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Abstract

We consider random walks in random environments on Z
d. Under a transi-

tivity hypothesis that is much weaker than the customary ellipticity condition,
and assuming an absolutely continuous invariant measure on the space of the
environments, we prove the ergodicity of the annealed process w.r.t. the dy-
namics “from the point of view of the particle”. This implies in particular
that the environment viewed from the particle is ergodic. An immediate ap-
plication of this result is to bistochastic environments. In this case, assuming
zero local drift as well (martingale condition), we also prove the quenched
Invariance Principle.

MSC 2010: 60G50, 60K37, 37A50 (82C41, 37A20, 60G42, 60F17).

1 Introduction

In this note we investigate random walks in random environments (RWREs) on Z
d,

i.e., Zd-valued Markov chains defined by the transition matrix p(ω) = (pxy(ω))x,y∈Zd,
where ω is a random parameter ranging in a complete probability space (Ω,Π). (In
the remainder we will refer to either ω or p(ω) as the environment.)

Although the precise nature of Ω is irrelevant, a natural choice is Ω = (SK,γ)
⊗Zd

,
where, for K, γ > 0, SK,γ is the space of all probability distributions ωo = (ωoy)y∈Zd

on Z
d, such that ωoy ≤ K|y|−d−γ. By tightness [B2], SK,γ is compact in the weak-*

topology, which can be metrized, e.g., by the total variation distance between two
distributions. Hence, by Tychonoff’s Theorem and a standard argument, Ω is also
compact and metrizable. (This is important in case one needs to construct suitable
invariant measures.) For an element ω = (ωx)x∈Zd ∈ Ω, where ωx = (ωxy)y∈Zd ∈
SK,γ, p(ω) is defined by pxy(ω) := ωx,y−x.
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Ω is acted upon by Z
d via the group of Π-automorphisms (τz)z∈Zd, such that

pxy(τzω) = px+z,y+z(ω). (1.1)

(In the representation above, τz is defined as (τzω)x := ωx+z.) Because of this, there
is no loss of generality in requiring that the walk always starts at 0. The random
walk (RW) in the environment p(ω) is then be defined as the Markov chain (Xn)n∈N
on Z

d whose law Pω is uniquely determined by

Pω(X0 = 0) = 1; (1.2)

Pω(Xn+1 = y |Xn = x) = pxy(ω). (1.3)

The complete randomness of the problem is accounted for by the annealed (or av-
eraged) law, which is defined on (Zd)N × Ω via

P(E ×B) :=

∫

B

Π(dω)Pω(E), (1.4)

where E is a Borel set of (Zd)N (the latter being the space of the trajectories, where
Pω is defined) and B is a measurable set of Ω. A natural dynamics that can be
defined on this process is the one induced by the map F : (Zd)N ×Ω −→ (Zd)N ×Ω,
given by

F ((xn)n∈N , ω) := ((xn+1)n∈N , τx1ω) . (1.5)

As is apparent, the first component of F updates the trajectory of the RW to the
next time, while the second component updates the environment as seen by the
random walker, or particle. This dynamics may thus be called ‘the point of view of
the particle’ (PVP) for the annealed process.

Another process of great importance, which is directly related to the above,
is the so-called ‘environment viewed from the particle’ (EVP). It can be defined
independently as the Markov chain (Ωn)n∈N on Ω, with law PΠ, such that:

PΠ(Ω0 ∈ B) = Π(B); (1.6)

PΠ(Ωn+1 = ω |Ωn = ω′) =
∑

y: τyω′=ω

p0y(ω
′). (1.7)

(The annoying notation whereby Ωn denotes an element of Ω is not going to be used
again in this note.)

Notational convention. Throughout the paper, the dependance of whichever
quantity (e.g., p) on ω will not be explicitly indicated when there is no risk of
confusion.

When studying the stochastic properties of a RWRE (say, the recurrence or
transience of (Xn), the ergodicity of PΠ, the CLT w.r.t. P or Pω, etc.) an assumption
that is almost always made is the ellipticity of the environment. We state two of
the most common versions it may come in.
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Definition 1.1 A random environment (Ω,Π) is called elliptic if, for Π-a.a. ω ∈ Ω
and all e ∈ Z

d with |e| = 1, p0e > 0. It is called uniformly elliptic if ∃ε > 0 such
that, for Π-a.a. ω ∈ Ω and all e ∈ Z

d with |e| = 1, p0e ≥ ε.

To the author’s knowledge, at least within the scope of non-ballistic RWREs, only
certain results on RWs on percolation clusters [Be, SS, BB, MP] do not (and cannot)
require ellipticity. In general, uniform ellipticity is one of the assumptions, though
recent work focuses on non-uniformly elliptic systems, cf. [M, GZ, Sa] and references
therein.

There are reasons to consider the ellipticity condition too strong in many cases;
for example, uniform ellipticity is a deterministic condition in a probabilistic prob-
lem. More in general, both formulations of Definition 1.1 seem to point to a form
of transitivity of the motion. So it seems natural to try to replace ellipticity with
the simple hypothesis that the walker goes anywhere with positive probability; cf.
(A3)-(A4) below. This is the starting point of this note.

It turns out that some of the results that are commonly looked for within the
scope of RWRE can be proved using this weaker assumption only. The general idea
seems to be that, once a Π-absolutely continuous measure on Ω has been found that
is a steady state for the EVP process, the ellipticity condition is no longer needed.

A result that can be proved in this setup is the ergodicity of the PVP for the
annealed process (Theorem 1.3) and thus of the EVP (Corollary 1.4). The simplest
environments for which the above hypotheses hold are the bistochastic environments,
for which Π is automatically invariant in the right sense. If we further assume that
the RW is a martingale, then we can prove the Invariance Principle (IP) as well
(Theorem 1.7).

Assumptions. The RWRE satisfies the following:

(A1) Effective randomness. Denote by δxy the Kronecker delta in Z
d. Setting

Ωdet :=
{

ω ∈ Ω
∣

∣ ∃yo ∈ Z
d such that p0y = δyoy, ∀y ∈ Z

d
}

,

then Π(Ωdet) < 1. In other words, the jumps at the origin are not almost
surely deterministic.

(A2) Decaying transition probabilities. There exist K, γ > 0 such that, almost
surely,

pxy ≤ K|y − x|−d−γ .

(A3) Ergodicity. There is a subgroup Γ ⊆ Z
d such that (Ω,Π, (τz)z∈Γ) is ergodic.

(In particular, the random environment is ergodic w.r.t. the whole group of
translations.)
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(A4) Transitivity. Let Γ be the same as in (A3). For Π-a.e. ω ∈ Ω, it holds that
∀y ∈ Γ, ∃n = n(ω, y) for which

p
(n)
0y :=

∑

x1,...,xn−1

p0x1 px1x2 · · · pxn−1y > 0.

(A5) Absolute continuity of steady state. There exists a probability measure Π∗ on
Ω, absolutely continuous w.r.t. Π, such that the EVP process PΠ∗

, defined as
in (1.6)-(1.7), is stationary.

Notice that there is a trade-off between (A3) and (A4): if Γ gets smaller, thus making
(A3) stronger, then (A4) becomes easier to verify, and viceversa. In particular, for
an i.i.d. environment (namely, the stochastic vectors px = (pxy)y∈Zd are i.i.d. in x),
one only need verify transitivity w.r.t. Γ = Zyo, for some yo ∈ Z

d. In any event,
Γ = Z

d is a reasonable choice for many applications.

Remark 1.2 (A5) could be replaced by the (slightly) weaker condition that the
steady state Π∗ is non-singular w.r.t. Π. The two conditions are actually equivalent
in our case. In fact, it can be seen (cf. Section 2) that the evolution of Π in the
EVP process is absolutely continuous w.r.t. Π, which implies that, if Π∗ decomposes
into an absolutely continuous measure and a singular measure, both of them are
invariant for the process.

Results. These are our main results:

Theorem 1.3 Under assumptions (A1)-(A5),

(a) the measures Π and Π∗ are equivalent (i.e., mutually absolutely continuous);

(b) if P∗ is the annealed law relative to Π∗ (i.e., the measure defined by (1.4) with
Π∗ in lieu of Π), then P∗ is stationary and ergodic for the dynamics induced
by F on the annealed process.

Corollary 1.4 The EVP with initial state Π∗ is ergodic.

Another easy corollary of Theorem 1.3 concerns the ballisticity of the RW. In order
to state it, we introduce the mean displacement (or local drift) at the origin, for the
environment ω. This is the function D : Ω −→ Z

d given by

D(ω) :=
∑

y∈Zd

p0y(ω) y. (1.8)

Corollary 1.5 For Π-a.e. environment ω, Pω-almost surely,

lim
n→∞

Xn

n
=

∫

Ω

Π∗(dω
′)D(ω′).
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The above statements apply in their generality to a fairly large class of RWREs,
e.g., [La, BK, KO, SS, BB, MP, M, BD, GZ, Sa], for which some results were already
known by case-specific arguments. Moreover, in the case of bistochastic RWREs,
stronger new results can be obtained, which we now present.

A bistochastic environment is defined by the condition that, Π-almost surely,

∀y ∈ Z
d,

∑

x∈Zd

pxy = 1. (1.9)

It is easy to see, cf. Section 4, that, for a bistochastic random environment, PΠ is
stationary, so (A5) is verified by Π itself.

Corollary 1.6 For a bistochastic RWRE verifying (A1)-(A4), the annealed process
(with law P and dynamics F) and the EVP (with initial state Π) are stationary and
ergodic.

Suppose further that the RW has zero local drift, i.e., D ≡ 0, cf. (1.8). By the
invariance of Π, this is the same as:

∀x ∈ Z
d,

∑

y∈Zd

pxy (y − x) = 0, (1.10)

for Π-a.e. ω. This means, of course, that (Xn) is a martingale. (Examples of
bistochastic martingales may be found, for instance, in Appendix A of [L2].) In this
case, assumption (A1) might well be dropped because, if ω ∈ Ωdet, i.e., ∀y ∈ Z

d,

p0y = δyoy, then (1.10) implies that yo = 0, which, in view of (A4), entails that p
(n)
0y =

δ0y, ∀n ∈ Z+. Therefore, (A4) implies that Π(Ωdet) = 0, and (A1) is automatically
verified.

In the martingale case, subject to a natural extra condition on the variance of the
jumps, we can prove the quenched IP. We state it in the form of a theorem as soon
as we have established some notation. Given (Xn), define the continuous trajectory
Rn : [0, 1] −→ R

d via the following: For k = 0, 1, . . . , n− 1 and t ∈ [k/n, (k + 1)/n],

Rn(t) :=
Xk + (nt− k)(Xk+1 −Xk)√

n
. (1.11)

(Evidently, the graph of Rn is the polyline joining the points (k/n,Xk/
√
n), for

k = 0, . . . , n.) The above can be regarded as a stochastic process relative to either
Pω (the quenched trajectory) or P (the annealed trajectory). Then we have:

Theorem 1.7 Assume (A2)-(A4), with γ > 2, and (1.10). There exists a symmet-
ric d× d matrix C such that, for Π-a.e. ω ∈ Ω, the quenched trajectory Rn, relative
to Pω, converges to the d-dimensional Brownian motion with drift 0 and diffusion
matrix C. The convergence is intended in the weak-* sense in C([0, 1]) endowed with
the sup norm.
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Since the diffusion matrix, an expression for which is given later in (4.13), does not
depend on ω, one immediately gets the annealed IP.

Corollary 1.8 The annealed trajectory converges to the same Brownian motion as
in Theorem 1.7.

A consequence of this is the almost sure recurrence in dimension one and two.

Corollary 1.9 If d ≤ 2 then, P-almost surely (equivalently, Pω-almost surely for
Π-a.e. ω ∈ Ω),

lim inf
n→∞

|Xn| = 0.

The proofs of Theorems 1.3 and 1.7 are based on a convenient representation
of the RWRE as a probability-preserving dynamical system which, roughly speak-
ing, is a “measured family” of one-dimensional Markov maps. Each map embodies
the dynamics of one random jump, and thus contains only local information. We
will see that this dynamical system is isomorphic to the annealed process. In any
case, Section 2 should convince the reader that it is natural to call this object ‘the
dynamical system for the point of view of the particle’; in short, PVP dynamical
system.

The exposition is organized as follows: In Section 2 we introduce the dynamical
system and find a suitable invariant measure for it. In Section 3 we prove its er-
godicity, which is equivalent to Theorem 1.3 and implies its corollaries. In Section 4
we consider the bistochastic environments, establishing Theorem 1.7 and the other
results.

Acknowledgments. I am grateful to Alessandra Bianchi, Stefano Olla, Firas
Rassoul-Agha, Luc Rey-Bellet, and Vladas Sidoravicius for useful discussions. This
work was partially supported by the FIRB-“Futuro in Ricerca” Project RBFR08UH60
(MIUR, Italy).

2 The PVP dynamical system

Let us fix an enumeration (di)i∈Z+ of Zd. For ω ∈ Ω and i ∈ Z+, we define

qi(ω) := p0di(ω) (2.1)

Certainly,
∑

i qi(ω) = 1. We then set a0(ω) := 0 and, recursively on i,

ai(ω) := ai−1(ω) + qi(ω) (2.2)

Ii(ω) := [ai−1(ω) , ai(ω)). (2.3)
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Clearly, {Ii(ω)}i∈Z+ is a partition of I := [0, 1). For (s, ω) ∈ I×Ω, denote by i(s, ω)
the unique i such that s ∈ Ii(ω). We define the function φ : I × Ω −→ I via

φ(s, ω) :=
s− ai(s,ω)(ω)

qi(s,ω)(ω)
. (2.4)

(The definition above is well-posed because, if i is such that qi(ω) = 0, there is no s
such that i(s, ω) = i.) By construction, φ(·, ω) is the perfect Markov map I −→ I
relative to the partition {Ii(ω)}. Finally, we denote D(s, ω) := di(s,ω).

The main technical tool of this paper is the map T : M −→ M, defined on
M := I × Ω by

T (s, ω) :=
(

φ(s, ω), τD(s,ω)ω
)

. (2.5)

We endow M with either the probability measure µ := m ⊗ Π or µ∗ := m ⊗ Π∗,
where m is the Lebesgue measure on I.

What this dynamical system has to do with our RWRE is presently explained.
Let us recall the notational convention whereby the dependance on ω is not always
indicated. Fix ω ∈ Ω and consider a random s ∈ I w.r.t. m. We have that
D(s, ω) = di if and only if s ∈ Ii, and this occurs with probability m(Ii) = qi.
In terms of our RW, this is exactly the probability that a particle placed in the
origin of Zd, endowed with the environment p(ω), jumps by a quantity di. Then,
back to the dynamical system, condition the measure m to Ii. Calling (s1, ω1) :=
T (s, ω), we see that, upon conditioning, s1 ranges in I with law m. Therefore, in a
sense, the variable s (which we may call the internal variable) has “refreshed” itself.
Furthermore, ω1 = τD(s,ω)ω = τdiω is the translation of ω in the opposite direction
to di, cf. (1.1). Hence we can imagine that we have reset the system to a new initial
condition (s1, ω1), corresponding to the particle sitting in 0 ∈ Z

d and subject to the
environment p(ω1). Applying the same reasoning to (s2, ω2) := T (s1, ω1), and so on,
shows that we are following the motion “from the point of view of the particle”. We
thus call the above the ‘PVP dynamical system’.

In any case, it should be clear that the stochastic process (Xn)n∈N, with X0 ≡ 0
and, for n ≥ 1,

Xn(s, ω) :=

n−1
∑

k=0

D ◦ T k(s, ω). (2.6)

is precisely the RW in the environment p(ω), provided that ω is regarded as a fixed
parameter. To emphasize this point, we occasionally write Xn,ω(s) := Xn(s, ω).
(Xn,ω) is called the ‘quenched trajectory’, and it is a Markov chain. If both s and ω
are considered random, w.r.t. µ, then (2.6) defines the ‘annealed trajectory’. This is
not a Markov chain and, by the definition of µ and (1.4), it is none other than the
RWRE of Section 1 with law P. For a formal relation between the annealed process
and the PVP dynamical system see Proposition 3.3.

Proposition 2.1 The measure µ∗ is preserved by T .
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We need the following lemma:

Lemma 2.2 For every measurable set B ⊆ Ω,

Π∗(B) =
∑

i∈Z+

∫

τ
−di(B)

Π∗(dω
′) qi(ω

′).

Proof of Lemma 2.2. Via (2.1) and (A2), we observe that the series
∑

i∈Z+

qi(ω
′) =

∑

x∈Zd

p0x(ω
′), (2.7)

is uniformly bounded in ω′. Thus, as we will do more than once presently, it is
correct to interchange the above summation with an integration over Ω, if it is
relative to a probability measure.

Using again (2.1), the transition kernel of the EVP process (1.7) can be written
as

K( · |ω′) =
∑

i∈Z+

qi(ω
′) δτdiω′ , (2.8)

where the Dirac delta in the r.h.s. is thought of as a measure. In other words, for a
measurable set B,

K(B |ω′) =

∫

Ω

K(dω |ω′) 1B(ω) =
∑

i∈Z+

qi(ω
′) 1τ

−di(B)
(ω′). (2.9)

Thus, the hypothesis on Π∗ from (A5), namely,

Π∗(B) =

∫

Ω

Π∗(dω
′)K(B |ω′), (2.10)

reads precisely as in the statement of the lemma. Q.E.D.

Proof of Proposition 2.1. It is enough to prove that µ∗(T
−1A) = µ∗(A) for

all sets of the type A = [b, c)×B, where B is a measurable set of Ω.
By direct inspection of the map (2.5), we can write T−1A =

⋃

i∈Z+
A′

i, where

A′
i := {(s′, ω′) | ω′ ∈ τ−di(B), s′ ∈ [ai(ω

′) + qi(ω
′)b , ai(ω

′) + qi(ω
′)c)} ; (2.11)

cf. (2.2), (2.4). Thus,

µ∗(A
′
i) =

∫

τ−di
(B)

Π∗(dω
′) qi(ω

′)(c− b). (2.12)

The sets A′
i are pairwise disjoint because, by construction, they belong to different

level sets of the function D. Therefore, by Lemma 2.2,

µ∗(T
−1A) = (c− b)

∑

i∈Z+

∫

τ−di
(B)

Π∗(dω
′) qi(ω

′) = (c− b) Π∗(B) = µ∗(A), (2.13)
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which is what we wanted to prove. Q.E.D.

Let us introduce a convenient notation that will be used throughout the paper:
For (s, ω) ∈ M and k ∈ N, denote

(sk, ωk) := T k(s, ω). (2.14)

Proposition 2.3 The measures µ∗ and µ are equivalent or, which is the same, the
measures Π∗ and Π are equivalent.

Proof. Denote Ω∗ := suppΠ∗ ⊆ Ω and Ωc
∗ := Ω \ Ω∗. By (A5), Π(Ωc

∗) < 1.
Suppose, by way of contradiction, that Π(Ωc

∗) > 0 as well.

By (A3), for Π-a.e. ω ∈ Ω∗, there exists yω ∈ Γ such that

τyωω ∈ Ωc
∗. (2.15)

To each such ω (excluding at most a Π-null set) we apply (A4) and its interpretation
in terms of the PVP dynamical system: there exists a positive integer n = n(ω, yω)
such that

Jω := {s ∈ I |Xn(s, ω) = yω} (2.16)

has measure p
(n)
0yω > 0. By definition, ∀s ∈ Jω,

T n(s, ω) = (sn, τD(sn−1,ωn−1) ◦ · · · ◦ τD(s,ω) ω)

= (sn, τXn(s,ω) ω)

= (sn, τyωω) ∈ I × Ωc
∗, (2.17)

having used (2.14), (2.6), (2.16) and finally (2.15). If we define

A :=
⋃

ω∈Ω∗

Jω × {ω}, (2.18)

we have µ(A) > 0 and, via (2.17),

A ⊂
⋃

n≥1

T−n(I × Ωc
∗). (2.19)

The definition of Ωc
∗ implies that µ∗(I × Ωc

∗) = 0, hence, since µ∗ is T -invariant,
µ∗(A) = 0. Finally, since µ and µ∗ are equivalent on I × Ω∗ ⊃ A, µ(A) = 0, which
contradicts a previous statement. Q.E.D.
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3 Ergodicity

In this section we will prove the ergodicity of (M, µ∗, T ). For this, we need to
introduce some more notation and establish a few lemmas.

Given a positive integer n and a multi-index i := (i0, i1, ..., in−1) ∈ Z
n
+, we set

Ii(ω) :=
{

s ∈ I
∣

∣D ◦ T k(s, ω) = dik , ∀k = 0, . . . , n− 1
}

. (3.1)

For n = 1 this reduces to definition (2.3). It is easy to ascertain that {Ii}i∈Zn
+
is

a partition of I into countably many (possibly empty) right-open intervals, each of
which corresponds to one of the realizations of the RW (Xk,ω)

n
k=0 (relative to the

environment ω) in such a way that m(Ii) is the probability of the corresponding
realization. In analogy with the previous notation, we denote by in(s, ω) the index
of the element of the partition which contains s.

Furthermore, let us call horizontal fiber of M any segment of the type Iω :=
I × {ω}, and indicate with mω the Lebesgue measure on it. Lastly, we denote by
Iω,i the subset of Iω corresponding to Ii(ω) via the natural isomorphism I ∼= Iω.

Lemma 3.1 Recalling the definition of Ωdet from (A1),

µ∗

( ∞
⋂

n=0

T−n (I × Ωdet)

)

= 0.

In other words, almost no orbits of T stay confined to I × Ωdet.

Proof. ω ∈ Ωdet if and only if {Ii(ω)}i∈Z+ is the trivial partition of I, whence
T|Iω(s, ω) = s. Denote by A the set that is being measured in the statement of the
lemma. Recalling notation (2.14), (s, ω) ∈ A if and only if ωn ∈ Ωdet, ∀n ∈ N.
Equivalently, {Ii(ω)}i∈Zn

+
is the trivial partition of I and sn = s, for all n. This

means that the T -orbit of (s, ω) does not depend on s and the quenched trajectory
of the RW (starting at 0) is completely deterministic in the environment ω. In
particular, A is in the from A = I × B. The completeness of Π implies that B is
measurable, as in Lemma A.1 of [L1] (cf. Lemma 3.4 of [L2]).

We want to show that µ∗(A) = 0, that is, Π∗(B) = 0, that is, by Proposition
2.3, Π(B) = 0. By absurd, assume the contrary. Also denote Ωc

det := Ω \ Ωdet. By
(A1), Π(Ωc

det) > 0.
We reason along the same lines as Proposition 2.3. Take ω ∈ B that is typical in

the sense of both (A3) and (A4): there exist y ∈ Γ such that τyω ∈ Ωc
det, and n ∈ Z+

such that p
(n)
0y > 0. Since the trajectory is completely deterministic, p

(n)
0y = 1 and,

∀s ∈ I, ωn = τyω; cf. (2.17). Thus ωn ∈ Ωc
det, contradicting the fact that (s, ω) ∈ A,

or ω ∈ B. Q.E.D.

Lemma 3.2 For a.a. (s, ω) ∈ M, m(Iin(s,ω)) vanishes exponentially fast, as n →
∞.
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Proof. Set
f(s, ω) := log q−1

i(s,ω)(ω) = − logm(Ii(s,ω)(ω)). (3.2)

Clearly f(s, ω) ≥ 0, with f(s, ω) = 0 if and only if {Ii(ω)} is the trivial partition of
I, if and only if ω ∈ Ωdet. The Birkhoff average of f ,

f+(s, ω) := lim
n→∞

1

n

n−1
∑

k=0

f(sk, ωk), (3.3)

is non-negative as well. Set A := {(s, ω) | f+(s, ω) = 0}. As a level set of an in-
variant function, A is invariant mod µ∗. We claim that µ∗(A) = 0. If not, we can
apply one of the assertions of Birkhoff’s Theorem to the measure-preserving dy-
namical system (A, µ∗, T|A) and conclude that

∫

A
dµ∗ f =

∫

A
dµ∗ f

+ = 0. Therefore,
f(s, ω) = 0, for a.a. (s, ω) ∈ A. In other words, A ⊆ I × Ωdet mod µ∗. Since A
is invariant, the orbit of a.e. point of A is contained in I × Ωdet, which contradicts
Lemma 3.1, for µ∗(A) > 0.

So f+ > 0 almost everywhere. On the other hand, from earlier considerations,
it is easy to verify that, for n ≥ 1,

m
(

Iin(s,ω)(ω)
)

=
n−1
∏

k=0

qi(sk ,ωk)(ωk) = exp

(

−
n−1
∑

k=0

f(sk, ωk)

)

. (3.4)

Due to the almost sure positivity of (3.3), the exponent in the rightmost term above
is asymptotically linear in n, for a.a. (s, ω), which yields the assertion. Q.E.D.

Proposition 3.3 As dynamical systems on probability spaces, (M, µ, T ) is isomor-
phic to ((Zd)N × Ω,P,F), and (M, µ∗, T ) is isomorphic to ((Zd)N × Ω,P∗,F).

Proof. We hope the reader was already convinced in Section 2 that the PVP
dynamical system describes exactly the annealed process with the PVP dynamics.
On the other hand, Lemma 3.2 provides the ingredients for a formal proof, which
we just sketch here.

For both pairs of systems, a natural isomorphism Φ : M −→ (Zd)N ×Ω is given
by

Φ(s, ω) := ((Xn(s, ω))n∈N , ω) , (3.5)

cf. (2.6). One sees that Φ is almost-everywhere bijective because of the following: By
Lemma 3.2, a.e. (s, ω) ∈ M is the unique intersection point of the nested sequence
of right-open intervals (Iω,in(s,ω))n∈N, i.e., is uniquely determined by the sequence
(in(s, ω)), equivalently, by the realization (Xn(s, ω)) of the RW. Viceversa, for an
environment ω, every realization of the walk determines a nested sequence of inter-
vals which, except for a null set of realizations, gives a point (s, ω) ∈ Iω. (Since
the intervals are right-open, this correspondence is ill-defined at the endpoints of
all such intervals. But this amounts to a null set of points in Iω and a null set of
realizations in (Zd)N.)
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Finally, it is clear by the considerations of Section 2 that µ = P ◦Φ, µ∗ = P∗ ◦Φ
and T = Φ−1 ◦ F ◦ Φ. Q.E.D.

Lemma 3.4 The ergodic components of (M, µ∗, T ) contain whole horizontal fibers,
that is, every invariant set is of the form I×B, mod µ∗ (equivalently, mod µ), where
B is a measurable subset of Ω.

Proof. Suppose the assertion is false. There exists an invariant set A whose
intersection with many horizontal fibers is neither the full fiber nor empty, mod mω.
That is, for some ε > 0, the Π∗-measure of

Bε := {ω ∈ Ω |mω(A ∩ Iω) ∈ [ε, 1− ε]} (3.6)

is positive. By the Poincaré Recurrence Theorem and the Lebesgue Density Theorem
it is possible to pick (s, ω) ∈ A ∩ (I ×Bε) that is recurrent to I ×Bε and such that
(s, ω) is a density point of A ∩ Iω, within Iω, relative to mω. We claim that there
exist a sufficiently large n and a multi-index i ∈ Z

n
+ for which

mω(A ∩ Iω,i) > (1− ε)mω(Iω,i) (3.7)

and
T nIω,i = Iωn

⊂ I × Bε. (3.8)

In fact, among the infinitely many n that verify T n(s, ω) ∈ I×Bε, we can choose, by
Lemma 3.2, one for which Iω,in(s,ω) is so small that (3.7) is verified for i = in(s, ω).
The equality in (3.8) is true by the Markov property of φ(·, ωn−1)◦· · ·◦φ(·, ω) (recall
the notation (2.14)).

It is no loss of generality to assume that the nth iterate of mω-a.e. point of A∩Iω,i
remains in A (in the choice of (s, ω), use the invariance of A mod µ∗ and Fubini’s
Theorem). Since the restriction of T n to Iω,i is linear, we deduce from (3.7)-(3.8)
that mωn

(A ∩ Iωn
) > 1− ε, which contradicts (3.6), because ωn ∈ Bε by (3.8).

Therefore, an invariant set mod µ∗ can only occur in the form I × B, with B
measurable (by the same argument is in the proof of Lemma 3.1). Q.E.D.

Remark 3.5 The techniques of Lemma 3.4 (based on the fact that φ(·, ω) is a
piecewise-linear Markov map of the interval) easily imply that any T -invariant mea-
sure that is smooth along the horizontal fibers must be uniform on them, i.e., must
be of the type m⊗ Π′.

Theorem 3.6 (M, µ∗, T ) is ergodic.

Proof. Suppose the system is not ergodic. By Lemma 3.4, we have an invariant set
I×B, with Π(B) ∈ (0, 1). Therefore the probability µ′ := µ∗( · |I×B) is T -invariant
and decomposes as µ′ = m⊗Π′, where Π′ := Π∗( · |B). So we can apply Proposition
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2.3 with Π′ in the role of Π∗. The result contradicts the hypothesis Π(B) ∈ (0, 1).
Q.E.D.

We can now easily prove the main result of the paper.

Proof of Theorem 1.3. Assertion (a) is Proposition 2.3. Assertion (b) follows
from Proposition 2.1, Theorem 3.6 and Proposition 3.3. Q.E.D.

Proof of Corollary 1.4. A bounded measurable function φ : ΩN −→ R induces
a bounded measurable function f : M −→ R via f(s, ω) := φ((τXn(s,ω)ω)n∈N) =
φ((ωn)n∈N). By Theorem 3.6, the asymptotic Birkhoff average of f is constant µ∗-
almost everywhere, i.e., from Proposition 3.3, for Pω-a.e. realization (xn,ω) of the
RW, in Π∗-a.e. environment ω. By the definition of the EVP process (compare
(1.7) with (1.3)), this means that the asymptotic Birkhoff average of φ is constant
for PΠ∗

-a.e. realization (ωn) of the process. By density, the result extends to all
φ ∈ L1(PΠ∗

). Q.E.D.

Proof of Corollary 1.5. Let us first notice that, by (1.8) and the definition
of D from Section 2,

D(ω) =
∑

i∈Z+

qi(ω) di =

∫

I

dsD(s, ω). (3.9)

We apply Theorem 3.6 to the displacement function D, cf. (2.6):

lim
n→∞

Xn(s, ω)

n
= lim

n→∞

1

n

n−1
∑

k=0

D ◦ T k(s, ω)

=

∫

M
µ∗(ds

′dω′)D(s′, ω′)

=

∫

Ω

Π∗(dω
′)D(ω′), (3.10)

for µ∗- or µ-a.e. (s, ω) ∈ M, that is, Pω-almost surely for Π-a.e. ω (Proposition 3.3).
Q.E.D.

4 Bistochastic environments

In the remainder of this note we focus on the example of the bistochastic environ-
ments, as defined by (1.9). In the language of Section 2, (1.9) implies that

∑

i∈Z+

qi(τ−di ω) =
∑

x∈Zd

p0x(τ−x ω) =
∑

x∈Zd

p−x0(ω) = 1, (4.1)

for Π-a.e. ω; cf. (2.1) and (1.1). Therefore, in view of the statement of Lemma 2.2,

∑

i∈Z+

∫

τ
−di(B)

Π(dω′) qi(ω
′) =

∑

i∈Z+

∫

B

Π(dω) qi(τ−diω) = Π(B), (4.2)
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having used the invariance of Π w.r.t. (τz) (in the first equality) and (4.1) (in the
second equality). The above proves Lemma 2.2 for Π, and thus Proposition 2.1
for µ. Consequently, all the results of Sections 2 and 3 hold true if Π∗ and µ∗ are
replaced, respectively, by Π and µ. In particular, this implies Corollary 1.6.

Let us now assume the hypotheses of Theorem 1.7. We point out that requiring
γ > 2 in (A2) ensures that the variance of the distribution px = (pxy)y∈Zd is unifomly
bounded in x and ω, almost everywhere. This is instrumental in proving that the
process (Xn)n∈N, defined in (2.6), is a martigale with finite covariances, as we do in
a moment.

Here we consider (Xn) mostly (but not exclusively) in its quenched interpreta-
tion, i.e., as a sequence of random variables on the probability space (Iω, mω), for
some ω ∈ Ω. At any rate, let Eω denote the expectation in (Iω, mω), and Eµ the
expectation in (M, µ). Also, Greek superscripts will indicate the components of a
d-dimensional vector (for example, Xα

n is the αth component of Xn).
As shown by (2.6), both the quenched and the annealed trajectories have incre-

ments given by the identity

Xn+1 −Xn = D ◦ T n. (4.3)

Lemma 4.1 For a.e. ω, the quenched RW (Xn,ω) is a martingale with asymptotic
covariance matrix C := (cαβ)

d
α,β=1, where

cαβ := Eµ(D
αDβ) =

∫

M
µ(dsdω)Dα(s, ω)Dβ(s, ω) < ∞.

In particular, writing for simplicity Xn = Xn,ω, one has:

(a) for Fn := σ(X1, . . . , Xn),

lim
n→∞

1

n

n−1
∑

k=0

Eω

(

(Xα
k+1 −Xα

k )(X
β
k+1 −Xβ

k )
∣

∣

∣
Fk

)

= cαβ,

in probability w.r.t. mω;

(b) the Lindeberg condition holds, i.e., ∀ε > 0,

lim
n→∞

1

n

n−1
∑

k=0

Eω

(

|Xk+1 −Xk|2 1{|Xk+1−Xk|>ε
√
n}
)

= 0,

where 1{·} is the indicator function of a given event.

Proof. The considerations outlined in the beginning of Section 3 show that the
partition of Iω corresponding to Fn is precisely {Iω,i}i∈Zn

+
, whence, by (4.3),

Eω(D ◦ T n|Fn) =
∑

i∈Zn
+

[

1

m(Ii)

∫

Ii

ds D ◦ T n(s, ω)

]

1Iω,i
. (4.4)
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Let us show that all the integrals above vanish. For i fixed and s ranging in Ii,
the first n positions of the walk are determined by the values xk := Xk(s, ω) (k =
1, . . . , n). Thus, denoting (i, j) = (i0, i1, ..., in−1, j) ∈ Z

n+1
+ ,

∫

Ii

ds D ◦ T n(s, ω) =
∞
∑

j=1

m
(

I(i,j)
)

dj

= p0x1 · · · pxn−1,xn

∞
∑

j=1

pxn,xn+dj dj = 0, (4.5)

via (1.10). Therefore (Xn) is a martingale.
Now let us fix α, β ∈ {1, . . . , d} and set

f(s, ω) := f(ω) := Eω(D
αDβ) =

∫

I

ds′ Dα(s′, ω)Dβ(s′, ω). (4.6)

Assumption (A2) with γ > 2 implies that f is bounded: in fact,

|f(ω)| ≤
∫

I

ds′ |D(s′, ω)|2 =
∑

i∈Z+

m(Ii) |di|2

=
∑

y∈Zd

p0y |y|2 ≤ K
∑

y∈Zd

|y|−d−γ+2 =: K1. (4.7)

Also, by the definition of cαβ ,
∫

M
µ(dsdω) f(s, ω) =

∫

Ω

Π(dω) f(ω) = cαβ . (4.8)

The above and (4.7) prove the finiteness of cαβ .
Coming to assertion (a), and considering (4.3), one easily checks that

Eω

(

(Dα ◦ T k)(Dβ ◦ T k)
∣

∣Fk

)

= Eωk
(DαDβ) ◦ T k = f ◦ T k (4.9)

(as usual, ωk is given by (2.14)). In light of (4.8)-(4.9), (a) follows from Theorem
3.6 (with µ∗ = µ): the Birkhoff average of f converges to cαβ for µ-a.e. (s, ω) ∈ M.
That is, for Π-a.e. ω, we have convergence almost everywhere in Iω, w.r.t. mω.
Convergence in probability follows.

The proof of assertion (b) is achieved by a similar argument, except that we use
the function

gM(s, ω) := gM(ω) := Eω

(

|D|2 1{|D|>M}
)

, (4.10)

which is bounded as in (4.7) (M is any positive number). Once again, the ergodicity
of (M, µ, T ) entails that, for a.e. ω, the limit

lim
n→∞

1

n

n−1
∑

k=0

gM ◦ T k(s, ω) = Eµ(gM) (4.11)
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holds for a.e. s ∈ Iω. Due to the boundedness of gM , the above is true even if we
integrate the summand in the l.h.s. on s ∈ Iω. Therefore, for every M > 0, there
exists a full-measure set of ω for which

lim sup
n→∞

1

n

n−1
∑

k=0

Eω

(

∣

∣D ◦ T k
∣

∣

2
1{|D◦T k|>ε

√
n}

)

≤ lim
n→∞

1

n

n−1
∑

k=0

Eω

(

gM ◦ T k
)

= Eµ(gM). (4.12)

It is easy to see (e.g., by letting M take values along a diverging sequence of positive
numbers), that (4.12) holds for a.a. ω, independently of M . In view of (4.3), this
yields (b) because infM>0 Eµ(gM) = 0. Q.E.D.

In terms of the transition probabilities of Section 1, the entries of C are expressed
by

cαβ =

∫

Ω

Π(dω)
∑

y∈Zd

p0y(ω) y
αyβ. (4.13)

Understandably, C is the average (or annealed) covariance matrix of a jump, relative
to steady state on the space of the environments.

The quenched IP is a corollary of Lemma 4.1.

Proof of Theorem 1.7. The result follows from the Lindeberg–Feller Theorem
for martingales, whose hypotheses are precisely the assertions of Lemma 4.1. (See
[D, Thm 7.7.4] for a convenient one-dimensional version of that theorem; cf. also
[HH, Chap. 4]. The multidimensional version follows in a standard way, via the
Cramér–Wold device [D, B1]: see, e.g., [BP, p. 1341]; cf. also [Z, Thm. 3.3.4] and
[La].) Q.E.D.

As Corollary 1.8 is obvious, it remains to prove Corollary 1.9, i.e., the Π-a.s.
recurrence of (Xn,ω) in dimension 1 and 2. We do so via a general result of Schmidt
[S], which we restate and adapt as follows.

Theorem 4.2 Let (M, µ, T ) be an ergodic dynamical system, with µ(M) = 1, and
f a measurable function M −→ Z

d. Call cocycle of f the family (Sn)n∈N of random
vectors on (M, µ) thus defined: For n = 0, S0 := 0; for n ≥ 1,

Sn :=
n−1
∑

k=0

f ◦ T k.

If there exist a positive-density sequence (nk)k∈N and two constants κ, ρo > 0 such
that

µ

(
∣

∣

∣

∣

Snk

nk
1/d

∣

∣

∣

∣

≤ ρ

)

≥ κρd,
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for all k ∈ N and ρ ∈ (0, ρo), then the cocycle (Sn) is recurrent, namely,

lim inf
n→∞

|Sn| = 0,

µ-almost surely.

Theorem 4.2 was proved by Schmidt in 1998 [S], with the extra assumption that T
be invertible mod µ. The generalization to noninvertible measure-preserving maps
is an easy exercise which can be found, e.g., in Appendix B of [L2].

Proof of Corollary 1.9. By (2.6) we see that the annealed trajectory (Xn)
is the cocycle of D over the ergodic dynamical system (M, µ, T ). For d ≤ 2, the
hypotheses of Theorem 4.2 are evidently satisfied if (Xn) verifies the Central Limit
Theorem (CLT) with zero mean, relative to µ. (In point of fact, much less is needed
when d = 1.) But the CLT is a trivial consequence of Corollary 1.8.

Corollary 1.9 then follows from the isomorphism between (M, µ, T ) and the
annealed process (Proposition 3.3). Q.E.D.
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