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ABSTRACT. We describe under a various conditions abelian subgroups of
the automorphism group Aut(7},) of the regular n-ary tree T,,, which are
normalized by the n-ary adding machine 7 = (e, ..., e, 7)o, where o, is the
n-cycle (0,1,...,n — 1). As an application, for n = p a prime number, and
for n = p? when p = 2, we prove that every finitely generated soluble sub-
group of Aut(T;,), containing 7 is an extension of a torsion-free metabelian
group by a finite group.
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1. INTRODUCTION

Adding machines have played an important role in dynamical systems, and
in the theory of groups acting on trees : see [1, 2, 5, 4, 10].

An element « in the automorphism group A,, = Aut(7},) of the n-ary tree T,
is represented as o = |y = (o, ..., @|n—1) 0o Where ¢ is the empty sequence
from the free monoid M generated by Y = {0,1,..,n — 1}, where a|; € A,
(i € Y)-called 1st level states of a- and where o, (the activity of «) is a
permutation in the symmetric group ¥, on Y extended ’rigidly’ to act on the
tree; if = e, we say « inactive. In applying the same representation to «a|y we
produce agp; where i € Y and in general we produce {al, | u € M } the set of
states of a. Following this notation, the n-ary adding machine is represented
as T = (e, ...,e.T)o, where e is the identity automorphism an o, is the regular
permutation ¢ = (0,1,...,n —1). In this sense the adding machine may be
viewed as an infinite variant of the regular permutation which often appears
in geometric and combinatorial contexts.

A characteristic feature of 7 is that its n-th power 7" is the diagonal au-
tomorphism of the tree (7, ..., 7). This fact implies that the centralizer of the
cyclic group (7) in A, is equal to its topological closure <7 > in A,, seen as
a topological group with respect to the the natural topology induced by the
tree.

A large variety of subgroups of 4, which contain 7 have been constructed,
including finitely generated groups which are torsion-free and just non-solvable,
yet without free subgroups of rank 2 [3, 6], and generalizations thereof [9], as
well as constructions of free groups of rank 2 [11]. Yet solvable groups which
contain 7 are expected to have restricted structure [2]. For nilpotent groups
we show

Proposition. Let G be a nilpotent subgroup of A, which contains the
n-adic adding machine 7. Then G is a subgroup of <1 > .

Let Z,, be the ring of n-adic integers and U (Z,) its subgroup of units. The
normalizer of <7 > in A,, is isomorphic to the holomorph of Z,, the semi-
direct product Z,, x U (Z,), and is therefore metabelian.

The most visible examples of finitely generated solvable groups containing
T are conjugate to subgroups of those belonging to the sequence of groups

FO = N_An< T >,F1 = (an()) X Gl, ---;Fi+1 = (anz) X Gi+1,

where x,,I'; is a direct product of n copies of I'; (seen as a subgroup of the 1st
level stabilizer of the tree) and where G; is a solvable subgroup of ¥, in its
canonical action on the tree, containing the cycle .. We note that for all 4,
the groups I'; are metabelian by ’finite solvable subgroups of ¥,,”. It was shown
by the second author that for n = 2, that finitely generated solvable groups
which contain the binary adding machine are conjugate to some subgroups of
I'; acting on the binary tree [7].
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The description for degrees n > 2 requires a classification of solvable sub-
groups of ¥,, which contain the cycle o = (0,1,...,n — 1)[8]. This is an open
problem, even for metabelian groups. On the other hand, the answer for prim-
itive solvable subgroups of ¥, is simple and classical. For then, n is a prime
number p or n = 4. In case n = p, the solvable subgroups G; can all be taken
to be the normalizer F' = Ny, ((0)) of order p(p — 1) and in case n = 4, the
G,’s can all be taken to be the symmetric group 4.

Given this background, the main theorem of this paper is

Theorem A. Let n = p, a prime number, or n = 4. Then any finitely
generated solvable subgroup of A, ,which contains the n-ary machine T is con-
jugate to a subgroup of I'; for some i.

The result follows first from general analysis of the conditions [3,87 | = e
(for some 8 € A,, and all = € Z), their impact on the 1st level states of the
subgroup (3, 7) and then how these in turn translate successively to conditions
on states at lower levels. It is somewhat surprising that the process converges
to a clear global description for trees of degrees p and 4.

If 04 is either a power of o, or a transposition, we describe abelian subgroups
normalized by 7.

Theorem B. Let B be an abelian subgroup of A, normalized by T, let
B = (Blo,Bl1, - s Bln=1)os € B and define the subgroup H = (B|; (i €Y),T)
generated by the states of [ and 7.

(I) Suppose o5 = (0.)° for some integer s and set m = scd(nsy- Then, H is
metabelian-by-finite. Indeed,on defining the subgroup

K = (18l ™], BliBlesBlerm Blergns | k€ Z, i€ Y)

(the bar notation means ‘'modulo m’) then K is a normal subgroup of H and
O = K (1) is a metabelian normal subgroup of H where % 18 a homomorphic
image of a subgroup of the wreath product C,,1C,, of the cyclic groups C,,, C,,.
(II) Let n be an even number. Then H is a metabelian group if s = 5 or og
1S a transposition.

Let P be a subgroup of %,,. The layer closure of P in A, is the group L (P)
formed by elements of A,, all of whose states lie in P. The following result is
yet another characterization of the adding machine.

Theorem C. Let n be an odd number, o = (0,--- ,n—1) € ¥, and let
L = L({0)), the layer closure of (o) in A,. Let s be an integer relatively
prime to n and let B = (Blo, Bl1, -+, Bln_1)0® € L be such that [3,87] = e
for all x € Z. Then B is a conjugate of T in L.

2. PRELIMINARIES

We start by introducing definitions and notation. The n-ary tree T}, can be
identified with the free monoid M =< 0,1,..,n—1 >* of finite sequences from
Y ={0,1,...,n — 1}, ordered by v < u provided u is an initial subword of v.
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The identity element of M is the empty sequence ¢. The level function for
T, denoted by |m| is the length of m € M; the root vertex ¢ has level 0.

%]
0/ \1
7N 7N
00 01 10 11

A A N A T A N

F1GURE 1. The Binary Tree

The action p : @ — j of a permutation p € ¥, will be from the right and
written as (i) p = j or as ¥ = j. If i, are integers then the action of p on
i is to be identified with its action on its representatives i in Y, modulo n .
Permutations o in 3, are extended ’rigidly’ to automorphisms of A, by

(yu)p = (y)pu, VyeyY, Vue M.

An automorphism a € A, induces a permutation o, on the set Y. Conse-
quently, « affords the representation o = oo, where o fixes Y point-wise and
for each i € Y, o induces «|; on the subtree whose vertices form the set i - M.
If j is an integer the af; will be understood as a|; where J is the representative
of j in Y modulo n.

Given 7 in Y, we use the canonical isomorphism ¢ - © — u between 7 - M
and the tree T,,, and thus identify a|; with an automorphism of T,; therefore,
o € F(Y, A,), the set for functions from Y into A,,, or what is the same, the
1st level stabilizer Stab(1) of the tree. This provides us with the factorization

Let o, 8,7 € A,. Then following formulas hold

(1) Op-1 = (aa)_l , 0008 = Oug,

2 (@ = o,

(@B)]u = (alu) () where ¥y = Bl
y=a 'Ba s o, =0, 050,
Niyow = aliBlicl oy, Vi €Y.

0=[8,a] = B7'B* = g9 = [05, 00],

(7) Olirons = (Blayea) ™ (@)™ (B) (alpyos) Vi € Y.
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(8) (@™) [i = (als) (l@on) (@l@oz) - (@l@yom )

(9) (BY) |u = (ﬁl(u)a—l)ak“)“*l ,where 8 € Stab(k) and |u| < k.

An automorphism « € A, corresponds to an input-output automaton with
alphabet Y and with set of states Q(a) = {af, | v € M}. The automaton «
transforms the letters as follows: if the automaton is in state al, and reads
a letter ¢« € Y then it outputs the letter j = (i) a|, and its state changes to
alyi; these operations can be best described by the labeled edge o, £> i
Following terminology of automata theory, every automorphism «f, is called
the state of a at .

The tree T, is a topological space which is the direct limit of its truncations
at the n-th levels. Thus the group A, is the inverse limit of the permutation
groups it induces on the n-th level vertices. This transforms A,, into a topo-
logical group. An infinite product of elements A,, is a well-defined element of
A, provided for any given level [, only finitely many of the elements in the
product have non-trivial action on vertices at level [. Thus, if o € A, and &
= Y isoain' € Z, then a® = a%.a" . .q™%... is a well define element of A,,.
The topological closure of a subgroup H in A, will be indicated by H. We
note that if H is abelian then

H={r|lhe H¢ €Z,}.

One of the characterizing aspects of the n-ary adding machine is that the
centralizer of 7 is a pro-cyclic group; namely,

Ca(r) = (r) = {r* | £ € Z.}.
Let v = yu where y € Y, u € M. The image of v under the action of « is

(V) = (yu)a = (y) oa-(u)aly.
The action extends to infinite sequences (or boundary points of the tree) in
the same manner. A boundary point of the tree ¢ = ¢ocico .. .where ¢; € Y for
all 4, corresponds also to the n-adic integer £ = > {¢;n'|i > 0} € Z,,. Thus the
action of the tree automorphism « can thus be translated to an action on the
ring of n-adic integers. We will indicate ¢y by € which is € modulo n. In the
case of the automorphism 7 = (e, ¢, ..., e, 7)o, the action of 7 on ¢ is

() = (co+1)cieg... if0<c¢y<n-—2
oT= 0(ciea,...)7, if cg=n—1,

which translates to the n-ary addition

£ =1+¢.
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0/0,1/1

9
O

1/0

F1GURE 2. The binary adding machine

3. THE HOLOMORPH OF THE n-ADIC INTEGERS

The holomorph of Z,, is the extension Z,, by the its group of units U(Z,,) in
its natural action on Z,. An element ¢ is a unit in Z, if and only if £ is a unit in
Z modulo n. The subgroup of U(Z,,) consisting of elements ¢ with £ = 1 is de-
noted by by Z!. This subgroup has the transversal {j | 1 < j <n —1,ged (j,n) = 1}
in Z,, and therefore has index [U(Z,) : Z!] = ¢ (n) where ¢ is the Euler func-
tion. The normalizer of m in the group of automorphisms of the tree is the
holomorph of Z,.

Given o € A, we denote the diagonal automorphism (a, ..., a) by a(") and
define inductively a(+1) = (a(i))(l) for all i > 1.

3.1. Powers of 7. Let § = Y. amn' € Zy,. Then ag = ¢ and S aniTh =
£-¢

n

Lemma 1. Let & € Z,,. Then

ap terms

Proof. For j an integer with 1 < 7 < n — 1, we have

J terms

and 7" = (7,...,7) = TA(I).
Given § = ) ;o a;n’, then
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ag — ag
(10) T - (67 7€y Tyr e 77_)07— 5
ap terms
_ A . 1)
] ni—1 ni—1 (
(11) ren = e = (pew )T
€=ag &€=ag €-ag €-ag
(12) 7—5 = (T oy , T 71— " +1’ L, T +i)0-g:0
Vv
ag terms
£=¢ £=¢ £=¢ 1 €11\ ¢
(13) = (Tn7 77‘n77'n+7.-77'n+)0'§_‘
NG ~~ o
Eterms

O

As we have seen, the description of 7¢ involves the partition of the interval
0,...,n — 1] into two subintervals. Therefore we introduce the step function
6:Z xZ —{0,1} given by

0(i,j) = 1, otherwise

n )

i+j—i+j_{ 0, f0<i<n-—j

which we will call the Polarizer Function. With this,

=€ 50
-6 (TTM@,&) o

>0§i§n—1

The function § extends to Z,, X Z,,, simply by §(n, k) = (i, k) where i =7, k =
k. Note that

J
Sl Sl e

I | |
2o

I I |
lm== ==

| | |
o 1 2 3 i

F1GURE 3. Polarizer Function for n = 4.
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3.2. Centralizer of 7.
Lemma 2. Cy, (1) = (7).

Proof. Let a € A, commute with 7. Then, [0,,0,] = e and therefore o, =
(0,)% for some integer 0 < sqg < n — 1. Therefore, § = ar™% = (B|o, ..., Bln_1)
commutes with 7 and og = e. Now,

67— = ((ﬁ|n—1)7—76|07 "'a6|n—1) = 6

implies 8|; = Blp for all 0 < s <n — 1 and S|y commutes with 7. Therefore
B =(p ]0)(1) and (| replaces «v in previous argument. Hence,

there exists an integer 0 < s; < n — 1 such that v = Blo7™*" = (v|o
From which we conclude

o = /87'80 = (/6|0)(1) 7_80
= (O 7, (o) P ) 70
= 0 T T = 0 T .
(’Y’ )(2) nsi,..so (’Y| )(2) ns1+so

Inductively then, we obtain the desired form a = 7¢ where ¢ = so+ns;+.... O

)(1).

A characterization of nilpotent groups which contain 7 follows.

Proposition 1. Let G be a nilpotent subgroup of A, which contains the n-adic
adding machine. Then G is a subgroup of < T > .

Proof. Suppose G is a nilpotent group of class k > 1 which contains 7. Then,
the center Z (G) is contained in (7). Let j be the maximum index such that

Z; (G) < (7); therefore j < k. Let a € Z;1 (G)\Z; (G); then [r,a] = 7¢ and
¢ #0. Now, [1,a,0] = [TE,Oé} =e. Yet [TE,Oé} =, oc]£ = 7¢ = ¢ and so,
¢ =0 and [7,a] = e; a contradiction. O

3.3. Normalizer of the topological closure (7).

Lemma 3. The group I'g = Ny, (H) is metabelian. Indeed, the derived

subgroup 'y is contained in (T).

Proof. Let a,8 € Ty, then 7@ = 7¢ and 7% = 77 for some n,¢ € U(Z,).
Therefore,

—1 —1
™ =7,

Likewise, 77 = 77", Thus, 71*f = 7 and Ty < Cy4, (1) = (7) follows. [

We present a property of the polarizer function é which we will use in the
sequel.
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Lemma 4. For all,j € Z, € € Z,, we have
1

. - = Jj—
”gij —j (%) + (i, j€) = ;5@ + k&, €).
Proof. Since
= )z () lmg=ne
(78], = 7 P69
the assertion follows from

2T y5(5e) (55 )+30{2h (ke

T =T .

Proposition 2. Suppose o € A,, satisfies 7 = 7° for some € € U(Z,,). Then:
(i)
ali =alem, (1 <i<n-—1)};

where

3

and 0 < v(a) <n — 1 is such that
(0) o0 = v(@)¢;

(ii) (recursion) 7o = 7¢;
(i)
(j)aa = (U(Oé) +J)€a (O S ] S n— 1)}
If ¢ € ZL then v(a) =0, (j)oo = j€ = j, s = i1,
((0)0a, (1) Gay-++, (n = 1)oa) = (0,€,2€, -+, (n — 1)§).
Therefore, there exists v(a) € Y such that (0) o, = v(){ and so,
(F)oa = (v(a) + 7)€, Vi €Y,

Now, 7@ = 7¢ is equivalent to
07 =% and alme: = (1))~ ali(m*)]@e, >

Proof. Since 67> = ¢, we have

VieY,Vs € Z, by...
The latter conditions are equivalent to
_ _ n -1 &n
( alo = aler = ((T)o)~" alo(r") 0y )
and al; = alger = (7)) alo(7%)](0), Vi € Y — {0}
and these in turn are equivalent to
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al; = alor T TE@EE) = |
where g1, =1 (55) + T2y o((v() + k)6, €) Vi€ Y = {0} )
Substitute ¢ = 0 in

ce s ']1
S a0 = (S5) + Dok g v ez

to get ZZ_:IO d(k&E, &) = 0. The rest of the assertion follows directly. O

Corollary 1. Let £ € U (Z,) and p; be as above. Then o = (o) (e, 711, ... 7#n-1)
conjugates T to 5. In particular, if ¢ € ZL, then

a= (a)(l) (ea 7'521 , 7‘2%17 .. ,7‘(?%1)%)

denoted by \¢ conjugates o to 7¢.

Although we have computed above an automorphism which inverts 7, we
give another with a simpler description. Define the permutation

g_(o,n—1)(1,n—2)...({”f} , [”;1})

Then ¢ inverts o, = (0,1,...,n — 1) and

L= 1We

mverts 7.

Define
A= g€z,
U = {\T' €€, t €L}
and call A the monic normalizer of (7).

Proposition 3. (1) A is an abelian group isomorphic to Z);
(1)) U= A (1) X7 X Zy,;
(11i) the derived subgroup V' = (7).

Proof. (i) Let &,60 € Z). Then, as \¢, \g and \¢y are inactive, its follows that
(AedoAg i = (ANl (Aeo)l) ™

£6—1

—1 )
= A T AT (e ) = aededg T A T A

£-1 971

= Aed (T ) 0 = Aedodg Vi € {0, n = 1),

Therefore, A\eAg = A¢gp. In addition, A\¢ = e if and only if £ = 1.
(ii) This factorization is clear.
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(ili) Let § =1+ nb',n € Z,. Then
[T Ng] = T77"A\g-17"Ag =

7_—777_’!]0 — 7_7](6—1) — (Tn)na’ '
([l

We prove below the existence of conjugates 7 of 7in Ny, (W), which lie

outside (7). This fact provides us with the first important type of metabelian

groups (7) (7%) containing 7.

Proposition 4. Suppose a = (alo, |1, ,a|,—1) € A, satisfies 7% = A\eT?
for some £ € ZL, and p =1+ kn € Z.. Then
1| g1 i+1
alist = (alo) Agiwn[” et

1 pén—l
7_04|() = )\gnT" -1 1,

(0<i<n-2),

The converse is true for n > 3 and for n = 2 provided 4| — 1.

Proof. From 7® = A\¢7'™" we obtain using (4) and (5),

AgTi%J”‘”“ =al ta, ifi€eY —{n—1}

- _
)\gr(”’l)Tl““ = a1 Talo.

Therefore,

e=1 E=1 .
alivr = aloAeT AT T Nt TR for i = 0,1, ,n — 2,

_ _1)&=t
alo = 77 |, AT DS AL
The first equations can be expresses as

O(|(]/\£i+1’7'n >j=0 Gt POIRE (Y

alipn =
Ll 6i“—l—ﬂrl}
— a|0A£2+1TTL|:( Hn) §—1 (7' )
and the last as
€ 6717171_ _
Oé’o = Tlayo)\énTn[(H_Kn) ¢t (n 1)} 7—(”*1)%+l€+1
_ )\fnT%[(l—knn)&::f].

[(1+rm) 2]

1
If n > 3 then 7@l = AenT™ satisfies the same conditions as those
1

for a; namely, both £, p/ = 1 [(1 + ﬁn)%] are in Z.. If n = 2 then
5:1+284f:%[ﬂ+2@§j}:(L+%jﬂ+€)mdxgﬂeZ§MWMS
€= 1+4¢". O
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4. ABELIAN GROUPS B NORMALIZED BY T

Let B be an abelian subgroup of A,, normalized by 7. For a fixed § € B,
we define the ’state closure’ of (3, 7) as the group

We will be dealing frequently with the following subgroups of H |
N = (Bl | ki €Z,i€Y)
M = N({7).

When o5 = (0,)° for some integer s we will also be dealing with the subgroups

K = <N, 5|¢5|m5|m"'5|m|z’e§/>,
O = K/{7)

where s = m.
We show that when n is a power of a prime number p*, the activity range
of 8 narrows down to a Sylow p-subgroup of ¥,,. This is used to restrict the

location of an abelian group B normalized by 7, within A4,

Proposition 5. Letn =p*, 0 = (0,1,...,n — 1) and P be a Sylow p-subgroup
P of ¥, which contains o. Then

(1) P is isomorphic to ((... (...Cp)wr)C,) wrC,, a wreath product of the cyclic
group C,, of order p iterated k—1 times; the normalizer of P in ¥, is Ny, (P) =
P {c) where ¢ is cyclic of order p —1;

(ii) P is the unique Sylow p-subgroup P of ¥, which contains o;

(iii) if W is an abelian subgroup of ¥, normalized by o then W is contained
i P;

(iv) the subgroup B is contained in the layer closure L = L (N, (P)).

Proof. (i) The structure of P as an iterated wreath product is well-known.
The center of P is Z = <z (: apk71>> and Cy,, (z) = P. Therefore, Ny, (P) =

Ny, (Z) = P {c) where c is cyclic of order p — 1.

(ii) If 0 € P9 for some g € %, then 29 € Cyx, (o) = (o) and therefore
(29) = (z), P9 = P. Thus, P is the unique Sylow p-subgroup of 3J,, to contain
o

(iii) Let W be an abelian subgroup of ¥,, normalized by o. Let V =W <
o > and Vj be the stabilizer of 0 in V. Then, since o is a regular cycle, it
follows that V' = V; (o), Vo N (o) = {e}. Suppose that there exists a prime ¢
different from p which divides the order of W and let () be the unique Sylow
g-subgroup of W. Then @ is the unique Sylow ¢-subgroup of V and @) < Vj.
Therefore, Q = {e} and W a p-group. As 0 € W, we conclude W < P..

(iv) Since the normal closure of (og) under the action of (o) is an abelian
subgroup, it follows that o3 € P. Furthermore, as <[6|u,7'k] | k€ Z> is an
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abelian group normalized by 7, it follows that [og),,0] € P and therefore
0%l € P. Thus, we conclude og|, € Ny, (P) and 8 € L. O

Lemma 5. Let v € A,,. Conditions (i), (ii) below are equivalent:
(i) [v,7" | = e for all k € Z;

(ii) [T%,v,~] = e for all k € Z.

Condition (z) implies

(i1i) < v, 7 | k € Z> is a commutative group.

Condition (iii) implies

(Y], ™] | k € Z) is a commutative group for all indices u.

Proof. First,

ey™] =7 () o (TR
= 41 (7R Lk ) oy (y Ry k)
= [,y 7]
and so,
k
Tl =e e byt =l

Furthermore, since

(14) [y, 77 = T s T

for all integers kq, ko, condition (ii) implies
[ PRI =y TR <y T

— (o )T = (R )
=[v, 7],

Finally, we note that by (6) and (7),

(v, 7 Dlye, = (" )!(W(T_”k)\ () (7)o,
(I 1) Fla) T
= [l -

Since [y, 7*"] is inactive for all k € Z, we obtain {[y|;,7*] | k € Z} is a

commutative set for all 7. The rest of the assertion follows by induction on the
tree level. 0

Obviously, ([3,7"] | k € Z) is normalized by 7 and if condition (i) holds then
it is an abelian normal subgroup of (f3, 7).

Proposition 6. Let | > 1 and suppose «,~y € Stab(l) satisfy [a, 7™ | = e for
all v € 7Z.. Then

[a]u, "] = eVu,veM
having |u| = |v| <1 and Yz € Z.
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Proof. We start with the case [ = 1. Write x = r 4+ kn where r = 7.
By (4) and (5),

(V) e = @),
(,}/T:‘) ‘z _ T—k—E(i—r,r)7|ﬁ7_k+5(i—r,r)

As [a,7™] = e and «a,7" € Stab(1),we have, for all i,7,7 € Y and all
k,x € Z,

7T Tk+6(i—'r‘,'r)
[a|i7 (7 )|1] = ¢ [a|277’ﬁ ] =6
[odi, (V)] = e
The general case [ > 1 follows by induction. (l

We apply the above to 5 € B.
Corollary 2. Let o3 =e. Then for alli,j €Y and for allz € Z
Then we derive further relations in H = (8|; (i€Y), ).

Proposition 7. Let 8 € B. Then the following relations hold in H for all
v E€Z and for alli € Y:

(D)
v -1 v
(T ‘(i)a;”) (5’(1')0;”) <T ’(i)a;”05> (5‘(1)0:”%02)

-1
= <6|1) <Tv|(i)050;7’> <B|(i)aﬂa;u> (Tv|(i)aﬁa;vag> )

v

o5, 057] = €;

[ﬁ’l? Tv]m(i)aﬁ = [ﬁ|(i)057 Tv];

5|(i)05ﬁ|(i)a§ .. '5‘(1‘)0;;‘ commutes with [B];, T

where s; is the size of the orbit of i under the action of (og).

Proof. (I) Clearly [3, 87" ] = e implies [0, agg] = e. It also implies
- e -1 v
(Bleomyer) (571" Bl (8 lrms) =
(57 1s (Blioyeo ) = Bli (B Ity

—1
<7'U|(z‘)a;}> <5|(i)a;}> (TU|(i)U:UIJﬁ) (5|(i)067v>
)

—1
= (Bl) (7U|<i>aﬁa;}> (5\@)%0;3) ((TU |(z'>aﬁa;}a/s>'
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(IT) On changing v to nv in (I), we obtain:

T (B1) 7 (Blayes) = (Bl) 777 (Blayes) 7"

Bliyes) ™ (B 77BL) (Bliyers)

= ((Blaws) " BB (Blayos) 7
(III) From (II), we derive

(Blcros Pl 8l ) (Bleyoz s )
[Bla, TN O = (B, IV O = =[BT,
0

5. THE CASE € B WITH 05 € (0,)

This section is devoted to the proof of the second part (I) of Theorem B.
For this purpose, we introduce the following combination of step functions

Ag(iyt) =0(i,t —1) —0(i — s,t — 1)
and call it the Inductor Function.

Lemma 6. Let 3 € A, such that [3,87| = e for any x € Z and let 05 = oF
for some s € Y. Then,

7200 (81) [Blims 7] (Bl2)
= (Blis) (Bls) [Bli, 77+,
foralli,t € {0,1,--- ,n—1}, 2 €Z

Proof. Since o5 = o7, we have og-+ = 05 = 07.
From (4), (5), (6) and (7), we obtain

(15) T 7o te) B|J +s
= BT o
Setting k = — z and 7 = 7 and using (15), we have
—k—5 (G—r,r) ﬁ’ k+6(j+s—rr 5‘ s
(16) _ B| —k—56(j+s—r,r B| k+5]]+25 rr)

forall r,j € Y and all k € Z.
Also on setting t = j+s,i = j+s—rand z = k+6(j +s—rr) =
k4 0(i,t — i) and using (16), we obtain
T_Z—Hs(i’t_i)_&(i_s’t_i)ﬁ’ifstﬂlt
— ﬁlt_sT—zﬁ|i7.z—5(i,t—i)+5(i+s,t—i)7

for all t,i € {0,1,--- ,n— 1} and all z € Z.
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Thus, it follows that
P0G [Blies, 7Bl
_ B|t sﬂ’ [ﬂ‘z; ] O(i,t—1)+0(i+s,t—17)
for all t,4 € {0,1,--- ,n—1} and all z € Z. O

We develop below some properties of the A, function to be used in the
sequel.

Proposition 8. The inductor function satisfies

0, ift,i>35 or ,i<3s
(i) Ay(it) =6(i,—s) — O(t, —s) = 1, ift<s<i :
—1, ifi<s<t
(i) Au(i,1) = ~A,(t,4),
(iii) As(i + s t—i—s) = —A_4(i,1),
(iv) A, t) As(i, 2) + As(z,0),

3

)~
> Ai+ ks t+ks) =0,
k

n_TO n—73s, if
i Ay(k,t) = _ 7
LDMNCUES Rl
foralli,t, z € Z.

Proof.
(i) Using the definition (7, j) = @ we have

| o+
W ]

<
>

-t i—s+t—i1—1t—s5

Ag(i, t) =

n n
=6(1,—s) — d(t, —s)
0, ift,i>35 or t,i<3s
= 1, ift<s<i
—1, ifi<s<t

(ii) Follows from (i).
(iii) Calculate
Ag(i+s,t+s) =0(i+s,t—1i)—0(i,t —1i)
=—(0(i,t —i) = (i + s,t — 1))
= —A_4(i,1).

(iv) This part follows from (i).
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(v) From the definition of the Polarizer function

(O (O
Y d(i+kst—i)= > 8(i+(k—1)st—1i)
k=0 k=0
(vi) Finally, we have
n—1
Ag(k,t) =300 Aslh ) + 3055 Au(k, 1)

k=0

@ [ n—3, ift<s

-5, ift>3

With the use of the inductor function notation we obtain

Proposition 9. The following relations are verified in H = (8]; (i €Y),

for all x, ZGZ and alli,t € Y :
(1) 72008, = Bl=sBlir o)

(1) [Bl=, 77 = = (8,
(III) [[5‘1'77—2]7 [ﬁ|t;7—x]] =e€

Proof. Returning to Lemma 6, we have
T80 (Blis) [Blivs, 7 Z]( |¢)
= (Blizs) (Bls) [Bli, 77 r e+,

Consequently,

(17) B0 BBl = BlsBlir (o)
and

(18) [Blis, 5 = (8, 7).

for all t,7 € Y and all z € Z.
From (18) and (14), N = ([8];, 7%
H. Moreover, by applying alternately the above equations, we obtain

[6|’L7 TZ] Ble.7™ = [ﬁ'la 7.2]5|;17_kﬁ|t7k

. [ﬂ| TZ] (T—AS(i+s,t+s)TAs(i+s,t+s)ﬂ|;17—k6|tTk)
— %9
(2) ([5|z T—As(i+s,t+s)]—1 [5|z TZ—As(i+S,t+S)]) (7—A (istts 6’; Tﬁkﬁ|t7k>
Y N Y

([/qu, po Z+5t+5] 1Bl=, 7 z+st+5)])7' B‘tT
- 5|t7'
([6‘1 50T ] Blizs, T k—As(its,t+s) ])
#( 5)

(Bl 7 *] L [Blyms, e B lirates

17

),
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— 'Lss —KT+zZ— lSS/BT
= ([Bl, 7RO L [l 7R A”f”D“

k+As(i+s,t+s)
(18) N B AL -
= ([ﬁ|z,7- k—As( +s,t+s)] 1-[5|i77 k+z—Ag( +s,t+5)])

=18l 77

O

Corollary 3. Let 3 € A, such that [3,57 | = e for every x € Z with o3 = o
for some s € {0,1,--- ,n— 1} Then

M ={[Bl;, 7], 7 | k; € Z,0<i<n—1)
s a normal metabelian subgroup of H.
Proof. By Proposition 9 N = < (Bli, 78] | ki € 2,0 < i <n — 1> is abelian and
normal in H. Since N7 € Z(H/N), it follows that M = N (1) is a normal
subgroup of H and is clearly metabelian. 0

We are ready to prove part (1) (i) of Theorem B.
Theorem 1. Let 3 € A, be such that [3,87"] = e,Vx € Z and o5 = o5 for
some s €Y and H = (B|o,- - ,ﬁ\n 1,7). Then,

(1) the group O = < 5‘17 5‘ B’J+S ' 'B’j+(m71)sa7_ ’ 7/7] € Y7$ S Zn> is
an abelian normal subgroup of H;

(i) the quotient group H/O is isomorphz’c to a subgroup of C,, ! C
In particular, H is metabelian-by-finite.

Proof. (i) Recall
N = (8™ | keZieY),
K = N{BliBlzrs Bli+m-1s | J€Y)

ik Then, by Proposition 9, N is an abelian normal subgroup

where m = ——
ged(n,s

of H.
By (18), we have

Bli,T ]ﬁlgﬁ\ﬁé 5\m

[
[Blixs, 7]
= [Blisas, 7T
18
18

j+s""8|j+(m—1)s

RS2 A (35,5 120) G Bl
J s Jj+(m—1)s

’ ] 221_0 As(i+(k+1)s,j+ks)

i 7°]
Thus,

(19) [[B|i77'z]7 (Bm)lj] = G,Vi,j S }/,\V/Z €7
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Since og = o7, we have by Lemma 2

(20) (8™, (B™)|;] = e, Vi, j €Y.
Moreover,
(21) B = BB, 7)-

Since [B,87"] = e,Vx € Z, it follows that [f™, 37| = e,Vz € Z.
Therefore, by (6) and (7),

e = (8", BT BB N wosm, Yo € Z,Vi €Y.

Now, as o3 = 07 and ogm = e, we reach

(22) (B = (B vz ez, viey.
By (4) and (5), the following
(57)s = ()t Blgomt (Miomtos = (PNl Ve

holds for all 7 € Y and all x € Z.
From which we derive

x

(23) (B )i = 7~ e gl r

for all i € Y and all x € Z.
Therefore, by (22) and (23),

T—T . T—T
-5 75(17@1)6" o

(B™)zs = (B™)]; o :
foralli € Y and all x € Z..
On writing x = kn +7 = kn + r,r € Z in the above equation, we obtain

—k—6(i—r,r) ﬁ |ﬁ7_k+5(z—r+s,r)

m my T
(B = (B™);
(BT —k—3(i—r+s,r) (ﬁm)|6|2 R (i~ rr)[ —k—=b(i—r.r) , Bl=]
its
—k—6(i—r+s,r) ﬁi —k—6(i—r,r)1,-k+0(i—mr,r) -
my| T =) T my (Bli=r
= (3" . | = (6"

for all i,7 € Y and all k£ € Z.
By (19), (21) and using the fact that N is abelian and normal in H, we find

m (i—r,r)—0(i—r+s,r) o Bl
m 6(i—ri—r+s) 1Bl
= (")l = (6™,

for all i,r € Y.
On setting j =17 — r, we get
8(j.j+s)

(24) B = (8™
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for all 4,5 € Y.
Further, by using equations (19),(20) (21), (24) and

(25) (8™ = BliBliws -+ - Blivmnys

we conclude that also K is an abelian normal subgroup of H.
Now, O = K (7) is metabelian. Moreover it is normal in H, because

P = rr7 Bl = 77 Bl,] € O

foralli €Y.
(ii) Consider the following Fibonacci type group

X:<b07" nl’b1]+s bbm,bzbm bﬁ_€VZ]€Y>

H
Equations (17) and (18) show that i is a homomorphic image of X. We

will prove that X is isomorphic to a subgroup of
the wreath product C,, ! C,.
As a matter of fact the group C,, ! C), has the presentation

<u,a|um:e,a”:e,u“u“ =u® u“>.

-1

On defining b = a®*u™", we have

um=e (aH)" =e _
= (@ %b---a=%h)* T =e
—_—
m terms

- baibai+s . bai«k(mfl)s — ¢

Also, the commutation relation

implies
(e (b ) = (0 a) (07l
= (a70)¥ (a7*b)"" = (a=*b)" (a™*0)"
= baJ —sba _ba a’
= b = ba]“.
Thus, by using Tietze transformations we conclude that C,, ¢ C), has the
presentation

<a, bla® = e, b@b0 = b p¥ T pr e e Z e e Y> .

Then, on introducing b; = b“i,i =0,---,n — 1, the above presentation is
expressed as
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<a, bo, -+ sbp_1 | a" =e,b; = b , bibis = blbm, bib - - 572
Vi,j€Y).
O

The next results leads to a proof of Theorem C.

Lemma 7. Let 0 = (0,1,...,n — 1) € X, and let L be the layer closure of (o)

in A,. Suppose 8 = (Blo, B, ,Bln_1)os € L satisfies 3,87 = e for all
x € Z. Write 0g = 0° and og, = 0™ for alli €Y. Then for alli,j €Y, the
following congruence holds

(26) Ag(1,t) + my— + my = my— +m; + Ay(i + s,t + s) mod n,
Proof. Since og, = ™, we conclude by (17),
gD Gt)Fme—tme _ omp—tmi+As(its,t+s)
and therefore, A (i, t) +mz—+my = mz—+m; + As(i+s,t+s) mod n. O

Lemma 8. Maintain the notation of the previous lemma and let n be an odd
integer. Then,
9™ = 9(BloBli-Bln-1) = T+
Proof. From
Aq(i,t) + my—g +my = my—g +m; + A1(i + 1,£ 4+ 1) mod n

we conclude

3
&
3
L

(Al (Z, t) + m;— + mt)

1=0 t=i+1
n—2 n—1
= (mi=g+m; + A1(i+1,£+ 1)) mod n.
1=0 t=i+1
Now,
n—2 n—1 P a(i n—1 P a(ii n—1
Ayict) EO ST A 0,0) T ST A0, )
=0 t=i+1 t=1 t=0
n—1
Pro;;S(u) Al (t O) Prop. 8(v1) _(n _ 1>7
t=0
n—2 n—1 P 8( P 5
S A+ 1t+1) ‘)ZA i+1,0) "2 (“)ZA (i,0)
1=0 t=i+1
Prop;S(vl)

(TL—l),
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n—2 n—1 n—2
(mi=1 +my) = 2(n — 1)my_1 + (n — 2) Z My
i=0 t=i+1 0
and
n—2 n—1 n—1
(M= +m;) = nzmk
=0 t=i+1 k=0
Since n is odd, we have
n—1
Z my, =1 modn
k=0
and therefore, 0g|...5,_, = glmot.mn_1) — 5 [

We prove Theorem C below.

Theorem 2. Let n be an odd number, ¢ = (0,--- ,n—1) € ¥, and let L

be the layer closure of (o) in A,. Let s an integer relatively prime to n and
B=(Blo, B, ,Bln1)0® € L be such that [3,37"| = e for all x € Z. Then B
is a conjugate of T in L.

Proof. We start with the case s = 1. The element
a(l) = (e,Blg", (BloBl) ™"+ (Blo- -+ Blu—2)™") € Stabg(1)

conjugates (3 to
Ba(l) = (€a e 767/6|0 o '6|n—1)0-'

By Lemma8 we find og.g|,..3,_, = 0. Moreover by Proposition 6,

[(5")’0, (5n)’6I] = [5’05’1 T 5\71—1, (5’05’1 e 'ﬁ\nfl)ﬁ] =6

for all integers x. Therefore B|of|1 - - 5|.—1 satisfies the hypothesis of the
theorem. The process can be repeated until we obtain a sequence (a(k)), oy
such that gMe@ak) = 7 where a(k) € Stabg(k) satisfies a(k)|, = a(k)|,
for all u,v € M with |u| = |v| =k — 1.

Now, suppose more generally s is such ged(s,n) = 1 and let k be a
minimum positive integer for which sk = 1 mod(n). Then S* satisfies the
hypothesis of the first part and so, there exists a € G such that (8%)* = 7.
Since k is invertible in Z,, there exists an automorphism ~ of the tree such
that 77 = 7% . Thus, 8> ' = . O

6. SOLVABLE GROUPS FOR n = p, A PRIME NUMBER.

We will prove in this section the case n = p of Theorem A.
Let B be an abelian subgroup of Aut(7,) normalized by 7 and let 5 € B.
By Lemma 5, o5 € (0,) and therefore in effect we have two cases, 05 = e, 0.

Proposition 10. Suppose o5 = o,. Then, og), € (0;) for alli €Y.
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Proof. By theorem 1, O is a normal subgroup of H and g is isomorphic to a
subgroup of C, 1 C,,.

By Lemma 5, O is a subgroup of (o) modulo Stab,(1).

Therefore, H is a p-group modulo Stab,(1) and by Lemma 5, we have o), €
(o). O

Theorem 3. Let p be a prime number and 5 € Aut(1,) such that og = o2 for
some integer s relatively prime to p. Suppose [3,37 ] = e for all x € Z. Then
B is conjugate to T in Aut(T,).

Proof. Suppose s = 1. Recall that
a(l) = (e, Blg", (BloBl) ™" -+, (Blo+ -+ Blp—2) ") € Staba(1)

conjugates [ to its normal form

ﬂa(l) = (e, ,e Blo- .5|p_1)g‘

By Lemma 8 we have ogy,),..5,_, = 0-. Moreover by Proposition 6,

[5p|0, (5”0)”] = [5|05|1 - 'B|p—17 (5|05|1 c 5‘1)—1)722] =6

for all integers x. Therefore S|o3]; - - - B|n—1 satisfies the condition of the the-
orem.. This process can be repeated to produce a sequence (a(k)), oy such
that po(De@ak) = r where a(k) € Stab(k) satisfies a(k)|, = a(k)|, for all
u,v € M where |u| = |v]| =k — 1.

Now, to the general case, s such ged(p,s) = 1. Let k be the minimum
positive integer which is the inverse of s modulo p. Then, |z = o, and a*
satisfies the hypotheses. Thus there exists a € A, such that (ﬁk)a = 7. Let
k' be the inverse of k in U (Z,); then 8% = 7% . There exists v € Ny, <7>

which conjugates 7 to 7F" and so, (ﬁo‘)f1 =T. O

Lemma 9. Let p be a prime number and 8 € Aut(T,) such that [3,57 ] = e
Jor all x € Z. Then, there exists a tree level m and a conjugate j of T such
that € xym{u) and there exists an index u of length m such that Bl, = p

Proof. Let m be the minimum tree level such that og), # e for some |u| = m.
Therefore, 05, = o2 for some integer s such that ged (p, s) = 1 and so, u = |,
is conjugate to 7 in Aut(7},). Since 5 € Stab(m), by Proposition 6 [u, 5],] =€
for all indices v such that |v| = m. Therefore, 5|, € (u) for all v such that
] =m. O
Theorem 4. Let p be a prime number, o = (0,1,---,p—1) € ¥,, F =
Ny, ((0)), To = Na(<T> . Let G be a finitely generated solvable subgroup of

Aut (T,) which contains the p-adic adding machine 7. Then, there exists an
integer t > 1 such that G is conjugate to a subgroup of

Xp (o (Xp (XpLog X F) X)) x F.
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Proof. We may suppose G has derived length d > 2. Let B be the (d — 1)-th
term of the derived series of G. By Theorem 9, there exists a level ¢ such that

B is a subgroup of V' = x,:(u) where p = 7 for some o € Aut (1},).
We will show that G is a subgroup of
J = Xp("'(xp(xp(ro)a X)X Ep) ) XD,
where X, appears ¢ times.
Let v € G\J. Then there exists an index w of length ¢ such that |, & (I'g).
Since 7 is transitive on all levels of the tree , by Theorem 9, there exists § € B

such that (|, = p" for some n € U(Z,).
Write v = w?. Then,

B o 2 (Bl,1) " = (Bla)™ & (),

and this implies 7 € B < @ and v € G. Hence, G is a subgroup of J.

Now, since G is a solvable group containing 7, there exist G; (0 < i <t)
solvable subgroups of ¥, containing o = (0,1,---,p — 1) such that G is a
subgroup of

Ry () = %, (-++ (X, (X (T0)* ¥ G1) ¥ Gg) -+ ) x Gy
Since for all 7, we have G; < F we may substitute the G’s by F. Finally,
R, () is a conjugate of R, (1) by the diagonal automorphism a®. O

7. TWO CASES FOR n EVEN

n

7.1. The case 03 = (0,)2.

Theorem 5. Let n be an even number, € A, such that oz = (TT% and
(8,87 ] =e for allz € Z. Then H = (B|; (0<1i<n—1),7) is a metabelian
subgroup of A,.

Proof. Define the subgroup
R = <[ﬁ|t77-k]7 5|i6|i+%7 5\?T_A(j’j+%) |k € Z and i, j,t € Y> .

Denote A= (i, j) by A(i, j).
We will prove that N is an abelian normal subgroup of H.
(I) R is normal in H :

— (Bl )" < R:
[5\i+g,7k]5|ﬂ' (18 [5|i77_k]q—A(j,i);

- <5|zﬂi+g>H <R:

BliBlixz)™ = (BliBlixz) [BliBlirz, "]
= (BliBlirz) (81 7178 Blis g, 7"
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(18) AG+E,i+3)

] Prop.8

(BliBli+z) [Blive, 717
5‘@'/6’%% [ﬁ|z’+%a Tk]Q

[5‘i+ﬁ?7—k
2

(27) (6|’ﬂ‘i+%)ﬁlj:(ﬁ|j_15‘i/8’i+%5‘j)7— Urg )-8ty i)
17 - j, A+ 4
= ( |,15|A) A(j’)(5|j+g5|i)7 AG+HLi+2)
= (BI5BliBly+z) TA0.[rAGD, By g] Bl AU ED)
17) , ongan
= (m) 1) A(J+5,i+5) (mgmw")
(A0, 8] y] Bl 20+ 34D
TAUTEI) [pAUTED), B
ﬁ|z‘+g [TA(j’i), ﬁ|j+%]5|i7-—ﬁ(j+%,i+%)
Prop.8 o “AGii
e s A(J7)’5’j]ﬂ|i+g-
ks A(j,5) m ]miTA(j,z‘)
i i) A0 i g
A6 B|+"[ Al B|J+”] ’ [A(J’),ﬁ|j+%]ﬂ|ﬂA(J’)

D (Blirapl)
R:

(18

||_>

— (BprAGaTDY
(6|?7-_A(jvj+%)) —6|2 —-Ag+5 )[ﬁlz -AGJ+735) 7—]
— B’?TfA(j,j#%)_[ﬁ'?’ ] *A(]J+ )
= B3 AUItR) ([8];, 74,1815, )
(18) CA(q A
= 827205 ([Blyry, 7

= BRTAUID[B] g, T8,

By Proposition 8 and 9, we can show

| /\

AGIHE)

—A(5,7+ %
FAGI+T) ] 7 AGIHE)

1BliT

—AGI+T)

FAG)

_A(id B\z NN A
(28) (822630 - (5‘]+2 MG+ A(a+2,3)’5‘j+%]>
(IT) The subgroup R is abelian:
(29) R N

FAG+T) s
(30) (Bl Tt E (Bl T s B gy e

AGI+B)

25
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A(j+%,0)+A3G,i+5) Prop.8

= [l ™" [Bli, "]

A(Gi+5 )(18) FAG+E ﬁ| 3:i+%5)

[5|z7 ]B|2 [5'24-” Tk]

(31) (29) Bliye, T ]B‘jTA(j,iJr )-AGI+E) (g) [6|i’Tk]TA<J»’L)+A(J,’£+%)*A<J'J+%)

Prop.8
=7 Bl ]

(81:81) ™"t D (Blarg )™
2
— (B’H 5|) (5|j+gTA(J,z)[TA(g,z)ﬁ‘H%])
DD (BB y) TR0 8014
i+
Pr0p8 (ﬁ‘ ﬂllJrn)[TA(j,i),mH_%]
2
(30)
6| B|z+”
(ﬁ|iﬁ|i+ﬂ)5|?T7A(j,j+%) (27 (ﬁ|z+ 5| ) A(J',i)ﬁ\'rA(j,jJr%)
| = (Bl Bl:)" TAGD[FAGD gy A0IE)
(m m )A(Jz+ BITAGD A6 B, )7 AGI+D)
= i
Prop8 i) g e AT
op (6|iﬁ|i+%)[7A(a ).815]
Prop.9
2 81iBlirs
Let
. a = fir AUt Rra0i) g
Then,

—A(i+3)

(3o )T

(28) Y Afiam o
28 <5|]2~+37 AG+59) 7 A(J+27])7b’|j+%]>

A Bl A )

~A(1,7) A(4,7) . —A(i,i+2)
(5\ +n7- J+2’J)[ A(j+%,5) ﬁ| ]>(Bn N [FA6GD) BT 8))

no\Bli o a _
(<B|J+"T J+2,J)> Ir A(]+2,])’ﬁ‘j+g]6|z)

) (TA(i,j),[TA(ivj)”8|i],7-_A(i’i+%))

(TA(@J')‘[TA(Z'J) ,5|i].T*A(i»i+%))

(18) Apien NPl Afien FAG)

TAGI) [rAG) gl 7~ AEEE))

2 (aTA(i’j+g).[rA(ﬁ?’j’,ﬁ\j]fm’j))(

TA(’iijr%)JrA(iJ)‘[TA(i,j) “8|i]‘7_7A(i,i+%))

= (Oz.[T_A(j‘f‘%,j)’ ,Blj]TA(i’j)_A(ivj""%)) (
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n A+ B AL g1~ AG+E)
Prop.8 CAGATD aGra (7 (7 Blilr )
o (a.[r Grga) g7 >

—A(,i+3)

(32) _ nyr iin 1\ [PAED Bl]T
(B2r2Us 803+, g [r0+59 6|1

- —A(i,i+3)
Prop-8 (B2r—209+3) A g 2
J

Prop.9e (31) , 9 —AG+
= - 73+ 2 )

Bl5T .
Moreover, since

R(Bl:) R(8;) = R(Bl) <ﬁ|j>“°""’ TAW%W|j+gﬁ|@-+gfaw+g>

- Rﬁ‘]Jr ﬁ|z+ AGi+3 Rﬁ|;1ﬁ‘;17_2A(j,i+%)

= Rﬁ‘;lﬂ‘?T*A(j,jJr ‘ 15|2 A(iyit+5) 220(ji+5)
= RA|;Blir~A0I+3)-AGHF)+2A0H+3)

Prop 8

Rp|;Bli = RB|;NB|;
and
— -1 2 __ Aiit+g
RSl = RAIy, RAJ = \Vij e,

H
we conclude 7 is a homomorphic image of

Zox Cy x - x(Cy.
—_——
%terms

O

7.2. The case oz transposition. We prove in this section part (II ) (ii) of
Theorem B.

Theorem 6. Let n be an even number and B an abelian subgroup of A,
normalized by 7. Suppose = (Blo,Bl1, -+, Bln-1)0s € B where oz is a
transposition. Then H = (8], (0 <i<n—1),7) is a metabelian group.

We prove progressively that
N = ([6lumkeZicY),
‘ n
Vo= <U7 5’%ﬁ|07 T(ﬁ‘0>2>

are normal abelian subgroups of H, from which it follows that % is cyclic and
therefore H metabelian.
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Lemma 10. The degree of the tree n is even and og is (o,)-conjugate to the
transposition (O, g)

Proof. On conjugating by an appropriate power of o, we may assume o =
(0,7). The conjugate of oz by o’ is the transposition (7, j 4 ¢). In particular,
(7,27) is a conjugate which is supposed to commute with (0, 7). Therefore,
{0,7} ={4,25}, 2 = 0 modulo(n), n = 2n’ and j =n'. O

We go back to part (I) of the Proposition 7,

-1
(T |(z’)a;”> (5’(1‘)0;“) <7' |(z‘)o:”a@> <B|(i)(r;voﬁ0$)
~1
= (Bl (TU|<i)aBo:“> <ﬁ|<i>aga;“> (7v|(i)080;v‘76>

and set in it j = (i) 0.", v = kn+r, r =7 to obtain
(33) (T )’ 16|]( )|(j)055|(j)0ﬁ0“¥
<34) - | )Uv< )| U“aga:vﬁ“j)ggffﬁa;v (Tv)(j)gqv—aﬁff:UUﬁ'

Proposition 11. The following cases hold for different pairs (j,r).
e For j =0 there are 3 subcases

— Ifr =0, then
(35) [Blo, 71" = []3. 74, Vk € Z,
— Ifr =35, then
(36) BlorBlo = Blam™"Blz,
and
(37) [Blo, 777 = [B]3, 7", Vk € Z.

— Ifr #0 and r # 3, then

(39) 0Bl e = Blr Bl Vr € Y — {0, 7}
and
(39) [Blo, 7P = [Blo, 7F], Vk € Z.
e For j = 5 there are 3 subcases
— Ifr =0, then
(40) [Bly, 770 = [Blo, 7], ¥k € Z;
— Ifr =3, then

(41) Bl = Blar.



(42)

(43)

(44)

(47)

(48)
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and
B3, 71" = [Blo, 7, Wk € Z,
— Ifr #0 and r # 5, then

n

5y —6(2,r n
0GBl Bl, = By BBl Vr € Y — {0, 7}
and
n
Uﬂ%Tﬂmr:[5@,MLVkez&vrexf—{&§}.

e For j#0 and j # 5, there are 5 subcases:

—Ifj#n—randj+# 5 —r, then
_ n
6|jﬁt :B|tﬁ|j7v]7t€ Y_{07§}

and
. n
[ﬁ|j77—k]ﬁlt = [6|j77-k]7vj7t €Y — {07 5}

—Ifj=n—rand0<r <3, then

_ . n
T 1B|]+%TB’0:/B|OB|,]7VJ € {1727 75_1}

and

n

Blyg. 7T = (8L, 75 € (L2, 5 — 1)

~Ifj=n—rand§ <r<n-1, then
. n
BliBlo = BloBly+s, Vi € {L,--- 5 =1}
and
18], 7F]Pl0 = [5|%+j77k]7w{; €,y e{l,--- ’g_ 1}

—Ifj=5—rand 0 <r <3, then

— . n
ﬁ|jﬁ|% = ﬁ‘%T 15’j+%77v~7 c {17... 75 _ 1}

and

g7 ! . n
[B’j;Tk]mj :[6‘%+j,7k],Vk€Z,VJ c{l, - ,5_1}

~Ifj=%—rand} <r<n-—1, then
BlzBlj = Blz+;Blz, V5 € {1, ,g —1}
and
8157 = 8135, 78, Vh € 2,9 € {1+, T~ 1),

29
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Proof. We will prove just the last case. As j & {0,%5,n —r, § —r}, we have

(o7 = ()ogoy =j+r,
()og = (j)ojogo” = (j)ojogo o5 = j.
Therefore,

(N Bl T8l = Blier ()5 815(17)5, Yo € Z)
o (Tfkfﬁ(j,r)ﬁ’ka+5(j,T)B’j+r _ ﬁ‘jJrrTfkf&(j,r)ﬁ‘kaJr(S(j,r)7Vk, e Z)

& (81815, T8 sy = BBl (815, TFOUI]VE € Z)

(55) BliB. = BBl Vit €Y = {0.5)
and
(56) 815 711 = 181,71, it € Y = {0, 5},

0

Lemma 11. The group N = ([B|;, ]|k € Z,i€Y) is an abelian normal
subgroup of H.

Proof. Define

N; = ([Bl;, ™ | k € Z)
for each ¢ € Y. Then, N = (N;|i€Y), each N; is an abelian subgroup
normalized by 7 and

57 Bli, ™15 = [Bl;, 7], Vk € Z,Vi,j € Y, j # 0,2
2
We have [N;, N;] = 1,Vi,j € Y,j # 0, 5, because
ot —1 . —tg| .t (57) —t8l.rt
[/8|’L’77—k][18b7 ] - [6|Za7—k]mj Pla - [6|177-k] Als

= (Bl Bl )T

D (18l 77 B, )T
(14) [mi,Tk]TitTt = [ﬁ|i>7k]aVk>t €Z,

Vi j € Y,j# 0,5,
Furthermore, [Ny, Nz| = 1, because

t

T o 7t (37) TT T
Bl o) = [Bly, e AT = By, YA
2 (810, 7 [Blo, )

D (185, 77 [Bla, )
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14 Ftrt
C 18ls, 7 = (8], 74, Vk, t € Z.
Therefore N is abelian.

Now, equation (57) implies
(58) Ny = N8 = N

7

,W,jeY,j%o,g,

equations (14), (35) imply

(59) {Ng = N, N, = N?O_l :

equation (40) implies

(60) {NO = NJ°, Ny = N

equations (14), (42) imply

(61) {No Na St , N» INflél ;

equations (14), (48) imply

(62) {N Ny, Niyy = NI el g 1)

equations (14) and (50) imply

(63) {Nﬁ% = NPb N; = N7D,

, n
J+2 ,\V/j € {17 75_1}7
equations (14) (52) imply

|—1

. n
(64) n = N = N+n Vie{l g~ 1)

Njin
equations (14), (54) imply

g’ . n
(65) {N] ]Jr, Njyn =N, 2 VjE{l,"',E—l}.
Thus (57)-(65) prove
N = (N;|i€Y)
= (8,71 | Vi, k € Z)
is an abelian normal subgroup of H. 0

Lemma 12. The group U = <N, Bl; 13 #0, %> is a normal abelian subgroup
of H.
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Proof. Lemma 11 and equations (39), (44), (45) and (46) show that U is
abelian.

The fact that N is normal in H, together with the following assertions prove
that U is normal in H.

Let J = <ﬁ0,ﬁ%,7'>. Then, for j € Y — {0, 3}, we have

() (Bl;)” :
Bl; :ﬁ\j[ﬁ\j, '];
|m0 = 5|J+ ;
gt & D77 Bl = Blyea[Blien, 7;
5\]. '3 (3L 7*15\j+MIﬁmﬂ[ﬁm%?ﬂ?
AT gl

() (Blig)” <U

|g+" 5|j+%[5|j+%=7t]%

By 2 5151810813815 Bl
= (Blo. ™) B Blo T € U
B, @ gl e v

it+5
Bl; € U;

Bln
ﬁ|j+”

(53)

Bla' (51) . ~14—

Blin = BlarBla'BliBlaT™ Al5"
Blgtr™t L -1 Al

= [Bl=, 7178 BT ((Ble, 717178

Hence, U is a normal abelian subgroup of H. O]

Lemma 13. V = <U, BlzBlo, 7'6|(2)> s a normal abelian subgroup of H.

Proof. Lemma 12 together with the following assertions prove that V is a
normal abelian subgroup of H.

Given j € Y —{0,%},k € Z, and J = (B, Bz,T, ), we prove
(1) Bl265l0 € Cu(U) -
("% & o™ L 8l;
(Blyr2)"370 ) (5],)%0 E B, u;
[/8|j,7—k]18|%5|0 = [Bl;,7 ]6I%T tBlo (52) [5|j+%’7_k]7'm0
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= (8], 7;
ka]m%% E 181, 7170 2 (85, 7,
[Blo, 717187 E) (8], 74170 2 [0, 7*;

-1
(13, 74771870 = (8], w0
@)

2 Blo, 71770 L (8], 74);
(1) 7812 € Cu(U) :

BT = (81815, ) = (81} (81, 7))

(47)

(49),(50) T
(ﬁfﬁ Ww”ﬁ])mo B’Jf‘g Bl
7812 (47) 5 8]p (49)
(ijr%) flo "= B“O = ﬁ‘jJrﬁ;

[Blo, 178 & (8], 741800 L (5], 74);

Bl ™18 L ([8]3, 7] (Bl 78
D (810, 7] [Blo, 1)) P

(14)

2 Blo, 7170 L 8], 74);
1815, 778 2 (18], 771815, THH]) P
D ((Blys, 7] Bl m, T

(48)

= Bl 0 [B1, 7

B2 (48) (50)
B4z, 7708 "= (B, 7470 = (B4, T

(L) 78)2 € Cu(Bl=Blo) :
(Bl2Blo)™6 = Blg2r B2 BloT Bl
D 81527812 Bla 7Bl Blo
= Blo* T BlETTB
2 811 8lo;

2Blo = (TB15) " BT "Bz Blo

33
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(IV) (Bl Blo) <V :

(Bl2Bl0)™ = BlzBlo[Bl2Blo, 7] = Bl= Blo[Blz, 717 [Blo, T*]

Y

(81381070 = 815 Bly B2 = Bl5 Bl 7781 = Bl5 Bl5 B~ B2
= (B]28l0) (B
BlBlo 2 (7812)2((8l2 Bl0)™)"";
(Bl2B10)%" L ((rB12)2)%%" (B]28o);
(81380)™ = B3 BloBl5" = B3~ BloBloBl5 B3
(41) N2 a1—1 -1 2\2 -1
= (B3 BIT Bl5" = (BBl Bl0) ™

(813810 2 (813810) " (rB)*) 2

(V) (7B <V

(T810)™ = (BI5)™ = T8I, 7] = TBI5Blo, TFI*° [Blo, T*);
(TB15)" = Blg ' rBI58l0 = 77 Blg ' Bl0BIE = T, Blol Bl5
= {7, Blolr 7815 = (1Blo, 71~ 7AI5;
(7813)%0" = BlorBlo = 7Bls[Blo, T]Blo = TBLBlo, TI7";

rBR)% 2 ((raR)5 (Bla, 71 7) "

_ (ng)malﬁ@l(wmT]_l)mo@l;

BloBln"
n

Y

= ()7 (3o, 7)) L (Bl 1)

(o)™ 2 83110, 7).
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8. SOLVABLE GROUPS FOR n = 4.

Let B be an abelian subgroup of Ay = Aut(7T,) normalized by 7 and let
B € B. Then, by Proposition 5 , 05 € D = ((0,1,2,3),(0,2)), the unique
Sylow 2-subgroup of ¥, which contains o = o, = (0,1, 2, 3).

The normalizer of (1) here is I'g = Ny, <<T>) = (A, 1) where A is the monic

normalizer and where ¢ = () (0, 3) (1,2) inverts 7.
Given a group W, the subgroup generated by the square of its elements is
denoted by W2

Lemma 14. Let L = L (D) be the layer closure of D above. If v € L* then
YT 4§ conjugate to T.

Proof. If a € L then 0,2 € (0?) and the product in any order of the states
(a?)]; (0 <7 < 3) belongs to S = L2

Let v € S. Then ~7 is transitive on the 1st level of the tree and (y7)? is
inactive with conjugate 1st level states, where the first state is

(lo) (v11) (v]2) (7]3) 7 if Oy = €,

and

(7o) (vls) (v]2) ([1) 7 if Oy = 02;

in both cases the element is contained in S?7. Therefore, y7 is transitive on
the 2nd level of the tree. Now use induction to prove that 7 is transitive on
all levels of the tree. [

8.1. Cases o5 € {(0,3)(1,2),(0,1)(2,3)}. We will show that these cases can-
not occur. We note that o, conjugates (0,1)(2,3) to (0,3)(1,2). Since the
argument for 8 applies to 47, it is sufficient to consider the first case.
Suppose o5 = (0,1)(2,3). Then,
B7 = (77"(B3) , Blo. Bl1. Bl2T) (05)° .

On substituting o = 47 in 6 = [, o and in (7)

(66) Olyons = (Bliwoa) " (@)™ (BL:) (e, ) Vi € Y.
we get § = e and
(67) e = (Blwes) (BT (Bl) (B7loyes) Vi €Y

and so for the index ¢ = 0, we obtain

e = (Bl (T (B12) " (Blo) (Blo)
e = (Bls) 77 (8)o)

which is impossible.
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8.2. Cases o5 € {(0,2),(1,3)}.
Lemma 15. Let o,y € Aut(Ty) be such that
0a, 0y € ((0,1,2,3),(0,2)),

a? = 727,
o, 7 = [y, 7]
for allk € Z. Then,
Oas 0y E{0),  0aoy =0

Proof. From the second and third equations above, we have 0~'02 = 020 and

00,017 = [0y, 0%).

(i) Suppose 02 = e. Then o},
[0, "] = e for all k; thus, o, € (0) and o, € (¢?%), 7,0, = o*! follows.

(ii) Suppose o(0,) = 4. Then, o, = 0! and 02 = e. Since [0,,0"]7" = ¢ for
all k, we obtain o, € (0), 02 = e and o, € (0?) .Therefore, 0,0, = c*l. O

a —

= 02 and therefore, o, = 0, (04,077 =

(1) Suppose o3 = (0,2). Then by the analysis in Section 7.2, we conclude
V = ([Bl;,7™], 811, Bls, Bl2Blo, 78[5 | i € V)

is an abelian normal subgroup of H.
By Lemma 14 , 7|3 = u is a conjugate of 7. As V is abelian, there exist
&, tq,ty € Zy such that

w=TPI5, BlaBlo = 1, Bl = 1, Bls = p.
Therefore,
— SR ~ — -2
/B|2 =K 6|0 77——,UB|0 .
On substituting v = By and o = B in Lemma 15, we obtain 0, = 0,5, =

o*!. Thus, from S|o8|o = ¢, we reach & € U(Zy).
By (41), we have

B3t = 78[5

It follows then that
Pl B Blon ™ =

Bl -
(1) = W
Therefore,
(68) Wl = e
where QT_g €7

By Equation (49) we have

Bl = gls.
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It follows that
2-¢

2-¢
()™ = e, W =l by =1

We have reached the form of 3,

B8 = (Blo, ', 15815, 1 5)(0,2)

where p = 7 for some a € Aut(T}).

Now, since
(0%

o= (125"

for some m € Z,, we have

Thus

and

We note that in case ¢ =1 and [ has the form

B =(r" 7 7m0, 2)

— (0%
1=2m)%: therefore,

where 7 = (T

/8 = (T 177’72Lm , leém R T11:2Tn s leém)(o’ 2)

(2) Suppose o5 = (1,3). Then, v = 7 satisfies [y,7" | = e. Therefore, the
previous case applies and

where
2m 2\ ¢ . o
T = <)\(2L7£)27(1*T)(2%§) ) - (6,6,6, </\(L)27‘(177)<2%§) ) )O‘T.
Hence, 8 has the form

-1 Pl 3
BIVT = (Ttlu)\L*ﬁTler 577—1 ¢ 7)\
3
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8.3. The case o3 = (0,)° = (0,2) (1,3). We know that
V = (N, BliBlir2, BT 207D | i jt €Y and k € Z)

is an abelian normal subgroup of H and

(69) TA(i’j)5|i+2ﬁ|j7'A(i’j) = B2l
by analysis of the case 7.1.
From Lemmas 12 and 13, we have

Tﬁl(Q) = M, 6|25|0 - MSO, ﬂ|3/8|1 = M517 Tﬂﬁ — M§2
where = 7% and &, &1, & € U(Z4). Therefore,

(70) T = pfly?

(71) Bla = Bl
(72) Bls = p Bl
(73) T =pu2p%

Now, we let 7, j take their values from Y in (69). Note that (7, 7) and (j, %)
produce equivalent equations and the case where ¢ = j is a tautology. Thus we
have to treat the cases (i,7) = (0,1),(0,2),(1,3),(2,3),(0,3),(1,2). Indeed,
the last two cases turn out to be superfluous.

(i) Substitute ¢ =0, j = 2 in (69), to obtain
(74) Blar ™ =78l

Use (70) and (71) in (74) to get

& Blo 1 Blg Blop ™ =

and so,

()l = >,
Therefore,
(75) o = s
Since ngo € Z;, we find
(76) o= (Aer™)
From (71),

(6% ¢ o
(77)  Bl=poBl = (T&)T_mo}\ ) - ()\ o T(&"’"O)ﬁ)
2-¢p

2-¢,
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(ii) Substitute ¢ = 1,5 = 3 in (69) to get
(78) Blsr=t =781
On using (72) and (73) in (78), we obtain

€ Bl B =

and so,

(M&)Bh — M2§2—£1'
Therefore,
(79) pfh = 5

Since 2525—;& € Zj, we have

(80) /3|1 == <)\2§2§1Tm1) .

&1

By (72), we find

(03 51 e
(81) Bls = p BT = (7517_”“)\ 3 ) = ()\ 3 T(£1m1)2§251)

262—-& 269—¢&1

(iif) Substitute i = 0,j = 1 in (69) to get
(82) Bl2B11 = Bl3Blo-
Use (76), (77), (80) and (81) in (82), to obtain

_ & _ &1
(S0-mo) 37 Aoy T =N ¢ g Azogg 7

2—¢p 31 269—¢1 €0

and so,

&1 2-¢
T(fl-ﬂ"b1)2g2,51 g Mo

0 282—&
(o—mo) 5= ==+

A & 260-6 T 2= & =A €& 2-¢

2-§y &1 260—¢&1 o

Therefore,

(83) (252éi &1 ) - (2 5050)2

and
§o 26— &
(84) (o —mo)5— & &

(iv) Substitute i = 2, j = 3 in (69) to get
(85) BloBls = Bl15l2-

& 2-&
26— & &o

+my = (& —my)

—I—mo.
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Use (76), (77), (80) and (81) in (85), to obtain

&1 £

—M1)5g —mo) 52—

)\2760 TmOA £1 T(fl 1)2'52*51 e )\25277517-"1’1)\ < 7_(&0 0)2,50
€0 28561 3 PR

and so,

_ & _ _& S0 _ 130)
A €0 &1 7_m02§2_£1+(§1 m1)2§2_£1 B )\252—51 0! Tm12—£0+(§0 m0)2—50.

2—§p 262—&1 §&1 2-¢
Therefore,
()
26— & 2—4&
and
N - N
(86) 252 3 + (& m1)2£2 i My 2 + (%o m0)2 &
We have from (83)
o &1
(87) R T
(a) If
& &
2—-& 25 —-&
then
28280 — &180 = 281 — &1o,
and so,
&
(88) o = 6
From (84), we get
(89) mp = 51 2 50 + myg.
(b) If
& _ &
2—¢& 28, — &
then by (84) and (86),
mo — & +my =my — & + my
mo + & —my = —my — & + mo,

which implies & = &, = 0,which is impossible.
Now by (88) and (89), we have

(90) Bly = (Adm)
&0
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and
&1 @
(91) Bls = (/\ & 7 ;§0m°)26%0> .
2-¢&g

Therefore,

ﬁ = (5’07ﬂ’175‘27ﬁ|3)(072)<173)
where B|o, |1, 5|2 and |3 are described in (76),(90), (77) and (91), respec-
tively, and

(v) The cases (i,7) = (1,2),(0,3) in (69) do not add any more information
about f.

Summarizing, we have found

(92) Blo — (Azmm) B = (Awr“f“mo) |
£o £o

(93) B2 = <)\ £ T(§°m°)26%0> B3 = ()\ & T(glfomo)zg%o) ;
PR N

9 = (e B

2—¢p

In the particular case where &, = 1, 3 has the form

—1 1
512 +mg 1—mg 61; —mQ

p= (Tl*ﬂ;gnoﬂ_ 1=2mo iMoo 1m2mo )(072)(1’3)

where 7 = (7172m0)%,

8.4. Cases 05 € {e,0,,0-}. (1) Suppose o5 = e and let 3 stabilize the kth
level of the tree. Then by Proposition 6, we have

[Blu, BI7°] = e, for all u,v € M with |u| = |v| = k.
Therefore, N = (B, | |w| = k,w € M) is abelian and so is its normal clo-
sure M under <N ,7'>. Also, active elements in M are characterized in 8.1,

8.2, 8.3 and 8.4. In particular, there exists x € M such that o, = (0,2)(1,3)
and 3 € x,xC(k).
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(2) Suppose 03 = 0, = (0, 1,2,3). Then, clearly the element
52 = (BloBl1, BliBlas Bl2Blss BlaBlo)(0,2)(1,3)

satisfies |32, (52)7k] = e for all k € Z,. Therefore, by the previous analysis, we
have

(9 Blosls = (Asa™)
0
1€ “
(96) B|16|2 = (/\25507_ L 0+m0> 7
0
o) S0\
(97) BlaBls = (A;%T@o 0>2%0> |
Y
£1+¢ g @
(98) Bl3Blo = (MOT( = O—mo)g_%o) ,
2-¢&p
2m £ 2 o
(99) T = ()\(50)27‘<1_5()0>(2—050) ) )
2—¢p
Therefore,
g \“ g \“
BloBl1Bl28]s = ()\26507"10)\25%7(507"0)2060) - (72050) 7
0 —S0

(a3
B11812B138]0 = <)\2_507—§12£0+m0)\60T(glzfo_m())zfoéo) _ (T%Y'
) 2—

€0

It follows that

& aBlo 160\ ¢
T2-¢0 = [ 72-%

and

(100) (o = (+8)°

Substitute n = g—; in (100) to get

(101) Blo = (™))",
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where

_J M if n € Zj
(102) Uy = { A, if —neZl

0=0WV(e, 771 771 771 (1,3)
(an invertor of 7). Note that
UnAe = Ynthe = e = Yen = Yethy = Aty

for all £ € Z}.
By (95) and (101),

« 2¢ a
(103) ﬂ‘l — (Tmlwn—l)\M)Tm()) — <w2§o T—m1( n500>+m0) )
o

n&o

Also, by (96) and (101),

Wﬁo;&o +mo

2-¢
o = (O g
(104) o2

= (sl () el
o n

Furthermore, by (98) and (101),

néo+éo &0 ¢

2—¢p o
— <¢ £ e - _m0)25(‘)£0_m1:|771> :
n(2—£o)

Setting i = 1 and ¢ = 2 in (17), we obtain

(105)

(106) BloBl2 = Bl3-
Use (101), (103), (104) and (105) in (106), to get
(M I [ml (%)_mo]”"‘%-ﬁ-mo

mi < +mo mi +mo
= P2-gT = Yoo T %0
néo néo

(107)

which is the same as

2—¢0\ ] néo—¢&o
PR CTS S e

oY g arlrm (e (5) o (5 e
("500)

Therefore,
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(109) P = (2_5‘))2

néo
and

man + [ml (2—50) _mo] n+77§0—fo v mg
n&o 2

L 2—& 2—8%)\ 2—&
_[ m1< U )+m0}( néo ) ml( néo )+m0

(a) Suppose

2—&
110 - _
( ) 7 néo
(or what is the same
(111) (7 1) & = —2)

Then on substituting this in the above equation, we get

(n—1)& =0
contradicting the previous equation.
(b) Suppose

2—-%&
112 n= )
( ) néo
Then,
2
11 —
(113) o=
and this leads to
n—1
114 =2 e
( ) myg my + 277(172 n 1)

On substituting (113) and (114) in(103), (104), (105) and (99), we find

«

(115) B = (gyr™ ¢ )
2 «
(116) 5|2 _ (¢n7m1(n2_2n+2)+2n7('n2_:1>> :

«
_ A (niﬁ)
(117) Bls = | y-s7 :
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ntl o, n?+1 @
e

Substitute i = 0, ¢ = 1 in (17), to get

(119) BlsBly = 1515
Using (101), (115), (116), (117) and (118) in (119), we obtain

2
271 +n+1 n-+2 n—1
2nd(n2+1) 1( n3 ) u(2—-n)+ P
Yp-3T (I 20(nZ+1)

LISEIP . (gp)
I 2n n mi mi
= wn_47' wnT wﬂT .
Thus,

21?2 1 —1
Bt _ml(nn+ )+m1(2 N+ S D)

273 (n2+1)
Q/Jnfﬂ'

U 2m1(n +H )+m177+m1

= 1/}n—2T2 3 >

which implies
(120) (n—1)m; =0
and thus,

o If m; =0 we get

n2—1 202 4n+1

(121) B = (n, Yy e Ay T IERD | gy a7t )al g
= 777
where
(1) —1 202 —n—1
(122) Y= (A#> (e,wm¢ 272n(n2+1> ¢ 37—27;(7;2+1)) (1)
ne(n<+1)

and

11\
(123> T = <wn—47'72]n5) .

o Ifn=1we get

(124) B = (rm,pm pm pimdmet g 9 3)

and
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— (6%
(125) 7= (rm),
which produce
mq my mq 1-3mq
6 — (7— 1—4mq , 7—1—4m1 , 7—1—4m1 , /7—1—4m1 )(0’ 1’ 2’ 3)
my my my my
(126) - (7—1—4m,1 Ty pT-Amy g T—dm )7—
4mq 1 A1
= 7l1-4my 7 — 71-4m; — T T—4my

(3) Suppose o5 = o, = (0,3,2,1). Then, 57" satisfies the previous case.
Therefore, as 0 inverts 7, we have

(127) /8 e (/6_1)_1 = (T’Y)_l = (7‘)97
or
o
(128) =71 T-mi
where my € Zy,
(1) n—1 2'q27n71 1

Y= 2 e, s 27T =1 s 37T =nn at,

(129) <)\ ) (€, Wby Yya 7T gh o7 317D Yol D)
n2(n2+1)

n € U(Zy) and
(130) r= (wn_ugisl)a.

8.5. Final Step. We finish the proof of the second part of Theorem A. In
order to treat the remaining case where the activity of § is a 4-cycle, we
use the fact that 82 € B, which we have already described. Next, from the
description of the centralizer of 52, we are able to pin down the form of 3.

Proposition 12. Let 3 = (Blo, Bl1, B2, B813)(0,2)(1,3) be such that (Blo) (Bl2) =

7 and (B)1) (Bl3) = 7%, for some 01,0, € Aut(Ty). Then, (3 is conjugate to
2

T2

Proof. Let a = (e,e, By, Blz"). Then,
(131) B* = (e e, BloBlz ,B1813)(0,2)(1,3).

Therefore, substituting 8|o8|» = 7% and S|, 8|3 = 7% in the above equation,
we have
B = (e,e, 7, 7%2)(0,2)(1, 3).
Conjugating 8% by v = (6;1,05%,60,*,05") we produce
5&7 — 7_2'
[

We show below that active elements of B produce within B elements con-
jugate to 72
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Proposition 13. Let € B with nontrivial oz. Then
(i) If o5 = 02, then B is a conjugate of T2
(ii) If op € {(O 2),(1,3)}, then BB7 is a conjugate T2.
(iii) If o € {o,,07'}, then B% is a conjugate of T°.

Proof. 1t is enough to prove (i), since (ii), (iii) are just special cases.
If 05 = 02, then

(132) Blo = ()\2—5077”0) » Bl = (/\2_50751250%0) :
50 50
o\ £1+¢ g0 \
(133) B|2 = ()\%T(EOMO)Q%O> 7B|3 _ ()\EOT( t 0m0)20§0> 7
¢, 7%

(134) = (/\( )27(1‘%)(25%0) ) ,
2— {0

where 50, 61 € U(Z4), mo € Z4.
Therefore,

&3 2 a P 2 a
5|05|2:<)\2—£o mox g &I ) :(T) _ ()
3 50

€1+¢€ ¢ @ €160\ @ P a
ﬁ‘lﬁ‘g - ()\2 50 a3 E0+7n0)\ 50 ( 12 O_m0)2—%0> f— <7'2i§(())> = T gi&'ﬁ%

—&o

It follows from Proposition 12, that /3 is a conjugate of 72. O

Corollary 4. Suppose B € B is an active element. Then, B is conjugate to a
subgroup of the centralizer C(72).
Proposition 14. Let v € C(7%). Then,
(135) = (Tmo’ Tm177_m0+5((0)07, 2)7 7_ml—i-é((l)aﬂ,, 2))0_77
where mg, my € Zy, 0. € Cyx,(0?).
Proof. Write v = (7|0, ¥|1, 7|2, 7|3)o,. Then 72y = 72 translates to
(67 6T, T)(Oa 2)(]—7 3)(7|0a 7'17 /Y|27 ’7|3)0-’Y
= ('7|07 Y1, '7|27 7|3)0-'7<67 e, 7,7)(0,2)(1,3),
and this in turn translates to
(Vl25 v[3: 7vl0s T11)(0, 2)(1, 3) 0,

(/7|07 7|17 ’Y|27 7'3)
0—’y<7_5(0’2)a 7_6(1,2)’ 7_5(2,2)’ ,7_6(3,2))(07 2)(1’ 3)

— (7‘077’177‘277'3)
(TJ((O)U’YQ) T (( )0"\”2)7 ((2)0—772)77—5((3)07, ) (0 2)(1 3)

= (]or%@22) 5| 70(Wor2) |, 70(Dor2) |378(3orD)g (0,2)(1, 3)
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Thus, we have
V2 = o @72,
Y5 = |17 Do)
7‘*'}/’0 — 7’27—5((2)0%2)’
7]y = 7|37 (@7v:2),
Hence,

Vo = [ @71:D | 4|3 = | 70(Der2)
T7|0 — 7-5((0)U’Y’2 +6((2)0"/72) =T, T’Yll — 7-6((1)0’W2)+6((3)O"‘/72) =T ’
Therefore, there exist mg, m; € Z4 such that

Yo =717, 1 =71,
/7|2 — 7_m0+5((0)afy,2)7 ,}/|3 =T

Hence, v has the form

m1+6((1)0+,2)

(136) v = (7™, ™, 7mo+8((0)o7,2) Tm1+5((1)07,2))aw
where 0., € Cx,(0?). O
Corollary 5. The centralizer of % in Ay is
C(t*) = ((e,e,7,e)(0,2), 7, (7™, 7™, 770 7™ | mg,my € Zy) .
Corollary 6. Let v € C(72) be such that o., € ((0,2)(1,3)). Then
v e (Mo, ™M T ™M), 7 | 'mg,my € Zy) .

Proposition 15. Let H = ((rmo,7m 7m0 7)) 72 | mg my € Zy). Then the
normalizer Na,(H) is the group

<C(7'2)7 (Vo2mo+15 Vamr+15 V2mo1 T s Yoy T ) | Mg, My € Z4> )
where, for each n € U(Zy), 1y, is defined by (102) and

¥ = 7,
Proof. Note that H is an abelian group. Let a € N4, (H). Then,
(72)* = (7m0, 7™ ot £ty 0,2)(1, 3),
where mg, my € Zy.
Suppose « is inactive. Then,

(rmo ma pmotl Fmitd)((2)(1, 3)
= <a|617&’;17a|517a|51)(67677-77—)(072)<173)(a|07&’17a|27a|3>
= <a|61’a|1_17a|2_17a|51)(6’67T>T)(a|27a|37a|07a|1)(072)(1’3)
= (alg'alz,ali als, aly ' ralo, al5'ral1)(0,2)(1,3)

which produces

{ &‘ala’2 =70, a'fla’?) =7,
mi+1

alylralg = Tt alytral, =7
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Therefore,

aly = ale™™, als = afy 7™,
algtraly = 2ot ol tral; = rPmtt

Thus,

a = (alo, ali, alz, als) = (Vamer1, Yomi+1, Vamgr1T™° s Yomy 1 7™)
satisfies
(72)* = (7m0, 7M1 pmotl 2ty 2)(1, 3).
[l

Theorem 7. Let G be a finitely generated solvable subgroup of Aut(Ty) which
contains 7. Then, G s a subgroup of

(137) Xg (oo (Xg (XgNg (H)® X Sy) x Sg)-++) xS,
for some o € Ay.

Proof. As in the case n = p, we assume G has derived length d > 2 and let
B be the (d — 1)th term of the derived series of G. Then, B is an abelian
group normalized by 7. On analyzing the case 8.4 and the final step, there
exists a level ¢ such that B is a subgroup of V = x4C(u?),where u = 7% for
some a € Ay and where 0,2 = (0,2)(1,3). There also exists 3 € B such that
Bl. = p? for some index u € M.

Moreover, if T is the normalizer of C(72), then clearly, T* is the normalizer
of C(u?).

We will show now that G is a subgroup of

j: X4("'(X4(X4NA4<H)Q><]S4)>484)"'>>454

where the cartesian product x,appears ¢ times..

Let v ¢ J. Since v ¢ .J, there exists w € M having |w| = t and ~|,, & T°.
Since T is transitive on all levels of the tree, by Corollary 6 we can conjugate
[ by an appropriate power of 7 to get # € B such that

O = p° or 0], = (0*)" = ((r™°, 7™, 770t 7™ (0,2)(1,3))",
where mg, m; € Z4. Thus, for v = w” we have
©) 47 .
(07) o = 01,50 = 0 & C(u?)
which implies 87 ¢ B <V and v ¢ G. Hence, G is a subgroup of J. O

REFERENCES

[1] Bass H., Espinar O., Rockmore D., Tresser C., Cyclic Renormalization and the Au-
tomorphism Groups of Rooted Trees, Lecture Notes in Mathematics 1621, Springer,
Berlin, 1995.

[2] Sidki, S., Regular Trees and their Automorphisms, Monografias de Matemadtica, No 56,
Impa, Rio de Janeiro, 1998.



50 JOSIMAR DA SILVA ROCHA AND SAID NAJATI SIDKI

[3] Brunner, A., Sidki S., Vieira A. C., A just-nonsolvable torsion-free group defined on the
binary tree, J. Algebra 211 (1999), 99-114.

[4] Grigorchuk R. I.,. Nekrachevych, V., I. Suschanskii, I., Automata, dynamical systems,
and groups, Proc. Steklov Institute 231 (2000), 128-203.

[5] Sidki, S., Automorphisms of one-rooted trees: growth, circuit structure and acyclicity,
Journal of Mathematical Sciences, Vol. 100, no 1 (2000),

[6] Sidki, S., Silva, E.F., A family of just-nonsolvable torsion-free groups defined on n-ary
trees, In Atas da XVI Escola de Algebra, Brasilia, Matematica Contemporanea 21
(2001).

[7] Sidki, S., The Binary Adding Machine and Solvable Groups, International Journal of
Algebra and Computation, Vol. 13, no 1 (2003), 95-110.

[8] Jomes, G. A., Cyclic regular subgroups of primitive permutation groups. J. Group
Theory 5 (2002), no. 4, 403—407.

[9] Sidki, S., Just-Non-(abelian by P-type) Groups, Progress in Math., 248, (2005) 389-402.

[10] Nekrashevych, V., Self-similar groups, volume 117 of Mathematical Surveys and Mono-
graphs. American Mathematical Society, Providence, RI, 2005.

[11] Vorobets, M., Vorobets,Y., On a free group of transformations defined by an automaton,
Geom. Dedicata 124 (2007) 237-249.

E-mail address:  jsrocha74@gmail.com
E-mail address: sidki®@mat.unb.br

INSTITUTO FEDERAL DE EDUCAGAO, CIENCIA E TECNOLOGIA DE GoOIAs, CAMPUS
FormosaA, 73800-000, FOrRMOSA - GO, BRAZIL

DEPARTAMENTO DE MATEMATICA, UNIVERSIDADE DE BRASTLIA, 70910-900, BRASTLIA-
DF, BraziL



