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Abstract:

First, three successful environments for artificial evolution in computer systems are analysed

briefly. The organism in these enviroment are in a virtual machine with special chemistries.

Two key-features are found to be very robust under mutations: Non-direct addressing and

separation of instruction and argument.

In contrast, the x86 instruction set is very brittle under mutations, thus not able to

achieve evolution directly. However, by making use of a special meta-language, these two

key-features can be realized in a x86 system. This meta-language and its implementation is

presented in chapter 2.

First experiments show very promising behaviour of the population. A statistically analyse

of these population is done in chapter 3. One key-result has been found by comparison of the

robustness of x86 instruction set and the meta-language: A statistical analyse of mutation

densities shows that the meta-language is much more robust under mutations than the x86

instruction set.

In the end, some Open Questions are stated which should be addressed in further re-

searches. An detailed explanation of how to run the experiment is given in the Appendix.
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1. Overview

1.1. History

1.1.1. CoreWorld

Artificial evolution for self-replicating computer codes has been introduced for the first time

in 1990, when Steen Rasmussen created CoreWorld.[1] CoreWorld is a virtual machine which

can be controlled by a language called RedCode. This assembler-like language has a pool

of ten different instructions that take two addresses as arguments. Rasmussen’s idea was

to introduce a random flaw of the MOV command, resulting of random mutations of the

self-replicating codes within the environment. The big disadvantage of RedCode was, that

nearly all flaws led to a lethal mutation, hence evolution did not occure as wished.

1.1.2. Tierra

In 1992, Tom Ray found out that the problem with RedCode was due to argumented

instruction set : Independent mutations in the instruction and its arguments are unlikely to

lead to a meaningful combination.[2] Instead of direct connection between the instruction

and its argument, Ray developed a pattern-based addressing mechanism: He introduced

two NOP-instructions (NOP0 and NOP1). These instructions do not operate themselve, but

can be used as marker within the code. A pattern-matching algorithmus would find the

first appearence of a complementary marker string given (after the search-command), and

returns its addresse.

PUSH AX ; push ax

JMP

NOP0

NOP1

NOP0 ; jmp marker101

INC A ; inc ax

NOP1

NOP0

NOP1 ; marker101:

POP CX ; pop cx

There are 32 instructions available in the virtual Tierra world, roughly based on assembler

(JMP, PUSH AX, INC B and so on). With these inventions, Ray was able to gain great results

for artificial evolution (like parasitism, multi-cellularity[3][4], ...).
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1.1.3. Avida

In 1994, Christoph Adami has developed another artificial evolution simulation, called Avida.

Beside of some different structures of the simulation, an important change has been made

in the artificial chemistry: Instead of hardcoded arguments within the instructions (as in

Tierra for example PUSH AX), instructions and arguments are completely separated. The

arguments are defined by NOPs (in avida there are three NOPs: nop-A, nop-B, nop-C)

following the operation (for example, a nop-A following a PUSH pushes the AX-register to

the stack). There are 24 instructions available in avida, again roughtly based on assembler

(call, return, add, sub, allocate and so on).

push

nop-A ; push ax

jump-f

nop-A

nop-B

nop-B ; jmp markerBCC

inc

nop-A ; inc ax

nop-B

nop-C

nop-C ; markerBCC:

pop

nop-B ; pop bx

With that improvements of the virtual simulation, the researchers using avida found out

amazing results, among other things about the origin of complex features in organism[5].

1.2. Evolutionary Properties of different Chemistries

In 2002, an detailed analyse about different artificial chemistries has been published[6]. The

authors compare several different instruction sets for evolutionary properties as Fitness and

Robustness (R = N
M where N is the number of non-lethal mutations and M is the number

of all possible mutations).

The Chemistry I consists of 28 operations and has total seperated operations and argu-

ments (same as Avida). Chemistry II has 84 unique instructions and seperated operations

and arguments. The last Chemistry III has 27 instructions, but within the instructions

the argument is given (i.e. push-AX, pop-CX, ...). As a result, it has been found that

Chemistry I is much robuster and can achieve a much higher fittness than Chemistry II,

Chemistry III is the worst language for evolution.
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1.3. Biological Information Storage

The information in natural organism is stored in the DNA. The DNA is roughly speaking a

string of nucleotides. There are four nucleotides - Adenine, Cytosine, Guanine and Thymine.

Three nucleotides form a codon, and are translated by tRNA to amino acids. Amino acids

are the building blocks of proteins, which are main modules of cells.

One can calculate that there are N = 43 = 64 possibilities how you can sort the codons -

one could code 64 different amino acids. But nature just provides 20 different amino acids,

hence there is big redundancy in the translation process.

Amino acid % in human Codons

ALA 6.99 GCU, GCC, GCA, GCG

ARG 5.28 CGU, CGC, CGA, CGG, AGA, AGG

ASN 3.92 AAU, AAC

ASP 5.07 GAU, GAC

CYS 2.44 UGU, UGC

GLU 6.82 GAA, GAG

GLN 4.47 CAA, CAG

GLY 7.10 GGU, GGC, GGA, GGG

HIS 2.26 CAU, CAC

ILE 4.50 AUU, AUC, AUA

LEU 9.56 UUA, UUG, CUU, CUC, CUA

LYS 5.71 AAA, AAG

MET 2.23 AUG

PHE 3.84 UUU, UUC

PRO 5.67 CCU, CCC, CCA, CCG

SER 7.25 UCU, UCC, UCA, UCG, AGU, AGC

THR 5.68 ACU, ACA, ACC, ACG

TRP 1.38 UGG

TYR 3.13 UAC, UAU

VAL 6.35 GUU, GUC, GUA, GUG

STOP 0.24 UAA, UAG, UGU

There is a connection between the frequency of the amino acid in the genom and the

redundancy of the translation process. This mechanism protects the organism from conse-

quences of mutation. Imagine an Alanine (ALA) codon GCU will be mutated to GCC, this

codon will still be translated to Alanine, thus there is no effect.



2. Artificial Evolution in x86

2.1. Chemistry for x86

The aim is to create an evolvable chemistry for a native x86 system. So far, all noteable

attempts have been done in virtual simulated plattforms, where the creator can define the

structure and the embedded instruction set.

On the other hand, the x86 chemistry has been defined long time ago and appears to be

not very evolution-friendly. The instruction set is very big, the arguments and operations are

directly connected, there is no instruction-end marker or constant instruction-size. Hence,

selfreplicators are very brittle in that environment, and almost all mutations are lethal.

A possibility to avoid the bad behaviour of the x86 instruction set concerning mutations

is to create a (at best Turing-complete) meta-language. At execution, the meta-language

has to be translated to x86 assembler instructions.

Here, a meta-language is presented with a eight bit code for each instruction, which will

be translated to x86 code at execution. Obviously, this is the same procedure as in Protein

biosynthesis. The eight bits coding a single instruction in the meta-language are analogs of

the three codons representing one amino acid. At execution they are translated to a x86

instruction - just as tRNA transformes the codon to a amino-acid. A punch of translated

x86 instructions form a specific functionality, in biology a number of amino acids form a

protein (which is responsible for a certain functionality in the organism).

2.2. The instruction set

One intention was to create an instruction set which can be translated to x86 instructions

in a very trivial way. This was a noteable restriction as key instructions used in Tierra

and avida (like search-f, jump-b, dividate, allocate, ...) can not be written in a

simple way in x86 assembler.

The main idea of the meta-language is to have a number of buffers which are used as

arguments of all operations. Registers are not used directly as arguments for instructions,

but have to be copied from/to buffers, leading to a seperation of operation and argument.

The instructions have a very similar form as in avida; comparing nopsA & push vs. push

& nop-A, or pop & nopdA vs. pop & nop-A or nopsA & inc & nopdA vs. inc & nop-A for

the meta-language and avida, respectively.

It has emerged that it is enough to use three registers (RegA, RegB, RegD), two buffers

for calculations and operations (BC1, BC2) and two buffers for addressing (BA1, BA2).
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Buffer instructions (16)

nopsA BC1=RegA mov ebx, eax

nopsB BC1=RegB mov ebx, ebp

nopsD BC1=RegD mov ebx, edx

nopdA RegA=BC1 mov eax, ebx

nopdB RegB=BC1 mov ebp, ebx

nopdD RegD=BC1 mov edx, ebx

saveWrtOff BA1=BC1 mov edi, ebx

saveJmpOff BA2=BC1 mov esi, ebx

writeByte byte[BA1]=(BC1&&0xFF) mov byte[edi], bl

writeDWord dword[BA1]=BC1 mov dword[edi], ebx

save BC2=BC1 mov ecx, ebx

addsaved BC1+=BC2 add ebx, ecx

subsaved BC1-=BC2 sub ebx, ecx

getDO BC1=DataOffset mov ebx, DataOffset

getdata BC1=dword[BC1] mov ebx, dword[ebx]

getEIP BC1=instruction pointer call gEIP; gEIP: pop ebx

Operations (10+8)

zer0 BC1=0 mov ebx, 0x0

push push BC1 push ebx

pop pop BC1 pop ebx

mul RegA*=BC1 mul ebx

div RegA/=BC1 div ebx

shl BC1 << (BC2&&0xFF) shl ebx, cl

shr BC1 >> (BC2&&0xFF) shr ebx, cl

and BC1=BC1&&BC2 and ebx, ecx

xor BC1=BC1 xor BC2 xor ebx, ecx

add0001 BC1+=0x1 add ebx, 0x0001

add0004 BC1+=0x4 add ebx, 0x0004

add0010 BC1+=0x10 add ebx, 0x0010

add0040 BC1+=0x40 add ebx, 0x0040

add0100 BC1+=0x100 add ebx, 0x0100

add0400 BC1+=0x400 add ebx, 0x0400



2.2 The instruction set 8

add1000 BC1+=0x1000 add ebx, 0x1000

add4000 BC1+=0x4000 add ebx, 0x4000

sub0001 BC1-=1 sub ebx, 0x0001

Jumps (4)

JnzUp jz over && jmp esi && over:

JnzDown jnz down (&& times 32: nop) && down:

JzDown jz down (&& times 32: nop) && down:

ret ret

API calls (11) - Windows based

CallAPIGetTickCounter stdcall [GetTickCount]

CallAPIGetCommandLine stdcall [GetCommandLine]

CallAPICopyFile stdcall [CopyFile]

CallAPICreateFile stdcall [CreateFile]

CallAPIGetFileSize stdcall [GetFileSize]

CallAPICreateFileMapping stdcall [CreateFileMapping]

CallAPIMapViewOfFile stdcall [MapViewOfFile]

CallAPICreateProcess stdcall [CreateProcess]

CallAPIUnMapViewOfFile stdcall [UnMapViewOfFile]

CallAPICloseHandle stdcall [CloseHandle]

CallAPISleep stdcall [Sleep]

There are 30+8 unique commands (the eight addNNNN and sub0001 could be reduced to

one single command, but this would make the code very big) and 11 API calls - giving

49 instructions. For translation, a command is identified by 8bits. Therefore there are

N = 28 = 256 possible combinations, thus there is a big redundancy within the translation

of commands to x86 code - just as in natural organism. This gives the code a big freedom

in protecting itself against harmful effects of mutations.

2.2.1. An example: Linear congruential generator

The following code creates a new random number (Linear congruential generator) via

xn+1 = (axn + c) mod m

with a = 1103515245, c = 12345 and m = 232 (these are the numbers used by GCC).
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.data

DataOffset:

SomeData dd 0x0

RandomNumber dd 0x0

.code

macro addnumber arg { ... }
; Creates the correct addNNNN combination

getDO

add0004

getdata ; mov ebx, dword[RandomNumber]

nopdA ; eax=dword[RandomNumber]

zer0

addnumber 1103515245 ; mov ebx, 1103515245

mul ; mul ebx

zer0

addnumber 12345

save ; mov ecx, ebx

nopsA

addsaved

nopdB ; mov ebp, (1103515245*[RandomNumber]+12345)

; ebp=new random number

getDO

add0004

saveWrtOff ; mov edi, RandomNumber

nopsB

writeDWord ; mov dword[RandomNumber], ebp

; Save new random number

.end code

2.3. Translation of meta-language

As the instruction set has been created to construct a trivial translator, the translator can

be written as a single loop. A meta-language instruction is one byte, the corresponding

x86 instruction has 8 bytes (for 256 instructions, this gives a 8 ∗ 256 = 2.120 Byte long

translation table).

The Translator picks one 8bit codon, searchs the corresponding x86 instruction and writes

that x86 instruction to the memory. At the end of all codons, it executes the memory.
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invoke VirtualAlloc, 0x0, 0x10000, 0x1000, 0x4

mov [Place4Life], eax ; 64 KB RAM

mov edx, 0x0 ; EDX will be used as the

; counter of this loop

WriteMoreToMemory:

mov ebx, 0x0 ; EBX=0

mov bl, byte[edx+StAmino] ; BL=NUMBER OF AMINO ACID

shl ebx, 3 ; EBX*=8;

mov esi, StartAlphabeth ; Alphabeth offset

add esi, ebx ; offset of the current amino acid

mov ebx, edx ; current number of amino acid

shl ebx, 3 ; lenght of amino acids

mov edi, [Place4Life] ; Memory address

add edi, ebx ; Offset of current memory

mov ecx, 8 ; ECX=8

rep movsb ; Write ECX bytes from ESI to EDI

; Write 8 bytes from Alphabeth

; to Memory

inc edx ; Increase EDX

cmp edx, (EndAmino-StAmino)

jne WriteMoreToMemory

call [Place4Life] ; Run organism!

The Translation Table/Alphabeth has the following form:

; 0001 1000 - 24:

getEIP EQU 24

ACommand24:

call gEIP

gEIP:

pop ebx

ECommand24:

times (8-ECommand24+ACommand24): nop

; 0001 1001 - 25:

JnzUp EQU 25

ACommand25:

jz over

jmp esi

over:

ECommand25:

times (8-ECommand25+ACommand25): nop



3. Experiments

To achieve evolution it is necessary to have replication, mutation and selection.

3.1. Overview

An ancestor organism has been written, which is able replicate itself. It copies itself in the

current directory to a random named file and execute its offspring.

The mutation-algorithm is written within the code (not given by the plattform as it

is possible in Tierra or avida). With a certain probability a random bit within a special

interval of the new file flips. Each organism can create five offspring, each with a different

intervall and probability of mutation.

For finding an adequate mutation probability, one can calculate the probability P that at

least one bit-flip occures giving a N byte interval and a probability pbit for a single bit to

flip:

P (N, pbit) =

N−1∑
n=0

pbit(1− pbit)n = 1− (1− pbit)n

Interval N P pbit

1 Code 2100 0.9 1
900

2 Code+Alphabeth 4200 0.9 1
1800

3 whole file 6150 0.9 1
2666

4 Code 2100 0.75 1
1500

5 Code 2100 0.68 1
1820

The second offspring has also the opportunity to change the alphabeth. This could lead

to redundancy in the alphabeth to avoid negative effects of mutations (as used in nature -

descriped in 1.3). The mutations in the third offspring can access the whole file.

Natural selection is not very strong in this experiment, CPU speed and harddisk space

is limited. Thus, most non-lethal mutations are neutral and disribute randomly within the

population. This can be used very easy to understand the relationship of the population:

The smaller their Hamming distance, the nearer their relationship.

The Hamming distance ∆(x, y) is defined as

∆(x, y) :=
∑
xi 6=yi

1, i = 1, ..., n

Beside of natural selection, their could be artificial selection. Some artificial selection has

been used to prevent some wired behaviour of the populations.
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The experiments have been done on a native WindowsXP. For stabilization, several small

C++ guard programs have been developed which searches and closes endless-loops, closes

error messages and dead processes (processes that live longer than a certain time).

3.2. First attempts

The first attempt has shown some unexpected behaviour.

Multiple instances of same file: Already after a few dozen of generations, the process

list started to fill with multiple instances of the same file. An analyse of the file shows that

this happens due to a mutation corrupting the random name engine. The random name

engine always generates the same filename (for instance aaaaaaaa.exe). After the mutation

process (which has no effect as the file has write protection due to execution) the new/old

file is executed again.

To prevent this unnatural behaviour, it has become necessary to include an artificial

selection to the system. The new C++ file scans the process list for multiple file instances,

and closes them.

It is interesting to see that this is a real selection, not a restriction to the system. Mutation

still can create such effects, but with that additional guard file, they have negative conse-

quences for the file (the will be deleted immediatly) and therefore will not spread within the

population.

Avoid mutations: The first long-time experiment appeared to be very promising. The

guard files closed error messages, endless loops, dead processes and multiple instances of the

same file. After some hundred generations the experiment has been stopped and the files

have been analysed. Surprisingly, all files had the exact same bit-code, they were all clones.

There has been a mutation in the alphabeth, changing the xor instruction. This instruc-

tion is responsible for changing a bit at the mutation-process. If the mutation does not work

anymore, no files will change anymore.

For the organism, this is a big advantage. All offspring will survive as no more mutation

happens. Other organism often create corrupt offspring, hence spread slower. After a while,

the whole system is dominated by unmutable organism.

In nature, organism also created very complex systems to prevent mutation or mutational

effects. DNA repairing or amino acid redundancy are just two examples.

Even this discoverment is very interesting and has a great analogon in nature, it prevents

from further discoverments in this artificial system. Therefore another guard file has been

developed, which scans the running files for clones and deletes them.

It’s not natural to prohibit clones at all, thus a adequate probability should be found. If

there are 42 clones in the process list, they should be detected by a probability of 51% in

one guard file cycle. This gives a probability of P = 1
59 that a running file will be checked

whether it has clones. A controlled file will be compared to all other running files, all clones

will be deleted.
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3.3. Statistical analyse of experiment

Afer installing the new guard file, a further experiment has been run. This first ”long-term”

experiment can be analysed statistically by comparing the density and type of mutation

from the ancestor file and the latest population. Unforunatley it is very hard to determinate

the number of generations in the population; by comparing mutations in the oldest

population with the primary ancestor and using the mutation probability, one could

speculate that there have been 400-600 generations.

Number of mutations - ancestor vs. successor: A number of 100 successor have been

randomly picked and compared with the ancestor. One can calucate the average number of

mutation during the lifetime of the experiment, and its standard deviation:

X̄ =
1

n

n∑
i=1

Xi = 192.02 Mutations

σ =

√√√√ 1

n− 1

n∑
i=1

(Xi − X̄)2 = 4.59

The standard deviation gives an unexpected small value, which means that the number of

mutations is quite constant over the lifetime of the population.

Relations between individua: One can analyse the relation beween the individua by

calculating their Hamming distance (the number of differences in their bytecode). A number

of six files have been selected randomly and analysed.

ancestor.exe - a.exe: 195

ancestor.exe - b.exe: 195

ancestor.exe - c.exe: 184

ancestor.exe - d.exe: 192

ancestor.exe - e.exe: 194

ancestor.exe - f.exe: 200

a.exe - b.exe: 2 c.exe - a.exe: 75 e.exe - a.exe: 9

a.exe - c.exe: 75 c.exe - b.exe: 75 e.exe - b.exe: 9

a.exe - d.exe: 20 c.exe - d.exe: 73 e.exe - c.exe: 74

a.exe - e.exe: 9 c.exe - e.exe: 74 e.exe - d.exe: 19

a.exe - f.exe: 28 c.exe - f.exe: 81 e.exe - f.exe: 27

b.exe - a.exe: 2 d.exe - a.exe: 20 f.exe - a.exe: 28

b.exe - c.exe: 75 d.exe - b.exe: 20 f.exe - b.exe: 28

b.exe - d.exe: 20 d.exe - c.exe: 73 f.exe - c.exe: 81

b.exe - e.exe: 9 d.exe - e.exe: 19 f.exe - d.exe: 16

b.exe - f.exe: 28 d.exe - f.exe: 16 f.exe - e.exe: 27
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While a.exe, b.exe and e.exe are near related, c.exe is far away from all other files.

d.exe and f.exe are medium related. Interestingly, while c.exe has the biggest distance

to all other successors, it has the smallest distance to the ancestor.

Distribution of mutations: It is interesting to see which mutations are rare and which

are widely spread within the population. There are 153 mutations which appeare in every

single file, 32 mutations appearing in 84 files and so on. Many mutations are located in

unused areas of the file, for instance in the Win32 .EXE padding bytes or in the unused

part of the alphabeth. A list of mutations of the active-code (whether the used part of the

alphabeth or the meta-language code) and its appearence in the population is given here.

527: 100 e52: 100 12af: 100 147f: 100 e13: 32

551: 100 e9a: 100 12b1: 100 1498: 100 1298: 23

56c: 100 eac: 100 12d9: 100 14a5: 100 f0a: 17

5af: 100 f04: 100 130e: 100 14b3: 100 4c3: 16

5ed: 100 f34: 100 131f: 100 14b9: 100 558: 16

61a: 100 fbb: 100 1327: 100 14c3: 100 58a: 16

625: 100 fed: 100 1328: 100 5b9: 84 60d: 16

c74: 100 1090: 100 1333: 100 d86: 84 ca9: 16

c7b: 100 10b8: 100 1343: 100 e43: 84 cac: 16

c98: 100 10c4: 100 135c: 100 1037: 84 d83: 16

c9b: 100 1119: 100 1373: 100 106b: 84 df4: 16

ca1: 100 1121: 100 138d: 100 109c: 84 f5a: 16

ca4: 100 1126: 100 139c: 100 1148: 84 105c: 16

d02: 100 118f: 100 13b3: 100 127d: 84 1085: 16

d4f: 100 1194: 100 13d5: 100 12a8: 84 10ef: 16

d5d: 100 11a2: 100 13eb: 100 130f: 84 12d1: 16

d7a: 100 11a9: 100 13fd: 100 1388: 84 12ee: 16

d7d: 100 11b1: 100 1430: 100 1392: 84 1323: 16

e3b: 100 124d: 100 144c: 100 13e4: 84 1353: 16

e49: 100 1265: 100 1459: 100 c9d: 32 139a: 16

A full analyse of these mutations would be worthwhile, but has not be done in this primary

analyse due to its great effort. However, to understand this system and its prospects better,

detailed code analyse will be unavoidable.

Nevertheless, examples of two mutations can be given.

First one is Byte 0x527: This is within the alphabeth, defining the behaviour for the

JnzUp instruction. A bit-flip caused following variation:

jz over jz over

jmp esi → jmp esi

over: nop

over:
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This has no effect in the behaviour, but effects just the byte-code - a neutral mutation.

The second example is the mutation in Byte 0xC7B, which is within the meta-language

code. The unmutated version is the instruction add0001, the mutated one represents

add0004. This is part of the addnumber 26 instruction, which is used as modulo number

for the random name generator.

Due to this mutation, the genom not just picks letters from a−z for its offpring’s filename,

but also the next three in the ASCII list, {, | and }. Thus, filenames can also contain these

three characters. This mutation has an effect of the behaviour, but still seems to be a neutral

mutation.

3.4. Comparing Robustness with x86 instruction set

In 2005 a program called Gloeobacter violaceus has been developed, that uses artificial

mutations in the x86 instruction set, without making use of a meta-language.[7] That

program also replicates in the current directory, and is subjected by point mutations, and

rarely by inseration, deletion and dublication. Due to the brittleness of the x86 instruction

set, that attempt was not very fruitful. Still it gives a good possibility of comparison.

Both systems have changed to the same initial situation: Point mutations occure in

the whole file with same probability. After several hundreds of generations, all non-minor

mutations (occure in more than 50 different files) of 2.500 files have been analysed. The

mutations have been classified by their position: x86-code mutations, mutation in some

padding region or in the meta-language code.

Through this classification we find out whether the new meta-language concept is more

robust than the x86 instruction set.

We define the mutation density of a specfic region in the code by

ρmut(Region) =
mutations in region

size of region

Meta-Language concept:

ρmut(whole code) =
291

6144
= 0.047

ρmut(padding) =
151

2427
= 0.062

ρmut(meta-code) =
81

2084
= 0.039

ρ∗mut(x86) =
14

576
= 0.024

The ρmut(x86) combines the very small translator code and the alphabeth, but as the

alphabeth is no real x86 code, comparing this advisable. If that problem would be neglected,
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one would see that the meta-language is more robust under mutations as the x86 code. For

a fair comparison Gloeobacter violaceus can be used.

Gloeobacter violaceus:

ρmut(whole code) =
351

3584
= 0.098

ρmut(padding) =
284

2229
= 0.127

ρmut(x86) =
10

683
= 0.015

Mutations in the padding bytes do not corrupt the organism, thus it is the initial mutation

density. A comparison between ρmut(padding) and ρmut(Region) gives the percentage of

non-lethal mutations in that region, therefore gives the robustness R of that region.

Robustness(Region) :=
ρmut(Region)

ρmut(padding)

The interesting comparison is between the x86 region and the meta-language region.

Robustness(x86) =
ρmut(x86)

ρmut(padding)
=

0.015

0.127
= 0.115

Robustness(meta-code) =
ρmut(meta-code)

ρmut(padding)
=

0.039

0.092
= 0.424

Even this analysis is based on low statistics, it already indicates a great result:

This new meta-language concept for x86 systems is much more robust than the

original x86 instruction set.



4. Outlook

4.1. Open questions

Development of new functionality: The most important question is whether an artificial

organism with this meta-language in a x86 system can develope new functionalities.

In a long-term evolution experiment by Richard Lenski, they discovered that simple E.coli

was able to make a major evolutionary step and suddenly acquired the ability to metabolise

citrate.[8] This happened after 31.500 generations, approximativly after 20 years.

The generation time of artificial organism are of many orders of magnitude smaller, there-

fore beneficial mutation such as development of new functionality may occure within days

or a few weeks. The question that remains is whether this meta-language concept is the

right environment or not.

Other types of mutations: Point mutation is one important type of mutation, but not

the only one. In DNA, there is also Deletion, Duplication, Inseration, Translocation, Inver-

sion. Especially inseration of code and deletion of code is proved to be important in artificial

evolution too.[9] The question is how one can create such a type of mutation without file

structure errors occuring after every single mutation.

One possibility would be to more the n last byte of the meta-language code forwards

(deletion) or backwards (inseration), filling the gap with NOPs. However, how could you find

out where the end of the meta-language code is without some complex (and thus brittle)

functions?

Behaviour of Hamming distance: How is the time evolution of the average Hamming

distance between a population and the primary ancestor? Does it have a constant slope or

is it rather like a logarithm? How is the behaviour of the Hamming distance when taking

into account other types of mutations (as descriped above)? Large-scale experiments are

needed to answer that questions propriatly.

APIs: This is an operation system specific problem, and can not be solved for any OS at

once. For Windows, the current system of calling APIs is not very natural. It is a call to a

specific addresse of a library, needing the right numbers of arguments on the stack and the

API and library defined in the file structure. Hence, API calls are not (very) evolvable in

this meta-language, restricting the ability to use new APIs by mutations.

One possible improvement could be the usage of LoadLibraryA and GetProcAddress,

which loads the APIs from the kernel autonomous. This technique would not need the APIs

and libraries saved within the file structure, and could make it possible to discover new

functionalities. Unfortunately, this requires complex functions, which may be very brittle

and unflexible.

Still it needs more thoughts to find an adequate solution to this problem.
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4.2. Computer malware

This technique could be used in autonomous spreading computer programs as computer

viruses or worms. This has been discussed in a very interesting paper by Iliopoulos, Adami

and Ször in 2008.[10]

Their main results are: The x86 instruction set does not allow enough neural mutations,

thus it is impossible to develope new functionalities; a ’evolvable’ language or a meta-

language would be needed. Further, together with smaller generation times, the selective

pressure and the mutation rate would be higher, speeding up evolution. Conclusion is, that

it is currently unclear what would be a defence against such viruses.

In contrast to the experiment explained in chapter 3 - where natural selection was nearly

absent, computer malware are continuously under selective pressure due to antivirus scan-

ners. This is the same situation as in biological organism, where parasits are always attacked

by the immune system and antibiotics.

Theoretically, computer malware could also find new ways to exploit software or different

OS APIs for spreading. This is not as unlikely as it seems in the first moment. Experi-

ments with artificial and natural evolution have shown that complex features could evolve

in acceptable time.[5][9]

4.3. Conclusion

An artificial ’evolvable’ meta-language for x86 Systems has been created using the main

ideas of Tierra and avida: Separation of operations and arguments, and not using direct

addressing. The experiments have been very promising, showing that the robustness of the

new meta-language is approximately four times higher as for usual x86 instructions. Several

open questions are given in the end, which should motivate for further research.

Howsoever, the most important step has been done:

The artificial organism are not trapped in virtual systems anymore, they can

finally move freely - they took the redpill...
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A. Appendix

This artificial evolution system can be started on every common Windows Operation System.

Even it is a chaotic process, due to the guard files the process can run for hours without a

breakdown of the system.

A.1. The package

The package:

binary\run0ndgens.bat: This script starts all guard files, then starts the 0th generation.

Adjust the hardcoded path in the file to the directory of the guard files. This file has to be

at H:, you can use subst for that.

binary\NewArt.exe: This is the 0th generation. It has to be started with the shell (or a

.bat file) - not via double-click. It is highly recommented to not run the file without the

guard files. This file has to be as H: aswell.

ProcessWatcher\*.*: This directory contains the binary and source of all guard files.

ProcessWatcher\CopyPopulation.cpp: This file copies every 3 minutes 10% of the

population to a specific path given in the source. This path has to be adjusted before usage.

ProcessWatcher\Dead.cpp: This program can be used to manually stop all organism.

You can enter a probability of how many organism should be survive. For instance, if you

enter 10, 90% of the population will be terminated - 10% survive.

ProcessWatcher\DoubleProcess.cpp: This program searchs and destroyes multiple

instances of the same file. See Chapter 3.2 for more information.

ProcessWatcher\EndLessLoops.cpp: This guard file searchs for endless loops in the

memory and terminates them.

ProcessWatcher\JustMutation.cpp: Also descriped in chapter 3.2, this program searchs

and terminates clones in the process.

ProcessWatcher\Kill2MuchProcess.cpp: This guard is very important for stability of

the operation system while running the experiment. If there are more than 350 processes

running, it terminates 75% of them.

ProcessWatcher\RemoveCorpus.cpp: As space is restriced, this guard deletes files that

are older than a 30sec.

ProcessWatcher\SearchAndDestroy.cpp: This program removes error messages (by

clicking at ”OK”), terminates error-processes (as dwwin.exe or drwtsn32.exe), and it

terminates dead processes (processes that are older than 100sec).

ProcessWatcher\malformed PEn.exe: These are two malformed .EXE files, which will be
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called by SearchAndDestroy.exe at the start to find the ”OK”-Button. They have to be

in the directory of the guard files.

Analyse\SingleFileAnalyse: This directory contains an analyse file, that compaires the

bytecode of two genotypes. Copy the file to the directory, change the name in the source

and execute it.

Analyse\Relation: This file compaires gives you the Hamming distance of all .exe files.

Analyse\MutationDistribution: With this file you can get a distribution of all mutations

compaired with NewArt.exe.

A.2. Running the experiment

Copy the run0ndgens.bat and NewArt.exe to H:\. Adjust the path in

CopyPopulation.cpp to the backup directory (and compile it) and in run0ndgens.bat

to the directory of the guard files.

Now you can start run0ndgens.bat, move over the two error-messages (dont click them,

this will be done by SearchAndDestroy.exe). Then you are ready and can press a key in

the run0ndgens.bat, which will start 10 instances of NewArt.exe.

Running Experiment: This is how the experiment should look like
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