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state (i.e. in the absorption and radiation processes absence) or after of minimal ac-
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I. INTRODUCTION

It is well known that, within the scope of a perturbation theory, quantum gravity is an
unrenormalizable theory. Actually, this is associated with the fact that, on going to the
progressively higher energies E close to the Planck energy E ≈ Ep, the arbitrary metric
gµν even locally could not be considered in the form

gµν = ηµν + oµν , (1)

where ηµν - Minkowski metric and oµν � its certain small increment.
As the perturbation theory methods in a quantum approach to gravity are disabled, to
obtain quantum gravity, the researchers actively use the approaches beyond the scope of
a perturbation theory, in particular, the discrete methods independent of the background
space-time such as Regge Calculus [1] � [4],Causal Dynamical Triangulations (CDT) [5]�
[10], and so on. However, in all the above-mentioned discrete methods from the start
it is expected that elementary components of the corresponding discretizations of the
initial space (more generally, manifolds) possess a plane geometry, that connives the
validity of the Einstein Strong Equivalence Principle (SEP) at all energy scales. But
the situation may be di�erent. For example, in [11] and [12] it has been demonstrated
that SEP may be violated at high energies if space-time foam at Planck scales comprises
quantum (Planck) black holes [13]. Consequently, there exists the problem of taking
into consideration the quantum-gravitational corrections generated by this quantum black
holes for all quantities, in particular for simplices - elementary discretization components
in the Regge Calculus.
This paper presents a study of quantum-gravitational corrections to General Relativity
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(GR) [14]�[16] when the latter is considered in a discrete pattern of the Regge Calculus
[4]. These corrections have been found explicitly in the case when the space-time foam a
la Wheeler at Planck's scale comprises the Planck (quantu8m) black holes, whereas the
physical system per se, where GR is considered, is either a black hole in stationary state
(i.e. in the absorption and radiation processes absence) or after of minimal accretion, and
in a more general case,if it satis�es the Hooft-Susskind Holographic Principle. It is
shown that the corrections generate the contributions changing a plane geometry of the
corresponding simplices in the Regge Calculus and that these changes are most signi�cant
at high (Planck) energies.

II. THE EQUIVALENCE PRINCIPLE AND QUANTUM BLACK HOLES AS

FOUNDATION OF SPACE-TIME FOAM

The "geometry" of space-time foam unknown to present day prevents correct general-
ization of the well-known Einstein Equivalence Principle (EP) to high (Planck) energies.
At the same time, researchers are actively engaged in studies of this Principle and of its
possible violations.
In particular, in [17],[18] it has been demonstrated that in a �eld of a large (i. e, classical)
four-dimensional Schwarzschild black hole with the metric

ds2 =

(
1− 2MG

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2dΩ2 (2)

(where M is the mass of this black hole and horizon radius is rBH = 2MG), the EP is
violated for an observer distant from the black hole event horizon.
The principal result of the works [17],[18] is based on the inference that, provided EP is
valid, for a distant observer in a �eld of the above-mentioned black hole the equality to
the Unruh temperature given by [19] is the case

TUnruh =
~a
2π

, (3)

where a = |a| is the corresponding acceleration,
with a temperature conditioned by Hawking radiation [20] and given by formula [17] as
follows:

TH,r =
~

8πGM
√

1− rBH

r

, (4)

where r - distance between an observer and the event horizon (r > rBH); c = kB = 1.
In [17] it is shown that an observer, positioned at the �xed distance r > rBH from the
above-mentioned black holes and measuring Hawking temperature with the value TH,r,
experiences the local acceleration

aBH,r =
1√

1− rBH

r

(rBH

2r2

)
. (5)

Another observer in the Einstein elevator, moving with acceleration through Minkowskian
space-time, will measure the same acceleration toward the �oor of the elevator, thermal
radiation with the Unruh temperature given by formula (3). As shown in [17], aBH is
coincident with the quantity a from the formula in (3). Then substituting the acceleration
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a = aBH from formula (5) into formula (3), we can obtain a formula for TUnruh,r in this
case [18]:

TUnruh,r =
~

2π
√

1− rBH

r

(rBH

2r2

)
. (6)

If EP is valid, the quantities TUnruh,r from formula (6) and TH,r in (4) should be coincident
for r > rBH to a high degree of accuracy. However, we see that this is not true and for
r > rBH we have TH,r > TUnruh,r and similarly for r ≫ rBH ,i.e. for distant observer,
TH,r ≫ TUnruh,r.
All the foregoing results are valid in the low-energy domain E ≪ Ep. The problem arises,
what happens in the high-energy (quantum-gravitational) domain E ≈ Ep, i.e. in the
region, where the space-time foam exists [21]�[28].In [24]�[28] the space-time foam has
been studied in the assumption that it comprises micro-black holes (or quantum black
holes qbh by the terminology of [13]).
As shown in [11], the principal results from [17],[18] may be generalized to qbh with
due regard for quantum-gravitational corrections [29] � [33]. This is brie�y explained as
follows.
Without loss of generality, it is considered that at Planck's energies the Generalized
Uncertainty Principle (GUP) is satis�ed [34]�[37] according to [34]

∆x ≥ ~
∆p

+ α′l2p
∆p

~
, (7)

where α′ is a constant on the order of 1. Evidently, this formula (7) initially leads to the

minimal length lmin = ℓ̃ on the order of the Planck length ℓ̃
.
= 2

√
α′lp.

Then, in conformity with the principal result from [38], radiation of qbh will persist so

long as its radius rqbh were not minimal and equal to ℓ̃

rqbh,min = lmin = ℓ̃. (8)

The �nal stage of this radiation is represented by a minimal nonradiative Planck's rem-
nant [38],[13]) that is called the extremal qbh.
It is supposed that the qbh under study is not extremal (it is radiative), with the radius
r = rqbh > rqbh,min on the order of the Planck one rqbh ∝ lp.
According to the present-day knowledge, a semi-classical region starts between 5 and 20
times the Planck scale [39]. Then, despite the fact that this qbh is itself in the quantum
gravity region, the scales of r ≫ rqbh (corresponding to a distant observer) determine the
region, where a semi-classical approximation is valid.
This means that, on substitution of qbh with the mass mqbh for a large (classical) black
hole with the mass M , in the case under study the results, substantiated when an ob-
server uses the standard Unruh-Dewitt detector in radiation measurement for coupled to
a massless scalar �eld [40]�[42], are valid with the corresponding quantum corrections [29]
� [33]. This quantum corrections in the four-dimensional Schwarzschild classical black
hole case are vanishingly small. Nevertheless, for qbh they are already high.
In [11] it is demonstrated that, if r ≫ rqbh (semiclassical approach), then TH,r,q ≫
TU,r,q,where TH,r,q is the temperature Schwarzschild qbh but with regard to the corre-
sponding quantum corrections (for example, [29],[30],[31],[32],[33]). Similarly, TU,r,q is the
Unruh temperature with the corresponding quantum corrections.
In this way the principal result from [17],[18] may be generalized to qbh comprising the
space-time foam [24]�[28]. As canonical QFT is a local theory de�ned in space-time with
plane geometry [43]�[45], validity of EP is implied. Because of this, the main objective
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of [11] was to show that, when space-time foam comprises the above-mentioned qbh,the
applicability boundary of QFT falls within energies considerably lower than the Planck
energy E ≪ Ep.
It should be noted that Albert Einstein formulated his strong Equivalence Principle only
for classical objects against a classical space-time background. This is explained by the
fact that in the period, when General Relativity was created (1915,1916) and this principle
was formulated, a quantum theory was at the stage of conception and its main postulates
were unknown. Because of this, formulation of the principal result from [17],[18] is not
quite exact. Strong EP, in its initial formulation, is still valid and the principal result
from [17],[18] should be as follows:
generalization of the strong Equivalence Principle for the case of a semiclassical approxi-
mation in a black hole gravitational �eld becomes invalid.

III. REGGE CALCULUS AND QUANTUM-GRAVITATIONAL

CORRECTIONS TO IT

Now it is assumed that space-time foam at Planck scales comprises qbh and our ob-
jective is to calculate the quantum-gravitational corrections qgcin this case. Speci�cally,
we are interested in calculation of qgc for the case of quantum black hole using the Regge
Calculus.
Let us consider the Einstein gravitational theory for d-dimensional space-time manifold
M in terms of the lattice discretized Regge description [1],[3].
In the standard Regge Calculus it is assumed the simplicial decomposition of any space-
time d-dimensional manifold M [3],[4]. This means that in such a case the elementary
building blocks represent simplices of the dimension d. A point represents 0-simplex, an
edge�1-simplex, a triangle�2-simplex, a tetrahedron�3-simplex,..., accordingly d-simplex
has d+1 vertices and d(d+1)/2 edges connecting them. All angles of such a construction,
named the simplicial complex, are unambiguously de�ned; it consists of numerous �glued
together� simplices, which in pairs are not intersecting or have a common edge. The lat-
tice model, where �the relative position of points on the lattice is thus completely speci�ed
by an incidence matrix (it tells which point is next to which) and the edge lengths, and
this in turn induces a metric structure on the piecewise linear space� (p.831 in [3]),is the
case. It is assumed that each d-simplex has a plane geometry and contains sub-simplices
of smaller dimension.
Then combined gravitational action in the Euclidean regime, that includes the cosmolog-
ical term as well, by this approach used in the Regge formalism (formula (89) in [3]) may
be given as follows:

Ilatt(l
2) = λ0

∑
simplices s

V (d)
s − k

∑
hinges h

δ(h)V
(d−2)
h , (9)

where the second term

IR(l
2) = − k

∑
hinges h

δ(h)V
(d−2)
h (10)

is the Euclidean lattice action for pure gravity (formulae (formula (86) in [3]), λ0�

cosmological constant value, V
(d)
s � d-simplex volume (centered on s),V

(d−2)
h � d−2-simplex

volume (centered on h), and k = 1/(8πG). And δ(h) � de�cit angle at h (formulae (62)
in [3] and (6.13) in [4])

δ(h) = 2π −
∑
s⊃h

θ(s, h) (11)
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for the sum extends over all simplices s meeting on h. The δ(h) is a measure of the
curvature at h [2],[3], [4].
Let us assume that space-time dimension d = 4. With the use of the Regge Calculus, it is
supposed that all the involved simplices and sub-simplices are of plane geometry [2]�[4].
But, due to the results from the previous section, in particular those generated by qbh.
It is assumed that any qbh is radiative until it becomes qbh, with the minimal radius
r = rmin [38].
We use the results from [30] and, for convenience, the notation of this paper. Then GUP
may be given as follows ([30],formula (16)):

(δX) (δP ) ≥ ~
2

(
1 +

α2l2p
~2

(δP )2
)
. (12)

with the following minimal length lmin

(δX)0 = αlp ∝ lp. (13)

Compared to (7), here the symbols of ∆x 7→ δX,∆p 7→ δP are changed.
The radius and mass of a minimal Schwarzschild black hole are given as [30] (formula
(20))

rh = (δX)0 =

√
e

2
αlp, M0 =

α
√
e

2
√
2
MPl, (14)

where e is the natural logarithms base and the following condition is satis�ed [30]

α2l2p exp(
2α2l2p
~2 ⟨P ⟩2)

2 (δX)2
≤ 1

e
. (15)

Let's �rst consider the case of a black hole's minimal accretion.
In [46],[47] a minimal increase in the area of a black hole absorbing a classical particle of
the energy E has been calculated, and the size R is given by (∆A)

0
≃ 4l2p (ln 2)ER. In a

quantum pattern we have R ∼ 2δX and E ∼ δP .
Based on this result, [30] presents a derivation of a new explicit expression for (∆A)

0
that

may be considered as a quantum-gravitational correction qgc to the arbitrary black hole
horizon area [30] (formula (27)):

(∆A)
0
≈ 4l2p ln 2 exp

(
−1

2
W

(
−1

e

A0

A

))
, (16)

where A is the black hole horizon area of the given black hole and A0 = 4π (δX)2
0
is the

black hole horizon area of a minimal quantum black hole from formula (14). Here the
expression W

(
−1

e
A0

A

)
in the right-hand side of (16) represents a value at the pint −1

e
A0

A
of the Lambert function W (u) satisfying the equation (formulae (1.5) in [48] and (9) in
[30])

W (u) eW (u) = u. (17)

In what follows, we assume that the left and the right sides in the equation (16) are,
to a high accuracy, coincident and hence, instead of an approximate equality, we use
(∆A)

0
= 4l2p ln 2 exp

(
−1

2
W
(
−1

e
A0

A

))
.

It is clear that for a large (classical) Schwarzschild black hole, when A is the horizon area,
the value of A0/A is very small and very close to zero. Because of this, a value of the
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expression W (1
e
A0

A
) is close to W (0). It is easily seen that W (0) = 0 presents an explicit

solution of the equation (17). Then in the right side we have (16)

exp

(
−1

2
W

(
−1

e

A0

A

))
≈ 1, (18)

and hence
(∆A)

0
≈ 4l2p ln 2. (19)

For a small Schwarzschild black hole with the horizon area A, The quantity A0/A is
already signi�cant and, on condition A → A0,it is close to 1 when the given black hole is
close to a minimal quantum black hole (minimal qbh).
Obviously, the quantum-gravitational correction qgc (16) presents a deformation (or more
exactly, the quantum deformation of a classical black-holes theory from the viewpoint of
the paper [49], with the deformation parameter A0/A.
However, we have

A0

A
=

4πr2h
4πR2(A)

=
l2min

R2(A)
, (20)

where rh = lmin is the horizon radius of minimal qbh from formula (14) and R(A) is the
horizon radius of the given black hole with the black hole horizon area A. It should be
noted that this deformation parameter

l2min/R
2(A)

.
= αR(A) (21)

has been introduced by the author in his earlier works [50]�[52], where he studied de-
formation of quantum mechanics at Planck scales in terms of the deformed quantum
mechanical density matrix. In the Schwarzschild black hole case αR(A) = l2minK � product

of the minimal surface area l2min by the Gaussian curvature K = 1/R2(A) of the black-hole
horizon surface [53].
So, if the initial closed manifold M is a black hole with the horizon area A(M), all the
foregoing calculations relating to �quantum corrections of the area� (in particular formula
(16) for this manifold are valid).
Obviously, a value of the deformation parameter αR(A) for the manifolds M of large
linear sizes, with the surface area A(M) adequately given by formula (16), equals
A0/A(M) = 1/NA(M), NA(M) ≫ 1 and for manifolds M of linear sizes close to Planck
scales we have A0/A(M) = 1/NA(M), NA(M) ∼> 1.
For Schwarzschild bh with the event horizon area A(M) after above minimal absorbtion
in virtue (16) we obtain Schwarzschild bh with the event horizon area A(M) +∆A(M)0
and radius R(A(M) + ∆A(M)0).
Arbitraries Linear Elements (LE) and Areas in �rst black hole in this transition transfor-
mates into corresponding quantities in second black hole as

LE 7→ LE × R(A(M) + ∆A(M)0)

R(A(M)
,

Area 7→ Area× R2(A(M) + ∆A(M)0)

R2(A(M))
= Area× A(M) + ∆A(M)0

A(M)
(22)
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Then from (10) for d = 4 we have

V
(2)
h 7→ V

(2)
h,q = V

(2)
h

A(M) + ∆A(M)0
A(M)

;

IR(l
2) = − k

∑
hinges h

δ(h)V
(2)
h 7→ IR(l

2, q)
.
= − k

∑
hinges h

δ(h)V
(2)
h,q =

= − k
∑

hinges h

δ(h)q V
(2)
h , δ(h)q = δ(h)

A(M) + ∆A(M)0
A(M)

(23)

Here δ(h)q is �quantum deformation� of a curvature measure δ(h) from formula (11).

I.Semiclassical Picture
In this case above contributions are small due to smallness of the quantity
A0/A(M) = 1/NA(M), NA(M) ≫ 1 for any Schwarzschild bh which may be stud-
ied in a semiclassical approximation,i.e. for large enough bh. This result is independent
of the available energies and then

δ(h)q ≈ δ(h) (24)

II.Quantum-gravitational Consideration
In this case size of bh (i.e. of the initial manifold M a close to Planck sizes. Then there
is no way for consideration of such M in a classical pattern.
Then there are signi�cant quantum gravity corrections

δ(h)q ̸= δ(h) (25)

These quantum-gravitational corrections make contributions into all other quantities
in a discrete representation of gravity using the Regge Calculus, speci�cally, in the gravity
�eld equations in vacuum and to the statistical sum of a theory.
Remark 3.1 Most often a black hole is considered within the scope of the above-
mentioned accretion process. When a black hole is studied in the stationary state (i.e.
without absorption and emission of matter), the foregoing procedure for calculation of
qgc is radically simpli�ed.
From the formula for temperature of a black hole with regard to qgc within the scope of
GUP TH,q ((23) in [30])

TH,q =
1

8πMl2p
exp

(
−1

2
W

(
−1

e

(
M0

M

)2
))

, (26)

one can easily �nd a mass of this black hole, with regard to qgc, denoted by Mq

Mq = M exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

. (27)

As, with due regard for qgc, a Schwarzschild black hole remains the same, a radius of
the initial black hole R(A) and its radius with regard to the corrections of R(Aq) are
proportional to M and Mq, respectively, and have the same proportionality factor 2G.
Then from formula (27) it follows that the area of a black hole, with regard to qgc Aq ,
takes the form

Aq = A exp

(
W

(
−1

e

(
M0

M

)2
))

. (28)
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This suggests that the term exp
(
W
(
−1

e

(
M0

M

)2))
in the right side of the last formula

should be simply added as a factor for each component δ(h) to measure the curvature at
the hinge h in formula (9). Further analysis follows the foregoing analysis after Remark
4.1: for large black holes this factor is very close to 1 and it makes a contribution only
in the case of small black holes at the energies E ≈ Ep.
At the same time, these calculations are also valid in the case when M satis�es the
Hooft-Susskind Holographic Principle [54]�[56] assuming that all information about
a physical system on M is found at its boundary with the area A(M).
Really, in this case M is a holographic screen and by virtue of results in [57] a physical
system on M is equivalent to black hole with event horizon coinciding with the surface
of this holographic screen,i.e. with the A(M). Thus,in this case all the above methods
and formulae remain valid.

IV. CONCLUSION

Let us formulate the obtained results.

1) In conditions, when a physical system considered for the manifold M is either
a black hole in stationary state (i.e. in the absorption and radiation processes absence) or
after of minimal accretion, and in a more general case,if it satis�es the Hooft-Susskind
Holographic Principle, the following arguments are valid:

1.a) for the manifold MLM with large linear sizes LM, much larger than the
Planck's LM ≫ lp (i.e. the manifold under classical consideration), qgc are small and
calculable in Regge Calculus for 2-simplices with any edge lengths or for the curvature
measure δ(h) at any hinge h;

1.b)on the contrary, for the manifold M with linear sizes lM commensurable with
the Planck scales lM ∼> lp (i.e. the manifold having only quantum consideration), qgc
are also calculable and signi�cant both in Regge Calculus for each 2-simplex with any
edge lengths or for the curvature measure δ(h) at any hinge h;

2) Also, the obtained results imply:
in the canonical Regge Calculus [1] � [4] it is assumed that all simplices of the correspond-
ing manifold M have a plane geometry, implicitly pointing to validity of the Einstein
Strong Equivalence Principle (SEP) that, as noted above, in particular cases is not true.
In fact, the foregoing quantum-gravitational corrections qgc represent corrections to a
plane geometry in this case.

3) Hypothesis
In a gravitational �eld of the quantum black hole all the foregoing results are valid
within the scope of the Regge Calculus for any physical system considered on the manifold
M.

Commentary

A greatly expanded version of this work, including the necessary calculations for the
corresponding partition function, was submitted to the journal NPCS.
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