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Abstract

This paper presents one of the approaches to solution of the prob-

lem of the repulsion origin in gravity. The approach is based on the

property of compactness characteristic for a self-gravitating object in

General Relativity. Here we understand �compactness� as estimation

of the upper boundary for such an object in a static two-dimensional

sphere. Repulsion originates when this boundary is violated. The

main hypothesis is formulated in the form of the principle � prin-

ciple of maximal mass within a two-dimensional static sphere. It

is demonstrated that the principle is true for Schwarzschild black

holes on absorption of the matter in the process of accretion, both

in the classical case and with due regard for quantum-gravitational

corrections. The results have been extended to black holes with the

Schwarzschild-de Sitter metric in the early Universe. The applica-

bility of the principle suggested is analyzed for the early and for the

present Universe.

PACS: 11.10.-z,11.15.Ha,12.38.Bx
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1 Introduction

By its nature, gravity represents the attracting force, as it had been indi-
cated in the Newtonian formulation and is still accepted in General Rela-
tivity (GR) [1]�[4]. But it is well known that cosmology involves repulsion
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as well [5]�[7]. A similar pattern is taken for the initial Universe expansion
due to negative sign of the pressure in the energy-momentum tensor of the
Einstein equation, opposite to a sign of the vacuum energy density. It is
important to understand the possibility for origination of the repulsion phe-
nomenon in Gravity. Currently, possible repulsion in gravity is extensively
studied from di�erent points of view (for example,[8]�[10]).
This paper suggests one of the approaches to solving the repulsion origin
problem in gravity. The approach is based on the property of compactness
characteristic for the self-gravitating object in GR. Here �compactness� is
understood as an estimate of the upper boundary for the mass of this object
in a static two-dimensional sphere.
The paper is structured as follows. In the next section the key assumption,
called the principle, is formulated and it is shown that Schwarzschild black
holes completely satisfy this principle both in the classical discussion and
with regard to the quantum-gravitational corrections. In Section 3 the re-
sults of Section 2 are generalized to the primordial black holes pbh with the
Schwarzschild-de Sitter metric in the early Universe. Section 4 presents an
analysis of the principle applications to the early and the present Universe.
The conclusion presents the relevant problems.

2 Maximal Mass Principle within Two-Dimensional

Static Sphere and Schwarzschild Black Holes

Let us recall the Buchdahl Theorem BT [11] stating that
the mass M of a spherically symmetric self-gravitating material object with
the radius R, the interior of which may be taken within the scope of General
Relativity as a perfect �uid, satis�es the condition

M ≤ 4

9

Rc2

G
. (1)

But we know that for a Schwarzschild black hole, with the same mass and
radius, the following relation [12] is true:

M =
1

2

Rc2

G
. (2)
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In this way we have contradiction between values of the dimensionless coef-
�cient C = 4/9 in the right side of (1) and C = 1/2 in the right side of (2).
In [13],[14] this contradiction has been studied to show that (section 2.2 in
[14]):
2.1 BT was proven for an incompressible �uid, with an in�nite speed of
sound cs = ∞, and this is in contradiction with causality as the speed of
sound cs should always be lower than the speed of light c, i.e. should sat-
isfy the condition cs ≤ c. Moreover, the BT-bound (1) in the case of an
incompressible �uid violates the Dominant Energy Condition (DEC)
in General Relativity [15]:

DEC : ρ ≥ |prad|, ρ ≥ |ptan|, (3)

where ρ is the matter density and prad, ptan are radial and tangential pres-
sures, respectively;
2.2 for strongly anisotropic materials, maximum compactness grows mono-
tonically with the longitudinal wave speed and in this case an elastic mat-
ter can exceed Buchdahl's boundary and reach the black hole compactness
C = 1/2 continuously. However, in this case some of the energy condi-
tions DEC [15] in General Relativity are violated or the interior of this
�uid contains ad-hoc thin shells, or again the speed of sound within the
medium exceeds the speed of light cs > c. Besides, as shown in [16], if the
matter satis�es (DEC), with nonnegative radial and tangential pressures
prad ≥ 0, ptan ≥ 0, we have C ∼< 0.4815;
2.3 as noted in [14]) for elastic balls, within the scope of the causality con-
dition and given the radial pressure, the condition (1) is the case but its
upper boundary C = 4/9 is unattainable.
Thus, in all the cases mentioned above the value of 1/2 is limiting for C.
Let us formulate an assumption for BT, calling it the
Maximal (or Limiting) Mass Principle within Sphere - PMM:
the mass M of a self-gravitating material object within a two-dimensional
static uncharged sphere SR , with the radius R, satis�es the condition

M ≤ 1

2

Rc2

G
. (4)
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When the condition of (4) is violated, speci�cally when within the sphere SR
at some moment we have the inequality

M′ = M+m >
1

2

Rc2

G
, (5)

a part of the mass M′ is forced beyond the boundary SR and two di�erent
outcomes are possible:

PMM.a
The initial radius R of the sphere SR increases by the magnitude o�ering
satisfaction of the condition (4) for the mass M′ = M + m also of the
self-gravitating object, contained within a new static sphere S ′

R′ with a new
radius R′, to satisfy the same condition (4)

M′ ≤ 1

2

R′c2

G
. (6)

PMM.b
The process becomes dynamic for a long period of time with the involvement
of the parameters for the positively determined radial sphere u

.
= dR(t)/dt

and of the corresponding acceleration d2R(t)/dt2.

Gravity as an attractive force is the case only when the formula of (4) is
valid. If in some instance the condition of (4) in SR is violated and we have
the formula of (5)instead, then

for PMM.a, gravity in SR becomes the repulsive force, extending SR to
a new sphere, SR′ ⊃ S ′

R, for the interior of which the validity of (4) is
restored and its attractivity is retained;

for PMM.b, attractivity of gravity is replaced by repulsivity, i.e. grav-
ity becomes a repulsive force.

Remark 2.1.
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2.1.1. In PMM we use the word �principle� rather than �hypothesis� as
usually the latter is associated with a proof of some statement in the canon-
ical paradigm. In case at hand the paradigm is extended because in some
instants gravity from the attractive force changes to the repulsive force;
2.1.2. Obviously, in this pattern (i.e. within the scope of the PMM valid-
ity), it is assumed that an object with the mass M is self-gravitating only
if the formula (4)is the case. But at instants of time, when the condition
of (4) is violated and we have the formula of (5), the object ceases to be
self-gravitating.

For a Schwarzschild black hole considered within the canonical theory of
gravitation, i.e. in General Relativity (GR) [1],[12],[4], the validity of (4)
at the equality of the left and right sides is doubtless.
Let us consider the formed Schwarzschild black hole with the metric [1],[12]

ds2 =

(
1− 2MG

r

)
dt2 −

(
1− 2MG

r

)−1

dr2 − r2dΩ2, (7)

where normalization for the speed of light is taken c = 1.
Due to GR and black holes theory [1],[12], the radius R ≡ RBH of a black
hole (7) and its mass M ≡ MBH exactly satisfy (4) for the case of equal
left and right sides by substitution

R 7→ RBH ,M 7→ MBH , c = 1. (8)

So, during the formation of a Schwarzschild black hole, due to the validity of
GR, there arises an object, for which the formula of (4)is evidently ful�lled
if in it the left and the right side are equal (i.e. in the limiting case) and
hence PMM is valid. Provided a Schwarzschild black hole is further in the
stationary state (without the processes of absorption and emission), this
pattern remains unaltered.
But at accretion of the mass m on a black hole, the formula of (4) with
substitution in (8 becomes invalid, (5)is the case and a new Schwarzschild
black hole is formed, having the following mass and radius:

M′
BH = MBH +m =

1

2

(RBH +∆Rm)
G

,

R′
BH = RBH +∆Rm = 2G(MBH +m) = 2GM′

BH , (9)
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where
∆Rm = 2Gm. (10)

The last two formulae are equivalent to (5),(6), with the substitution (MBH+
m) → M′

BH ,R′ → R′
BH to choose the equality sign in (6), and on the nor-

malization c = 1.
Consequently, the process of accretion satis�es all the requirements ofPMM.a
in the case of the equality sign in (4), because in fact the process of the ad-
ditional mass absorption m may be represented as forcing of this mass
outward of the initial black hole and the formation of a new black hole,
with the mass and the radius M′

BH ,R′
BH , respectively.

Let us brie�y recall the formulae required for the interior solution in the
case of a Schwarzschild black hole with the metric (7). Then within SR, i.e.
within the black hole, the matter energy-momentum tensor takes the form
corresponding to the perfect �uid

Tµν = ρuµuν + p(gµν + uµuν), (11)

where ρ and p � corresponding density and pressure; uµ is the four-velocity
[1].
The mass of a black holeMmay be given similarly to the Newtonian gravity
(formula (6.2.10) in [1]):

M(R) =

∫ R

0

ρ(r)dV = 4π

∫ R

0

ρ(r)r2dr. (12)

It is important that for the interior of BH the formula (12) is incorrect due
to the fact that in GR in the right-hand side the proper volume element√
g3d3x should be added as a factor (formula (B.2.17) in [1]). Then the

total proper mass within a Schwarzschild black hole takes the following
form ((6.2.11) from [1]):

M(R)p = π

∫ R

0

ρ(r)r2[1− 2m(r)

r
]−1/2dr, (13)

where ((6.2.8) from [1])

m(r) = 4π

∫ r

0

ρ(r′)r
′2dr′ (14)
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and the di�erence EB = M(R)p−M(R) is the gravitational binding energy.
As seen, all the above formulae (12)�(14) remain valid when a black hole
absorbs the matter with the massm and we make the substitutions in these
formulae

M(R) 7→ M′(R′),R 7→ R′,M(R)p 7→ M′(R′)p. (15)

So, the process of accretion for a black hole (absorption of the matter by a
black hole) results in the formation of a new Schwarzschild black hole with
the mass and the radius M′(R′),R′ from formula (15). But according to
the well-known No hair theorem (pp.875�877 in [17]):
all stationary black hole solutions of the Einstein�Maxwell equations for
gravitation and electromagnetism in general relativity can be completely
characterized by only three independent externally-observable classical pa-
rameters: mass M, electric charge Q, and angular momentum J.
An immediate consequence of the No hair theorem is the fact that all
Schwarzschild black holes (i.e. Q = 0,J = 0)having the same mass M are
physically equivalent.
Therefore, the black hole with the mass M′(theradiusR′) that originated
due to absorption of the matter with the mass m by a black hole having
the mass M(R) is equivalent to (indistinguishable from) a black hole of the
same mass M′(R′) resultant from a stellar collapse [1]. All the formulae
for the black hole formed as a result of the collapse are valid in this case, in
particular, the equation of hydro-static equilibrium Tolman-Oppenheimer-
Volko� equation (formula (6.2.19) in [1]):

dp

dr
= −(p+ ρ)

m(r) + 4πr3p

r[r − 2m(r)]
. (16)

Remark 2.2
In this case we ignore the Hawking evaporation process of black holes [1],[12]
as it is clear that the process leads to a decrease of the black hole mass,
whereas a Schwarzschild black hole remains the Schwarzschild one, and
hence (4) is valid.
Conclusion 2.3 In such a way a Schwarzschild black hole with the initial
mass and the initial radius M and R,respectively, in the process of accre-
tion (matter absorption) completely satis�es PMM.a, with the equality sign
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in (4). This is due to the fact that, after the process is �nished, this hole
remains the Schwarzschild black hole, yet with the new mass M′ and new
radius R′. GR is valid for this hole both before the beginning and after
�nishing of this process, the process per se being considered as forcing out
of the additional mass into a sphere of greater radius that is in line with
General Relativity.
However, all the calculations in [1],[12] are valid in a semi-classical approx-
imation, i.e. for black holes with great radius and mass. It is interesting
to �nd how looks the above-mentioned pattern at high energies with signif-
icant quantum gravitational corrections (qgc).
Speci�cally, for the energies on the order of Plank's energies (quantum grav-
ity scales) E ≃ Ep, the Heisenberg Uncertainty Principle (HUP) [18]

(δX) (δP ) ≥ ~
2
, (17)

may be replaced by the Generalized Uncertainty Principle (GUP) [19]

(δX) (δP ) ≥ ~
2

⟨
exp

(
α2l2p
~2

P 2

)⟩
, (18)

which, on retention of the leading term, gives the �rst-order GUP [20]�[28]:

(δX) (δP ) ≥ ~
2

(
1 +

α2l2p
~2

(δP )2
)
. (19)

Then there is a possibility for existence of Planck's Schwarzschild black hole,
and accordingly of a Schwarzschild sphere (further referred to as �minimal�)
with the minimal mass M0 and the minimal radius rmin (formula (20) in
[19])that is a theoretical minimal length rmin:

rmin = lmin = (δX)0 =

√
e

2
αlp, M0 =

α
√
e

2
√
2
mp, (20)

where α - model-dependent parameters on the order of 1, e - base of natural
logarithms, and rmin ∝ lp,M0 ∝ mp.
In this case, due to GUP (18), the physics becomes nonlocal and the position
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of any point is determined accurate to lmin. It is impossible to ignore this
nonlocality at the energies close to the Planck energy E ≈ Ep, i.e. at the
scales l ∝ lp (equivalently we have l ∝ rmin = lmin).
Using the terminology from [29], we will call black holes with the event
horizon radii r ∝ lp the quantum black holes (qbh rather than micro black
holes.
Actually, [19] presents calculated values of the mass M and the radius R
for Schwarzschild BH with regard to the quantum-gravitational corrections
within the scope of GUP (18).
With the use of the normalization G = l2p adopted in [19], temperature of
a Schwarzschild black hole having the mass M (the radius R) [12] in a
semi-classical approximation takes the form

TH =
1

8πGM
. (21)

Within the scope of GUP (18),the temperature TH with regard to (qgc) is
of the form ((23) in [19]))

ratherthanTH,q =
1

8πMG
exp

(
−1

2
W

(
−1

e

(
M0

M

)2
))

, (22)

where W
(
−1

e

(
M0

M

)2)
� value at the corresponding point of the Lambert

W-function W (u) satisfying the equation (formulae (1.5) in [30] and (9) in
[19])

W (u) eW (u) = u. (23)

W (u) is the multifunction for complex variable u = x+yi. However, for real
u = x,−1/e ≤ u < 0,W (u) is the single-valued continuous function having
two branches denoted by W0(u) and W−1(u) , and for real u = x, u ≥ 0
there is only one branch W0(u) [30].
It is clear that, for a great black hole having large mass M and great event

horizon area A, the deformation parameter 1
e

(
M0

M

)2
is vanishingly small and

close to zero. Then a value ofW
(
−1

e

(
M0

M

)2)
Is also close toW (0). As seen,
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W (0) = 0 is an obvious solution for the equation (23). We have

exp

(
−1

2
W

(
−1

e

(
M0

M

)2
))

≈ 1. (24)

So, a black hole with great mass M ≫ mp necessitates no consideration of
qgc.
But in the case of small black holes we have

exp

(
−1

2
W

(
−1

e

(
M0

M

)2
))

> 1. (25)

In formulae above it is assumed that M > M0, i.e. the black hole under
study is not minimal (20).
We can rewrite the formula of (22) as follows:

TH,q =
1

8πMqG
,Mq = M exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

;

Rq = 2MqG = R exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

, (26)

where Mq and Rq are respectively the initial black0-hole mass and event
horizon radius considering qgc caused by GUP (18).
Taking in account these qgc, a mass and a radius of the initial Schwarzschild
black hole, absorbing the matter with the mass m, will change in the fol-
lowing way:

Mq = M exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

7→ M′
q = M′ exp

(
1

2
W

(
−1

e

(
M0

M′

)2
))

,

Rq = R exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

7→ R′
q = R′ exp

(
1

2
W

(
−1

e

(
M0

M′

)2
))

,

,(27)

where M′ = M+m,R′ = R+ 2Gm/c2.
Let us make sure that, within the constant factor c2/G, the right-hand side

10



has the equality

M
R

=
Mq

Rq

=
M′

R′ =
M′

q

R′
q

=
1

2
. (28)

As directly follows from (28), Conclusion 2.3 is valid at high (Planck's)
energies within the scope of GUP on the substitution in PMM

M 7→ Mq,R 7→ Rq,M′ 7→ M′
q,R′ 7→ R′

q. (29)

Remark 2.4
It follows from the formulae that, due to (25), substitution of (29) is most
actual at high energies, whenM,M′ and R,R′ Are close toM0, rmin = lmin,
respectively. Otherwise, when M ≫ M0,R ≫ rmin, substitution in formula
(29) is insigni�cant as it is clear that, because of (24), all exponents in the
right side of (29) are close to 1, and we have M ≈ Mq,M′ ≈ M′

q,m ≈
mq, ....

3 PMM and Primordial Black Holes with the

Schwarzschild-de Sitter Metric in the Early

Universe

At the same time, Schwarzschild black holes with the metric (7) in real
physics (cosmology, astrophysics) are idealized objects. As noted in (p.324,[12]):
�Spherically symmetric accretion onto a Schwarzschild black hole is proba-
bly only of academic interest as a testing for theoretical ideas. It is of little
relevance for interpretations of the observations data. More realistic is the
situation where a black hole moves with respect to the interstellar gas...�
Nevertheless, black holes just of this type may arise and may be realistic in
the early Universe. In this case they are primordial black holes (pbh). Most
common mechanism for the formation of pbh is the high-density gravita-
tion matter collapse generated by cosmological perturbations arising, e.g.,
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in the process of in�ation (not necessarily) in the early Universe [31]. But
the idea about the formation of pbh has been suggested much earlier than
the �rst in�ation models, speci�cally in [32] and independently in [33] or
[34].
During studies of the early Universe the Schwarzschild metric (7) for pbh is
replaced by the Schwarzschild-de Sitter (SdS) metric [35] that is associated
with Schwarzschild black holes with small mass M in the early Universe, in
particular in pre-in�ation epoch

ds2 = −f(r̃)dt2 +
dr̃2

f(r̃)
+ r̃2dΩ2 (30)

where f(r̃) = 1−2GM/r̃−Λr̃2/3 = 1−2GM/r̃− r̃2/L2, L =
√
3/Λ = H−1

0 ,
M - black hole mass, Λ � cosmological constant, and L = H−1

0 is the Hubble
radius.
In general, such a black hole may have two di�erent horizons corresponding
to two di�erent zeros f(r̃): event horizon of a black hole and cosmological
horizon. This is just so in the case under study when a value of M is small
[36],[37]. In the general case of L ≫ GM , for the event horizon radius of a
black hole having the metric (30), rH takes the following form (formula (9)
in [38]):

rH ≃ 2GM

[
1 +

(rM
L

)2]
, where rM = 2MG. (31)

Then, due to the assumption concerning the initial smallness of Λ, we have
L ≫ rM . In this case, to a high accuracy, the condition rH = rM is ful�lled,
i.e. for the considered (SdS) BH we can use the formulae, given in the pre-
vious section for a Schwarzschild BH, to a great accuracy.
Thus, in this case for pbh, with the Schwarzschild-de Sitter (SdS) metric
(30) and with small radii, Conclusion 2.3 is valid and in PMM.a, due to
Remark 2.4,qgc must be taken into consideration. Provided these pbh
were formed in the early Universe at very high energies close to the Planck's,
without loss of generality, such black holes may be considered as qbh.
Remark 3.1.
Note that, because Λ is very small, the condition L ≫ GM and hence the
formula of (31) are obviously valid not only for black hole with the mass
M ∝ mp but also for a much greater range of masses, i.e. for black holes
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with the mass M ≫ mp, taking into account the condition L ≫ GM . In
fact we obtain ordinary Schwarzschild black holes considered in the �rst
part of Section 2, which do not require consideration of qgc due to formula
(24).
But the problem arises, how high is the probability that pbh with Schwarzschild-
de Sitter SdS metric (30) arise in the pre-in�ation epoch. This problem has
been studied in [35] without due regard for qgc. Let us demonstrate that
consideration of qgc in this case makes the probability of arising pbh higher.
To this end in cosmology, in particular in�ationary, the metric (30) is con-
veniently described in terms of the conformal time η [35]:

ds2 = a2(η)

{
− dη2 +

(
1 +

µ3η3

r3

)4/3
[(

1− µ3η3/r3

1 + µ3η3/r3

)2

dr2 + r2dΩ2

]}
,

(32)
where µ = (GMH0/2)

1/3, H0 � de Sitter-Hubble parameter and scale factor,
a � conformal time function η:

a(η) = −1/(H0η), η < 0. (33)

Here r satis�es the condition r0 < r < ∞ and a value of r0 = −µη in the
reference frame of (32) conforms to singularity of the back hole.
Due to (31), µ may be given as

µ = (rMH0/4)
1/3, (34)

where r̃ = rM is the radius of a black hole with the SdS Schwarzschild-de
Sitter metric (30).
In the conventional consideration it is assumed, similar to [35], that in (34)
we have µ = const. Then, if in formula (34) rM : rM 7→ r̃M is �shifted�,

H0 : H0 7→ H̃0 is adequately �shifted� too, and we have

µ = (rMH0/4)
1/3 = (r̃MH̃0/4)

1/3, H̃0 =
rM
r̃M

H0 = const. (35)

Speci�cally,in the case µ = const, in (35) substitution of rM 7→ rMq for
rM = R, rMq = Rq, formula (27),results in substitution of H0 → H0,q to
meet the condition

µ = (rMH0/4)
1/3 = (rMqH0,q/4)

1/3. (36)
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From the last formula it follows that

H0,q = H0 exp

(
−1

2
W

(
−1

e

(
M0

M

)2
))

. (37)

Similar to [35], it is assumed that in pre-in�ation period non-relativistic
particles with the mass m < Mp are dominant (Section 3 in [35]). For
convenience, let us denote the Schwarzschild radius rM by RS.
When denoting, in analogy with [35], by N(R, t) the number of particles in
a comoving ball with the physical radius R = R(t) and the volume VR at
time t, in the case under study this number (formula (3.9) in [35]) will have
qgc N(R, t) 7→ N(R, t)q

(⟨N(R, t)⟩ =
m2

pH
2R3

2m
) 7→ (⟨N(R, t)q⟩ =

m2
pH

2
qR

3

2m
). (38)

Here the �rst part of the last formula agrees with formula (3.9) in [35],
whereas H,Hq in this case are in agreement with H0, H0,q. And from (37)
it follows that

⟨N(R, t)q⟩ = ⟨N(R, t)⟩ exp

(
−W

(
−1

e

(
M0

M

)2
))

. (39)

According to (26), it is necessary to replace the Schwarzschild radius RS by

RS,q = RS exp
(

1
2
W
(
−1

e

(
M0

M

)2))
.

Then from the general formula N(RS, t) = ⟨N(RS, t)⟩ + δN(RS, t), used
because of the replacement of RS 7→ RS,q, we obtain an analog of (3.12)
from [35]

δN > δNcr,q
.
=

m2
pRS,q

2m
− ⟨N(RS, t)q⟩ =

m2
pRS,q

2m
[1− (HRS)

2] =

=
m2

pRS

2m
[1− (HRS)

2] exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

= δNcr exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

.(40)

In the last formula in square brackets we should have (HqRS,q)
2 instead

of (HRS)
2 but, as we consider the case µ = const, these quantities are
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coincident.
It should be noted that here the following condition is used:

HRS < 1, (41)

i.e. Schwarzschild radius RS less than Hubble radius, RS < RH = 1/H.

As we have exp
(

1
2
W
(
−1

e

(
M0

M

)2))
< 1, then

δNcr,q < δNcr. (42)

Considering that for the formation of a Schwarzschild black hole with the
radius RS it is required that, due to statistical �uctuations, the number of
particles N(RS, t) with the mass m within the black hole volume VRS

=
4/3πR3

S be in agreement with the condition [35]

N(RS, t) > RSM
2
p/(2m), (43)

which, according to qgs in the formula of (26), may be replaced by

N(RS,q, t) > RS,qM
2
p/(2m) = exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

RSM
2
p/(2m).

(44)
As follows from these expressions, with regard to qgc for the formation of
pbh in the pre-in�ation period, the number of the corresponding particles
may be lower than for a black hole without such regard, leading to a higher
probability of the formation.
Such a conclusion may be made by comparison of this probability in a semi-
classical consideration (formula (3.13) in [35])

P
(
δN(RS, t) > δNcr(RS, t)

)
=

∫ ∞

δNcr

d(δN)P (δN) (45)

and with due regard for qgc

P
(
δN(RS,q, t) > δNcr(RS,q, t)

)
=

∫ ∞

δNcr,q

d(δN)P (δN). (46)
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Considering that in the last two integrals the integrands take positive values
and are the same, whereas the integration domain in the second integral is
wider due to (42), we have ∫ ∞

δNcr,q

d(δN)P (δN) =

=

∫ δNcr

δNcr,q

d(δN)P (δN) +

∫ ∞

δNcr

d(δN)P (δN) >

∫ ∞

δNcr

d(δN)P (δN). (47)

As follows from the last three formulae, in the case under study the prob-
ability that the above-mentioned pbh will be formed is higher with due
regard for qgc.
It is interesting to �nd which changes should be expected in the pattern
studied if the parameter µ ceases to be constant and is shifted with regard
to qgc of the black hole mass M 7→ Mq (26): (µ = (GMH0/2)

1/3) 7→ (µq =
(GMqH0/2)

1/3).
Note that in this case the general formula form Section 3 in [35] are also valid
but for this pattern in formula (40) there is substitution of HRS 7→ HRS,q:

δN > δNcr,q
.
=

m2
pRS,q

2m
− ⟨N(RS, t)q⟩ =

m2
pRS,q

2m
[1− (HRS,q)

2] =

=
m2

pRS exp
(

1
2
W
(
−1

e

(
M0

M

)2))
2m

[1−H2R2
S exp

(
W

(
−1

e

(
M0

M

)2
))

].(48)

To understand variations in the probability of pbh arising as compared to
the case when qgc are neglected in the consideration, we compare the last

expression with the corresponding quantity δNcr =
m2

pRS

2m
[1− (HRS)

2].
Dividing the last expression and the right side (48) by the same positive

number
m2

pRS

2m
and subtracting the second number from the �rst, we can

obtain

δNcr − δNcr,q ∼ [1−H2R2
S +H2R2

S exp

(
3

2
W

(
−1

e

(
M0

M

)2
))

−

− exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

] (49)
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with a positive proportionality factor.
To have a positive quantity in the right side (49), ful�llment of the following
inequality is required:

1− exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

> R2
SH

2[1− exp

(
3

2
W

(
−1

e

(
M0

M

)2
))

].(50)

As from formula (23) it follows that W (u) < 0 for u < 0, we have 1 −
exp

(
1
2
W
(
−1

e

(
M0

M

)2))
> 0, 1− exp

(
3
2
W
(
−1

e

(
M0

M

)2))
> 0, from where it

follows that (50) is equivalent to the inequality

(HRS)
2 <

1− exp
(

1
2
W
(
−1

e

(
M0

M

)2))
1− exp

(
3
2
W
(
−1

e

(
M0

M

)2)) =

=
1

1 + exp
(

1
2
W
(
−1

e

(
M0

M

)2))
+ exp

(
W
(
−1

e

(
M0

M

)2)) (51)

or

HRS <
1√

1 + exp
(

1
2
W
(
−1

e

(
M0

M

)2))
+ exp

(
W
(
−1

e

(
M0

M

)2)) . (52)

We need that in the case under study µ ̸= const the probability of pbh
arising with regard to qgc be higher than the same probability but without
due regard for qgc. It is su�cient to replace the condition HRS < 1 in
formula (41) by the condition in formula (52).

Note that, due to smallness ofRS, exp
(

1
2
W
(
−1

e

(
M0

M

)2))
, exp

(
W
(
−1

e

(
M0

M

)2))
are also small and in the right side (52) the quantity is close to 1, i.e. the
shorter the Schwarzschild radius of pbh,the greater consideration of qgc
increases the probability of pbh arising.

4 PMM,Early and Present Universe

Now let us realize that for the metric (7) (or (30)) and for the small radius
RM of the sphere SRM the condition (4) in PMM is from the start violated,
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i.e. initially for the time t = 0, instead of (4), we had (5), or

M′ = M+m > M =
RMc2

2G
. (53)

The following aspects should be particularly emphasized.

1. Provided M,RM represent the mass and the radius of a black hole,
respectively, and m � mass of the matter absorbed by this black hole on
accretion, it is connived that m < M, whereas in the vast majority of cases
� m ≪ M.
Besides, as on accretion of the matter for a black hole this black hole re-
mains unchanged, the condition (4) in the case of equality is unaltered for
a new black hole and we have M′ = RM′c2/(2G). This means that in (6)
the equality is always the case

R′ = RM′ = RM + 2Gm/c2. (54)

2. However, this is not true in the general case when there is no consid-
eration for a black hole and the accretion process on this black hole, in
particular when formula (5) (or equivalently (53)) is valid from the very
beginning. It is clear that in this case, according to point 2.1.2. of the
Remark 2.1., the system is not self-gravitating and we initially consider
the pattern of the matter forcing-out beyond the sphere SRM , i.e. the case
with PMM.b.
If (4) is violated, speci�cally if

M′ >
RMc2

2G
, (55)

then the mean density ρM′ of the sphere interior SR with the mass M′

should satisfy the condition

ρM′ >
3c2

8πR2
MG

,

or ρM′ = κ
3c2

8πR2
MG

, κ > 1. (56)
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Obviously, it is impossible to take such scenario of the early Universe for
explanation of its initial expansion.
Assuming this scenario for the very beginning of the Universe origination,
in this case we denote RM

.
= R(0) as Rorigin (or equivalently Rsource).

Within the scope of a perfect �uid model, in cosmology [7] an equation for
such liquid takes the form

p[ρ(t)] = ω[ρ(t)]ρ(t). (57)

It is assumed that a value of ρ(0) = ρM′ is associated with the vacuum.
As from the start we use the pattern of PMM.b,repulsion is the case and
hence the initial pressure is negative. Then, without loss of generality, it is
believed that

p[ρ(0)] = ω[ρ(0)]ρ(0), ω[ρ(0)]
.
= ω0 = −1. (58)

Provided in the early Universe in the process of the initial expansion we
have the scenario of PMM.b, for the dynamic quantity R(t) at small times
t ≥ 0 in the point t = 0 the following condition must be ful�lled: R(0) =
Rorigin, ρM′ = ρ(0)

.
= ρvac.

In this case the expression (56) may be written as

ρ(0) = κ
3c2

8πR(0)2G
= κ

3c2

8πR2
originG

, κ > 1, (59)

where κ�dimensionless parameter.
With the normalization c = ~ = 1, G = l2p = m−2

p used in [5]�[7], (59) we
can rewrite the expression, where the left side is given in the well-known
form (formulae (3.34) in [5] and (12.1) in [6])

8π

3

ρ(0)

m2
p

=
κ

R2
origin

. (60)

We can see that

κ

R2
origin

̸= H2
vac = H2

dS = H0. (61)
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Indeed, since in the early Universe the typical size of a two-dimensional
sphere is Planckian or close to the Planck's [39]�[44],i.e. Rorigin ∝ lp, from
formula κc2/R2

origin = H2
vac = H2

dS, that at c = 1 is equivalent to the
condition κ/R2

origin = H2
vac = H2

dS, for the quantity Rorigin ∝ lp the propor-
tionality factor is κ

H0 ∝
c

Rorigin

=
3 · 105km · s−1

lp
≈ c

Rorigin

=
3 · 105km · s−1

10−33cm
≈ 1043s−1.(62)

Still, it is known that Hvac = HdS = H0 is a very small quantity and,
according to modern estimates, we have

H0 ≈ (1, 5− 2, 5) · 10−18s−1,

tH0 ≈ 5 · 1017s. (63)

Assuming that Rorigin takes a real value in the early Universe, in particular
Rorigin ∝ lp, in (60) the values of ρ(0) = ρvac andH0 (formula (62)) are enor-
mous, deviating drastically from the experimental data. The same problem
is observed with tremendous discrepancy between the vacuum energy den-
sity (cosmological constant) Λ, ρvac

.
= ρΛ,m calculated by the canonical

quantum �eld theory [45],[46] and its experimental value [47].
Now we consider the present Universe with the characteristic radius of the
(Metagalactic) luminous horizon:

R∗∗ = ctH0 ≈ 4.4 · 1028cm = 4.4 · 1026m = 4.4 · 1023km. (64)

As the corresponding sphere SR∗∗ with the radius R∗∗ at the present time
period is not static, expanding continuously, we can use PMM from Section
2 only in the case of repulsion, i.e. we have formula (5) in the pattern
PMM.b. Let us verify an extent of violation of the condition (4) in the
present Universe for the radius R∗∗.
As known, the mean density ρUniv of the total energy in the present Universe
is approaching the critical density ρc =

3H2

8πG

ρUniv ≈ 9.9 · 10−27kg ·m−3. (65)

Then the total mass MR∗∗,total contained within SR∗∗ is equal to

MR∗∗,total = ρUniv
4π

3
R3

∗∗ ≈ 9.9 · 10−27 kg

m3
· 3.566 · 1080m3 ≈ 3.53 · 1054kg.(66)
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On the other hand, the Schwarzschild massMR∗∗,Sch contained in the sphere
SR∗∗ with the radius R∗∗, i.e. the mass satisfying (4) (for R = R∗∗ in the
case of the equality), equals

MR∗∗,Sch =
R∗∗c

2

2G
≈ 4.4 · 1023km · 9 · 1010km2/s2

2 · 6, 67 · 10−20km3 · s−2 · kg−1
≈ 2.969 · 1053kg, (67)

where the Newton constant G = 6, 67430 · 10−11m3s−2kg−1 = 6, 67430 ·
10−20km3s−2kg−1. In this way from (66),(67) it follows that

MR∗∗,total ≫ MR∗∗,Sch. (68)

In this case the condition (4) is greatly violated. In fact we obtain the pat-
tern of PMM.b with the di�erence that initially the sphere was not static
SR∗∗ .
But, if the rate of variations of the radius dR∗∗(t)/dt is su�ciently low,
variations of the sphere SR∗∗ are rather slow�to a high accuracy the sphere
may be considered static for a long period of time.
Nevertheless, the ordinary (baryonic) matter makes 0.049 of the whole con-
tents of the Universe and for the corresponding mass MR∗∗,baryonic we get

MR∗∗,baryonic ≈ 3.53 · 0.049 · 1054kg ≈ 1.7 · 1053kg. (69)

Comparison of this number with MR∗∗,Sch demonstrates that there is no
violation of (4) in the case of ordinary (baryonic) matter.
But, when the dark matter forming 0.268 of the Universe contents is added
to baryonic matter, the corresponding mass MR∗∗,matter is equal to

MR∗∗,matter ≈ 3.53 · 0.317 · 1054kg ≈ 1.119 · 1054kg. (70)

Since MR∗∗,matter > MR∗∗,Sch, in this case repulsion also arises and we have
the pattern PMM.b.
Let us return to formula (56) for RM = R∗∗,M′ = MR∗∗,total. As directly
follows from (68), we can write (56) as

ρMR∗∗,total
= κ

3c2

8πR2
∗∗G

, κ ≫ 1. (71)
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It should be noted that in the general case ρ ∝ a−3(1+ω) the second line of
formula (56) immediately gives

κ1/2R(t) ∝ a
3
2
(1+ω)(t), κ > 1, ω > −1. (72)

The parameter κ is a dynamic quantity, i.e. κ = κ(t). From (71) it follows
that at the present epoch it is rather high κ ≫ 1.

5 Final Comments and Conclusion

PMM and its violation o�er the possibility to introduce repulsive forces
into gravity. If PMM is valid, we should consider three important prob-
lems:

5.1. Correct integrity of PMM with General Relativity;

5.2. Obvious relation of PMM to cosmological models, speci�cally to
in�ation models;

5.3. PMM and the Dark Universe Problem (Dark Matter+Dark Energy).
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