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Abstract

In a previous article due to one of the present authors (YFP), an extension to General
Relativity, violating general covariance to the residual unimodular one, was proposed. As a
manifestation of such a violation, there appears the (massive) scalar graviton in addition to
the massless tensor one. The former was proposed as a candidate on the dark matter in the
Universe. In a subsequent article (Yu. F. Pirogov, MPLA 24, 3239, 2009; arXiv:0909.3311
[gr-qc]), an application of the extension was developed. Particularly, a regular solution to
the static spherically symmetric equations in empty space was studied by means of ana-
lytical methods. This solution was proposed as a prototype model for the galaxy soft-core
dark halos, with the coherent scalar-graviton field as dark matter. The present report is
a supplement to the aforementioned article. The statements of the latter are verified and
visualized by means of numerical analysis and symbolic calculations. The nice validity of
analytical results is found.

1 Introduction

In Ref. [1], an extension to General Relativity was proposed. The extension possesses the
residual unimodular covariance, and in line with the massless tensor graviton describes the
(massive) scalar one. The latter was proposed as a candidate on dark matter in the Universe.
The theory was further developed in a series of subsequent articles. In particular, in [2] a
regular solution to the static spherically symmetric equations of extended gravity in empty
space was qualitatively studied by means of analytical methods. This solution was proposed as
a prototype model for the galaxy soft-core dark halos, with the coherent scalar-graviton field
as dark matter. For details, we refer the reader to [1, 2]. The present report is a supplement to
Ref. [2]. The statements of the latter are verified and visualized by means of numerical analysis
and symbolic calculations. The nice consistency of the qualitative analytical study is found. As
a by-product, it is found highly plausible that the power series for the regular solution has just
a finite radius of convergence.

2 Extended gravity equations

Here, we shortly remind the results of [2] concerning the static spherically symmetric equations
of the unimodular extended gravity in empty space. The line element in such a case looks in
the polar coordinates (τ, r, θ, ϕ) most generally like:

ds2 = adτ2 − bdr2 − cr2(dθ2 + sin2 θdϕ2), (1)
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where a, b and c are some metric potentials. In the static limit, all the variables depend only
on the radius r, which is still defined ambiguously. To eliminate such an ambiguity impose the
coordinate condition ab = 1. Defining now the new variables

A ≡ a = 1/b, C ≡ r2c (2)

and supplementing them by the (dimensionless) scalar-graviton field X we get the system of
the nonlinear differential equations as follows:
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Here, a dimensionless parameter ε2h = 2k2h/k
2
g refers to the Lagrangian of extended gravity, with

κg being the mass scale for the ordinary gravity (of the order of Planck mass) and κh being
an additional mass scale characteristic of the unimodular extended gravity. On the contrary,
the parameter Rh > 0, with the dimension of length, arises as a free integration constant.
Physically, it characterizes an internal length scale for a vacuum solution.

The first equation above reflects continuity condition in empty space, with the other equa-
tions being a combination of the continuity condition and three gravity equations. Out of four
equations, only three are independent and can be chosen at will as a primary system. The
remaining equation should, generally, serve as a consistency condition.

At a finite Rh, it is appropriate to choose the scaled distance ξ = r/Rh as an independent
variable. Introducing then t = ξ2 and redefining C as C ≡ tc we get equivalently:
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This system is the main concern of the present investigation.

3 Analytical study

Here, we recapitulate some results of [2] concerning the solution regular at t = 0. Looking for
such a solution as a power series of t one gets:
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This representation is, generally, valid at the arbitrary εh ≤ 1 and may formally be continued
up to the arbitrary powers of t. But being restricted just to a region of t (see later) it does not
give apprehension of solution as a whole.

To proceed, we restrict ourselves to the case εh � 1 which is preferred from astronomical
observations. Under this assumption, decompose formally an arbitrary solution as a power
series of ε2h:
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with the conditions a0 = c0 = 1. Substituting this decomposition into (4) we simplify the latter
in the leading εh-order as follows:
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Clearly, a1 = X0 under the proper boundary conditions. Thus, solving the system of the coupled
differential equations (4) reduces to solving the ordinary differential equation for X0 and c1,
with the last equation of system serving as a constraint.

To this end, introducing the new variables

Z = X0 − σ, σ = ln (3t) (8)

transform the equation for X0 to the autonomous (not containing explicitly the independent
variable) form
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Putting then Ż ≡ dZ/dσ reduce the second-order equation for Z to system of two first-order
equations for Z and Ż as follows:
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Such a system is known to be fully characterized by its phase plane (Z, Ż). Of the particular
importance are the exceptional points defined by dZ/σ = dŻ/dσ = 0. In the case at hand,
there is just one point of this kind, Z = Ż = 0, and it belongs to the stable focus type. All the
trajectories (Z(σ), Ż(σ)) winds around this point approaching it at σ →∞. Moreover, among

the trajectories there is a unique one (Z̃(σ), ˜̇Z(σ)), with ˜̇Z remaining finite at σ → −∞.
In the original terms, this signifies two important properties of the solutions X0(t). First,

all of them ripple around the exceptional solution

X̄0 = ln (3t) (11)

approaching the latter at t →∞. Second, the regular at the origin solution X̃0 is unique and,
supplemented by condition X̃0(0) = 0, should look at t→ 0 as given by (5) with εh = 0:

X̃0 = t− 3
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4
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This gives the qualitative picture of the looked-for regular solution X̃0 as a whole. The same
concerns the regular ã1 = X̃0. As for the regular c̃1, it have to approach asymptotically the
exceptional solution

c̄1 = 2− ln (3t) (13)

and be approximated at 0 ≤ t < 1 by the power series

c̃1 = − 1

10
t2 +

2

35
t3. (14)

4 Numerical analysis

Here, we numerically verify and visualize the above analytical statements of [2]. The phase
plane of system (10) is shown below:

The arrows present the direction field given by dŻ/dZ = (dŻ/dσ)/(dZ/dσ). The trajectories are
the lines Ż(Z) tangential to the direction field in every point. The bulk of trajectories (dashed
black lines) possesses Ż → −∞ at σ → −∞ resulting in the singular at t→ 0 solutions. There
is just one trajectory, with the finite Ż (Ż → −1 at σ → −∞ ), indicated by the solid red line.

It may be associated with solution X̃0 regular at t = 0. The exceptional trajectory (Z̄ = ¯̇Z = 0)
corresponds to exceptional solution X̄0. The picture above explicitly supports the statements
made in [2].

To find the exact form of regular solution we integrate the first equation of system (7)
numerically, with boundary condition taken from (12). This gives
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It is well seen that the power series approximates numerical solution very good in interval
0 ≤ t < 1. Asymptotically, the regular solution X̃0 vs. the exceptional one X̄0 looks like:

Clearly, X̃0 ripples around X̄0 approaching the latter at t → ∞. The picture shows that this
approach is though extremely slow.
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The same concerns c̃1. Integrating the third equation of system (7) numerically we get
solution as follows:

At large t, the solution also ripples around the exceptional one approaching the latter asymp-
totically:
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Thus, numerical study totally confirms all the qualitative statements about regular solution
made in [2].

At last, to check the accuracy of numerical calculations we input the found numerical solu-
tions into consistency condition given by the last equation of (7). The absolute (the difference
of L.H.S. and R.H.S.) and relative (the ratio of L.H.S. and R.H.S. minus unity) errors of calcu-
lations are shown, respectively, by the blue and red lines below:

Evidently, the achieved accuracy of numerical calculations is quite nice.

5 Symbolic calculations

Here, we examine the exact regular solution to exact system (4) in a vicinity of t = 0 under an
arbitrary εh. To this end, decompose the looked-for exact solution X̃(t) as the power series of
t as follows:

X̃ =
∞∑
n=0

tnαn(εh), (15)

with αh being some parameters (α0 = 0). We proceed similarly with a(t) and c(t)). Implement-
ing a system of symbolic calculations and following the cyclic perturbative procedure proposed
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in [2] we get in a reasonable time the 24 terms of decomposition, the first five of them being
shown below:
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(and similarly for a1 and c1). The first three terms above reproduce those given by (5).
Putting now εh = 0 we can compare X̃0 found previously with the present solution, two

approximations to which being shown below:

8



It is seen that the power-series solution X̃|εh=0 perfectly matches the numerical one X̃0 up to
t ≤ 1.7. With n increasing, the approximation clearly improves within this region but worsens
beyond it. The further analysis reveals the same picture with εh 6= 0. Fixing a numerical value
for εh allows one to calculate much more coefficients αn in a reasonable time. Thus, calculations
with εh = 0 up to n ' 3·107 make it highly plausible that the area of convergence of power series
is limited in this case to t ≤ 1.8. It seems that similar statement survives with an arbitrary
εh < O(1).

6 Dark halos

Here, we examine validity of analytical results for rotation velocity and the ensuing dark matter
profile found in [2]. The circular rotation velocity of a test particle in the spherically symmetric
metric (1) is, generally, as follows:

v2(r) =
d
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a(r)

/ d

dr
ln
(
r2c(r)

)
. (17)

With account for a1 = X0, the respective velocity squared profile (in terms of ξ = r/Rh) in the
leading εh-order looks like

v2h(ξ)/ε2h ≡ Uh(ξ) = (ξ/2)dX0(ξ)/dξ. (18)

The regular solution X̃0 results then in:
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{
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6, 0 ≤ ξ < 1,

1, ξ � 1,
(19)

This analytical approximation vs. numerical result is shown below:
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with the numerical Ũh approaching unity asymptotically like

The regular solution implies the dark matter profile as follows:

ρh(ξ)/ρh(0) ≡ P̃h(ξ) = exp
(
−X̃0(ξ)

)
, (20)

where ρh(0) = 6ε2hκ
2
g/R

2
h. Analytically, this results in the soft-core halo profile [2]:

P̃h(ξ) =

{
1− ξ2 + 4

5ξ
4, 0 ≤ ξ < 1,

1
3ξ
−2, ξ � 1,

(21)

with the finite central density ρh(0). The analytical approximation vs. numerical result is as
follows:

10



Clearly, the accuracy of analytical study is quite reasonable.

7 Conclusion

Summarizing, numerical analysis of regular solution to the static spherically symmetric equa-
tions of the unimodular extended gravity in empty space totally confirms and somewhat refines
analytical statements made in [2]. As a by-product, symbolic calculations make it highly plau-
sible that the power-series decomposition of solution is valid just interior to a finite convergence
radius. We are going to expand the conducted study on the general solutions to the aforemen-
tioned equations, with a view to refine the application of theory to the galaxy dark halos started
in [2].
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