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Abstract. The Kowalevski gyrostat in two constant fields is known as the unique

example of an integrable rigid body problem described by the Hamiltonian system with

three degrees of freedom not reducible to a family of systems in fewer dimensions. The

practical explicit integration of this system can hardly be obtained by the existing

techniques. Then the challenging problem becomes to fulfill the qualitative investiga-

tion based on the study of the Liouville foliation of the phase space. As the first

approach to topological analysis of this system we find the stratified critical set of the

momentum map; this set is represented as the union of manifolds with induced almost

Hamiltonian systems having less than three degrees of freedom. We obtain the

equations of the bifurcation diagram in three-dimensional space. These equations

have the form convenient for the classification of the bifurcation sets arising on

5-dimensional iso-energetic levels.

1. Introduction

The famous integrable case of S. Kowalevski of the motion of a heavy

rigid body about a fixed point [1] has received several generalizations. Some

of them suppose restrictions to submanifolds in the phase space (partial cases),

others are far from mechanics involving potential functions on the configura-

tion space SOð3Þ with singularities. The most essential generalization having

the clear mechanical sense was found by A. G. Reyman and M. A. Semenov-

Tian-Shansky in the work [2]. The authors introduce the dynamical system on

the dual space of the Lie algebra eðp; qÞ of the Lie group defined as the semi-

direct product of SOðpÞ and q copies of Rp. Such systems are known as the

Euler equations on Lie (co)algebras [3]. The case p ¼ 3, q ¼ 2 corresponds to

the Euler–Poisson equations of the motion of a gyrostat in two constant fields.

For a rigid body without gyrostatic momentum, the model of two constant

fields was introduced by O. I. Bogoyavlensky [3]. The physical object can be
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either a heavy electrically charged rigid body rotating in gravitational and

constant electric fields, or a heavy magnet rotating in gravitational and constant

magnetic fields. The corresponding equations are Hamiltonian on the orbit

of the coadjoint action on eð3; 2Þ�. The typical orbit is di¤eomorphic to

TSOð3ÞGR3 � SOð3Þ. Therefore, the gyrostat in two constant fields is the

Hamiltonian system with three degrees of freedom. Bogoyavlensky [3] sug-

gested the conditions of the Kowalevski type and found the analogue of the

Kowalevski integral K for the top in two constant fields. H. Yehia [4]

generalized this integral for the Kowalevski gyrostat in two constant

fields. Almost simultaneously with Yehia, I. V. Komarov [5] and L. N.

Gavrilov [6] proved the Liouville integrability of the Kowalevski gyrostat in the

gravity field. But for two constant fields the Kowalevski gyrostat was not

considered integrable due to the fact that the existence of the second field

destroys the axial symmetry of the potential and, consequently, the corre-

sponding cyclic integral. Finally, Reyman and Semenov-Tian-Shansky [2]

found the Lax representation with a spectral parameter for the family of

Euler equations on eðp; qÞ�. For p ¼ 3, q ¼ 2 this representation immediately

gave rise to the new integral for the Kowalevski gyrostat in two constant

fields. When one of the fields vanishes this integral turns into the square of the

cyclic integral.

The Kowalevski gyrostat in two constant fields does not have any explicit

symmetry groups and, therefore, is not reducible, in a standard way, to a

family of systems with two degrees of freedom. Phase topology of such

systems has not been studied yet. The theory of n-dimensional integrable

systems started in [7], [8] is not illustrated by an application to any real

irreducible physical or geometrical problem with n > 2.

In the paper [9], the authors give a detailed exposition of the results of [2]

as well as a study of the algebraic geometry of the Lax pair for the generalized

Kowalevski system. They announce the possibility of its integration by the

finite-band techniques and fulfill such integration for the classical top. For

two constant fields the integration of the Kowalevski top is not given up-to-

date. The problem of the Kowalevski gyrostat motion in two constant fields is

not studied at all. The technical di‰culties here are extremely high. It is not

likely that, in the general regular case, the analytical solutions can be obtained

having the form useful for the qualitative topological analysis or the computer

simulation. However, there is a good experience of studying the critical

subsystems, i.e., the systems with n < 3 degrees of freedom induced on

2n-dimensional invariant submanifolds in the phase space consisting of the

momentum map singularities. For the Kowalevski top in two constant fields

we have now the complete description of all such singularities [10], [11],

[12], [13], [14], [15] and the classification of the bifurcation diagrams for the
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restriction of this map to 5-dimensional iso-energetic surfaces [16], [17].

This result is a necessary part of the study of Liouville foliation of the

integrable system and shows the actual need in the generalization of the

Liouville invariants theory [8] for the dimensions greater than two.

The present paper contains similar results for the Kowalevski gyrostat in

two constant fields. The 6-dimensional phase space is stratified by the rank of

the momentum map. We find the equations of invariant submanifolds forming

the set of its critical points (critical manifolds of rank 0, 1, or 2). The induced

systems are Hamiltonian (almost everywhere) with less than three degrees of

freedom. We straightforwardly prove that the image of these critical mani-

folds (the bifurcation diagram) lies in the discriminant set of the algebraic

curve of the Lax representation given in [9]. Moreover, the spectral parameter

on the Lax curve is explicitly expressed in terms of the constant s of the

additional partial integral arising on the critical submanifolds. It then follows

that the equations of the surfaces containing the bifurcation diagram are

written in the parametric form such that the parameters are the energy constant

h and the constant s. Fixing the value of h we come to explicit equations

of the bifurcation diagrams induced on iso-energetic levels. The problem of

classification of these diagrams seems quite complicated due to the existence of

several physical parameters. Nevertheless, it is certainly solvable with the help

of contemporary computer programs of analytical calculations.

First we show that the number of physical parameters for the gyrostat in

two constant fields can be reduced by a simple procedure, which may be called

the orthogonalization of the fields. More precisely, for the problems of

gyrostat motion there exists a group of di¤eomorphisms of the phase spaces

(mentioned above orbits of the coadjoint action) that is an equivalence group

for the corresponding dynamical systems. It appears that each equivalence

class contains a problem with an orthonormal pair of radius vectors of the

centers of forces application and with an orthogonal pair of the intensity

vectors. Such force field is characterized by only one essential parameter—

the ratio of the modules of the intensity vectors. For a dynamically sym-

metric gyrostat having the centers of forces application in the equatorial plane,

the orthogonalization procedure along with the appropriate choice of the

measure units leave, in addition to the forces ratio, only two physical

parameters of the body itself, namely, the ratio of the equatorial and axial

inertia moments and the non-zero axial component of the gyrostatic momen-

tum. In the generalized Kowalevski case the first of them equals 2. Thus,

the whole problem has, in fact, two essential parameters. In particular, each

of the critical four-dimensional submanifolds found below provides a two-

parametric family of completely integrable Hamiltonian systems with two

degrees of freedom.
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2. Gyrostat equations and parametrical reduction

Consider a rigid body B rotating around a fixed point O. Choose a

trihedral at O moving along with the body and refer to it all vector and tensor

objects. Denote by e1e2e3 the canonical unit basis in R3; then the moving

trihedral itself is represented as Oe1e2e3. Let o be the vector of the angular

velocity of B. Suppose that B is bearing an axially symmetric rigid rotor B 0

rotating freely around its symmetry axis fixed in B. Such system of two

bodies is the simplest model of a gyrostat. The notion of a gyrostat was

introduced by N. E. Zhoukovsky [18] for a body having cavities totally filled

with homogeneous fluid. Both models have the common feature usually taken

as the definition of a gyrostat: the total angular momentum of such system is

M ¼ Ioþ l, where the inertia tensor I and the vector l (called the gyrostatic

momentum) are constant with respect to the moving trihedral. Using the term

‘‘gyrostat’’ we always suppose l0 0. In the case l ¼ 0 we use the terms ‘‘rigid

body’’ or ‘‘top’’ instead. The top is usually supposed to have a dynamical

symmetry axis.

Let MF denote the moment of external forces with respect to O (the

rotating moment). Constant field is a force field inducing the rotating moment

of the form r� a with constant vector r and with a corresponding to some

physical vector fixed in inertial space; r points from O to the center of

application of the field, a is the field intensity. Along with the notation for the

direct products of groups and vector spaces, we use the cross symbol for the

standard vector product in R3 and for the defined below unusual binary

operation involving 3� 2-matrices and based on the vector product. It is

needed in this section only and should not cause any ambiguity.

For two constant fields the rotating moment is MF ¼ r1 � aþ r2 � b with

r1, r2 constant in the body and a, b corresponding to the vectors fixed in

inertial space. Obviously, MF can be represented as the moment of one

constant field if either r1 � r2 ¼ 0 or a� b ¼ 0. Suppose that

r1 � r2 0 0; a� b0 0: ð2:1Þ

Two constant fields satisfying (2.1) are said to be independent.

The equations defining the respective evolution of M, a, b in two constant

fields are

dM

dt
¼ M� oþ r1 � aþ r2 � b;

da

dt
¼ a� o;

db

dt
¼ b � o: ð2:2Þ

These equations are Euler equations in the space R9ðM; a; bÞ considered as the

dual space to eð3; 2Þ. The Lie–Poisson bracket applied to the coordinate

functions yields
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fMi;Mjg ¼ eijkMk; fMi; ajg ¼ eijkak; fMi; bjg ¼ eijkbk;

fai; ajg ¼ 0; fai; bjg ¼ 0; fbi; bjg ¼ 0:
ð2:3Þ

Such bracket is non-degenerate on each orbit of the coadjoint action. The

orbits are defined by the geometric integrals (common level of the Casimir

functions)

a � a ¼ c11; b � b ¼ c22; a � b ¼ c12:

The dot stands for the standard scalar product in R3. If c11 > 0, c22 > 0,

c212 < c11c22, then the orbit in R9 is di¤eomorphic to R3 � SOð3Þ, and the

induced Hamiltonian system has three degrees of freedom (see [3], [9] for the

details). From physical point of view the constants c11, c22, c12 characterize

the force fields intensities. Along with the coordinates of r1, r2 in the moving

frame, we have 9 parameters of the interaction of the body with the external

forces. We now show how to reduce this number.

Introduce some notation. Let Lðn; kÞ be the space of n� k-matrices. Put

LðkÞ ¼ Lðk; kÞ. Identify R6 ¼ R3 � R3 with Lð3; 2Þ by the isomorphism j that

joins two columns

A ¼ jða1; a2Þ ¼ ka1 a2k A Lð3; 2Þ; a1; a2 A R3:

For the inverse map, write

j�1ðAÞ ¼ ðc1ðAÞ; c2ðAÞÞ A R3 � R3; A A Lð3; 2Þ:

If A;B A Lð3; 2Þ, a A R3, by definition, put

A� B ¼
X2
i¼1

ciðAÞ � ciðBÞ A R3;

a� A ¼ jða� c1ðAÞ; a� c2ðAÞÞ A Lð3; 2Þ:

ð2:4Þ

Lemma 1. Let L A SOð3Þ, D A GLð2;RÞ, a A R3, A;B A Lð3; 2Þ. Then

LðA� BÞ ¼ ðLAÞ � ðLBÞ; ðAD�1Þ � ðBDT Þ ¼ A� B;

Lða� AÞ ¼ ðLaÞ � ðLAÞ; a� ðADÞ ¼ ða� AÞD:

The proof is by direct calculation.

In notation (2.4) we write system (2.2) in the form

I
do

dt
¼ ðIoþ lÞ � oþ A�U ;

dU

dt
¼ �o�U : ð2:5Þ

Here A ¼ jðr1; r2Þ is a constant matrix, U ¼ jða; bÞ. The phase space of (2.5)

is fðo;UÞg ¼ R3 � Lð3; 2Þ.
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In fact, U in (2.5) is restricted by the geometric integrals; i.e., for some

constant symmetric matrix C A Lð2Þ

UTU ¼ C: ð2:6Þ

Let O be the set defined by (2.6) in Lð3; 2Þ. In order to emphasize the

dependence on C, we write O ¼ OðCÞ.
Let P ¼ ðI; l;A;CÞ denote the complete set of constant parameters of the

problem. Denote by XP the vector field on R3 � OðCÞ induced by (2.5).

Given the set P, the problem of motion of the gyrostat in two constant fields

described by the dynamical system XP will be called, for short, the DG-

problem.

Associate to L A SOð3Þ, D A GLð2;RÞ the linear automorphisms CðL;DÞ
and cðL;DÞ of R3 � Lð3; 2Þ and Lð3Þ � R3 � Lð3; 2Þ � Lð2Þ

CðL;DÞðo;UÞ ¼ ðLo;LUDTÞ;

cðL;DÞðI; l;A;CÞ ¼ ðLILT ;Ll;LAD�1;DCDTÞ:
ð2:7Þ

Equations (2.6) and (2.7) imply CðL;DÞðR3 � OðCÞÞ ¼ R3 � OðDCDT Þ.
Using Lemma 1 we obtain the following statement.

Lemma 2. For each ðL;DÞ A SOð3Þ � GLð2;RÞ,

CðL;DÞ�ðXPðvÞÞ ¼ XcðL;DÞðPÞðCðL;DÞðvÞÞ; v A R3 � OðCÞ:

Thus, any two DG-problems determined by the sets of parameters P and

cðL;DÞðPÞ are completely equivalent.

Let us call a DG-problem canonical if the centers of application of forces

lie on the first two axes of the moving trihedral at unit distance from the fixed

point and the intensities of the forces are orthogonal to each other.

Theorem 1. For each DG-problem with independent forces there exists an

equivalent canonical problem. Moreover, in both equivalent problems the centers

of application of forces belong to the same plane in the body containing the fixed

point.

Proof. Let the DG-problem with the set of parameters P ¼ ðI; l;A;CÞ
satisfy (2.1). This means that the symmetric matrices A� ¼ ðATAÞ�1 and C

are positively definite. According to the well-known fact from linear algebra,

A� and C can be reduced, respectively, to the identity matrix and to a diagonal

matrix via the same conjugation operator

DA�D
T ¼ E; DCDT ¼ diagfa2; b2g; D A GLð2;RÞ; a; b A Rþ:

Then c1ðAD�1Þ and c2ðAD�1Þ form an orthonormal pair in R3. There exists
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L A SOð3Þ such that LciðAD�1Þ ¼ ei ði ¼ 1; 2Þ. The first statement is obtained

by applying Lemma 2 with the previously chosen L, D to the initial vector field

XP.

To finish the proof, notice that the transformation A 7! AD�1 preserves

the span of c1ðAÞ, c2ðAÞ. The matrix L in (2.7) stands for the change of

the moving trihedral. Therefore, if a A R3 represents some physical vector

in the initial problem, then La is the same vector with respect to the body in

the equivalent problem.

Remark 1. The fact that any DG-problem can be reduced to the problem

with one of the pairs r1, r2 or a, b orthonormal is obvious. Simultaneous

orthogonalization of both pairs was first established in [12] for a rigid body and

crucially simplifies all calculations.

It follows from Theorem 1 that, without loss of generality, for independent

forces we may suppose

r1 ¼ e1; r2 ¼ e2; ð2:8Þ

a � a ¼ a2; b � b ¼ b2; a � b ¼ 0: ð2:9Þ

Change, if necessary, the order of e1, e2 (with simultaneous change of the

direction of e3) to obtain ad b > 0.

Consider a dynamically symmetric top in two constant fields with the

centers of application of forces in the equatorial plane of its inertia ellipsoid.

Choose a moving trihedral such that Oe3 is the symmetry axis. Then the

inertia tensor I becomes diagonal. Let a ¼ b. For any Y A SOð2Þ denote by

ŶY A SOð3Þ the corresponding rotation of R3 about Oe3. Take in (2.7) L ¼ ŶY,

D ¼ Y. Under the conditions (2.8), (2.9), c ¼ Id and C becomes the sym-

metry group. The system (2.5) has the cyclic integral Io � ða2e3 � a� bÞ.
Therefore it is possible to reduce such a DG-problem to a family of systems

with two degrees of freedom. For the analogue of the Kowalevski case this

system becomes integrable [4].

Let us call a DG-problem irreducible if, in its canonical representation,

a > b > 0: ð2:10Þ

The following statements are needed in the future; they also reveal some

features of a wide class of DG-problems.

Lemma 3. In an irreducible DG-problem, the body has exactly four

equilibria.

Proof. The set of singular points of (2.5) is defined by o ¼ 0, A�U ¼ 0.

For the equivalent canonical problem with (2.8) we have e1 � aþ e2 � b ¼ 0.
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Then the four vectors e1, a, e2, b are parallel to the same plane and

je1 � aj ¼ je2 � bj. Given (2.10), this equality yields

a ¼Gae1; b ¼Gbe2: ð2:11Þ

Thus, in the canonical irreducible system, an equilibrium takes place only if the

radius vectors of the centers of application are parallel to the corresponding

fields intensities.

Note that the existence of the gyrostatic momentum does not change the

equilibria. Therefore, the result here is the same as in the case of a rigid body

in two constant fields [16].

Lemma 4. Let an irreducible DG-problem in its canonical form have the

diagonal inertia tensor I ¼ diagfI1; I2; I3g and l ¼ 0. Then the body has the

following families of pendulum type motions

P1 :
o ¼ _jje1; a1Gae1; b ¼ bðe2 cos j� e3 sin jÞ;
I1 €jj ¼ �b sin j;

�
ð2:12Þ

P2 :
o ¼ _jje2; b1Gbe2; a ¼ aðe1 cos jþ e3 sin jÞ;
I2 €jj ¼ �a sin j;

�
ð2:13Þ

P3 :

o ¼ _jje3; a� b1Gabe3;

a ¼ aðe1 cos j� e2 sin jÞ; b ¼Gbðe1 sin jþ e2 cos jÞ;
I3 €jj ¼ �ðaG bÞ sin j:

8<
: ð2:14Þ

If l0 0 but l ¼ lei for some i ¼ 1; 2; 3, then the only family remained is Pi with

the corresponding index.

The proof is obvious. The families (2.12)–(2.13) were first found in [12]

(the case l ¼ 0). The motions (2.14) for any axially symmetric gyrostat in two

constant fields with the centers of forces application in the equatorial plane

were found by Yehia [19]. Note that in the case (2.10) these families are the

only motions with a fixed direction of the angular velocity. In particular, the

body in two independent constant fields does not have any uniform rotations.

3. Critical set of the Kowalevski gyrostat

Suppose that the irreducible DG-problem has the diagonal inertia tensor

with the principal moments of inertia satisfying the ratio 2 :2 :1, the gyrostatic

momentum is directed along the dynamical symmetry axis l ¼ le3 and the

centers of the fields application lie in the equatorial plane r1 ? e3, r2 ? e3. These

are the conditions of the integrable case [2] of the Kowalevski gyrostat in two

constant fields. The orthogonalization procedure in this case does not change

the e3-axis and we obtain (2.8), (2.9). Choosing the appropriate units of
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measurement, represent system (2.5) in the form

2 _oo1 ¼ o2ðo3 � lÞ þ b3; 2 _oo2 ¼ �o1ðo3 � lÞ � a3; _oo3 ¼ a2 � b1;

_aa1 ¼ a2o3 � a3o2; _bb1 ¼ b2o3 � b3o2;

_aa2 ¼ a3o1 � a1o3; _bb2 ¼ b3o1 � b1o3;
ð3:1Þ

_aa3 ¼ a1o2 � a2o1; _bb3 ¼ b1o2 � b2o1:

The phase space is P6 ¼ R3 � O, where OHR3 � R3 is defined by (2.9); O is

di¤eomorphic to SOð3Þ.
The complete set of the first integrals in involution on P6 includes the

energy integral H, generalized Kowalevski integral K [3], [4], and the integral G

found in [2]. After the parametrical reduction, these integrals are

H ¼ o2
1 þ o2

2 þ
1

2
o2

3 � a1 � b2;

K ¼ ðo2
1 � o2

2 þ a1 � b2Þ
2 þ ð2o1o2 þ a2 þ b1Þ

2

þ 2l½ðo3 � lÞðo2
1 þ o2

2Þ þ 2o1a3 þ 2o2b3�;

G ¼ 1

4
ðM 2

a þM 2
b Þ þ

1

2
ðo3 � lÞMg � b2a1 � a2b2:

Here Ma ¼ ðIoþ lÞ � a, Mb ¼ ðIoþ lÞ � b, Mg ¼ ðIoþ lÞ � ða� bÞ.
Introduce the momentum map

J : P6 ! R3; JðzÞ ¼ ðGðzÞ;KðzÞ;HðzÞÞ ð3:2Þ

and denote by CHP6 the set of critical points of J. By definition, the

bifurcation diagram of J is the set SHR3 over which J fails to be locally

trivial; S defines the cases when the integral manifolds

Jc ¼ J�1ðcÞ; c ¼ ðg; k; hÞ A R3

change its topological (and smooth) type. To find C and S is the necessary

part of the global topological analysis of the problem.

It follows from the Liouville–Arnold theorem that for c B S the manifold

Jc, if not empty, is the union of three-dimensional tori. The considered

Hamiltonian system on P6 is non-degenerate at least for small enough values of

b. Therefore the trajectories on such tori are almost everywhere quasi-periodic

with three independent frequencies. The critical set C is preserved by the

phase flow and consists of the trajectories, which typically have less than three

frequencies. We call the trajectories in C the critical motions. The set C is

stratified by the rank of J. Let Ci ¼ fz A C : rank JðzÞ ¼ ig ði ¼ 0; 1; 2Þ. It is
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natural to expect that Ci consists of the Liouville tori of dimension i and the

image JðCiÞ, as a subset of S, is a smooth surface Si of dimension i. More

precisely, for each ic 2 we have to take

Si ¼ JðCiÞ
�

6
i�1

j¼0

JðCjÞ:

Then, as a whole, we may consider S as a two-dimensional cell complex, Si as

its i-skeleton. For i ¼ 1; 2 we will have qSi HSi�1.

For c A S2 the set Jc VC consists of two-dimensional tori. Take the union

of such tori over the values c from some open subset in S2. The dynamical

system restricted to this union will be Hamiltonian with two degrees of freedom

(except, maybe, a set of positive codimension on which the 2-form induced

by the symplectic structure degenerates). This system inherits the property

of complete integrability. Thus the critical motions from C2 are basically

organized in several integrable subsystems with two degrees of freedom (the

critical subsystems of rank 2). Similarly, the critical motions from C1 may

form two-dimensional symplectic submanifolds bearing the induced integrable

systems with one degree of freedom (the critical subsystems of rank 1). At the

same time parts of C1 may appear as the critical motions with respect to the

critical subsystems of rank 2. And finally, the bifurcations inside C1 cor-

respond to the set C0, which in non-degenerate case consists of isolated

equilibria (the critical subsystems of rank 0). Such stratification is typical

(see, for example, [8]) but is destroyed by symmetries existing in reducible

problems of the rigid body dynamics. In the irreducible case of the top ðl ¼ 0,

0 < b=a < 1Þ the critical subsystems and the bifurcation diagram of the map

ð3:2Þ are known. The critical set is formed by four non-degenerate equilibria

(see Lemma 3), one critical subsystem of rank 1 and three critical subsystems of

rank 2. The complete presentation of these results and the list of publications

are given in [13], [17]. Except for the partial integrable case of Bogoyavlensky

[3] (case K ¼ 0), all of the critical subsystems have been either explicitly

integrated or reduced to separated systems of equations [14], [15], [20] leading

to hyper-elliptic quadratures.

Introduce the change of variables [11] based on the change given by S.

Kowalevski and on the Lax representation [2] ði2 ¼ �1Þ

x1 ¼ ða1 � b2Þ þ iða2 þ b1Þ; x2 ¼ ða1 � b2Þ � iða2 þ b1Þ;

y1 ¼ ða1 þ b2Þ þ iða2 � b1Þ; y2 ¼ ða1 þ b2Þ � iða2 � b1Þ;

z1 ¼ a3 þ ib3; z2 ¼ a3 � ib3;
ð3:3Þ

w1 ¼ o1 þ io2; w2 ¼ o1 � io2; w3 ¼ o3:
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Then system (3.1) yields

2w 0
1 ¼ �w1ðw3 � lÞ � z1; 2w 0

2 ¼ w2ðw3 � lÞ þ z2; 2w 0
3 ¼ y2 � y1;

x 0
1 ¼ �x1w3 þ z1w1; x 0

2 ¼ x2w3 � z2w2;

y 0
1 ¼ �y1w3 þ z2w1; y 0

2 ¼ y2w3 � z1w2;

2z 01 ¼ x1w2 � y2w1; 2z 02 ¼ �x2w1 þ y1w2:

ð3:4Þ

Here prime stands for d=dðitÞ.
Consider (3.3) as the map R9 ! C9 and denote its image by V 9. Equa-

tions (2.9) of the phase space P6 in V 9 take the form

z21 þ x1 y2 ¼ r2; z22 þ x2 y1 ¼ r2; x1x2 þ y1 y2 þ 2z1z2 ¼ 2p2: ð3:5Þ

Here we introduce the positive constants

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
:

The first integrals in new coordinates are

H ¼ w1w2 þ
1

2
w2
3 �

1

2
ðy1 þ y2Þ;

K ¼ ðw2
1 þ x1Þðw2

2 þ x2Þ þ 2lðw1w2w3 þ z2w1 þ z1w2Þ � 2l2w1w2;

G ¼ 1

4
ðp2 � x1x2Þw2

3 þ
1

2
ðx2z1w1 þ x1z2w2Þw3

þ 1

4
ðx2w1 þ y1w2Þðy2w1 þ x1w2Þ �

1

4
p2ðy1 þ y2Þ

þ 1

4
r2ðx1 þ x2Þ þ

1

2
lðz1z2w3 þ y2z2w1 þ y1z1w2Þ þ

1

4
l2ðp2 � y1 y2Þ:

ð3:6Þ

Let f be an arbitrary function on V 9. For brevity, the term ‘‘critical

point of f ’’ will always mean a critical point of the restriction of f to P6.

Similarly, df means the restriction of the di¤erential of f to the set of vectors

tangent to P6. While calculating critical points of various functions, it is

convenient to avoid introducing Lagrange’s multipliers for the restrictions (3.5).

Lemma 5. Critical points of a function f on V 9, in the above sense, are

defined by the system of equations

Xi f ¼ 0 ði ¼ 1; . . . 6Þ; ð3:7Þ

where
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X1 ¼
q

qw1
; X2 ¼

q

qw2
; X3 ¼

q

qw3
;

X4 ¼ z2
q

qx2
þ z1

q

qy2
� 1

2
x1

q

qz1
� 1

2
y1

q

qz2
;

X5 ¼ z1
q

qx1
þ z2

q

qy1
� 1

2
y2

q

qz1
� 1

2
x2

q

qz2
;

X6 ¼ x1
q

qx1
� x2

q

qx2
þ y1

q

qy1
� y2

q

qy2
:

Indeed, six vector fields Xi are tangent to P6 and linearly independent at

any point of P6.

The following two propositions define the strata C0 and C1 of the critical

set.

Proposition 1. The set C0 consists exactly of the four equilibria existing in

this problem.

Proof. The condition of zero rank of the momentum map at a point

z A P6 supposes, in particular, that dH ¼ 0. Then z is the point of equilibrium

and it follows from Lemma 3 that z is one of the points (2.11). Using the

complex variables we have

w1 ¼ w2 ¼ w3 ¼ 0; z1 ¼ z2 ¼ 0;

x1 ¼ x2 ¼ e1a� e2b; y1 ¼ y2 ¼ e1aþ e2b ðe1 ¼G1; e2 ¼G1Þ:
ð3:8Þ

Use equations (3.7) with f ¼ K and f ¼ G to obtain that dKðzÞ ¼ 0 and

dGðzÞ ¼ 0. Hence, rank JðzÞ ¼ 0.

Note that in classical problems of the rigid body dynamics with an axially

symmetric force field, the rank of the momentum map is everywhere not less

than 1 due to the regularity of the cyclic integral. In our case, all equilibria

are non-degenerate (in the Morse sense) critical points of the Hamilton function

(see [16]). This is the reason why these points are critical for any first integral

of the system. It is easily shown that the Morse indices of the potential energy

function for these four equilibria equal exactly 0, 1, 2, 3. Therefore, only one

of them (with minimal energy value) is stable.

It is essential that in the sequel l0 0.

Proposition 2. The set C1 is completely defined by the condition

rankfdK ; dHg ¼ 1

and consists of the points of the following trajectories:
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1) pendulum motions ð2:14Þ except for the equilibria;

2) motions defined by the equations

w1 ¼ qðwÞ
ffiffiffiffi
w

p
; w2 ¼

ffiffiffiffi
w

p

qðwÞ ; w3 ¼
l

s
w0 0; ð3:9Þ

x1 ¼
1

su
½r2l2s2 � ðl2 þ sÞuq2ðwÞw�;

x2 ¼
1

su
r2l2s2 � ðl2 þ sÞu w

q2ðwÞ

� �
;

y1 ¼ s 1þ s

l2
� r4l2s

u2

 !
þ r2l2

u
q2ðwÞw;

y2 ¼ s 1þ s

l2
� r4l2s

u2

 !
þ r2l2

u

w

q2ðwÞ ;

z1 ¼ � r2ls

u

ffiffiffiffi
w

p

qðwÞ þ
l2 þ s

l
qðwÞ

ffiffiffiffi
w

p
;

z2 ¼ � r2ls

u
qðwÞ

ffiffiffiffi
w

p
þ l2 þ s

l

ffiffiffiffi
w

p

qðwÞ :

ð3:10Þ

Here qðwÞ is the root of the equation q4 � 2QðwÞq2 þ 1 ¼ 0, where

QðwÞ ¼ su3 þ ðl2 þ sÞ½l2w2 þ s2ð2w� sÞ�u2 þ r4l4s4

2r2l2s2ðl2 þ sÞuw
; ð3:11Þ

s, u are constants satisfying the equation

l2ðl2 þ sÞ2u5 þ ðl2 þ sÞ½2p2l4 � ðl2 þ sÞ3s�su4

þ r4l6s2u3 þ 2r4l4s4ðl2 þ sÞ2u2 � r8l8s6 ¼ 0: ð3:12Þ

The evolution wðtÞ is defined by the equation

dw

dt

� �2
¼ � l2

4s2
PþðwÞP�ðwÞ; ð3:13Þ

where

PGðwÞ ¼ w2 þ 2s2 uG r2l2

l2u
wþ s½u3 � ðl2 þ sÞs2u2 þ r4l4s3�

ðl2 þ sÞl2u2
: ð3:14Þ

Proof. It follows from above that dH0 0 at the points of C1. Then to

investigate the dependence of the functions K and H it is su‰cient to introduce
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the function with one Lagrange’s multiplier s. Write equations (3.7) for the

function f ¼ K � 2sH,

ðw2
1 þ x1Þw2 þ l½z1 þ w1ðw3 � lÞ� � sw1 ¼ 0;

ðw2
2 þ x2Þw1 þ l½z2 þ w2ðw3 � lÞ� � sw2 ¼ 0;

ð3:15Þ

lw1w2 � sw3 ¼ 0; ð3:16Þ

ðw2
1 þ x1Þz2 � lðw2x1 þ w1y1Þ þ sz1 ¼ 0;

ðw2
2 þ x2Þz1 � lðw1x2 þ w2y2Þ þ sz2 ¼ 0;

ð3:17Þ

x1w
2
2 � x2w

2
1 þ sðy1 � y2Þ ¼ 0: ð3:18Þ

First consider the critical points of the function K . For this purpose

we must put s ¼ 0. From (3.16) we get w1 ¼ w2 ¼ 0. Then (3.15) imply

z1 ¼ z2 ¼ 0. Equations (3.17) and (3.18) become identities. The same values

satisfy (3.7) with f ¼ 4G þ ðx1x2 � y1y2ÞH. Hence, dK ¼ 0 and 4 dGþ
ðx1x2 � y1y2ÞdH ¼ 0. Since dH0 0, it means that rank J ¼ 1. The initial

variables on the corresponding trajectories are o1 ¼ o2 1 0, a3 ¼ b3 1 0. Sub-

stitute these values in (3.1) to obtain solutions (2.14).

Let s0 0. In this case w1w2 0 0. Indeed, assuming the converse, from

(3.15), (3.16), (3.5) we come to the points (3.8) of the set C0. Therefore,

satisfying (3.16) we can introduce new variables w0 0, q as shown in (3.9).

Four equations (3.15), (3.17) form the linear system in y1, y2, z1, z2, from

which we obtain these variables as the functions of x1, x2, w, q identically

satisfying (3.18). Denote

u ¼ ðw� sÞ2ðl2 þ sÞ � sx1x2: ð3:19Þ

Then the first two equations (3.5) are easily solved for x1, x2 as the functions of

w, q, u. As a result we obtain the expressions (3.10). Let

Q ¼ 1

2
q2 þ 1

q2

� �
:

Then the substitution of x1, x2 from (3.10) back to (3.19) gives (3.11). The last

unused equation (3.5) provides the relation (3.12) between u and the constants

l, s. It shows that u defined as (3.19) appears to be a constant.

Thus, all phase variables are expressed via one variable w, for which from

(3.4) we find the di¤erential equation (3.13). Note that due to (3.14) the

solutions are elliptic functions of time.

The expressions QðwÞ, PGðwÞ formally have singularities in the case

s ¼ �l2: ð3:20Þ
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Let s ¼ �l2 þ e, e ! 0. The continuous solution uðeÞ of ð3:12Þ is

u ¼ r4=3l10=3 þ 2

3
r�4=3l4=3ðp2l4=3 � 2r8=3ÞeþOðe2Þ

and from ð3:11Þ, ð3:14Þ we obtain the regular limit values

lim
s!�l2

QðwÞ ¼ r4=3l1=3ðwþ l2Þ2 þ r8=3l5=3 � 2p2l3

r2lw
;

lim
s!�l2

PGðwÞ ¼ w2 þ 2l2=3ðl4=3 G r2=3Þwþ l4=3ðl8=3 þ r4=3Þ:

To finish the proof, we need to show that at the points of the trajectories

found we really have rank J ¼ 1, i.e., the linear dependence of dK and dH

implies the linear dependence of dG and dH. Indeed, equations (3.7) with

f ¼ 2G � p2 þ l2 þ s

l2s
u

 !
H

are satisfied both by (2.14) and by (3.9), (3.10). Therefore, rankfdG; dHg ¼ 1

and, consequently, rankfdK ; dG; dHg ¼ 1. This completes the proof.

Remark 2. The motions described in Proposition 2 are periodic except for

the cases when they become double asymptotic to the existing equilibria. For the

second family it happens when PGðwÞ has a multiple root which can be only zero.

The next lemma is needed for the future and follows immediately from the

properties of analytical functions.

Lemma 6. Let M be an analytical manifold, X an analytical vector field on

M, and f , g, h analytical functions on M. Suppose xðtÞ is a trajectory of X.

(i) If f ðxðtÞÞgðxðtÞÞ1 0, then either f ðxðtÞÞ1 0 or gðxðtÞÞ1 0.

(ii) If the equation

gðxÞhðxÞ � f ðxÞ ¼ 0

holds along the solution xðtÞ and gðxðtÞÞ is not identically zero, then the function

fðtÞ ¼ f ðxðtÞÞ
gðxðtÞÞ

has no singularities.

The following theorem completes the description of the critical set of the

momentum map for the gyrostat.
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Theorem 2. The set of critical points of the momentum map ð3:2Þ consists

of the following subsets in P6:

1) the set L defined by the system

w1 ¼ 0; w2 ¼ 0; z1 ¼ 0; z2 ¼ 0; ð3:21Þ

2) the set N defined by the system

F1 ¼ 0; F2 ¼ 0; ð3:22Þ

where

F1 ¼ ðw1w2 þ lw3Þðx1w2 þ lz1Þly1

� w2ðw2
1 þ x1Þðx2z1w1 þ x1z2w2 � x1x2w3 þ 2z1z2lÞ

� x2ðw1w3 þ z1Þðw1z1 � x1w3Þlþ ðx1w2
3 � 2z1w1w3 � z21Þz2l

2;

F2 ¼ ðw1w2 þ lw3Þðx2w1 þ lz2Þly2

� w1ðw2
2 þ x2Þðx2z1w1 þ x1z2w2 � x1x2w3 þ 2z1z2lÞ

� x1ðw2w3 þ z2Þðw2z2 � x2w3Þlþ ðx2w2
3 � 2z2w2w3 � z22Þz1l

2;

3) the set O defined by the system

R1 ¼ 0; R2 ¼ 0; ð3:23Þ

where

R1 ¼ ½y1w2 þ x2w1 þ z2ðw3 þ lÞ�w1ðw3 � lÞ

þ x2z1w1 þ x1z2w2 þ z1z2ðw3 þ lÞ;

R2 ¼ ½y2w1 þ x1w2 þ z1ðw3 þ lÞ�w2ðw3 � lÞ

þ x2z1w1 þ x1z2w2 þ z1z2ðw3 þ lÞ:

ð3:24Þ

Proof. The sets C0, C1 are described by Propositions 1, 2. To find the

equations of C2 note that after Proposition 2 we have rankfdK; dHg ¼ 2 on C2.

Therefore in any zero linear combination of dG, dK , dH on C2 the multiplier of

dG is non-zero and can be chosen equal to any non-zero constant. Introduc-

ing the undefined multipliers S, T , write the condition on C2 in the form

2 dG þ S dK þ ðT � p2ÞdH ¼ 0: ð3:25Þ

According to Lemma 5 rewrite (3.25) as the system of the following six

equations
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x2ðy2 þ 2SÞw1 þ 2Sðw1w2 þ lw3Þw2

þ ðT � z1z2 � 2Sl2Þw2 þ x2z1w3 þ ðy2 þ 2SÞz2l ¼ 0;

x1ðy1 þ 2SÞw2 þ 2Sðw1w2 þ lw3Þw1

þ ðT � z1z2 � 2Sl2Þw1 þ x1z2w3 þ ðy1 þ 2SÞz1l ¼ 0;

ð3:26Þ

x2z1w1 þ x1z2w2 þ ðT � x1x2Þw3 þ ð2Sw1w2 þ z1z2Þl ¼ 0; ð3:27Þ

Tz1 þ x1z2w
2
3 þ ½ðx1x2 � 2z1z2Þw1 þ ðy1z1 þ x1z2Þlþ x1 y1w2�w3

� ðy1z1 þ x1z2Þw1w2 þ x1ðy1 þ 2SÞw2l� ½x2z1 þ ðy2 þ 2SÞz2�w2
1

þ ½ðy2 þ 2SÞy1 � 2z1z2�w1lþ y1z1l
2 � ½ðy2 þ 2SÞx1 þ z21 �z2 ¼ 0;

Tz2 þ x2z1w
2
3 þ ½ðx1x2 � 2z1z2Þw2 þ ðy2z2 þ x2z1Þlþ x2 y2w1�w3

� ðy2z2 þ x2z1Þw1w2 þ x2ðy2 þ 2SÞw1l� ½x1z2 þ ðy1 þ 2SÞz1�w2
2

þ ½ðy1 þ 2SÞy2 � 2z1z2�w2lþ y2z2l
2 � ½ðy1 þ 2SÞx2 þ z22 �z1 ¼ 0;

ðT � x1x2Þðy1 � y2Þ þ 2ðy2 þ SÞx2w2
1 � 2ðy1 þ SÞx1w2

2

þ 2ðx2z1w1 � x1z2w2Þw3 þ x2z
2
1 � x1z

2
2 þ 2ðy2z2w1 � y1z1w2Þl ¼ 0:

ð3:28Þ

Denote K ¼ LUNUO. We need to prove that K ¼ C.

First, show that KHC. Obviously, LHC0 UC1. Indeed on L we have

dK 1 0, dG1Gab dH; L consists of the pendulum motions (2.14) including

four existing equilibria. In fact LHNVO. Nevertheless, we prefer to con-

sider this set apart from the others because it is the phase space of the critical

subsystem of rank 1 playing a special role in the bifurcation diagram described

below.

Consider the set N defined by (3.22). According to Lemma 6 the solution

of this system in y1, y2 has singularities if and only if along the trajectory we

have either

w1w2 þ lw3 1 0 ð3:29Þ
or

ðw2x1 þ lz1Þðw1x2 þ lz2Þ1 0: ð3:30Þ

Assuming (3.29), after several di¤erentiations in virtue of (3.4), we come to

equations (3.15)–(3.18) in the case (3.20). The corresponding points belong

to C1. For (3.30) the same procedure leads either to (3.29) or to the system

of equations having the only solutions of the form (3.21), i.e., to the set L.

Hence the trajectories satisfying (3.29) or (3.30) lie completely in C0 UC1.
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Denote N� ¼ NnðC0 UC1Þ. On this set from (3.22) we obtain

y1 ¼
1

ðw1w2 þ lw3Þðw2x1 þ lz1Þl
½w2ðw2

1 þ x1Þðx2z1w1 þ x1z2w2

� x1x2w3 þ 2z1z2lÞ þ x2ðw1w3 þ z1Þðw1z1 � x1w3Þl

� ðx1w2
3 � 2z1w1w3 � z21Þz2l

2�;

y2 ¼
1

ðw1w2 þ lw3Þðw1x2 þ lz2Þl
½w1ðw2

2 þ x2Þðx2z1w1 þ x1z2w2

� x1x2w3 þ 2z1z2lÞ þ x1ðw2w3 þ z2Þðw2z2 � x2w3Þl

� ðx2w2
3 � 2z2w2w3 � z22Þz1l

2�:

ð3:31Þ

Let

S ¼ x1x2w3 � x2z1w1 � x1z2w2 � lz1z2

2lðw1w2 þ lw3Þ
; T ¼ 2l2S: ð3:32Þ

Substitute (3.31), (3.32) in (3.26)–(3.28) to obtain identities. Hence, N� HC2

and NHC.

Now consider the set O. It follows from (3.4), (3.5) that the identity

w3 1 l along any trajectory is impossible. The identity w1w2 1 0 obviously

leads to the points of L. Then by Lemma 6 on O� ¼ OnL we can use system

(3.23) to express y1, y2:

y1 ¼ � 1

w1w2ðw3 � lÞ fw1ðw3 � lÞ½x2w1 þ z2ðw3 þ lÞ�

þ x2z1w1 þ x1z2w2 þ z1z2ðw3 þ lÞg;

y2 ¼ � 1

w1w2ðw3 � lÞ fw2ðw3 � lÞ½x1w2 þ z1ðw3 þ lÞ�

þ x2z1w1 þ x1z2w2 þ z1z2ðw3 þ lÞg:

ð3:33Þ

Put

S ¼ x2z1w1 þ x1z2w2 þ z1z2ðw3 þ lÞ
2w1w2ðw3 � lÞ ; T ¼ x1x2 þ z1z2 � 2w1w2S: ð3:34Þ

These values together with (3.33) satisfy (3.26)–(3.28). Hence, O� HC2 and

OHC.

To prove that, in turn, CHK note first that C0 HLVNVO, the solutions

(3.9), (3.10) satisfy both systems (3.22), (3.23). Therefore, C0 UC1 HK. Take

z A C2 and suppose that z B O. Then

344 Mikhail P. Kharlamov



R1R2 0 0; ð3:35Þ

none of identities (3.29), (3.30) holds and from (3.24) we obtain

y1 ¼
R1

w1w2ðw3 � lÞ þ y01 ; y2 ¼
R2

w1w2ðw3 � lÞ þ y02 ; ð3:36Þ

where y01 , y
0
2 stand for the right-hand parts of (3.33). To finish the proof it is

su‰cient to show that the assumption (3.35) leads to z A N. The determinant

of the system (3.26) with respect to T , 2S is equal to

D ¼ x1w
2
2 � x2w

2
1 � ðz2w1 � z1w2Þl:

If we suppose that D1 0 on some time interval, then the sequence of the

derivatives of this identity in virtue of (3.4) leads to (3.21), i.e., to the points of

C0 UC1. Then for z A C2 by Lemma 3 from (3.26) we find

S ¼ 1

2D
ðA2w1 � A1w2Þ; T ¼ 1

D
ðA1B1 � A2B2Þ: ð3:37Þ

Here

A1 ¼ ðx1w2 þ lz1Þy1 þ ðx1w3 � z1w1Þz2;

B1 ¼ ðw2
2 þ x2Þw1 þ lw2ðw3 � lÞ þ lz2;

A2 ¼ ðx2w1 þ lz2Þy2 þ ðx2w3 � z2w2Þz1;

B2 ¼ ðw2
1 þ x1Þw2 þ lw1ðw3 � lÞ þ lz1:

Substitute (3.36) and (3.37) in (3.27). We get

ðx2w1 þ lz2ÞY1R2 � ðx1w2 þ lz1ÞY2R1 ¼ 0; ð3:38Þ

where

Y1 ¼ w1ðw3 � lÞðw1w2 þ lw3Þ þ w3ðx1w2 þ lz1Þ;

Y2 ¼ w2ðw3 � lÞðw1w2 þ lw3Þ þ w3ðx2w1 þ lz2Þ:

Satisfying (3.38) introduce the new function R such that

lðw1w2 þ lw3Þðx1w2 þ lz1ÞR1 �Y1R ¼ 0;

lðw1w2 þ lw3Þðx2w1 þ lz2ÞR2 �Y2R ¼ 0:
ð3:39Þ

It follows from (3.35) that Y1Y2R0 0. Then equations (3.28) reduce to one

equation linear in R, from which we obtain
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R ¼ ðw1w2 þ l2Þðx2z1w1 þ x1z2w2 þ lz1z2Þ

� x1x2w1w2ðw3 � lÞ þ lðw1w2 þ lw3Þz1z2:

Substitution of this value along with the expressions (3.24) in the system (3.39)

gives the system (3.22). Therefore, z A N and, consequently, C2 HNUO.

This inclusion yields CHK, and finally C ¼ K. This proves the theorem.

Let us make some comments. The functions S, T used as Lagrange’s

multipliers and defined by ð3:37Þ are in fact the partial integrals of the

dynamical system induced on C2. Indeed, let X denote the Hamiltonian

vector field of the initial dynamical system (3.1) on P6. Apply the Lie

derivative along X to the condition ð3:25Þ noting that for any first integral

its di¤erential is X -invariant. Then

_SS dK þ _TT dH1 0: ð3:40Þ

Since rankfdG; dK ; dHg ¼ 2 on C2, it follows from (3.25), (3.40) that _SS1 0 and
_TT 1 0.

On the set N the substitution of (3.31) in (3.37) leads to expressions (3.32).

Then S and T for this subsystem are dependent. On the contrary, on the set

O the functions (3.37) after (3.33) take the form (3.34). Such integrals in the

case of the top ðl ¼ 0Þ gave rise to the separation of variables in the equations

of motion on O [15].

Are the induced systems on N and O Hamiltonian? Consider the smooth

4-dimensional parts of these sets, which are obviously the invariant manifolds

for X . To obtain the Hamiltonian subsystem with two degrees of freedom on

an invariant 4-dimensional submanifold we must have the non-degenerate

2-form induced on it by the initial symplectic structure. It is known that

for two independent functions j1, j2 on a symplectic manifold ðP2n;WÞ the

restriction of W to the submanifold

M ¼ fz : j1ðzÞ ¼ 0; j2ðzÞ ¼ 0g

degenerates exactly at the points where the Poisson bracket fj1; j2g vanishes.

In our case using the rules (2.3) we obtain

fF1;F2g ¼ i
ffiffiffi
2

p
lðw1w2 þ lw3Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw2x1 þ lz1Þðw1x2 þ lz2Þ

p
CN;

fR1;R2g ¼ �iw1w2ðw3 � lÞCO;

where

CN ¼ 1

S
ð8l2S3 � r4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S2 � ð2H þ l2ÞS þ p2

q
;

CO ¼ 1

S
½12S4 � 4ð2H � l2ÞS3 þ p4 � r4�

ð3:41Þ
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are the first integrals of motion. Obviously, the obtained expressions for the

Poisson brackets are not identically zero. Therefore, the induced systems are

Hamiltonian almost everywhere on N and O.

4. The bifurcation diagram

The Lax representation for the considered problem found in [2] can be

written in the form

L 0 ¼ LM �ML; ð4:1Þ

where

L ¼

2l
x2

0
�2w1

z2

0

� x1

0
�2l � z1

0
2w1

�2w1
z2

0
�2w3 � y1

0
� 40

� z1

0
2w2

y2

0
þ 40 2w3

���������������

���������������
; M ¼

�w3

2
0

w2

2
0

0
w3

2
0 �w1

2
w1

2
0

w2

2
0

0 �w2

2
�0 �w3

2

���������������

���������������
:

Here 0 stands for the spectral parameter, the derivative in (4.1) is calculated in

virtue of the system (3.4). The equation for the eigenvalues m of the matrix L

defines the algebraic curve associated with this representation [9]. Let s ¼ 202

and let h, k, g be the arbitrary constants of the integrals (3.6). The equation

of the algebraic curve takes the form

m4 � 4m2 p2

s
� ð2hþ l2Þ þ 2s

" #

þ 4
r4

s2
þ 2

s
ð4g� 2p2h� p2l2Þ þ 4ðk þ 2l2hÞ � 8l2s

" #
¼ 0: ð4:2Þ

It is natural to suppose that the bifurcation diagram of the momentum map

(3.2) is included in the set of values ðg; k; hÞ such that this curve either have

singular points or is reducible, i.e., the left-hand part of (4.2) splits into the

product of some rational non-trivial expressions. In this way we can guess the

result of the following statement. Nevertheless, to obtain the complete proof

of it, we must fulfill the calculations on the above found critical manifolds.

Theorem 3. The bifurcation diagram of the momentum map G � K �H is

included in the union of the following (intersecting) subsets of R3ðg; k; hÞ:
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1) the pair of straight lines

Gþ :

k ¼ ðaþ bÞ2;

g ¼ �ab h� l2

2

 !
;

8>><
>>: G� :

k ¼ ða� bÞ2;

g ¼ ab h� l2

2

 !
;

8>><
>>: ð4:3Þ

2) the surface

G1 :

k ¼ 4l2s� 2l2hþ r4

4s2
;

g ¼ �l2s2 þ 1

2
p2 hþ l2

2

 !
� r4

4s
; s A Rnf0g;

8>>>><
>>>>:

ð4:4Þ

3) the surface

G2 :

k ¼ 3s2 � 4 h� l2

2

 !
sþ p2 þ h� l2

2

 !2
� p4 � r4

4s2
;

g ¼ �s3 þ h� l2

2

 !
s2 þ p4 � r4

4s
; s A Rnf0g:

8>>>>><
>>>>>:

ð4:5Þ

Proof. Let z A L. Substitution of the values z1 ¼ z2 ¼ 0 in (3.5) yields

x1x2 ¼ ðaG bÞ2, y1 y2 ¼ ðaH bÞ2. Then from (3.6), (3.21) we obtain the

equations defining the lines (4.3).

Let z A NnL. Take the constant of the partial integral S defined by (3.32)

for the parameter s in (4.4), substitute the expressions (3.6) for the correspond-

ing constants, and fulfill the change (3.31). Then both equations (4.4) become

the identities. Hence, JðNnLÞHG1.

The inclusion JðOnLÞHG2 is proved in a similar way. We take the

constant of the partial integral S from (3.34) for the parameter s in (4.5) and

fulfill the substitution (3.33).

Remark 3. Note that the shift of the energy level ~hh ¼ h� l2=2 makes the

equations of the lines GG and the surface G2 independent of l. Thereby obtained

equations are identical with the corresponding equations of the case l ¼ 0 [13].

The surface G1 is obtained as a perturbation (with respect to l) of two tangent

to each other sheets of the bifurcation diagram of the case l ¼ 0, i.e., the plane

k ¼ 0 and the slanted parabolic cylinder ðp2h� 2gÞ2 � r4k ¼ 0. Thus, it is easy

to view the evolution of the Appelrot classes [21] of the S. Kowalevski case in the

process of two-way generalizations—adding the second force field and, after-

wards, the non-zero gyrostatic momentum.

Denote GG¼ Gþ UG�. It is easily seen that GGVG1 consists of the finite

number of points and there exists the whole segment of GGnG2. In terms of
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the critical subsystems described by Theorem 2 it means that the critical set

L does not lie completely in the interior of either set N or O. This is an

additional reason to consider the system on L as a special case.

Now we can describe those singularities of the bifurcation diagram which

correspond to the degenerations of the induced symplectic structure in the

critical subsystems. For this purpose, use the expressions (3.41). The equation

CN ¼ 0 define two curves on G1: 8l
2s3 � r4 ¼ 0 and 2s2 � ð2hþ l2Þsþ p2 ¼ 0.

The first one is the cuspidal edge of G1 and the second is the tangency curve of

G1 and G2. The equation CO ¼ 0 gives 12s4 � 4s3ð2h� l2Þ þ p4 � r4 ¼ 0 and

corresponds to the cuspidal edge of G2. Note also that the points of the

common part of GG and G2 form the line of self-intersection of G2.

The equations established by Theorem 3 are in the following sense

convenient. Let us fix the energy constant h. Then we obtain the parametric

equations of a one-dimensional set in the plane ðg; kÞ (with the finite number of

singular points). This set is the bifurcation diagram Sh of the restriction of the

pair of integrals G, K onto the iso-energetic surface fH ¼ hgHP6, which is

always compact. In particular, all diagrams Sh lie in the bounded area of the

ðg; kÞ-plane and are easily drawn numerically. The analytical investigation of

the types of the diagrams Sh with respect to the essential parameters ðb=a;
l=

ffiffiffi
a

p
; h=aÞ is a necessary but technically complicated problem. Nevertheless,

it must be solvable. Indeed, the set of double points and cusps of the curves

G1;2 in the ðg; kÞ-plane is already defined above and its evolution with respect

to the parameters is easily investigated analytically. Moreover, the values of

the first integrals on the motions (3.9)–(3.12) define the points of transversal

intersections G1 VG2. This fact, at least, guarantees that the numerical algo-

rithm can be built for e¤ective calculation of knots of one-dimensional cell

complex Sh for any h. In turn, it should be possible to find all cases of

bifurcations of the set of these knots with respect to the parameters defining the

above set of rank 1 critical motions.
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