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Abstract

At the present time a theory of gravity is subdivided into two ab-
solutely different parts: low-energy theory represented by the Gen-
eral Relativity (GR) and hypothetical high-energy theory – Quantum
Gravity (QG) – that is still unresolved. In this way there is a certain
dichotomy in gravity considered as a unified theory. This paper is
an effort to reveal the main causes for such a dichotomy; the means
for departure from this dichotomy are proposed. By one of the ap-
proaches gravity is considered at low and at high energies as a single
whole dependent on the same parameters, which are discrete for the
fundamental length if present.

1 Introduction. Gravity at Low and High

Energies and Main Problems.

At the present time a theory of gravity is subdivided into two absolutely
different parts: low-energy theory represented by the General Relativity
(GR) that has been brilliantly verified by experiment and hypothetical high-
energy theory – Quantum Gravity (QG) – that is still unresolved.
The General Relativity (GR) is one of the most basic and beautiful phys-
ical theories advanced and accepted during the whole history of physical
science. It has been convincingly verified by the experiments (for example,
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[1]). Nevertheless, some problems associated with GR still must be tackled.
The primary problem concerns extension of GR for high energies i.e. the
gravity quantization problem [2]–[6]. According to the generally recognized
viewpoint, the quantum effects in gravity are introduced at the Planck’s
length scales lP = (~G/c3)1/2 ≈ 10−33cm [5],[6].
The majority of researchers agree that in the high-energy (quantum) limit
of gravity the minimal length lmin appears inevitably and this length most
likely but (not necessarily!) is on the order of the Planck length lmin ∝
lP ,[2]–[6].
Just with this point there is a discrepancy between the two above-mentioned
parts of gravity or, more precisely, between the mathematical apparatus
(instruments) of GR and of hypothetical QG. Starting from the highest
(Planck) energies EP and from a minimal length lmin ∝ lP in QG and
≪coming down the energy steps≫, in GR we, in accordance with the Heisen-
berg Uncertainty Principle (HUP), should have arrived at the length scales
considerably exceeding lmin but, quite the contrary, all the mathematical
apparatus of GR is based on the notion of infinitesimal variations in the
space-time quantities.
Really, the current mathematical formalism of the theory [8] is utterly in-
compatible with the HUP [9]:

∆xi∆pi ≥
~
2
. (1)

Or for the pair energy - time we have

∆E∆t ≥ ~
2
. (2)

The explanation is that the mathematical formalism of GR is based on the
concept of infinitesimal variations in the space-time quantities ds, dxµ, ...,
which for a probe particle, in accordance with (1),(2), will inevitably result
in the infinitely large momentum and energy fluctuations

∆pi → ∞; ∆E → ∞. (3)

But then, if measurable quantities are concerned, (3) is in conflict with GR
because, as immediately follows from (3), when measuring the character-
istics for variations in the probe particle positions within the scope of GR
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and, actually, being at low energies, we can derive the momentum and en-
ergy characteristic for the scales of Quantum Gravity (QG)! In other words,
by this procedure GR, in fact, exceeds its own limits. As a consequence,
the theory becomes nonclosed (at least with respect to HUP) but it should
not be. It is clear that this nonclosure arises from the
mathematical formalism of GR admitting the existence of in-
finitesimal variations in the space-time quantities .
The apparent incompatibility of the mathematical apparatus (in-
struments) used in GR and HUP is the main cause (problem) of
dichotomy between GR and QG, provided we suppose that the
fundamental quantities involved in the theory are measurable .
It is clear that gravity as a unified theory considered independent of the
energies should be saved from this limitation. Then it is clear that in a
future gravity theory, valid for any energy (low or high), GR should arise
in the low-energy limit to a high degree of accuracy. In other words, the
future Quantum Gravity that at low energies would become GR to a high
accuracy should be built as a high-energy deformation of the latter.
The deformation is understood as an extension of a particular the-
ory by inclusion of one or several additional parameters in such a
way that the initial theory appears in the limiting transition [7].
What are the parameters of interest in the case under study? Proceeding
from the above, the parameters must be inevitably associated with lmin

(probably with lmin ∝ lP )and hence EP .
This means that in a high-energy gravitation theory the energy-
or, what is the same, measuring scales-dependent parameters should
be necessarily introduced.
But, on the other hand, these parameters could hardly disappear totally
at low energies, i.e. for GR too. However, since the well-known canonical
(and in essence the classical) statement of GR has no such parameters [8],
the inference is as follows: their influence at low energies is so small that it
may be disregarded at the modern stage in evolution of the theory and of
the experiment.
Still this does not imply that they should be ignored in future evo-
lution of the theory, especially on going to its high-energy limit.
This is one more (implicit) problem of the above-mentioned dichotomy be-
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tween GR and QG.
The problem in the explicit form may be stated as follows:
what (latent) parameters exist in GR considering the minimal
length lmin?
This work is motivated by a search for the unifying principles
for GR and QG aimed at elimination of the above-indicated di-
chotomy between them. More exactly, we look for the identical
parameters, possibly unifying both theories but varying for each
of them in different domains, which will allow for the solution of
the above-stated problems.
Clearly, for solution of the first problem, the mathematical formalism presently
used for the General Relativity should be revised if we want to derive a the-
ory measurable from the viewpoint of Quantum Mechanics, (i.e., at least
compatible with HUP).
All the infinitesimal space-time quantities ds, dxµ, ... in General
Relativity should be replaced by the finite quantities dependent
on the measuring scales l (energies E ∼ 1/l):

ds2 7→ τs2(l); dxµ 7→ τxµ(l), ... (4)

With such a problem stating, the deformation parameters mentioned in the
first part of this Introduction will be introduced quite naturally both in
the low-energy and high-energy, quantum, domain of this theory. And only
on going from one domain to the other their values, perhaps their physical
meaning, will be changed, possibly leading to a solution of the second
problem at hand.

It seems expedient to emphasize once more that in this case the matter
concerns modification of the mathematical formalism in accordance with
the above arguments (appearing logical, consistent, and convincing) rather
than GR itself. In what follows one of the approaches to solving of the
problem at hand is be proposed.
This work is a continuation of the paper [10] and, because of this it is
somewhat intertwined with it.
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2 Quantum Fluctuations of Space-Time and

New Parameters in Gravity

To solve the above-mentioned problems, initially we can use the Space-
Time Quantum Fluctuations (STQF) imposing considerable constraints on
HUP with regard to gravity. The definition (STQF) is closely connected to
the notion of ”space-time foam”.
The notion ”space-time foam”, introduced by J. A. Wheeler about 60 years
ago for the description and investigation of physics at Planck’s scales (Early
Universe) [11],[12], is fairly settled. Despite the fact that in the last decade
numerous works have been devoted to physics at Planck’s scales within the
scope of this notion, for example [13]–[32], by this time still their no clear
understanding of the ”space-time foam” as it is.
On the other hand, it is undoubtful that a quantum theory of the Early
Universe should be a deformation of the well-known quantum theory.
In my works with the colleagues [33]–[41] I has put forward one of the pos-
sible approaches to resolution of a quantum theory at Planck’s scales on the
basis of the density matrix deformation.
In accordance with the modern concepts, the space-time foam [12] notion
forms the basis for space-time at Planck’s scales (Big Bang). This object
is associated with the quantum fluctuations generated by uncertainties in
measurements of the fundamental quantities, inducing uncertainties in any
distance measurement. A precise description of the space-time foam is still
lacking along with an adequate quantum gravity theory. But for the de-
scription of quantum fluctuations we have a number of interesting methods
(for example, [42],[22]-[32]).
In what follows, we use the terms and symbols from [24]. Then for the

fluctuations δ̃l of the distance l we have the following estimate:

δ̃l ∼> lγP l
1−γ = lP (

l

lP
)1−γ = l(

lP
l
)γ, (5)

where 0 ≤ γ ≤ 1.
At the present time three principal models associated with different values
of the parameter γ are considered:
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A) γ = 1 that conforms to the initial (canonical) model from [11],[12]

δ̃l ∼> lP ; (6)

B) γ = 2/3 that conforms to the Salecker - Wigner model (inequalities)
[42],[24] compatible with the holographic principle [43]–[47]

δ̃l ∼> (ll2P )
1/3 = lP

(
l

lP

)1/3

; (7)

C) γ = 1/2 - random-walk model [31] [32]

δ̃l ∼> (llP )
1/2 = lP

(
l

lP

)1/2

. (8)

But, because of the experimental data obtained with the help of the Hub-
ble Space Telescope [48], a random-walk model C) may be excluded from
consideration (for example, see [29]) and is omitted in this work.

Moreover, in fact it is clear that at Planck’s scales, i.e. for

l →∝ lP (9)

models A) are B) are coincident.
Using (6)–(8), we can derive the quantum fluctuations for all the primary

characteristics, specifically for the time δ̃t, energy δ̃E, and metrics δ̃gµν . In

particular, for δ̃gµν we can use formula (10) in [24]

δ̃gµν ∼> (lP/l)
γ. (10)

Let us denote the parameter lP/l in terms of λ as follows:

λl ≡
lP
l
. (11)
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What is the principal meaning of STQF? It is important that with al-
lowance for the gravitational interactions they impose hard constraints on
the quantities ∆xi,∆pi,∆E,∆t..., ... and hence on HUP depending on
the existing scales and energies. The energies will have nonzero minimal
(and correspondingly maximal) values which depend on the existent ener-
gies (measuring scale) and Planck’s energies.
As mentioned in the previous Section, there are no infinitesimal variations
in space-time quantities and no infinitely large variations of momenta and
energies.
The Generalized Uncertainty Principle (GUP) that is an extension of HUP
for Planck’s energies, where gravity must be taken into consideration [49]–
[56], conveys the same, namely:

△x ≥ ~
△p

+ α′l2P
△p

~
, (12)

where α′ is the model-dependent dimensionless numerical factor.
(12) leads to the minimal length lmin ∝ lP . But this minimum is global as
it is dependent only on lP and model parameters of GUP, being independent
of the measuring scale l.
GUP (12) leads to the same minimal boundary lmin ∝ lP for the measuring
scale l as the heuristic model A)(6). However, even J. A. Wheeler has used
(6) not over the whole energy range but at Planck’s scales only. Because
of this, the model for STQF governed by (6) is limited, in essence being
a particular case of the Salecker - Wigner model B) but on going to the
Planck scales.

In what follows we assume the presence of a minimal length on the or-
der of the Planck length lmin ∝ lP . This fact may be inferred from GUP or
may be taken independently without regard to GUP.
Then it is obvious that any quantity having the dimensions of length is
quantized, i.e. is determined by a discrete set of values as follows from the
obvious statement:

Provided some quantity has a minimal measuring unit, values of
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this quantity are multiples of this unit.
Naturally, any quantity having a minimal measuring unit is uniformly dis-
crete.
The latter property is not met, in particular, by the energy E.
As E ∼ 1/l, where l – measurable scale,
the energy E is a discrete quantity but the nonuniformly discrete
one.
It is clear that the difference between the adjacent values of E is the less
the lower E. In other words, for

E ≪ EP (13)

E becomes a practically continuous quantity.
Note that all the above-mentioned models of STQF A)–C) are actually de-
pendent on one and the same dimensionless parameter λl and on the Planck
quantities lP , EP ...). Since lmin ∝ lP with the constant proportionality fac-
tor (in a particular case of GUP this is the model-dependent quantity α′

(12)), this parameter may be represented by lmin/l or (at least within the
scope of HUP or of a linear variant of GUP [57],[58]) by E/Emax ∝ E/EP .

In the above notation (5) takes the form

(δ̃l)min = βlγP l
1−γ = βlP (

l

lP
)1−γ = βlλγ

l , (14)

where 1/2 < γ < 1 and β is a numerical factor on the order of unity [59].
Obviously, we get

(δ̃t)min = c−1(δ̃l)min. (15)

And then in formula (4) the corresponding substitution may be as follows:

ds2 7→ τs2(l) ∼ (δ̃l)2min = β2l2λ2γ
l ,

dxµ 7→ τxµ(l) ∼ l. (16)

Now it is clear that for the metric gµν(x) there is a dependence on l (or on
the corresponding energy E)

gµν(x) 7→ gµν(x, l) = gµν(x, λ
γ
l ). (17)
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As l is quantized in units of lmin ∝ lP , we obtain (16) in terms of Planck’s
quantities and of the natural parameter kl in the following way:

τs2(l) ∼ (δ̃l)2min = β̃k2−2γ
l l2P , (18)

where kl = l/lmin and β̃ has the factor β and the corresponding factor due
to the ratio lmin/lP .
Note that at low energies the flat metric (1,−1,−1,−1), with a high degree
of accuracy, gives the ansatz:

gµν(x) = (±δµν exp(±λγ
l )),

where the sign + before δµν corresponds to the case µ = ν = 0 only.
Thus, from the start, we obtain some discrete set of the initial data whose
variations are governed by the nonuniformly discrete parameter λl. At low
energies E ≪ EP , i.e. for kl ≫ 1, its variation is almost continuous because
the intervals between the adjacent points λl will be constantly reducing as
E is decreased(or similarly as l is increased) and a practically continuous
theory arises in the limit E → 0.
At high energies, with E ≈ EP or kl → 1, it will be really discrete. Ob-
viously, in this case it is responsible for great fluctuations of the metric
(17).

3 Dimensionless Parameter λl and Thermo-

dynamic Approach to Gravity. Some Il-

lustrations.

Note also that, in fact, the nonuniformly discrete parameter λl (11) is in-
troduced as a deformation parameter on going from the well-known quan-
tum mechanics (QM) to a quantum mechanics with the fundamental length
(QMFL), provided this length lmin is on the order of Planck’s length lmin ∝
lP , as revealed by the author in the works written with his colleagues [33]
–[41]. The main concept of these works is a high-energy (Planck’s) defor-
mation of the well-known quantum-mechanical density matrix ρ.
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Yet it should be noted that actually in works [33] –[41] the author has used
the parameter λ2

l

αl = l2min/l
2 ∝ λ2

l . (19)

This parameter up to a factor is variable within the interval

0 < αl ≤ 1/4, (20)

whereas the density matrix in QMFL becomes deformed and dependent on
αl: ρ = ρ(αl), and we get

lim
αl→0

ρ(αl) → ρ, (21)

where ρ – known density matrix from QM.
In this way the condition (20) naturally resultant from the procedure giving
rise to the deformed density matrix ρ(αl) imposes a natural constraint on
λ due to l ≥ 2lmin.
In the last few years new very interesting approaches to gravity studies
have been proposed, which may be divided into “thermodynamical” and
“theoretical-informational” approaches. The approach suggested in the pi-
oneer work by T. Jacobson [60] has been considerably extended in a series
of remarkable papers by T.Padmanabhan [61]–[72].
As shown in [71], the Einstein Equation for several cases of horizon spaces
may be written as a thermodynamic identity (the first principle of thermo-
dynamics): ([71], formula (119))

~cf ′(a)

4π︸ ︷︷ ︸
kBT

c3

G~
d

(
1

4
4πa2

)
︸ ︷︷ ︸

dS

− 1

2

c4da

G︸ ︷︷ ︸
−dE

= Pd

(
4π

3
a3
)

︸ ︷︷ ︸
P dV

, (22)

where a static, spherically symmetric horizon in space-time is described by
the metric

ds2 = −f(r)c2dt2 + f−1(r)dr2 + r2dΩ2, (23)

and the horizon location will be given by simple zero of the function f(r)
(f(a) = 0, f ′(a) ̸= 0) at r = a.( Here r = a is the radius of a sphere.) And
P = T r

r is the trace of the momentum-energy tensor and radial pressure.
In Sections 5 and 6 of [73] first the Einstein Equations on horizon (22) have
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been written in terms of the parameter αa, next the high-energy (αa → 1/4),
αa – deformation of these equations has been derived in two different cases:
equilibrium and nonequilibrium thermodynamics.
The latter case is distinguished from the first one by the dynamic cosmo-
logical term dependent on αa, appearing with the corresponding factor in
the right side of high-energy deformed (22) as follows:

Λ = Λ[αa]. (24)

It is evident that by virtue of (19) the αa – deformation of these equations
is equivalent to their λa – deformation, and we have

Λ = Λ[αa] = Λ[λa]. (25)

Also, it is noteworthy that the parameter λl (11) is implicitly introduced in
the noted work by E. Verlinde [74], where gravity is considered as an ”En-
tropic Force”. But, since for R ≫ lP , where R – radius of a holographic
screen, its value is close to zero λR ≈ 0 and varies very smoothly, it is
omitted in the final formulae at low energies [74].
However, at high (Planck’s) energies on going to the GUP-correction and
further on to the high-energy deformation of Einstein equations it is in-
evitable as shown in the latest works [75](evidently in formulae ((27)–
(39),[76] (and in the implicit form in (32)–(36)).

So, at least for horizon spaces the parameter λR is just the la-
tent parameter of GR mentioned in Section 1, infinitesimal at
low energies λR ≈ 0 but turning to λR → 1/2 on going to high
(Planck’s) energies (i.e., to QG).

This parameter in the ”energy representation” ∼ E/EP is directly or in-
directly introduced in all the formulae of the noted review on Quantum-
Spacetime Phenomenology [2].
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4 Conclusion

Thus, provided the main concept of this work is realized, at all energy
levels gravity may be governed by the same set of discrete param-
eterswhich still have different variation rates and differing values in the
low- and high-energy regions. The transfer from low energies (GR) to high
(Planck) energies (QG) may be schematically represented as

GR[kl ≫ 1, λ ≈ 0, ...] → QG[kl → 1, λ → 1, ...]. (26)

However, as noted in [7], in nature the direction was opposite – from high
to low energies. Because of this, it seems more natural to consider the
transition opposite to (26), in [7] referred to as the ≪dequantization≫:

QG[kl → 1, λ → 1, ...] → GR[kl ≫ 1, λ ≈ 0, ...] (27)

The parameter set in the left and right sides of (26),(27) is the same. The
dots in parenthesis are given for additional parameters which may arise in
the process of a theory resolution.
It is important that in this case gravity could be considered as a single
whole without its subdivision into the Classical Gravity (GR) and
Quantum Gravity (QG).
Of course, the dependence of the principal space-time quantities on the
measuring scale l (existing energy E) that is based on STQF and suggested
in (16)–(18) is very tentative and may vary in the process of the theory evo-
lution. Still, by author’s opinion, a set of the principal discrete parameters
in (26) will be invariant with respect to these variations.
The primary criterion for resolution of a future theory must be the Con-
formity Principle:
on going to low energies GR must be reproduced to a high degree of accu-
racy, at least its experimentally verified part.

The title of this work is not chosen by chance as gravity by this ap-
proach for all the energy levels is treated as a single whole (one
building), where the descent from the upper levels (steps) to the
lower ones by the energy steps is governed by a single discrete
parameter λl, the step height being steadily reduced as we descend
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lower and lower, whereas their length ∼ l will be ever increasing .

The proposed concept is rather important for better understanding and
investigation of the cosmological term Λ, especially in view of the Dark
Energy Problem [77]–[81]. In principle, they may be used to answer the
question whether Λ = const or Λ = Λ(t) is a time-variable quantity.
Despite the fact that the works taking Λ as Λ(t), i.e. as a dynamic quan-
tity, are numerous(for example, [82]– [85]) quite forceful arguments are given
against this point of view (for example, [86]).
Indeed, according to the General Relativity, the cosmological term Λ has
been considered constant Λ = const as, due to the Bianchi identities [8],

∇µGµν = 0. (28)

But in this work it has been demonstrated that, actually, Bianchi identities
(28) are introduced at the low-energy limit only

lim
λl→0

∇µG[λl]
µν = ∇µGµν = 0. (29)

Because of this, the really measured cosmological term Λ in fact is dynamic
Λ = Λ[λl(t)], practically invariable in the modern epoch, i.e. at low energies,
due to slow variations of the deformation parameter λl(t) at low energies
and due to its very small value.
In the works [87]–[89] a behavior of the term Λ has been studied reasoning
from αl(t) on the assumption that it is dynamic, similar to the case proven
in [87] GUP for the pair of conjugate variables (Λ, V ), where V is the space-
time volume, as with the holographic principle applied to the whole Universe
[90], where αl ∝ λ2

l because of (19),(20) of the Section 3. And as noted in
(25) αl-deformation theory is equivalent to its λl-deformation, (in fact to
its λ2

l -deformation).
Then the main difference of these two different cases, examined in [87]–[89]
is in the leading order of expansion Λ[λ] in terms of λ. In the first case it is
the second

ΛGUP (λ) ∝ (λ4 + η1λ
6 + ...)Λp, (30)

whereas in the second case it is the first

ΛHol(λ) ∝ (λ2 + ξ1λ
4 + ...)Λp, (31)
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where Λp = Λλ→1/2 – cosmological term at Planck’s scales.
As ΛHol is practically coincident with the experimental value of the cosmo-
logical term Λexper, a holographic model is preferable – model B) of Section
2 developed for quantum fluctuations is supported experimentally.
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