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1 Introduction

In a 2011 paper in the journal Asian Journal of Algebra (see [1]), the authors
consider, among other equations, the diophantine equations

2xy = n(x+ y) and 3xy = n(x+ y).

For the first equation, with n being an odd positive integer, they give

the solution (in positive integers x and y)
n+ 1

2
= x =

(n− 1)

2
+ 1, y =

n

(

(n− 1)

2
+ 1

)

= n

(

n + 1

2

)

.
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For the second equation, with n ≡ 2(mod3), they present the particular
solution,

n+ 1

3
= x =

(n− 2)

3
+ 1, y = n

(

(n− 2)

3
+ 1

)

= n

(

n+ 1

3

)

.

If in the above equations we assume n to be prime, then these two equa-
tions become special cases of the diophantine equation, nxy = p(x+y), with
p being a prime and n a positive integer with n ≥ 2.

This two-variable symmetric diophantine equation is the subject matter
of this article; with the added condition that the integer n is not divisible
by the prime p. Observe that this equation can be written equivalently in
fraction form:

n

p
=

1

x
+

1

y
.

This problem then can be approached from the point of view of decompos-
ing a positive rational number into a sum of two unit fractions (i.e., two
rational numbers whose numerators are equal to 1). The ancient Egyptians
left behind an entire body of work involving the decomposition of a given
fraction into a sum of two or more unit fractions. They did so by creating
tables containing the decomposition of specific fractions into sums of unit
fractions. An excellent source on the subject of the work of the ancient
Egyptians on unit fractions is the book by David M. Burton, “The History
of Mathematics, An Introduction” (see [2]). Note that thanks to the identity
1

k
=

1

k + 1
+

1

k(k + 1)
, a unit fraction can always be written as a sum of two

unit fractions.
We state our theorem.

Theorem 1. Let p be a prime, n a positive integer, n ≥ 2. Also, assume that
gcd(p, n) = 1 (equivalently, n is not divisible by p). Consider the two-variable
symmetric diophantine equation,

nxy = p(x+ y) (1)

with the two variables x and y taking values from the set Z
+ of positive

integers. Then,
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(i) If n = 2 and p ≥ 3, equation (1) has exactly three distinct solutions,
the following positive integer pairs:

(x, y) = (p, p), (x, y) =

(

p

(

p+ 1

2

)

,
p+ 1

2

)

,

and its symmetric counterpart

(x, y) =

(

p+ 1

2
, p

(

p+ 1

2

))

.

(ii) If n ≥ 3, and n is a divisor of p+1. Then equation (1) has exactly two
distinct solutions:

(x, y) =

(

p

(

p+ 1

n

)

,
p+ 1

n

)

and (x, y) =

(

p+ 1

n
, p

(

p+ 1

n

))

.

(iii) If n is not a divisor of p+ 1, Equation (1) has no solution.

2 A lemma from number theory

The following lemma, commonly referred to as Euclid’s lemma, is of great
significance in number theory.

Lemma 1. (Euclid’s lemma): Suppose that a, b, c are positive integers such
that a is a divisor of the product bc; and gcd(a, b) = 1 (i.e., a and b are
relatively prime), then a must be a divisor of c.

Typically, this lemma and its proof can be found in an introductory num-
ber theory book. For example, see reference [3].

3 Proof of Theorem 1

First we show that the positive integer pairs listed in Theorem 1 are indeed
solutions to Equation (1).
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If n = 2 and p ≥ 3, then for (x, y) = (p, p), a straightforward calculation

shows both sides of (1) are equal to 2p2; and for (x, y) =

(

p(p+ 1)

2
,
p+ 1

2

)

,

a calculation shows that both sides of (1) are equal to
p(p+ 1)2

2
.

If n ≥ 3 and n is a divisor of p+1, then for (x, y) =

(

p

(

p+ 1

n

)

,
p+ 1

n

)

,

a calculation shows that both sides of equation (1) are equal to
p(p+ 1)2

n
.

In the second part of this proof, we show that there are no other solutions
to equation (1). To do so, we will demonstrate that if (t1, t2) is a solution to
(1), then it must be one of the solutions listed in Theorem 1. So, let (t1, t2)
be a positive integer solution to equation (1).

We have,







p(t1 + t2) = nt1t2

t1, t2 ∈ Z
+







(2)

Let d be the greatest common divisor of t1 and t2. Then







t1 = du1, t2 = du2;
for relatively prime positive integers u1 and u2;
gcd(u1, u2) = 1







(3)

From (2) and (3) we obtain,

p(u1 + u2) = nd u1u2 (4)

Since the prime p is relatively prime to n. By (4) and Lemma 1, it follows
that p must divide the product du1u2. Since p is a prime number, it must
divide at least one of d and u1u2. We distinguish between two cases: The
case wherein p divides the product u1u2; and the case in which p is a divisor
of d.

Case 1: p is a divisor of u1u2.
Since p is a prime, and the integers u1 and u2 are relatively prime by (3),

and also in view of the fact that p divides the product u1u2, it follows that
p must divide exactly one of u1, u2. It must divide one but not the other.
Thus, there are two subcases in Case 1.
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Subcase 1a being the one with p|u1 (i.e., p divides u1);
Subcase 1b: p divides u2.

But these two subcases are symmetric since equation (4) is symmetric in u1

and u2. Thus, without loss of generality, we need only consider the subcase
p|u1. So we set

(u1 = pv1, v1 a positive integer) (5)

Combining (5) with (4) we get,







pv1 + u2 = nd v1u2

or equivalently, u2 = v1 · (ndu2 − p)







(6)

According to (6), the positive integer v1 is a divisor of u2. But, by (5) v1 is
also a divisor of u1. Since u1 and u2 are relatively prime by (3), it follows
that

v1 = 1 (7)

Hence, by (7) and (6), we further obtain,

p = u2(nd− 1) (8)

According to (8), u2 is a divisor of p, and since p is a prime it follows that
either u2 = 1 or u2 = p. If u2 = 1, then (8) yields p + 1 = nd which implies

that n is a divisor of p + 1. Using d =
p+ 1

n
, v1 = 1, u2 = 1, we also get

u1 = p (by (5)). So, by (3) we obtain the solution t1 = p

(

p + 1

n

)

, t2 =
p+ 1

n
(already a verified solution in the first part of the proof). Now, if u2 = p in
(8), then 2 = nd which implies either n = 2 and d = 1, or n = 1 and d = 2.
But n ≥ 2, so the latter possibility is ruled out. Thus, u2 = p, n = 2, and
d = 1. Also, by (7) we have v1 = 1 and so u1 = p by (5).

Hence, (3) yields t1 = p = t2; (p, p) with n = 2 being a solution verified
in the first part of the proof.

Case 2: p is a divisor of d
We set
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(d = pδ, δ is a positive integer) (9)

by (9) and (4) we have,

u1 + u2 = nδu1u2 (10)

Clearly, by inspection, we see that equation (10) implies that the positive
integers u1 and u2 must divide each other. Since they are relatively prime,
it follows that

u1 = u2 = 1 (11)

Equations (10) and (11) yield

2 = nδ (12)

Due to the fact n ≥ 2, (12) implies that n = 2 and δ = 1. So, by (11),
(9), and (3), it is clear that (since d = p) u1 = u2 = p. This produces
(u1, u2) = (p, p), with n = 2. An already verified solution. The proof is
complete. �
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