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Abstract

In our simplified description ‘wealth’ is money (m). A kinetic theory of gas like model of

money is investigated where two agents interact (trade) selectively and exchange some amount

of money between them so that sum of their money is unchanged and thus total money of all

the agents remains conserved. The probability distributions of individual money (P (m) vs. m)

is seen to be influenced by certain ways of selective interactions. The distributions shift away

from Boltzmann-Gibbs like exponential distribution and in some cases distributions emerge

with power law tails known as Pareto’s law (P (m) ∝ m−(1+α)). Power law is also observed

in some other closely related conserved and discrete models. A discussion is provided with

numerical support to have a dig into the emergence of power laws in such models.

Introduction

Econophysics of Wealth distributions is an active area which involves in interpreting and

analysing real economic data of money, wealth or income distributions of all kinds of people

pertaining to different societies and nations [4]. A number of statistical physical models can

be found in the literature [1] in connection with the above. Understanding the emergence of

Pareto’s law (P (m) ∝ m−(1+α)), now more than a century old, is one of the most important

agenda. Some early attempts [5] have been made to understand the wealth distributions,

especially the Pareto’s law where the index α is generally found to be in the range of 1 to 2.5

more or less universally.

Some recent works [6, 7] assume economic activities to be analogous to elastic collisions to

have Kinetic theory of gas like models proposed by Chakrabarti and group and later by others

(We refer this class of models as ‘Chakrabarti model’.). Analogy is drawn between Money

(m) and Energy (E) where temperature (T ) is average money (< m >) of any individual at

‘equilibrium’. There has been a renewed interest in the two-agent exchange model (be it of

money, energy or of something else) in the new scenario. For example, a recent work deals
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with social systems of complex interactions like sex which is based on a granular system of

colliding particles (agents) with gaining energy [3].

In this paper we deal with Chakrabarti model kind of systems where it is assumed that

any two agents chosen randomly from a total number of agents (N) are allowed to interact

(trade) stochastically and thus money is exchanged between them. The interaction is such

that one agent wins and the other looses the same amount so that the sum of their money

remains constant before and after interaction (trading). Therefore, it is a two-agent zero sum

‘game’. This way it ensures the total amount of money of all the agents (M = Σmi) to remain

constant. Such a model is thus a conserved model.

The models and results

The basic steps of a money exchange (conserved) model are as follows:

mi(t + 1) = mi(t) + ∆m (1)

mj(t + 1) = mj(t) − ∆m, (2)

where mi and mj are money of the i-th and j-th agents respectively. Here we have t as discrete

‘time’ which is referred to as a single interaction between two agents. The amount ∆m (to

be won or to be lost by an agent) is given by the nature of interaction. In a pure gambling,

∆m = ε(mi(t) + mj(t)) − mi(t), where stochasticity is introduced through the parameter ε

(0 < ε < 1).

If agents are allowed to interact for a long enough time, we arrive at an equilibrium

distribution of money of individual agents. We arrive at a Boltzmann-Gibbs type distribution

[P (m) ∝ exp(−m/ < m >)] of individual money which is verified numerically. This is quite

the same way we arrive at the equilibrium energy distribution of a system of gas particles

elastically colliding and exchanging energy with each other. The equilibrium temperature

corresponds to average money, < m > per agent.

All the computer simulation results reported here, are done with system sizes (=total

number of agents) N = 1000. In all cases the system is allowed to equilibrate upto t = 106

time steps. Averaging is done over 1000 realizations in each case. The final distribution of

course should not depend on the initial configuration (initial distribution of money among the

agents). The wealth distributions we deal with in this paper are ordinary distributions and not

cumulative ones. To obtain a distribution we take average over many different realizations;

which means over a number of ways of the random selection of a pair of agents and also over

the stochastic term ε.
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If we intend to take average of money of a single agent over a long time, it turns out to be the

same for all agents. Therefore, the distribution of individual time averaged money appears to

be a delta function as checked by numerical simulation. However, when the average is taken

over a short time period, the delta function broadens to appear as a modified exponential

distribution. Finally, the distribution of individual money at a certain time turns out to be a

pure exponential one as mentioned earlier. This is all with randomly selected pair of agents

with stochastic gain or loss (per agent).

However, two randomly selected agents can interact with each other in various number of

ways other than just pure gambling. Distribution of individual money depends on how the

two randomly chosen agents decide to interact when they meet: whether it will be random

sharing of their aggregate money or with some rules [6, 7, 9]. We can in general write:

(

mi(t + 1)
mj(t + 1)

)

= T

(

mi(t)
mj(t)

)

,

where T is a 2× 2 transition matrix given by the kind of interactions. It is interesting to look

at some properties of T in connection with the emergence of distributions: Boltzmann-Gibbs

type exponential or a modified exponential distribution (P (m) ∝ mν exp(−m/ < m >). This

aspect has been investigated in our earlier work [2].

Interactions or trade among agents in a society are often guided by personal choice or some

social norms. Individual wealth distributions may be altered due to selective interactions.

However, any arbitrary kind of selective interaction (or preferential behaviour) may have no

effect. As an example, we examine the role played by the concept of family. A family in

a society usually consists of more than one agent. It is quite reasonable to assume that

the agents belonging to same family do not trade or interact among themselves. Such a

case of selective intercation does not appear to have any influence on the individual wealth

distribution: it remains exponentially distributed as it is checked numerically. In this context

we discuss family wealth distribution. In computer simulation we colour the agents belonging

to a same family to keep track of. To find wealth distribution of families, we add up the

contributions of the family members. In Fig.1 we plot family wealth distributions for three

cases: (i) families consist of 2 members each, (ii) families consist of 4 members each, and (iii)

families of mixed sizes between 1 to 4. The distributions are clearly not pure exponential,

but modified exponential distributions with different peaks and different widths which is quite

expected (The probability of zero income of a family is zero.).

Some special ways of incorporating ‘selection’ may play a definitive role in the individual

wealth distributions as it can be seen as follows. Let us define a ‘class’ of an agent by some
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Figure 1: Family wealth (money) distribution: two curves are for families of all equal sizes
and one is for families of various sizes between 1 and 4. Unit is arbitrary.

index. The class may be understood in terms of their efficiency of accumulating money or some

other related property. It is assumed that during the interactions, the agents may convert an

appropriate amount of money proportional to their efficiency factor in their favour or against.

Now the model can be understood in terms of equations (1) and (2) with the redefined amount

of exchange:

∆m = (εi − 1)mi(t) + εjmj(t), (3)

where εi’s are random numbers between 0 and 1 and are randomly assigned to the agents at

the beginning (frozen in time). Now let us suppose that the agents are given a choice to whom

not to interact with. This option, infact, is not unnatural in the context of a real society where

individual or group opinions are important. There has been a lot of works on the process and

dynamics of opinion formations in model social systems, a good amount of discussions can be

found in ref.[11]. In our model we may imagine that the ‘choice’ is guided by the relative class

index of the two agents. We assume that an interaction takes place when the ratio of two class

factors remain within certain upper limit. Our requirement for interaction (trade) to happen

is then 1 < εi/εj < η. Wealth distributions for various values of η are numerically investigated.
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Power laws in the tails are obtained in all cases. In Fig.2 we show the distribution for η = 2.

A power law is clearly observed with a power around 3 which means the Pareto index α is

close to 2. A straight line in the log-log plot is shown for comparison (a power law with power

3.3).
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Figure 2: Distribution of individual money with selective interaction. Power law is evident in
the log-log plot where a straight line is drawn with m−3.3 for comparison.

Many works in Econophysics or Sociophysics are devoted to understand the emergence

of power law Pareto tails in the distrbutions [8]. Pareto’s law is observed quite universally

across many nations and societies. The power law tails in the distributions are obtained by

a number of models like that of Chakrabarti model type (conserved) models [9] and other

kinds of (nonconserved) models [10]. However, much is there to be understood, particularly

how a power law emerges from simple discrete models and algorithms. It is known that

probability distribution of money of majority is different from that of handful of minority (rich

people). ‘Disparity’ is more or less a reality in an economy. We may then think of a money

exchange process within the framework of Chakrabarti model like discrete and conserved

model in a way that the interactions among agents cause increasing variance. It is numerically

examined whether the process of forcing the system to have ever increasing variance (measure

of disparity) leads to a power law as power law is known to be associated with infinite variance.
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Thus we simulate a process where the random interactions (pure gambling) among agents [as

given by equations (1) & (2)] are allowed only when the variance σ =< m2 > − < m >2 is

greater than the previously calculated value where the average value < m > is kept fixed. Thus

the variance attains a very high value (not shown here) with iterations under this imposed

condition. As a result we arrive at a power law (with a low power) in the individual wealth

distribution (shown in Fig.3).
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Figure 3: Wealth distribution with ever increasing variance. Power law is clearly seen and a
straight line is drawn with m−1.1 to compare.

The above is an artificial situation though. However, we examine two models where we

find that the money exchange algorithms are so designed that the resulting variance, in effect,

increases monotonically with time. One such case is the model of selective interaction as

introduced before. The other prominent example is the model with random saving propensities

proposed by Chatterjee and Chakrabarti [9], where ∆m = (1−ε)(1−λi)mi(t)+ε(1−λj)mj(t).

In both cases it is checked numerically that σ increases with time. In Fig.4 variance (σ) is

plotted with time for our model of selective interaction as discussed earlier. The variance σ

is seen to be monotonically increasing with time. In Fig.5 we show variance (σ) against time

for the model of random saving propensity. The variance is seen to be increasing faster with

time and attaining higher value in this case. The power law coefficients for the respective
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distributions may be related to the the magnitude of variance. In both figures (Fig.4 and

Fig.5), the scale along x-axis should be multiplied by 104 to get actual time steps (arbitrary

unit) in numerical simulation.
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Figure 4: Variance against time in the model of selective interaction.

Discussions and Conclusions

In the framework of Kinetic theory of gas like (conserved) models, random interactions between

randomly selected pairs of agents lead to an exponential distribution of individual wealth.

Depending on the type of interaction (that is how the money is shared among agents during

an interaction), the distribution is altered from pure exponential to a modified exponential one

and in some cases power laws are obtained. We have shown here that the distribution is also

influenced by personal choice. Selective interaction (or preferential behaviour) of some kind

(within the framework of conserved model) can be connected to a power law in the distribution

of individual wealth. The reason for this is not very apparent though. However, this can be

given a thought and more appropriate models may be constructed based on this information.

In a real society, people usually do not interact arbitrarily rather do so with purpose and

thinking. Some kind of personal preference is always there which may be incorporated in

some way or other. On the other hand, a large amount of economic disparity usually exists
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Figure 5: Variance against time in the model of random saving propensities

among people. The detail mechanism leading to disparity is not always clear but it can be

said to be associated with the emergence of power law tails in wealth distributions. Enhanced

variance is observed in our model of selective interaction and a power law tail is obtained

in the individual wealth distribution. Monotonically increasing variance (with time) is also

seen to be associated with another existing model (model with random saving propensities

[9]) which generates power law tails. Therefore, there is a cause of thought on the inherent

mechanisms in the kind of discrete and conserved models in relation to large variance and

power law tails.

Acknowledgments

The author is grateful to The Abdus Salam International Centre for Theoretical Physics,

Trieste, Italy where a major part of this work had been carried out during a short stay. The

quality of the manuscript has been improved in a great extent following some suggestions and

critical remarks by Dietric Stauffer. Some important references have also been added as he

brings them into notice. The author is immensely thankful to his generosity. Purusattam Ray

is also duly acknowledged for some interesting discussions.

8



References

[1] Econophysics of Wealth Distributions: Springer-Verlag Italia, Ed. A. Chatterjee, B.K.

Chakrabarti and S. Yarlagadda (2005); Conf. Proc. Econophys-Kolkata I: International

Workshop on Econophysics of Wealth Distributions, Kolkata, India, March 2005.

[2] A. Kar Gupta, arXiv: physics/0505115, to appear in Physica A (2005).
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