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Abstract

In this paper it is supposed that the theory involves a minimal
length. Within the scope of this supposition, for the case of a free
particle, the notions of measurability and measurable quantities
are used as a basis for a mathematical apparatus of a new theory that
is a deformation of the conventional (nonrelativistic) quantum me-
chanics. Consideration is given to one example from gravity with
two different but very close low-energy limits: (1) continuous limit
based on the use of nonmeasurable quantities;(2) discrete limit
based on the use of measurable quantities. In conclusion the main
course for further studies is defined. The paper is a continuation of
the earlier studies conducted by the author and of his latest pub-
lication devoted to the inferences concerning the introduction of a
minimal length in a quantum theory and in gravity.

1 Introduction. Measurable and Nonmea-

surable Quantities

One of the key problems of the modern fundamental physics (Quantum The-
ory (QT) and Gravity (GR)) is framing of a correct theory associated with
the ultraviolet region, i. e. the region of the highest (apparently Planck’s)
energies approaching those of the Big Bang.
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However, it is well known that at high energies (on the order of the quantum
gravity energies) the minimal length lmin to which the indicated energies are
�sensitive�, as distinct from the low ones, should inevitably become appar-
ent in the theory. But if lmin is really present, it must be present at all the
�Energy Levels� of the theory, low energies including.
What follows from the existence of the minimal length lmin? When the
minimal length is involved, any nonzero measurable quantity having the
dimensions of length should be a multiple of lmin. Otherwise, its measure-
ment with the use of lmin would result in the measurable quantity ς, so
that ς < lmin, and this is impossible.
This suggests that the spatial-temporal quantities dxµ are nonmeasur-
ablequantities because the latter lead to the infinitely small length ds [1]

ds2 = gµνdxµdxν (1)

nonmeasurable because of lmin.
And this has been indicated in my previous work [2].
Of course, as a mathematical notion, the quantities dxµ, ds are naturally ex-
istent but one should realize that there is no way to express them in terms
of the minimal possible measuring unit lmin.
So, trying to frame a theory (QT and GR) correct at all the energy lev-
els using only the measurable quantities, one should realize that then the
mathematical formalism of the theory should not involve any infinitesimal
spatial-temporal quantities. Besides, proceeding from the acknowledged re-
sults associated with the Planck scales physics [3]–[11], one can infer that
certain new parameters dependent on lmin should be involved.
What are the parameters of interest in the case under study? It is obvious
that, as the quantum-gravitational effects will be revealed at very small
(possibly Planck’s) scales, these parameters should be dependent on some
limiting values, e.g., lP ∝ lmin and hence Planck’s energy EP .
This means that in high-energy QT and GR the energy- or, what
is the same, measuring scales-dependent parameters should be
necessarily introduced.
But, on the other hand, these parameters could hardly disappear totally at
low energies both in QT and in GR.
But, provided lmin exists, it must be involved at all the energy levels, both
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high and low.
The fact that lmin is omitted in the formulation of low-energy QT and GR
and the theories give perfect results leads to two different inferences:

1.1. The influence of the above-mentioned new parameters associated with
lmin in low-energy QT and GR is so small that it may be disregarded at the
modern stage in evolution of the theory and of the experiment.

1.2. The modern mathematical apparatus of conventional QT and GR has
been derived in terms of the infinitesimal spatial-temporal quantities dxµ
which, as noted above, are nonmeasurable quantities in the formalism
of lmin.

This paper is just the first step in derivation of lmin-involving QT and GR
with the use of only measurable quantities. It is a direct continuation
of the previous author’s work [2]. Sections 2 and 3 present definitions of
measurability and initial mathematical formulations for the fundamental
quantities (coordinates, momenta, and so on). In Section 4 the correspond-
ing deformation of the nonrelativistic quantum mechanics is derived in terms
of measurable quantities for the simplest case of the free massive particle
m [12].
In Section 5, reasoning from the measurability, the author analyzes the
low- and high-energy behavior of a very interesting gravitational model –
Heuristic Markov’s Model [13].
Finally, Conclusion presents the main course for further studies in this field.

2 Uncertainty Principle at All Scales Ener-

gies, Minimal Length and Measurability

We begin not with Heisenberg’s Uncertainty Principle (HUP) [14]

∆x ≥ ~
∆p

(2)
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but with its widely known high-energy generalization the Generalized Un-
certainty Principle (GUP) [15]– [27]:

∆x ≥ ~
∆p

+ α′l2P
∆p

~
. (3)

Here α′ is the model-dependent dimensionless numerical factor and lP is the
Planckian length. (Note that the normalization ∆x∆p ≥ ~ is used rather
than 4x∆p ≥ ~/2.)
Note also that initially GUP (3) was derived within a string theory [15]– [18]
and, subsequently, in a series of works far from this theory [19] – [25] it has
been demonstrated that on going to high (Planck’s) energies in the right-
hand side of HUP (2) an additional �high-energy� term ∝ l2P

4p
~ appears.

Of particular interest is the work [19], where by means of a simple gedanken
experiment it has been demonstrated that with regard to the gravitational
interaction (3) is the case.
As (3) – quadratic inequality, then it naturally leads to the minimal length
lmin = ξlP = 2

√
α′lP .

This means that the theory for the quantities with a particular dimension
has a minimal measurement unit. At least, all the quantities with such
a dimension should be �quantized�, i. e. be measured by an integer number
of these minimal units of measurement.
Specifically, if lmin – minimal unit of length, then for any length L we
have the �Integrality Condition� (IC)

L = NLlmin, (4)

where NL > 0 – integer.
What are the consequences for GUP (3) and HUP (2)?
Assuming that HUP is to a high accuracy derived from GUP on going to
low energies or that HUP is a special case of GUP at low values of the
momentum, we have

(GUP,∆p→ 0) = (HUP ). (5)

By the language of NL from(4), (5) is nothing else but a change-over to the
following:

(N∆x ≈ 1)→ (N∆x � 1). (6)
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The assumed equalities in (2) and (3) may be conveniently rewritten in
terms of lmin with the use of the deformation parameter αa. This param-
eter has been introduced earlier in the papers [28]–[36] as a deformation
parameter on going from the canonical quantum mechanics to the quan-
tum mechanics at Planck’s scales (early Universe) that is considered to be
the quantum mechanics with the minimal length (QMML):

αa = l2min/a
2, (7)

where a is the measuring scale.

Definition 1.
Deformation is understood as an extension of a particular theory by inclu-
sion of one or several additional parameters in such a way that the initial
theory appears in the limiting transition [37].

Then with the equality (∆p∆x = ~) (3) is of the form

∆x =
~

∆p
+
α∆x

4
∆x. (8)

In this case due to formulae (4) and (6) the equation (8) takes the following
form:

N∆xlmin =
~

∆p
+

1

4N∆x
lmin (9)

or

(N∆x − 1

4N∆x
)lmin =

~
∆p

. (10)

That is

∆p =
~

(N∆x − 1
4N∆x

)lmin
. (11)

From (9)–(11) it is clear that HUP (2) in the case of the equality appears
to a high accuracy in the limit N∆x� 1 in conformity with (6).
It is easily seen that the parameter αa from (7) is discrete as it is nothing
else but

αa = l2min/a
2 =

l2min
N2
a l

2
min

=
1

N2
a

. (12)
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At the same time, from (12) it is evident that αa is irregularly discrete.
It is clear that from formula (11) at low energies (N∆x � 1), up to a
constant

~2

l2min
=
~c3

4α′G
(13)

we have
α∆x = (∆p)2. (14)

But all the above computations are associated with the nonrelativistic case.
As known, in the relativistic case, when the total energy of a particle with
the mass m and with the momentum p equals [38]:

E =
√
p2c2 +m2c4, (15)

a minimal value for ∆x takes the form [39]:

∆x ≈ c~
E
. (16)

And in the ultrarelativistic case

E ≈ pc (17)

this means simply that

∆x ≈ ~
p
. (18)

Provided the minimal length lmin is involved and considering the �Inte-
grality Condition� (IC) (4), in the general case for (16) at the energies
considerably lower than the Planck energies E � EP we obtain the follow-
ing:

∆x = N∆xlmin ≈ c~
E
,

or

E ≈ c~
N∆x

. (19)

Similarly, at the same energy scale in the ultrarelativistic case we have

p ≈ ~/N∆x. (20)
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Note that all the foregoing results associated with GUP and with its lim-
iting transition to HUP for the pair (∆x,∆p), as shown in [30], may be in
ultrarelativistic case easily carried to the �energy - time� pair (∆t,∆E).
Indeed (3) gives [30]:

∆x

c
≥ ~

∆pc
+ α′l2P

∆p

c~
, (21)

then

∆t ≥ ~
∆E

+ α′
l2p
c2

∆pc

~
=

~
∆E

+ α′t2p
∆E

~
. (22)

where according to (17) the difference between ∆E and ∆(pc) can be ne-
glected and tP is the Planck time tP = LP/c =

√
G~/c5 ' 0, 54 10−43sec.

From whence it follows that we have a maximum energy of the order of
Planck’s:

Emax ∼ EP

Then the foregoing formulae (2)–(10) are rewritten by substitution as fol-
lows:

∆x→ ∆t; ∆p→ ∆E; lmin → tmin;NL → Nt=L/c (23)

Specifically, (10) takes the form

(N∆t − 1

4N∆t
)tmin =

~
∆E

. (24)

As shown, for the ultrarelativistic case there is tmin.
Next we assume that for all cases there is a minimal measuring unit of
time

tmin = lmin/vmax = lmin/c. (25)

Then, similar to (4), we get the �Integrality Condition� (IC) for any
time t:

t ≡ t(Nt) = Nttmin, (26)

for certain |Nt| ≥ 0 – integer.
According to (24), let us define the corresponding energy E

E ≡ E(Nt) =
~

|Nt − 1
4Nt
|tmin

. (27)
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Note that at low energies E � EP , that is for |Nt| � 1, the formula (27)
naturally takes the following form:

E ≡ E(Nt) =
~

|Nt|tmin =
~

|t(Nt)| . (28)

Definition 2.
1) Let us define the quantity having the dimensions of length L or time t
measurable, when it satisfies the relation (4) (and respectively (26)).

2) Let us define the quantity having the dimensions of momentum p or
energy E measurable, when it satisfies in the corresponding cases (non-
relativistic and relativistic) the foregoing formulas
(11),(19),(20),(27) for the momentums and energies. At low energies (E �
EP ) this means that p and E , within the known multiplicative constants and
sign, are coincident with 1/NL,1/Nt, where |NL| � 1,|Nt| � 1 – integers.

3) Let us define any physical quantity measurable, when its value is con-
sistent with points 1) and 2) of this Definition.

Thus, measurable infinitesimal changes in length (and hence in time)
are impossible and any such changes are dependent on the existing ener-
gies.
In particular, a minimal possible measurable change of length is lmin. It
corresponds to some maximal value of the energy Emax or momentum Pmax,
If lmin ∝ lP , then Emax ∝ EP ,Pmax ∝ PPl, where Pmax ∝ PPl, where PPl
is where the Planck momentum. Then denoting in nonrelativistic case
with 4p(w) a minimal measurable change every spatial coordinate w
corresponding to the energy E we obtain

4Pmax(w) = 4Emax(w) = lmin. (29)

Evidently, for lower energies (momentums) the corresponding values of
4p(w) are higher and, as the quantities having the dimensions of length
are quantized (4), for p ≡ p(Np) < pmax, 4p(w) is transformed to

|4p(Np)(w)| = |Np|lmin. (30)
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where |Np| > 1-integer so that we have

|Np − 1

4Np

|lmin =
~

|p(Np)| . (31)

In the relativistic case the formula (29) holds, whereas (30) and (31) for
E ≡ E(NE) < Emax are replaced by

|4E(NE)(w)| = |NE|lmin, (32)

where |NE| > 1-integer.
Next we assume that at high energies E ∝ EP there is a possibility only for
the nonrelativistic case or ultrarelativistic case.
Then for the ultrarelativistic case, with regard to (17)–(24), formula (31)
takes the form

|NE − 1

4NE

|lmin =
~c

E(NE)
=

~
|p(Np)| , (33)

where NE = Np.
In the relativistic case at low energies we have

E � Emax ∝ EP . (34)

In accordance with (15),(16) formula (30) is of the form

|4E(NE)(w)| = |NE|lmin =
~c

E(NE)
, |NE| � 1− integer. (35)

In the nonrelativistic case at low energies (34) due to (31) we get

|4p(Np)(w)| = |Np|lmin =
~

|p(Np)| , |Np| � 1− integer. (36)

In a similar way for the time coordinate t, by virtue of formulas (26)–(28),
at the same conditions we have similar formulas (29),(30),(31)

4Emax(t) = tmin. (37)
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For E ≡ E(Nt) < Emax

|4E(Nt)(t)| = |Nt|tmin, (38)

where |NE| > 1-integer, so that we obtain

|Nt − 1

4Nt

|tmin =
~c

E(Nt)
. (39)

In the relativistic case at low energies

E � Emax ∝ EP , (40)

in accordance with (15),(16), formula (30) takes the form

|4E(Nt)(w)| = |Nt|lmin =
~c

E(Nt)
, |Nt| � 1− integer. (41)

Now we consider a very simple but important example of the nonmeasur-
able quantity from [2]:
The infinitesimal increment of entropy dS of the spherically symmet-
ric holographic screen S with the radius R and with the surface area A is a
nonmeasurable quantity.
Really, it is obvious that infinitesimal variations of the screen surface area
dA are possible only in a continuous theory involving no lmin.
When lmin ∝ lP is involved, the minimal variation 4A is evidently associ-
ated with a minimal variation in the radius R

R→ R± lmin = R±4Emax(R) (42)

it is dependent on R and growing with ∼ R for R� lmin (possible only at
the maximum energy Emax ∝ EP )

4±A(R) = (A(R± lmin)−A(R)) ∝ (±2Rlmin + l2min) ∝ (±2NR + 1), (43)

where NR = R/lmin, as indicated above in (4).
But if E � Emax ∝ EP , then a minimal variation in the radius R is
obviously greater than lmin

R→ R±4E(NE)(R) = R± |NE|lmin, (44)
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and in this case in the right-hand side of (43), within the constant l2min, we
have the number quickly growing at low energies as well:

4±A(R) = (A(R± lmin)− A(R)) ∝ (±2RNElmin +N2
El

2
min)

∝ NE(±2NR +NE). (45)

In any case from this it follows that dA has no chance to be a measurable
quantity, as its measurability suggests measurability of the quantity dR,
and this is impossible.
Since dS, within a multiplicative constant, equals dA [40],[41]: dS ∝ dA/4,
dS is also a nonmeasurable quantity.
Because of this, the �main instrument� in the well-known paper [42] that
is the infinitesimal variation dN in the bit numbers N on the holographic
screen S is also a nonmeasurable quantity [2] as dN ∝ dS to within an
integer factor.
It is easily seen that the infinitesimal variation dV in the volume V of S is
also a nonmeasurable quantity.
The following comments are of particular importance.

Comment 1
Obviously, when lmin is involved, the foregoing formulas for the momentums
p(Np) and for the energies E(NE), E(Nt) may certainly give the highly ac-
curate result that is close to the experimental one only at the verified low
energies: |Np| � 1, |NE| � 1, |Nt| � 1.
In the case of high energies E ∝ Emax ∝ EP or, what is the same |Np| →
1, |NE| → 1, |Nt| → 1, we have a certain, experimentally unverified, model
with a correct low-energy limit

In what follows, within the scope of the above definitions, we consider,
unless stated otherwise, only measurable increments (variations) of the
space-time quantities and the corresponding momentums and energies.
Proceeding from all the above, this simply means that all minimal incre-
ments (variations) of the space-time quantities are dependent on the present
energies and coincident with the corresponding minimal uncertainties
from the Uncertainty Principle at the All Scales Energies.
In conclusion of this Section note the following.
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Earlier HUP has been considered as a low-energy limit of GUP (5) with the
minimal length attribute lmin ∝ lP . However, it is easily seen that even if we
have no notion about the existence of GUP (3) (i. e. of the high-energy term
∝ l2P∆p/~ in the right-hand side of (3)), still the use of the infinitesimal
quantities dxµ from the viewpoint of their measurability is problematic
as at low energies, where HUP (2)) is valid, we have �great� ∆xµ, certainly
higher than infinitesimal dxµ. Because of this, to �measure� dxµ we should
go to high energies or to �small� ∆xµ.
At the same time, even at the ultimate (Planck’s) energies a minimal �de-
tected� (i. e. measurable) space-time volume is, within the known con-
stants, restricted to

Vmin ∝ l4P . (46)

Consequently, �detectability� of the infinitesimal space-time volume

Vdxµ = (dxµ)4 (47)

is impossible as this necessitates going to infinitely high energies

E →∞. (48)

3 Space-Time Lattice of Measurable Quan-

tities and Dual Lattice

So, provided the minimal length lmin exists, two lattices are naturally aris-
ing.

I.Lattice of the space-time variation – LatS−T representing, to within
the known multiplicative constants, the sets of nonzero integers Nw 6= 0
and Nt 6= 0 in the corresponding formulas from the set (30)–(41) for each
of the three space variables w

.
= x; y; z and the time variable t

LatS−T
.
= (Nw, Nt), Nw 6= 0, Nt 6= 0− integers. (49)

Which restrictions should be initially imposed on these sets of nonzero in-
tegers?
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It is clear that in every such set all the integers (Nw, Nt) should be suffi-
ciently �close�, because otherwise, for one and the same space-time point,
variations in the values of its different coordinates are associated with prin-
cipally different values of the energy E which are �far� from each other.
Note that the words �close� and �far� will be elucidated further in this
text.
Thus, at the admittedly low energies (Low Energies) E � Emax ∝ EP the
low-energy part (sublattice) LatS−T [LE] of LatS−T is as follows:

LatS−T [LE] = (Nw, Nt) ≡ (|Nx| � 1, |Ny| �, |Nz| � 1, |Nt| � 1). (50)

At high energies (High Energies) E → Emax ∝ EP we, on the contrary, have
the sublattice LatS−T [HE] of LatS−T

LatS−T [HE] = (Nw, Nt) ≡ (|Nx| ≈ 1, |Ny| ≈ 1, |Nz| ≈ 1, |Nt| ≈ 1). (51)

II. Next let us define the lattice momentums-energies variation LatP−E
as a set to obtain
(px(Nx,p), py(Ny,p), pz(Nz,p), E(Nt)) in the nonrelativistic and ultrarelativis-
tic cases for all energies, and as a set to obtain
(Ex(Nx,E), Ey(Ny,E), Ez(Nz,E), E(Nt)) in the relativistic (but not ultrarel-
ativistic) case for low energies E � EP , where all the components of the
above sets conform to the space coordinates (x, y, z) and time coordinate
t and are given by the corresponding formulas(29)–(41) from the previous
Section.
Note that, because of the suggestion made after formula (34) in the previous
Section, we can state that the foregoing sets exhaust all the collections of
momentums and energies possible for the lattice LatS−T .
From this it is inferred that, in analogy with point I of this Section, within
the known multiplicative constants, we have

LatP−E
.
= (

1

Nw − 1
1/4Nw

,
1

Nt − 1
1/4Nt

), (52)
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where Nw 6= 0, Nt 6= 0-integers from (49). Similar to (50), we obtain the
low-energy (Low Energy) part or the sublattice LatP−E[LE] of LatP−E

LatP−E[LE] ≈ (
1

Nw

,
1

Nt

), |Nw| � 1, |Nt| � 1. (53)

In accordance with (51), the high-energy (High Energy) part (sublattice)
LatP−E[HE] of LatP−E takes the form

LatP−E[HE] ≈ (
1

Nw − 1
1/4Nw

,
1

Nt − 1
1/4Nt

), |Nw| → 1, |Nt| → 1. (54)

Considering Comment 1 from the previous Section, it should be noted
that, as currently the low energies E � Emax ∝ EP are verified by numer-
ous experiments and thoroughly studied, the sublattice LatP−E[LE] (53) is
correctly defined and rigorously determined by the sublattice LatS−T [LE]
(50).
However, at high energies E → Emax ∝ EP we can’t be so confident ? the
sublattice LatP−E[HE] may be defined more exactly.
Specifically, αa is obviously a small parameter. And, as demonstrated in
[43],[44], in the case of GUP we have the following:

[~x, ~p] = i~(1 + a1α + a2α
2 + ...). (55)

But, according to (12), |1/Na| = √αa, then, due to (55), the denominators
in the right-hand side of (54) may be also varied by adding the terms ∝
1/N2

w,∝ 1/N3
w...,∝ 1/N2

t ,∝ 1/N3
t ..., that is liable to influence the final result

for |Nw| → 1, |Nt| → 1.
The notions �close� and �far� for LatP−E will be completely determined
by the dual lattice LatS−T [LE] and by formulas (30)– (41).
It is important to note the following.
In the low-energy sublattice LatP−E[LE] all elements are varying
very smoothly enabling the approximation of a continuous theory.
First, we consider this fact in terms of the mathematical instruments of this
paper at the end of the following Section and then it will be considered,
with the use of more convincing arguments, in Section 5.
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4 Quantum Theory in Terms of Measurable

Quantities. First Steps.

Let us begin with the nonrelativistic case.
4.1 We try to resolve Quantum Mechanics (QM) in terms of measurable
quantities for the nonrelativistic case as a deformation of conventional
(nonrelativistic) QM [12] within the scope of Definition 1 of Section 2.
Let us term this deformation the energy-dependent deformation or �E-
deformation�.

4.2. As the instruments for the above-mentioned �E-deformation� we
use formulas (30)for 4p(Np)(w) and (38) for 4E(Nt)(t). In what follows in-
stead of 4E(Nt)(t) we use 4E(NE,t)(t).

It is clear that the principal variations are mainly associated with the op-
erators having in their representation the partial derivatives ∂

∂x
, ∂
∂y
, ∂
∂z
, ∂
∂t

.

In accordance with the above arguments, specifically with formula (30), the
first three of them should be replaced by the operators �inverse� to 4p(Np):

∂

∂w
Ψ(w) 7→ [4−1

p(Np)(w)]±Ψ(w) ≡ 1

Nplmin
(Ψ(w +Nplmin)−Ψ(w)),

|Np| > 1− integer, (56)

where w – any of the space coordinates, i.e. w
.
= x; y; z, 4w = ~/p(Np) =

|Np|lmin; the sign �+� in the left-hand side of (56) is for Np > 0, whereas
�−� ? is for Np < 0. As Quantum Mechanics is a low-energy theory
(E � Emax ∝ EP ), we have |Np| � 1.
Eliminating square brackets in the right-hand side of (56) and writing it for
the function Ψ(w) in a more customary form, we obtain

∂Ψ(w)

∂w
7→ 4−1

p(Np)(w)±Ψ =
Ψ(w +Nplmin)−Ψ(w)

Nplmin
. (57)
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Similarly, for the time coordinate, ∂
∂t

is replaced by the operator �inverse� to
4E(NE,t), i.e. we have 4−1

E(NE,t)
:

∂

∂t
Ψ(t) 7→ [4−1

E(NE,t)
(t)]±Ψ(t) ≡ 1

NE,ttmin
(Ψ(t+NE,ttmin)−Ψ(t)),

|NE,t| > 1− integer. (58)

4t = ~/E(NE,t) = |NE,t|tmin and |NE,t| � 1, and hence we obtain

∂Ψ(t)

∂t
7→ 4−1

E(NE,t)
(t)±Ψ =

Ψ(t+NE,ttmin)−Ψ(t)

NE,ttmin
. (59)

Obviously, with the set lower bound for the momentums p ≥ p0 > 0 (and re-
spectively for the energies E ≥ E0 > 0), i.e. for |Np| ≤ |Np0| <∞, |NE,t| ≤
|NE0,t| <∞ in the limit lmin → 0, tmin → 0 we have:

lim
lmin→0

4−1
p(Np)(w)± =

∂

∂w
,

lim
tmin→0

4−1
E(NE,t)

(t)± =
∂

∂t
. (60)

Note that from formula (25) of Section 2 we derive the following:

(lmin → 0)⇒ (tmin → 0). (61)

Then, without loss of generality, we assume that hereinafter Np > 0, NE,t >
0, and in the low-energy case under consideration this meansNp � 1, NE,t �
1 as the situation with negative Np and NE,t is absolutely similar.
It is clear that all basic properties of the operators (paragraph 11, of Sec-
tion 2 in [12]) for such �E-deformation� of Quantum Mechanics (QM)
are retained.
In particular, for 4−1

p(Np)(w)(Ψ1(w)Ψ2(w)),∆−1
E(NE,t

(t)(Ψ1(t)Ψ2(t)) we have:

4−1
p(Np)(w)(Ψ1(w)Ψ2(w)) =

=
Ψ1(w +Nplmin)Ψ2(w +Nplmin)−Ψ1(w)Ψ2(w)

Nplmin
. (62)
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The numerator (62) denoted with Numer′w due to (57) is of the form

Numer′w ≡ (Nplmin4−1
p(Np)(w)±Ψ1(w) + Ψ1(w))

(Nplmin4−1
p(Np)(w)±Ψ2(w) + Ψ2(w))−Ψ1(w)Ψ2(w) =

N2
p l

2
min(4−1

p(Np)(w)±Ψ1)(∆−1
p(Np)(w)±Ψ2)

+Nplmin(4−1
p(Np)(w)±Ψ1)Ψ2 +Nplmin(∆−1

p(Np)(w)±Ψ2)Ψ1. (63)

It is easily seen that the second and the third terms in (63) make to(62) the
contributions (4−1

p(Np)(w)±Ψ1)Ψ2 and (4−1
p(Np)(w)±Ψ2)Ψ1, respectively.

As regards the first term in (62), its contribution to (63) is equal toNplmin(4−1
p(Np)(w)±Ψ1)(∆−1

p(Np)(w)±Ψ2)

and in limit lmin → 0, |Np| ≤ |Np0| <∞
lim

lmin→0
Nplmin(4−1

p(Np)(w)±Ψ1)(4−1
p(Np)(w)±Ψ2) = 0. (64)

Then in the limit

lim
lmin→0,|Np|≤|Np0 |<∞

4−1
p(Np)(w)(Ψ1(w)Ψ2(w)) =

∂Ψ1(w)

∂w
Ψ2(w) +

∂Ψ2(w)

∂w
Ψ1(w).(65)

By the substitution of w 7→ t, lmin 7→ tmin, NE 7→ NE,t in all formulas
(62)–(65) in a similar way we get

lim
tmin→0,|NE,t|≤|NE0,t

|<∞
4−1
E(NE,t)

(t)(Ψ1(t)Ψ2(t)) =
∂Ψ1(t)

∂t
Ψ2(t) +

∂Ψ2(t)

∂t
Ψ1(t).(66)

This suggests that in the limiting transition lmin → 0 we trivially obtain
the expressions for the known commutators as follows:

lim
lmin→0,|Np|≤|Np0 |<∞

[4−1
p(Np)(w), f(w)] = [

∂

∂w
, f(w)] =

∂f(w)

∂w
;

f(w) = w, lim
lmin→0,|Np|≤|Np0 |<∞

[4−1
p(Np)(w), w] = [

∂

∂w
,w] = 1. (67)

Analogously, for tmin → 0 we have

lim
tmin→0,|NE,t|≤|NE0,t

|<∞
[4−1

E(NE,t)
(t), f(t)] = [

∂

∂t
, f(t)] =

∂f(t)

∂t
;

f(t) = t, lim
tmin→0,|NE,t|≤|NE0,t

|<∞
[4−1

E(NE,t)
(t), t] = [

∂

∂t
, t] = 1. (68)
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So, in the �continuous� limit lmin → 0, tmin → 0 the conventional QM [12]
is involved.
The expressions for 4−1

p(Np)(w),4−1
E(NE,t)

(t) are dependent on �high num-

bers� |Np| � 1,|NE,t| � 1, respectively. But it is clear that in the above
formalism the ordinary partial derivatives of a continuous theory (or of the
conventional Quantum Mechanics) for the coordinate ∂

∂w
and for the time

∂
∂t

is most close to the case |Np| = 1 in formulas (57) and |NE,t| = 1 in (59),
respectively.
As in the considered case |4w| → lmin and |4t| → tmin, we obtain

lim
4w→0

Ψ(w +4w)−Ψ(w)

4w = lim
|4w|→lmin

Ψ(w +4w)−Ψ(w)

4w =

=
Ψ(w ± lmin)−Ψ(w)

±lmin (69)

and

lim
4t→0

Ψ(t+4t)−Ψ(t)

4t = lim
|4t|→tmin

Ψ(t+4t)−Ψ(t)

4t =

=
Ψ(t± tmin)−Ψ(t)

±tmin . (70)

Paradox is in the fact that minimal increments lmin and tmin are associated
with the maximal energy Emax ∝ EP . But in the case under study all the
energies E are considerably lower than EP :E � EP .
At the same time, it is clear that for |Np| < ∞, |NE,t| < ∞ the limiting
transitions (60) are independent of Np, NE,t.
Now let us proceed from the �coordinate� to the �momentum� represen-
tation.
Consider momentums at the point pw

.
= px, py, pz

[4−1
p(Np)(pw)]±Ψ(pw) =

Ψ(pw +4p(Np))−Ψ(pw)

4p(Np)
. (71)

From formula (36) in Section 2 it follows directly that, as in the considered
case |Np| � 1, we have |4p(Np)| ≈ ~

|Np|lmin and (71) is of the form

[4−1
p(Np)(pw)]±Ψ(pw) =

Ψ(pw + ~/(Nplmin))−Ψ(pw))

~/(Nplmin)
. (72)
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Then it is obvious that

lim
4p(Np)→0

[4−1
p(Np)(pw)]±Ψ(pw) = lim

|Np|→∞
[4−1

p(Np)(pw)]±Ψ(pw) =
∂Ψ(pw)

∂pw
. (73)

This means that, for the sufficiently high |Np| � 1, we obtain

4−1
p(Np)(pw)]±Ψ(pw) ≈ ∂Ψ(pw)

∂pw
. (74)

In this way we have the following limiting transitions:

lim
lmin→0

4−1
p(Np)(w)± =

∂

∂w
,

lim
tmin→0

4−1
E(NE,t)

(t)± =
∂

∂t
,

lim
|Np|→∞

4−1
p(Np)(pw)± =

∂

∂pw
. (75)

And lim
|Np|→∞

4p(Np) → dp means that in the case under study, for the

sufficiently high |Np| � 1, we have

4p(Np) ≈ dp. (76)

In fact,(75) and (76) demonstrate that, for the sufficiently low energies, in
the �momentum� representation (71)–(74) the resolved �E-deformation� of
QM is practically continuous and approaching QM.
Then, for the wave function Ψ(p, t) ([12], formula (11), paragraph 12 in Sec-
tion II), where (p, E) belongs to the lattice LatP−E[LE] and (r, t) belongs
to the lattice LatS−T [LE], by virtue of (76) we have

Ψ̃N0(r, t) =
∑

Ni,Ni≥N0

F (p)ei(pr−Et)/~4pNi
→ Ψ(r, t) =

∫
F (p)ei(pr−Et)/~dp(77)

or as a matter of fact

Ψ̃N0(r, t) =
∑

Ni,Ni≥N0

F (p)ei(pr−Et)/~4pNi
≈ Ψ(r, t) =

∫
F (p)ei(pr−Et)/~dp,(78)
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because for sufficiently low N0, i.e. for high momentums p, the integral∫
F (p)ei(pr−Et)/~dp is simply undefined.

Next, as (77),(78) occur due to the existing limits (75), we can, with the use
of (12)–(15) from paragraph 12 in Section II of [12], derive the Schrodinger
equation for the free massive particle m as follows:

i~ lim
tmin→0

∆−1
E(NE,t)

(t)±Ψ̃N0(r, t) ≈ i~
∂

∂t
Ψ(r, t) = − ~

2

2m
∆Ψ(r, t) ≈

≈ − ~
2

2m
∆p(Np)Ψ̃N0(r, t). (79)

Here, as usual, ∆ – Laplace operator

∇ = { ∂
∂x
,
∂

∂y
,
∂

∂z
} = lim

lmin→0
{4−1

p(Np)(x)±,∆−1
p(Np)(y)±,4−1

p(Np)(z)±} ≡
lim

lmin→0
∇p(Np) (80)

∆p(Np) ≡ ∇p(Np)∇p(Np),∆ ≡ ∇∇ ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

= lim
lmin→0

∇p(Np)∇p(Np) = lim
lmin→0

∆p(Np). (81)

Again using formula (75), or precisely its first two lines, we obtain

E ⇒ i~ lim
tmin→0

4−1
E(NE,t)

(t)± = i~
∂

∂t
,

p⇒ ~
i
{ lim
lmin→0

4−1
p(Np)(x)±, lim

lmin→0
∆−1
p(Np)(y)±, lim

lmin→0
4−1
p(Np)(z)±} =

~
i
∇, (82)

where, as usual, E = p2/2m.
Thus, the �E-deformation� defined above for small momentums p �
Pmax ∝ Ppl (or for |Np| � 1) in the limit lmin → 0, tmin → 0 gives the con-
ventional(nonrelativistic) QM [12]and hence is its deformation within the
scope of Definition 1 from Section 2.

4.3. Note that both of the above restrictions (|Np| � 1 or |Np| → ∞
and lmin → 0, tmin → 0) of the limiting transition

� E− deformation�⇒ QM (83)
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are directly associated with the limiting transition αa → 0, where αa is the
deformation parameter from formula (7) in Section 2.
Indeed, if a is a nonmeasurable quantity, we have

lim
lmin→0

αa = lim
lmin→0

l2min/a
2 = 0. (84)

But if a is a measurable quantity and, according to (4), a = Nalmin,where
|Na| ≥ 1 – integer, then

lim
N2
a→∞

αa = lim
N2
a→∞

1/N2
a = 0. (85)

Formulas (84) and (85) point to the fact that αa is the deformation pa-
rameter for the given �E-deformation�, being the �additional param-
eter� mentioned in Definition 1 of Section 2.
Of great importance is the following comment.
Comment 2 The above-mentioned limits for αa (84) and (85) are prac-
tically indistinguishable but the first of them (84) leads to a continuous
theory, whereas the second (85)– to a discrete theory, �nearly continu-
ous� for small values of momentums and, at least experimentally, indistin-
guishable from the theory to which the limit (84) is leading.

In the following Section consideration is given to a key role of the parameter
αa in studies of a very interesting gravitational model –Heuristic Markov’s
Model, and also to the significance of Comment 2 as applied to the low-
energy limit of this model.

5 Heuristic Markov’s Model

This heuristic model was introduced in the work [13] at the early eighties
of the last century. This model already considered by the author in his
previous paper [44] is treated from the standpoint of the above-mentioned
arguments. In [13], it is assumed that �by the universal decree of nature
a quantity of the material density % is always bounded by its upper value
given by the expression that is composed of fundamental constants� ([13],
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p.214):

% ≤ %p =
c5

G2~
, (86)

with %p as �Planck’s density�.
Then the quantity

℘% = %/%p ≤ 1 (87)

is the deformation parameter as it is used in [13] to construct the follow-
ing of Einstein’s equations deformation or ℘%-deformation ([13],formula
(2)):

Rν
µ −

1

2
Rδνµ =

8πG

c4
T νµ (1− ℘2

%)
n − Λ℘2n

% δ
ν
µ, (88)

where n ≥ 1/2, T νµ–energy-momentum tensor, Λ– cosmological constant.
The case of the parameter ℘% � 1 or % � %p correlates with the classical
Einstein equation, and the case when ℘% = 1 – with the de Sitter Universe.
In this way (88) may be considered as ℘%-deformation of the General Rela-
tivity.
As shown in [44], ℘%-of Einstein’s equations deformation (88) is nothing else
but α-deformation of GR for the parameter αl at x = l from (7).
If % = %l is the average material density for the Universe of the characteristic
linear dimension l, i.e. of the volume V ∝ l3, we have

℘l,% =
%l
%p
∝ α2

l = ωα2
l , (89)

where ω is some computable factor.
Then it is clear that αl-representation (88) is of the form

Rν
µ −

1

2
Rδνµ =

8πG

c4
T νµ (1− ω2α4

l )
n − Λω2nα4n

l δ
ν
µ, (90)

or in the general form we have

Rν
µ −

1

2
Rδνµ =

8πG

c4
T νµ (αl)− Λ(αl)δ

ν
µ. (91)

But, as r.h.s. of (91) is dependent on αl of any value and particularly in
the case αl � 1, i.e. at l� lmin, l.h.s of (91) is also dependent on αl of any
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value and (91) may be written as

Rν
µ(αl)− 1

2
R(αl)δ

ν
µ =

8πG

c4
T νµ (αl)− Λ(αl)δ

ν
µ. (92)

Thus, in this specific case we obtain the explicit dependence of GR on
the available energies E ∼ 1/l, that is insignificant at low energies or for
l� lmin and, on the contrary, significant at high energies, l→ lmin.

(5.1.1)Low energies. Nonmeasurable case. In this case at low en-
ergies, using formulas (7) and certainly (84)in the limit lmin = 0 for a = l,
we get a continuous theory coincident with the General Relativity.

(5.1.2)Low energies. Measurable case. In this case at low energies,
using formulas (7), (12), and certainly (85) for lmin 6= 0, for a = l (and
hence for Nl � 1), we get a discrete theory which is a �nearly continu-
ous theory�, practically similar to the General Relativity with the slowly
(smoothly) varying parameter αl(t), where t – time.

So, due to low energies and momentums (E � EP , p � PPl), the �con-
tinuous case� 5.1.1) (General Relativity) and the �discrete case� 5.1.2)
that is actually a �nearly continuous case� are practically indistinguish-
able in line with Comment 2 in the preceding Section.

(5.2)At high energies we consider the measurable case only. Then
it is clear that at high energies the parameter αl(t) is discrete and for the
limiting value of αl(t) = 1 we get a discrete series of equations of the form
(91)(or a single equation of this form met by a discrete series of solutions)
corresponding to αl(t) = 1; 1/4; 1/9; ...
As this takes place, T νµ (αl) ≈ 0, and in both cases 5.1.2) and 5.2) Λ(αl) is
not longer a cosmological constant, being a dynamical cosmological term.

Note that because of formula (14) in Section 2,
√
αl(t) in cases (5.1.2) and

(5.2) is an element of the lattice LatP−E from Section 3. And in case (5.1.2)
it is an element of the sublattice LatP−E[LE], whereas case 5.2) is associated
with the sublattice LatP−E[HE].
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6 Conclusion

6.1. The main idea of the author is to demonstrate in Section 5 the exis-
tence of the correct limiting high-energy transition:

(5.1.2)
High Energy⇒ (5.2) (93)

and the nonexistence of the correct limiting high-energy transition:

(5.1.1)
High Energy⇒ (5.2). (94)

In the general case, based on the parameter αa at the end of Section 4, this
means that there exists the correct limiting high-energy transition:

lim
lmin 6=0,|Na|�1

αa
High Energy⇒ lim

lmin 6=0,|Na|≈1
αa (95)

and there is no correct limiting high-energy transition

lim
lmin=0

αa
High Energy⇒ lim

lmin 6=0,|Na|≈1
αa. (96)

However, the whole theoretical physics, in which presently at low ener-
gies E � EP the minimal length lmin, is not involved (i. e. lmin = 0), is
framed around the search for nonexistent limits (94) in a particular case
of the model considered in Section 5 and gravity as a whole, and also in the
general case (96) in terms of the parameter αa, respectively.
6.2 Proceeding from the above, the program of further studies should be as
follows.
6.2.1. To advance for the conventional and continuous theories with lmin =
0)– Quantum Theory (QT) and Gravity (General Relativity (GR)) at low
energies — the corresponding low-energy theories (the so-called �low-energy
counterparts�) QT [LE]lmin ,Grav[LE]lmin based on the notion of the min-
imal length lmin 6= 0, measurable quantities in line with Definition 2
and with the parameter αa (7), (12) from Section 2, forming a �nearly
continuous theory� in terms of the parameter αa and being practically
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indistinguishable from QT and GR, at least experimentally.
6.2.2. To frame for these �low-energy counterparts� the correct limit-
ing high-energy transition (95):

QT [LE]lmin
Na→1⇒ QT [HE]lmin ,

Grav[LE]lmin
Na→1⇒ Grav[HE]lmin . (97)

6.3 According to the hypothesis advanced by the author, some of the prob-
lems characteristics for the conventional theories (QT and GR), where
lmin = 0, in particular the problem of ultraviolet and infrared divergence in
a quantum field theory [45], will be lacking in their �low-energy coun-
terparts� with lmin 6= 0: QT [LE]lmin and Grav[LE]lmin .
Provided this hypothesis is true, a great work is required to study the struc-
tures QT [LE]lmin and Grav[LE]lmin , specifically their symmetries and the
like.
At the same time, such a study opens new possibilities. In particular,
assuming the measurable quantity Compton wavelength λC a �point
object� of the massive particle m [45]

λC =
λC
2π

=
~
mc

, (98)

we can derive, according to (4) of Section 2, (98) of the following form:

λC = NλC
lmin =

~
mc

(99)

or

m =
~

NλC
lminc

∝ 1

NλC

, (100)

that is,to within the known multiplicative constant, m is an element of the
sublattice LatP−E[LE] from Section 3. Possibly this is associated with the
fermion masses hierarchy problem [46].
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