^{m_1}, \tau^{m_0}, \tau^{m_1}), \tau^2 \mid m_0, m_1 \in \mathbb{Z}_4 \rangle$.

Proposition 15. Let $\dot{H} = \langle (\tau^{m_0}, \tau^{m_1}, \tau^{m_0}, \tau^{m_1}), \tau^2 \mid m_0, m_1 \in \mathbb{Z}_4 \rangle$. Then the normalizer $N_{\mathcal{A}_4}(\dot{H})$ is the group

 $\langle C(\tau^2), (\psi_{2m_0+1}, \psi_{2m_1+1}, \psi_{2m_0+1}\tau^{m_0}, \psi_{2m_1+1}\tau^{m_1}) \mid m_0, m_1 \in \mathbb{Z}_4 \rangle,$

where, for each $\eta \in U(\mathbb{Z}_4)$, ψ_{η} is defined by (102) and

$$\tau^{\psi_{\eta}} = \tau^{\eta}.$$

Proof. Note that \dot{H} is an abelian group. Let $\alpha \in N_{\mathcal{A}_4}(\dot{H})$. Then,

$$(\tau^2)^{\alpha} = (\tau^{m_0}, \tau^{m_1}, \tau^{m_0+1}, \tau^{m_1+1})(0, 2)(1, 3),$$

where $m_0, m_1 \in \mathbb{Z}_4$.

Suppose α is inactive. Then,

$$\begin{aligned} &(\tau^{m_0}, \tau^{m_1}, \tau^{m_0+1}, \tau^{m_1+1})(0, 2)(1, 3) \\ &= (\alpha|_0^{-1}, \alpha|_1^{-1}, \alpha|_2^{-1}, \alpha|_3^{-1})(e, e, \tau, \tau)(0, 2)(1, 3)(\alpha|_0, \alpha|_1, \alpha|_2, \alpha|_3) \\ &= (\alpha|_0^{-1}, \alpha|_1^{-1}, \alpha|_2^{-1}, \alpha|_3^{-1})(e, e, \tau, \tau)(\alpha|_2, \alpha|_3, \alpha|_0, \alpha|_1)(0, 2)(1, 3) \\ &= (\alpha|_0^{-1}\alpha|_2, \alpha|_1^{-1}\alpha|_3, \alpha|_2^{-1}\tau\alpha|_0, \alpha|_3^{-1}\tau\alpha|_1)(0, 2)(1, 3) \end{aligned}$$

which produces

$$\begin{cases} \alpha|_0^{-1}\alpha|_2 = \tau^{m_0}, \ \alpha|_1^{-1}\alpha|_3 = \tau^{m_1}, \\ \alpha|_2^{-1}\tau\alpha|_0 = \tau^{m_0+1}, \ \alpha|_3^{-1}\tau\alpha|_1 = \tau^{m_1+1} \end{cases}$$

48

Therefore,

$$\begin{cases} \alpha|_{2} = \alpha|_{0}\tau^{m_{0}}, \alpha|_{3} = \alpha|_{1}\tau^{m_{1}}, \\ \alpha|_{0}^{-1}\tau\alpha|_{0} = \tau^{2m_{0}+1}, \alpha|_{1}^{-1}\tau\alpha|_{1} = \tau^{2m_{1}+1}. \end{cases}$$

Thus,

$$\alpha = (\alpha|_0, \alpha|_1, \alpha|_2, \alpha|_3) = (\psi_{2m_0+1}, \psi_{2m_1+1}, \psi_{2m_0+1}\tau^{m_0}, \psi_{2m_1+1}\tau^{m_1})$$

satisfies

$$(\tau^2)^{\alpha} = (\tau^{m_0}, \tau^{m_1}, \tau^{m_0+1}, \tau^{m_1+1})(0, 2)(1, 3).$$

Theorem 7. Let G be a finitely generated solvable subgroup of $Aut(T_4)$ which contains τ . Then, G is a subgroup of

(137)
$$\times_4 \left(\cdots \left(\times_4 \left(\times_4 N_{\mathcal{A}_4}(H)^{\alpha} \rtimes S_4 \right) \rtimes S_4 \right) \cdots \right) \rtimes S_4$$

for some $\alpha \in \mathcal{A}_4$.

Proof. As in the case n = p, we assume G has derived length $d \ge 2$ and let B be the (d-1)th term of the derived series of G. Then, B is an abelian group normalized by τ . On analyzing the case 8.4 and the final step, there exists a level t such that B is a subgroup of $\dot{V} = \times_{4^k} C(\mu^2)$, where $\mu = \tau^{\alpha}$ for some $\alpha \in \mathcal{A}_4$ and where $\sigma_{\mu^2} = (0, 2)(1, 3)$. There also exists $\beta \in B$ such that $\beta|_u = \mu^2$ for some index $u \in \mathcal{M}$.

Moreover, if T is the normalizer of $C(\tau^2)$, then clearly, T^{α} is the normalizer of $C(\mu^2)$.

We will show now that G is a subgroup of

$$J = \times_4 (\cdots (\times_4 (\times_4 N_{\mathcal{A}_4}(H)^{\alpha} \rtimes S_4) \rtimes S_4) \cdots) \rtimes S_4$$

where the cartesian product \times_4 appears t times...

Let $\gamma \notin J$. Since $\gamma \notin J$, there exists $w \in \mathcal{M}$ having |w| = t and $\gamma|_w \notin T^{\alpha}$. Since τ is transitive on all levels of the tree, by Corollary 6 we can conjugate β by an appropriate power of τ to get $\theta \in B$ such that

$$\theta|_w = \mu^2 \text{ or } \theta|_w = (\mu^2)^{\tau} = ((\tau^{m_0}, \tau^{m_1}, \tau^{m_0+1}, \tau^{m_1+1})(0, 2)(1, 3))^{\alpha},$$

where $m_0, m_1 \in \mathbb{Z}_4$. Thus, for $v = w^{\gamma}$ we have

$$(\theta^{\gamma})|_{v} \stackrel{(9)}{=} \theta|_{v^{\gamma^{-1}}}^{\gamma_{v^{\gamma^{-1}}}} = \theta|_{w}^{\gamma|_{w}} \notin C(\mu^{2})$$

which implies $\theta^{\gamma} \notin B \leq \dot{V}$ and $\gamma \notin G$. Hence, G is a subgroup of \dot{J} .

References

- Bass H., Espinar O., Rockmore D., Tresser C., Cyclic Renormalization and the Automorphism Groups of Rooted Trees, Lecture Notes in Mathematics 1621, Springer, Berlin, 1995.
- [2] Sidki, S., Regular Trees and their Automorphisms, Monografias de Matemática, No 56, Impa, Rio de Janeiro, 1998.

- [3] Brunner, A., Sidki S., Vieira A. C., A just-nonsolvable torsion-free group defined on the binary tree, J. Algebra 211 (1999), 99-114.
- [4] Grigorchuk R. I., Nekrachevych, V., I. Suschanskii, I., Automata, dynamical systems, and groups, Proc. Steklov Institute 231 (2000), 128-203.
- [5] Sidki, S., Automorphisms of one-rooted trees: growth, circuit structure and acyclicity, Journal of Mathematical Sciences, Vol. 100, no 1 (2000),
- [6] Sidki, S., Silva, E.F., A family of just-nonsolvable torsion-free groups defined on *n*-ary trees, In Atas da XVI Escola de Álgebra, Brasília, Matematica Contemporânea 21 (2001).
- [7] Sidki, S., The Binary Adding Machine and Solvable Groups, International Journal of Algebra and Computation, Vol. 13, no 1 (2003), 95-110.
- [8] Jones, G. A., Cyclic regular subgroups of primitive permutation groups. J. Group Theory 5 (2002), no. 4, 403–407.
- [9] Sidki, S., Just-Non-(abelian by P-type) Groups, Progress in Math., 248, (2005) 389-402.
- [10] Nekrashevych, V., Self-similar groups, volume 117 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2005.
- [11] Vorobets, M., Vorobets, Y., On a free group of transformations defined by an automaton, Geom. Dedicata 124 (2007) 237–249.

E-mail address: jsrocha74@gmail.com *E-mail address*: sidki@mat.unb.br

Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Formosa, 73800-000, Formosa - GO, Brazil

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE DE BRASÍLIA, 70910-900, BRASÍLIA-DF, BRAZIL